
Loss Differentiation and Recovery in TCP over
Wireless Wide-Area Networks

Detlef Bosau

detlef.bosau@web.de

Herwig Unger, Lada-On Lertsuwanakul
Fernuni Hagen

{herwig.unger,lada-on.lertsuwanakul}@fernuni-hagen.de

Dominik Kaspar
Simula Research Laboratory, Norway

kaspar@simula.no

Abstract—The increasing speed and coverage of wireless wide-
area networks (WWAN) has made technologies such as GPRS,
UMTS, or HSDPA a popular way to access the Internet for both
mobile and stationary users. However, depending on the scenario,
WWAN can suffer from severe IP packet loss due to corruption,
which is mistaken by TCP as an indication of path congestion.
This paper presents an approach to solve theloss differentiation
problem for the widespread scenario of wireless networks being
used as access networks to the Internet. Our solution allows
TCP to distinguish between congestion and corruption loss and
to properly react to both phenomena. Loss differentiation is
achieved by placing an assisting agent on the WWAN’s base
station, which replies a TCP sender in the wired Internet with a
new type of acknowledgement. Without harming TCP’s end-to-
end semantics, these acknowledgements provide feedback about
congestion on the wired path and corruption on the wireless
path and support the sender in taking remedial action. Results
from simulations indicate that our proposed corruption recovery
algorithm significantly improves the TCP goodput. In addition,
excessive RTO growth and pauses in the TCP flow that result
from repeated packet corruption are considerably reduced.

I. I NTRODUCTION

Accessing the Internet and Internet-based services over
wireless wide-area networks (WWAN) such as GPRS, UMTS,
and HSDPA has become part of our everyday life. A typical
scenario is given in Figure 1, which illustrates a mobile
host (MH) attached to a wireless access network and com-
municating with a fixed host (FH) in the Internet. The wired
Internet and the wireless access network are interconnected by
a base station (BS).

Fig. 1. Internet and wireless access network.

Due to the lossy nature of wireless links, TCP connections
between FH and MH are faced with several difficulties.

• The loss differentiation problem: TCP implicitly assumes
corruption-free links along the entire path, therefore
packet corruption is mistaken as an indication of path

congestion. As a consequence, TCP may not be able to
fully utilize its fair share of the available path capacity.

• The properretransmission timeout (RTO) estimationis
known to be difficult [1][2]. The main challenge is caused
by TCP’s assumption of quasi-stationary round-trip times
(RTT) [3][4]. A too large RTO causes inefficient usage of
the available capacity, while a too small RTO may cause
unnecessary retransmissions and congestion handling.
The latter problem is also known as the “spurious timeout
problem”. Existing algorithms, such as TCP Eifel [5], de-
tect spurious timeouts to correct an erroneously reduced
congestion window, but they do not resolve corruption
loss.

• TCP employs a Go-Back-N strategy for loss recovery,
which is unsuitable when a packet requires more than
one transmission attempt for successful delivery. TCP
assumes corruption-free links, thus a packet retrans-
mission is expected to be successful when a (perhaps
erroneously!) recognized congestion is overcome. Further
transmission attempts lead to increasing timeouts and
unwanted pauses (refer to Section II-B for more details).

Particularly, the assumption of corruption-free links and
quasi-stationary RTT is severely violated in WWANs. Depend-
ing on the actual scenario, packet corruption rates in WWANs
can be arbitrarily close to 1. In addition, the service time
for a packet on a WWAN link, and therefore the average
RTT, may vary for several reasons, including varying cell load
in cellular networks and therefore varying MAC delays, and
varying channel or line coding if the network technology is
able to adapt to different signal-to-noise ratios. As a motivating
example, Figure 2 illustrates extreme RTT values (431 seconds
at the maximum!) measured over HSDPA on a moving train.

In this paper, we decouple congestion control and pacing
from reliable delivery by introducing anassisting agenton
the base station, the “CLACK agent”. This agent addresses the
problems of loss differentiation and proper RTO estimationby
providing the FH with a new type of acknowledgment. Hence,
proper loss differentiation and clocking is achieved without
harming the TCP connection’s end-to-end semantics by ACK
spoofing, connection splitting or introducing hard state into
the network. The proposed CLACK agent can be considered
as a “flow middlebox” in the sense of [6].

In addition, we propose a loss recovery strategy suitable for
lossy networks, in which any packet corruption is signaled to

285Copyright (c) IARIA, 2011 ISBN:978-1-61208-002-4

ICN 2011 : The Tenth International Conference on Networks

50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

Elapsed time (seconds)

R
ou

nd
−t

rip
 ti

m
e

(s
ec

on
ds

)

1480−byte packets
64−byte packets431 sec.

Fig. 2. Extreme round-trip times over an HSDPA access network during a
train trip through the Norwegian countryside. The two experiments of small
and large packet sizes were conducted at different times and locations.

the communication endpoints as soon as possible. Therefore,
our mechanism provides a fast end-to-end retransmission of
corrupted packetsbefore the expiration of the RTO timer. In
other words, our mechanism complements the fast retransmit
of packets lost due to congestion by a fast retransmit of packets
lost due to corruption.

The remainder of this paper continues with a discussion of
related work in Section II. In Section III, a description of our
CLACK approach follows. Section IV describes the details
of our system model and our simulation environment. Simu-
lation results are presented in Section V. Finally, SectionVI
concludes the paper and outlines our future research activities.

II. RELATED WORK

The last two decades have seen a vast amount of related
work in the area of wireless access to the Internet. Thus,
only a selection of relevant papers can be addressed here for
space limitations. For a more complete overview, the readeris
referred to the work by Sonia Fahmy [7].

A. Local Recovery

In WWANs, the corruption probability for a given packet
can be arbitrarily close to 1 and does not primarily depend
on the technology in use but on the actual scenario. Packet
corruption cannot be completely overcome by local recovery
approaches, such as Snoop [8][9][10], which uses buffering
and retransmission of lost packets at BS. Local recovery can
increase the probability for a packet to be correctly delivered at
the expense of increased delivery times. However, analogous
to the “Two Army Problem”, it is impossible toreliably deliver
a packet over a lossy channel inlimited time, or in a limited
number of sending attempts.

A fundamental problem with all kinds of local recovery
approaches and performance enhancing proxies (PEP)[11] is
the eventual deletion of transient data from buffers and queues.
Particularly in case of link outages and high corruption rates,

packets buffered in some local recovery mechanism or PEP
may stay forever and lead to unlimited head-of-line blocking,
if they are not forcefully deleted (e.g., by a reasonably limited
persistence). In this paper, we take the position that packet
corruption should be handled by the connection endpoints and
only limited effort should be spent on local recovery [12].

B. End–to–End Recovery

A second problem of lossy channels in TCP is the reliable
end-to-end delivery of data when a lost packet cannot be recov-
ered by a single retransmission. If a corrupted packet needs
more than one transmission attempt for successful delivery,
the individual retransmissions are started by retransmission
timeouts, even if packet loss detection using duplicate and
selective ACKs is employed. Because TCP employs cumula-
tive ACKs and a Go–Back–N strategy for loss recovery, some
of the yet unacknowledged data may have been successfully
received and hence causes DupACKs during the retransmission
process. Thus, DupACKs are not suitable for loss detection
during the retransmission process. Refer to [13], Section 3.2
(“Fast Retransmit and Recovery”) for details. Due to the
retransmission timeout (RTO) backoff, which is used to rapidly
increase the RTO to a sufficiently large value in case of a too
small or not yet existing RTT estimate [14] repeated timeouts
may lead to unwanted and annoying RTO growth and therefore
pauses in the TCP transmission process.

To our knowledge, the problem of end–to–end loss recovery
has received only little attention in the past. Approaches
published so far consider loss recovery in Delay Tolerant Net-
works, e.g., [15] which reduce the number of retransmissions
by adding redundant information to the data stream but do not
primarily target recovery of actual packet loss.

C. Loss Differentiation

For the loss differentiation problem, we can identify three
main approaches.

1) Some methods try to identify the reason for a packet
loss by statistical means, e.g., [16]. The basic idea is
to monitor a path’s RTT and to infer from individual
RTT observations, whether a “short time RTT average”
exceeds a “long time RTT average”, which is taken
as an indication of congestion. Therefore, packet loss
is recognized as congestion loss, while in the opposite
case, packet loss is seen as corruption. Besides the end-
to-end RTT, there are other statistics proposed for the
same purpose of loss differentiation, e.g., interarrival
times, interarrival time jitter etc.
All of these approaches attempt to do an “ex post
reasoning” in order to identify the actual reason for
an individual observation, which may be caused by
different reasons. For example, an increasing RTT can be
due to a noisy channel and increasingrecovery delays,
or to a crowded cell with increasingMAC delays. This
kind of ex post reasoning is never a proper application
of mathematical statistics, particularly it does not yield
the true reason for anindividual packet loss.

286Copyright (c) IARIA, 2011 ISBN:978-1-61208-002-4

ICN 2011 : The Tenth International Conference on Networks

2) The CETEN approach by Eddy, Ostermann and All-
man [17] does not focus on the individual packet loss
but attempts to modify TCP’sAdditive Increase Multi-
plicative Decreasemechanism in order to accommodate
the packet corruption rate along the path. As long as the
packet corruption rate for the individual links is known,
TCP is modified so that on average, the congestion
window is halved when one congestion drop is observed.
However, this approach is not feasible in a WWAN,
where the actual packet corruption rate is unknown.1

3) There exist several flavors of rate-controlled TCP, which
try to estimate the correct rate for a TCP flow and to
accommodate accordingly. An example is TCP West-
wood [18].
The basic problem with rate-controlled approaches in
wireless networks is that the service time for a Transport
Block (TB) is neither known in advance nor does a suffi-
ciently stable estimate exist. Therefore, these approaches
are not suitable for WWAN.

III. T HE CLACK AGENT / APPROACH

The basic idea of our approach is to place an assisting
agent (the CLACK Agent) on BS in order to provide FH with
proper pacing using Clock Acknowledgements (CLACKs),
in addition to unaltered ACKs from the mobile endpoint
MH. Figure 3 illustrates the components and nodes used in
our approach. These components and their functionality are
discussed in the following subsections.

Fig. 3. For each TCP segment that left the wired path towards MH, the BS
issues a CLACK (Clock Acknowledgement) back to FH. This example shows
a delivery failure on the wireless link. Hence, the segment with sequence
number1460 is CLACKed together with the correct ACK number.

A. The Components on FH, BS, MH

1) The Receiver on MH:The receiver socket on the mobile
host runs an ordinary TCP Reno without modifications.

2) The CLACK Agent on BS:The assisting agent on BS
reacts to each TCP packet from FH in a similar way as an
ordinary TCP receiver. However, acknowledgements issued
by BS to FH consist of two values: theCLACK number,
which indicates the next expected sequence number seen by
the CLACK Agent and the ACK number, which is the next
sequence number expected by FH. Please note, that TCP

1The averageTransport Block (TB) corruption rate may be an adaptation
goal in some WWAN technologies. Although theaverageTB corruption rate
may be known, the TB size is subject to change with the path conditions,
hence it is unknown from how many TBs an IP packet is formed.

packets sent by MH are not simply forwarded by BS, but the
acknowledgement information is conveyed to FH in the ACK
field in packets sent by BS. Hence, proper pacing is achieved
solely by the interaction of FH and BS. It must be pointed
out that only unidirectional communication is discussed inthis
paper, bidirectional communication is left to future work,refer
to Section VI.

Every packet received from BS is enqueued at BS or
dropped in case of queue overflow. Any packet taken from
the queue is forwarded to MH and acknowledgedregardless
whether the delivery attempt to MH is successful or not. This
way, the queue from BS to MH appears as a part of the
“Internet part” of the path. Queue overflow is handled on FH
by the well known TCP congestion control [4].

For proper pacing, acknowledgements to be sent by BS
are postponed until the acknowledged segment has left the
outgoing queue of BS. While being busy with the delivery
attempt, the outgoing interface of BS cannot accept new work.
When the delivery attempt finishes, be it successful or not, the
packet is released from the wired path (between FH and BS)
and a new packet may be injected. Thus, FH correctly adapts
to the wireless link’s speed.

Another function of the BS is to inspect the regular ACKs
returning from MH and to track the cumulative sequence num-
ber, which is inserted as the ACK number into the packets from
BS to FH, hence theunaltered end-to-end ACK information
from MH is conveyed to FH correctly. The CLACK agent does
not harm TCP’s end–to–end semantics and does not introduce
any “hard state” into the system, because a TCP flow can
recover from a CLACK agent failure without problems.

3) The Sender on FH:The sender is based on TCP Reno
with the following extensions.First, the sender uses the
CLACKs from BS as an indication that a packet has past
BS, left the channel and new data may be sent. A missing
CLACK indicates path congestion from FH to BS and leads
to congestion recovery.Second, the sender uses the ACKs as
an indication that a packet has been successfully read by MH.

The highest seen CLACK number which exceeds the highest
seen ACK number (referred to as “CLACK” and “ACK” for
convenience) indicates a corrupted packet to FH: the packet
has past BS but is not read by MH and must be recovered. For
this purpose, the sender is complemented with a “Corruption
Recovery algorithm” in the same way the fast “fast recovery
algorithm” is added in TCP Reno, refer to [13].

For several reasons, one may tolerate a certain difference
between CLACK and ACK values. However this is left to
future work, see the remark on flow regulation in Section VI.
In the simulations used for this paper, we enter Corruption
Recovery when the CLACK exceeds ACK.

B. Corruption Recovery

The Corruption Recovery algorithm is entered when the
sender detects thatCLACK > ACK. During Corruption
Recovery, the FH is paced by the CLACKs sent by BS and
missing data is retransmitted by FH until it is acknowledged
by MH (which is seen in the ACK value received at BS). After

287Copyright (c) IARIA, 2011 ISBN:978-1-61208-002-4

ICN 2011 : The Tenth International Conference on Networks

the data is successfully delivered to MH, FH leaves Corruption
Recovery and returns to normal TCP Reno operation. In other
words, Corruption Recovery ends when the ACK and CLACK
values are again identical.

In our implementation, only the first missing packet is
retransmitted, causing the sender to enter Corruption Recovery
several times when more than a single packet is missing.
Although we look forward to finding better strategies, even
this simple approach yields promising results, as shown in
Section V.

C. Congestion Control during Corruption Recovery

The number of retransmissions necessary to recover from
packet corruption is unknown in advance. In case of a low
packet corruption ratio, a single retransmission may be suffi-
cient, but in case of severe packet corruption, the number of
required transmission attempts until eventual packet delivery
may be arbitrarily high. Nevertheless, the following principles
should be obeyed in packet retransmission.

1) The FH must not sent packets at higher speed than these
can be conveyed to MH.

2) Packets sent by FH should not lead to path congestion.
3) Data retransmission must continue until the missing

data is eventually delivered and acknowledged, unless
otherwise agreed by the user or the application.

The fundamental idea of our approach is to employ the
well-proven self clocking and congestion control strategyfrom
the “congavoid paper” [4]. During Corruption Recovery, the
retransmitted data and the corresponding CLACKs make up
the “data in transit” in the sense of [4]. As long as the path
from FH to BS remains uncongested, FH will be correctly
paced by CLACKs received from BS and continue necessary
retransmissions until FH receives the missing ACKs.

Unfortunately, we cannot rely upon the original TCP sliding
window scheme because CLACK numbers sent by BS are
not advanced by retransmissions. However, we can adapt the
congestion control from [4] if we countpacketsinstead of
bytes. Without loss of generality, we can assume equally sized
recovery packets.2 Hence, the sending window’s size corre-
sponds to a maximum number of unacknowledged packets in
the path. Let’s denote the number of allowed packets in the
path with asN .

In addition, we introduce a concept of recoveryrounds.
During a round, up toN packets can be injected into the path.
WhenN packets are injected into the network, a new round is
started. All packets belonging to the same round are marked
by a commontimestamp(refer to [19]), which is reflected by
BS in the CLACKs. The timestamp can be the sending time
of a round’s first packet.

All packets sent in a round must be acknowledged within
the RTO period. In other terms: For every round, the number
of CLACKs with the according timestamp is counted. When
the last packet was injected into the path, the last CLACK must

2In a very simple way, this can be achieved by retransmitting only the first
missing packet as mentioned in Section III-B.

reach FH within the RTO period. When the number of seen
CLACKs is less thanN , this is recognized as an indication of
path congestion between FH and BS.

IV. SIMULATION ENVIRONMENT

For testing the performance of the CLACK agent and
its impact on TCP, we have designed a Java-based discrete
event simulator3 which implements a simplified TCP Reno
according to RFC 5681 [13]. Without loss of generality, we
make the following assumptions and simplifications:

• We focus on simplex data flows with FH as a TCP sender
and MH as the receiver.

• EachTCP packet is acknowledged by a “pure ACK”, i.e.,
an empty ACK packet that contains no data.

• We focus on the “ESTABLISHED” state of a TCP flow,
hence the startup and termination phases are omitted.

• A fixed TCP packet size is used in order to avoid a
possible silly window syndrome and to facilitate a simple
version of Nagle’s algorithm.

• In the simulation setup for this paper, there is no conges-
tion between FH and BS.

As shown in Figure 1, our simulation setup consists of an
FH that is connected to a router by a full duplex 10 MBit/s link
with a propagation delay of 3 ns. The router is connected to
BS with a full duplex 10 MBit/s link and a propagation delay
of intentionally200 ms, because we are particularly interested
in how the recovery algorithm works in presence of an unusual
large propagation delay, which is rarely seen in terrestrial
networks unless it is caused by WWANs with unreasonably
high persistence in packet retransmission.

Fig. 4. Simulation setup.

The link between BS and MH is assumed to be a packet-
switched WWAN, such as UMTS, GPRS or HSDPA. We
assume a “Stop-and-Wait” protocol for the wireless link [10]
and a reasonable limit for the number of transmission attempts
per packet. As a “best current practice” recommendation, this
limit is set to a maximum ofthree transmission attempts.
The link between BS and MH roughly follows the HSDPA
model: The downlink throughput is fixed at 1 MBit/s, the
uplink throughput is 64000 Bit/s.4 We performed simulations
for several packet corruption rates in downlink direction.The

3Available at: http://detlef-bosau.de/index.php?select=tinysim
4We do not consider any propagation delay but used a fixed throughput,

which leads to an appropriate serialization delay. Ideally, a WWAN interface
should be modeled by its service time and SDU corruption rate. In our
simulation, the packet sizes are fixed, so fixed service times and fixed
throughput are equivalent in our case.

288Copyright (c) IARIA, 2011 ISBN:978-1-61208-002-4

ICN 2011 : The Tenth International Conference on Networks

10% 20% 30% 40% 50% 60%
0

10

20

30

40

50

60

70

80

90

IP packet loss probability over WWAN link

A
ve

ra
ge

 g
oo

dp
ut

 (
K

bi
t/s

)
TCP Reno with CLACK
TCP Reno

Fig. 5. Average goodput – standard TCP Reno vs. CLACK extensions.

packet corruption rate in uplink direction is set to a fix value
of 0.0. This simplification reflects the situation in HSDPA
networks, where an extremely robust channel coding is used
in uplink direction, at the expense of a quite low throughput.

WWANs typically employ some radio link protocol [20][10]
which may convey a given packet in a certainservice timeand
with a certaincorruption probability. Actually, WWANs em-
ploy Stop-and-Wait protocols (refer to the discussion in [10]),
because the wireless path’s storage capacity is extremely small
and a sliding window protocol would cause unreasonable
overhead without providing significant benefit.

Protocols with “selective recovery” or sliding window
mechanisms rarely make sense over WWAN links, because
the link’s storage capacity is typically extremely low and a
minor throughput increase will hardly outweigh the overhead
caused by a selective recovery protocol[10].

In the proposed protocol, the outgoing interface queue BS
to FH is seen as a part of the “Internet part” of the path, hence
the wireless network is free of congestion and any packet loss
in this area is considered due to corruption. In addition, we
assumepacket duplicationto be negligible.

V. RESULTS

In this section, we discuss simulation results that show
the performance of the CLACK approach. For the purpose
of this paper it is not necessary to introduce a particular
WWAN model. A WWAN link can be regarded as a link
with constant bit rate and varying packet loss probability.For
adaptive technologies, for instance HSDPA, the bit rate will
change as well. However, this is beyond the scope of this paper
and belongs to the discussion of RTT, refer to Section VI.

A. Average goodput

For the presence of various IP packet loss probabilities
on the WWAN link, Figure 5 depicts the average goodput
of a pure TCP Reno connection compared to a TCP Reno

0 200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

25

30

35

40

45

Elapsed time (seconds)

R
et

ra
ns

m
is

si
on

 ti
m

eo
ut

 (
se

co
nd

s)

TCP Reno
TCP Reno with CLACK

Fig. 6. Retransmission timeouts – standard TCP Reno vs. CLACK extensions
(IP packet loss on WWAN link is set to 20%).

connection with a CLACK agent installed on the WWAN’s
base station. While TCP Reno becomes practically useless
at error rates above 40%, the CLACK approach is able to
maintain a low but steady data flow.

At a corruption error rate of 0% (not shown in Figure 5),
both methods achieve an identical average data goodput of
954 Kbit/s, which is close to the 1 Mbit/s throughput of the
error-free wireless link. Because our focus is on corruption
recovery, we intentionally have no congestion in the wireline
part of the path. Hence, there is no “congestion sawtooth”
but only the TCP startup phase and the packet headers, which
limits the goodput. In the absence of corruption errors, the
Corruption Recovery mechanism introduced in Section III-B
is never invoked. In other words, the CLACK agent has no
negative impact on standard TCP Reno behavior.

B. Retransmission timeouts

The reason why the CLACK agent achieves an improved
goodput at extreme corruption rates is because it avoids
exponential RTO backoff to happen for packet loss that is
caused by corruption on the wireless link. An exponential
backoff should only be triggered due to congestion, not due
to corruption. Without our proposed mechanism, TCP has
to detect packet corruption by timeouts. In case of several
sending attempts being necessary, these timeouts may grow
significantly large due to the backoff algorithm, leading to
phases without any data being delivered.

Figure 6 shows a timeline of two TCP Reno connections
between FH and MH, one with a CLACK agent on the base
station. In this experiment, the corruption probability was set
to 20%, which may already cause timeouts of up to 40 seconds;
leading to certainly noticeable pauses on the application layer.
At the same time, the RTO values of the CLACK-enabled TCP
Reno connection never exceeds 3.8 seconds.

For wireless corruption rates larger than 20%, the CLACK

289Copyright (c) IARIA, 2011 ISBN:978-1-61208-002-4

ICN 2011 : The Tenth International Conference on Networks

TABLE I
MAXIMUM RTO VALUES OBSERVED[SECONDS]

Corruption rate 10% 20% 30% 40% 50% 60%
TCP Reno 10 40 1310 10300 166000 2 ∗ 10

12

CLACK 3.86 3.82 3.82 3.82 3.82 3.82

approach manages to maintain a stable, low RTO value, while
a pure TCP Reno connection may experience RTOs in the
order of hours if the loss rate exceeds 30%. Table I shows how
immensely the RTO grows due to corruption under ordinary
TCP Reno operation and how the CLACK approach achieves
very stable values.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we presented the CLACK approach to solve
the problems of loss differentiation and corruption recovery
for the widespread scenario of wireless networks being usedas
access networks to the Internet. Our scheme builds on the fact
that standard TCP senders rely on positive acknowledgements
from the receiver for proper pacing and injection of new data
onto the end-to-end path. However, high packet loss that is not
caused by congestion on the wireline path, but by corruption
on the wireless access link, causes TCP to wrongly adapt to
the available path capacity.

The central idea of our approach consists in pacing the TCP
sender with “clock acknowledgements” (CLACKs) from the
wireless base station, where the end-to-end path can be logi-
cally split into a wired part that can suffer from congestion(but
not from corruption), and a wireless part that can suffer from
corruption (but not from congestion). With the introduction of
a CLACK agent on the base station, TCP is prevented from
misinterpreting packet loss due to corruption as an indication
of path congestion, which improves the utilization of the
available capacity. In addition, our scheme allows a very fast
recovery from packet corruption and therefore avoids extensive
RTO growth and annoying pauses in TCP connections.

Although being a “middlebox approach”, the CLACK agent
does not harm TCP’s end-to-end semanticsbut offers a
supportive means to accommodate TCP to the challenges of
mobile and pervasive networking. Additionally, our solution is
incrementally deployable and compatible with standard TCP
endpoints.

In our future work, we first will overcome the simplifi-
cations made in our system model and simulation setup in
Section IV, including the following tasks:

• We will extend our work to bidirectional flows. So far,
only a sender on FH can take advantage of the CLACK
mechanism. However, the problem of loss differentiation
and recovery also exists for a sender on MH. A particular
task for bidirectional flows is to achieve proper pacing in
both directions, allowing the bottleneck to reside in the
wireline and the wireless parts of the path.

• A simplified recovery scheme is used in this paper.
Particularly, the recovery from several lost packets could
be done in a more sophisticated way.

• We consider a CLACK-based flow regulation mechanism
which makes RTT appear quasi-stationary to the sender
as a remedy for spurious timeouts.

• The current solution does not yet support delayed ac-
knowledgments [21].

REFERENCES

[1] L. Zhang, “Why tcp timers don’t work well,” inProceedings of SIG-
COMM, 1986.

[2] R. Jain, “Divergenge of timeout algorithms for packet retransmissions,”
in Proceedings of the Fifth Annual International Phoenix Conference on
Computers and Communications, Scottsdale, AZ (USA), March 1986, pp.
174–179.

[3] S. W. Edge, “An adaptive timeout algorithm for retransmission across
a packet switching network,” inProceedings of the ACM SIGCOMM,
1984, pp. 248–255.

[4] V. Jacobson and M. J. Karels, “Congestion Avoidance and Control,”
ACM Computer Communication Review; Proceedings of the Sigcomm
’88 Symposium in Stanford, CA, August, 1988, vol. 18, 4, pp. 314–329,
1988.

[5] R. Ludwig, “Eliminating Inefficient Cross–Layer Interactions in Wireless
Networking,” Ph.D. dissertation, Aachen University of Technology,
Aachen, Germany, April 2000.

[6] B. Ford and J. Iyengar, “Breaking Up the Transport Logjam,” in
Proceedings of 7th Workshop on Hot Topics in Networks (HotNets-VII),
October 2008.

[7] S. Fahmy, V. Prabhakar, S. R. Avasarala, and O. Younis, “TCP over
wireless links: Mechanisms and implications,” Purdue University, Tech.
Rep. Technical Report CSD-TR-03-004, 2003.

[8] Y. Bai, A. T. Ogielski, and G. Wu, “Interactions of tcp andradio link
arq protocol,” inIn Proceedings of the IEEE VTC-Fall, Amsterdam, The
Netherlands, September 1999, pp. 1710–1714.

[9] H. Balakrishnan, “Challenges to reliable data transport over heteroge-
neous wireless networks,” Ph.D. dissertation, Universityof California at
Berkeley Department of Electrical Engineering and Computer Sciences,
1998.

[10] G. Fairhurst and L. Wood, “Advice to link designers on link Automatic
Repeat reQuest (ARQ),” IETF RFC 3366, August 2002.

[11] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Perfor-
mance enhancing proxies intended to mitigate link-related degradations,”
IETF RFC 3135, June 2001.

[12] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End–to–end arguments in
system design,”ACM Transactions in Computer Systems, vol. 2, no. 4,
pp. 277–288, November 1984.

[13] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” IETF
RFC 5681, September 2009.

[14] V. Paxson and M. Allman, “Computing TCP’s Retransmission Timer,”
IETF RFC 2988, November 2000.

[15] J. Lacan and E. Lochin, “On-the-Fly Coding to Enable Full Reliability
Without Retransmission,”Technical Report, ISAE, LAAS-CNRS, France,
2008.

[16] J. Liu, I. Matta, and M. Crovella, “End–to–end inference of loss nature
in a hybrid wired/wireless environment,” inProceedings of WiOpt’03:
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks,
2003. [Online]. Available: citeseer.nj.nec.com/589180.html

[17] W. M. Eddy, S. Ostermann, and M. Allman, “New techniques for making
transport protocols robust to corruption-based loss,”SIGCOMM Comput.
Commun. Rev., vol. 34, no. 5, pp. 75–88, 2004.

[18] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “Tcp
westwood: Bandwidth estimation for enhanced transport overwireless
links,” in Proceedings of ACM Mobicom 2001, Rome, Italy, July 16–21
2001, pp. 287–297.

[19] V. Jacobson, R. Braden, and D. Bormann, “TCP Extensions for High
Performance,” IETF RFC 1323, May 1992.

[20] 3rd Generation Partnership Project 2 (3GPP2), “Data Service Options
for Spread Spectrum Systems: Radio Link Protocol Type 3,” 3GPP2
Document 3GPP2 C.S0017-010-A, June 2004.

[21] R. Braden, “Requirements for internet hosts – communication layers,”
IETF RFC 1122, October 1989.

290Copyright (c) IARIA, 2011 ISBN:978-1-61208-002-4

ICN 2011 : The Tenth International Conference on Networks

