
InfiniBand Congestion Control

Modelling and validation

Ernst Gunnar Gran
Simula Research Laboratory

Martin Linges vei 17
1325 Lysaker, Norway
ernstgr@simula.no

Sven-Arne Reinemo
Simula Research Laboratory

Martin Linges vei 17
1325 Lysaker, Norway
svenar@simula.no

ABSTRACT

In a lossless interconnection network congestion may results
in performance degradation if no countermeasure is taken.
To relieve the consequences of congestion, and by that to
achieve good utilization of networks resources even at high
network load, congestion control (CC) has been added to the
InfiniBand specification. The behavior of the InfiniBand CC
is, however, governed by a set of CC parameters. Exactly
how to set these parameters to ensure an all over efficient
network is still not well understood. It is time consuming,
costly and hard to explore the CC parameter space in a large
scale cluster. Therefore, a simulation platform is needed. In
this paper we present our CC capable IB model implemented
in the OMNeT++ environment. We explain the basics of
our model, and validate it against CC capable hardware to
show its high accuracy.

Categories and Subject Descriptors

C.2.3 [Computer Communication Networks]: Network
Operations—Network Management ; C.2.5 [Computer Com-

munication Networks]: Local and Wide-Area Networks—
High-speed ; I.6.4 [Simulation and Modeling]: Model Val-
idation and Analysis; I.6.5 [Simulation and Modeling]:
Model Development; I.6.8 [Simulation and Modeling]:
Types of Simulation—Discrete event

General Terms

Simulation, validation, performance, design

Keywords

InfiniBand, congestion control, OMNeT++

1. INTRODUCTION
Congestion control (CC) is a hot topic in interconnection

networks for large high performance computing (HPC) clus-
ters. It is considered especially important in this domain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2011 March 21, Barcelona, Spain.
Copyright 2011 ACM ...$10.00.

because the interconnection networks used in HPC are loss-
less, i.e. they use flow control to avoid packet loss caused by
buffer overflows. In lossless networks congestion may spread
and result in severe performance degradation if no counter-
measures are taken[3, 5, 6, 10].

Congestion control was added to version 1.2.1 of the In-
finiBand (IB) standard [7], and hardware with support for
CC has just recently appeared, even though the CC fea-
tures are not yet generally available. A major challenge
with the congestion control mechanism found in IB is how
to properly use it, i.e. how to configure the congestion con-
trol parameters properly for a given system. This problem
is not yet understood, and it is time consuming, costly, and
difficult to explore the parameter space in a large scale clus-
ter. Another related question is how CC affects performance
in scenarios with and without congestion, which is equally
hard to understand. Therefore, a simulation model would
be a valuable tool in the search for a better understanding
on how to properly configure IB CC in various topologies of
different sizes, and useful to study the effect of congestion
control in different application scenarios.

Our contribution in this paper consists of an implementa-
tion of the IB CC mechanism in OMNeT++ [12] and a val-
idation of this model against the hardware implementation
of CC in the Mellanox ConnectX Host Channel Adapters [8]
and Mellanox InfiniScale IV switches [9].

The paper is structured as follows: In section 2 we give
an overview of the IB CC mechanism, followed by a detailed
description of the simulation model in section 3. Then we
describe the hardware test-bed we have used to validate the
simulation model in section 4. The validation scenarios and
results are described and analysed in section 5 and 6, re-
spectively. Finally, we conclude in section 7.

2. THE CC CONCEPT IN INFINIBAND
In this section we give an overview of the IB CC mech-

anism as specified in the InfiniBand Architecture Specifica-
tion release 1.2.1 [7]. The IB CC mechanism is based on a
closed loop feedback control system where a switch detect-
ing congestion marks packets contributing to the congestion
by setting a specific bit in the packet headers, the Forward

Explicit Congestion Notification (FECN) bit (fig. 1 (1)).
The congestion notification is carried through to the desti-
nation by this bit. The destination registers the FECN bit,
and returns a packet with the Backward Explicit Congestion

Notification (BECN) bit set to the source (fig. 1 (2)). The
source then temporarily reduces the injection rate to resolve
congestion (fig. 1 (3)).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OMNeT++ 2011, March 21, Barcelona, Spain
Copyright © 2011 ICST 978-1-936968-00-8
DOI 10.4108/icst.simutools.2011.245509

390



Destination

Source

root of congestion

FECN

1

BECN

2

3

Figure 1: Congestion control in InfiniBand.

The exact behaviour of the IB CC mechanism depends
upon the values of a set of CC parameters governed by
a Congestion Control Manager. These parameters deter-
mine characteristics like when switches detect congestion,
at what rate the switches will notify destination nodes using
the FECN bit, and how much and for how long a source node
contributing to congestion will reduce its injection rate. Ap-
propriately set, these parameters should enable the network
to resolve congestion by avoiding head-of-line blocking [10],
while still utilizing the network resources efficiently.

2.1 Congestion Control at a Switch
The switches are responsible for detecting congestion and

notifying the destination nodes using the FECN bit. A
switch detects congestion on a given port and a given Vir-

tual Lane (Port VL) depending on a threshold parameter.
If the threshold is crossed, a port may enter the Port VL
congestion state, which again may lead to FECN marking
of packets.

The threshold, represented by a weight ranging from 0
to 15 in value, is the same for all VLs on a given port, but
could be set to a different level for each port. A weight of 0
indicates that no packets should be marked, while the values
1 through 15 represent a uniformly decreasing value of the
threshold. That is, a value of 1 indicates a high threshold
with high possibility of congestion spreading, caused by Port
VLs moving into the congestion state too late. A value of
15 on the other hand indicates a low threshold with a cor-
responding low possibility of congestion spreading, but at
the cost of a higher probability for a Port VL to move into
the congestion state even when the switch is not really con-
gested. The exact implementation of the threshold depends
on the switch architecture and is left to the designer of the
switch.

A Port VL enters the congestion state if the threshold
is crossed and it is the root of congestion, i.e. the Port
VL has available credits1 to output data. If the Port VL
has no available credits, it is considered to be a victim of
congestion and shall not enter the congestion state unless a
specific V ictim Mask is set for the port. The V ictim Mask

is typically set for ports connecting a channel adapter (CA)
to the switch. A CA that is not able to process received
packets fast enough will not consider itself to be a root of
congestion even if a congestion tree[6] then builds up with
the CA as the root. In this special case the Port VL at the
switch connecting the CA should consider itself to be the
root of congestion, even if it is actually a victim, and move
into the congestion state.

When a Port VL is in the congestion state its packets are

1The number of credits at a port determines how much traf-
fic the port is allowed to send to the next port downstream.
The credit value corresponds to the available buffer space at
the downstream port.

eligible for FECN marking. A packet will then get the FECN
bit set depending on two CC parameters at the switch, the
Packet Size and the Marking Rate. Packets with a size
smaller than the Packet Size will not get the FECN bit
set. The Marking Rate sets the mean number of eligible
packets sent between packets actually being marked. With
both the Packet Size and the Marking Rate set to 0, all
packets should get the FECN bit set while a Port VL is in
the congestion state.

2.2 Congestion Control at a Channel Adapter
When a destination CA receives a packet with a FECN

bit, the CA should as quickly as possible notify the source of
the packet about the congestion2. As earlier mentioned, this
is done by returning a packet with the BECN bit set back to
the source. The packet with the BECN bit could either be
an acknowledgement packet (ACK) for a reliable connection
or an explicit congestion notification packet (CNP). In either
case it is important that the ACK or the CNP is sent to the
source as soon as possible to ensure a fast response to the
congestion.

When a source CA receives a packet with the BECN bit
set, the CA lowers the injection rate of the corresponding
traffic flow. That is, the injection rate of either the related
queue pair (QP) or the corresponding service layer (SL) will
be reduced. Congestion control at a CA port operates either
at the QP or at the SL level, exclusively. To determine how
much and for how long the injection rate should be reduced,
the CA uses a Congestion Control Table (CCT ) and a set of
CC parameters. The CCT , consisting of at least 128 entries,
holds injection rate delay (IRD) values that define the delay
between consecutive packets sent by a particular flow (QP
or SL). Each flow with CC activated holds an index into the
CCT, the CCTI. When a new BECN arrives, the CCTI

of the flow is increased by CCTI Increase. The CCT is
usually populated in such a way that a larger index yields
a larger IRD. Then consecutive BECNs increase the IRD
which again decreases the injection rate. The upper bound
of the CCTI is given by CCTI Limit.

To increase the injection rate again, the CA relies on a
CCTI T imer, maintained separately for each SL of a port.
Each time the timer expires the CCTI is decremented by
one for all flows associated with the corresponding port SL.
When the CCTI of a flow reaches zero, the flow now longer
experience any IRD. Each port SL also has a CCTI Min

parameter. Using the CCTI Min it is possible to impose
a minimum IRD to the port SL, as the CCTI should never
be reduced below the CCTI Min.

3. THE SIMULATION MODEL
Our IB CC implementation is based on the IB model made

available to the OMNeT++ community by Mellanox Tech-
nologies Ltd in 2007/2008. We have ported this model to
the OMNeT++ 4 environment, made several bug fixes, and
added some general extensions to the IB model to make it
more suitable for our CC studies (e.g. support for interval
logging of network statistics like bandwidth and buffer occu-
pancy, and detailed control of the startup time for the traffic

2There are three exceptions. The FECN bit in a multicast
packet, acknowledgement packet or congestion notification
packet should be ignored. That is, no congestion notification
is sent back to the source in these three cases.

391



Figure 2: The HCA compound module of the IB

model.

generators). Below we start by giving a brief overview of the
IB model, before we give a more detailed explanation of the
IB CC extensions to the model in the next section.

3.1 The IB Model
The IB model consists of a set of simple and compound

modules to simulate an IB network with support for the IB
flow control scheme, arbitration over multiple virtual lanes,
and routing using linear forwarding tables.

The two building blocks for creating networks using the
IB model are the Host Channel Adapter (HCA) compound
module and the Switch compound module, shown in figure
2 and 3 correspondingly. The Switch consists of a set of
SwitchPorts, which are by themselves compound modules.
During a simulation, an HCA represents both a traffic injec-
tor and a traffic sink in the network, while a Switch acts as
a forwarding node. The HCAs and switches are connected
using gates, corresponding to links in the network.

The HCAs and the SwitchPorts consist of a set of common
simple modules ibuf, obuf, and vlarb (the ccmgr is part of the
IB CC extension), while the simple modules gen and sink

are exclusive to the HCAs. The ibuf represents an input
buffer with support for virtual lanes, virtual output queuing
(VoQ) and virtual cut through switching. The obuf rep-
resents a simple output buffer, while the vlarb implements
round robin arbitration over the different VLs and multiple
input ports (if the module is part of a SwitchPort). The gen

implements traffic generation in a HCA, while the sink is
the part of the HCA responsible for removing traffic from
the network. The gen module supports several traffic gen-
eration schemes, e.g. varying the injection rate, the packet
size and the destination node distribution.

In general, the gen module at an HCA generates traffic
that is forwarded through the vlarb to the obuf of the HCA.
From there it is sent out into the network. At a Switch(Port)
the ibuf receives the traffic, does the routing decision and
moves the traffic into the corresponding VoQ. Here the traffic
waits until the vlarb of the given output port grants access
to the corresponding obuf. At an HCA the ibuf receives
traffic and forwards it to the sink. The IB flow control is
managed by the ibuf s and the obuf s, exchanging flow control
messages.

Figure 3: The switch compound module of the IB

model.

3.2 The IB CC Extensions
The InfiniBand Congestion Control mechanism is imple-

mented by the simple module ccmgr. The ccmgr is included
in the compound modules for the HCA and the Switch-

Port, and manages everything related to congestion control
in these modules, with the help of the other simple mod-
ules therein. In particular, all CC parameters specified in
the InfiniBand Architecture Specification release 1.2.1 [7] are
supported by the ccmgr module.

3.2.1 The Switch Model

At a Switch, the ccmgr is responsible for detection and
notification of congestion. The ibuf at a given SwitchPort

reports every change in the fill ratio of one of its VoQs to
the ccmgr of the SwitchPort corresponding to the VoQ in
question. This reporting is done at the VL level. Notice that
the mentioned ibuf and ccmgr in most situations will be lo-
cated in different SwitchPorts, as the traffic usually leaves
and enters a switch on different ports. Now, using the up-
dates from the different ibuf s, the ccmgr keeps track of the
fill ratios of all VoQs headed for the corresponding obuf,
and decides whether the corresponding Port VL should be
considered to be in the congestion state or not. The de-
cision is based upon the value of the threshold, a consid-
eration of the V ictim Mask, as well as how the fill ratio
is evaluated against the threshold. This evaluation of the
threshold against the fill ratios of the VoQs, is an example
of a design decision that is left to the switch designer. Our
IB CC extension supports three different ways of doing this
mapping: comparing the fill ratio of each individual VoQ to
the threshold, comparing the sum of the fill ratios of the
VoQs to the threshold, and last comparing the sum of the
fill ratios of the VoQs to a threshold divided by the num-
ber of contributing input ports. At the obuf, each time the
module wants to send a new packet into the network, the
ccmgr is asked to update the FECN bit of the packet be-
fore it is sent. When doing this, the ccmgr considers if the
corresponding Port VL is in the congestion state, as well as
if the two CC parameters Marking Rate and Packet Size

qualify for setting the FECN bit.

3.2.2 The HCA Model

At an HCA, the ccmgr inspects every packet entering the

392



ibuf to check if the FECN or BECN bit is set (if both bits
are set, the FECN bit is ignored). Upon detection of a
FECN bit, the ccmgr creates a CNP to send a BECN back
to the source of the FECN marked packet; a contributor to
congestion. The CNP is placed in a special CNP queue at
the ccmgr. The obuf of the HCA gives priority to the CNP
queue over other traffic to make sure that the CNPs are sent
as soon as possible.

The CCT is contained in the ccmgr of an HCA. Upon re-
ception of a CNP with the BECN bit set, the ccmgr updates
the CCTI of the corresponding SL or QP - depending on
the level of congestion control operation - by the value of
CCTI Increase. At the same time, the related timer is up-
dated. Each timer corresponding to a SL or a QP is in our
IB CC extension implemented as a CCTI T imer delayed
message sent from the ccmgr to itself. If the message is not
canceled, the return of the message will cause the CCTI

identified by the message to be decreased (and a new timer
message is sent, if needed).

When the vlarb at the HCA arbitrates between flows from
the gen requesting access to the obuf, the ccmgr calculates
the needed IRD values from the CCT to assist in the arbi-
tration process. The vlarb uses the feedback from the ccmgr

during arbitration to make sure that only traffic flows con-
tributing to congestion is held back. The calculation of the
IRD values follows the guidelines given in the IB specifica-
tion[7].

3.3 Scalability
The level of detail required from the simulation model to

be able to accurately simulate the IB CC mechanism and its
parameter space, could be a challenge for the scalability and
the usefulness of the simulator. Our experience shows that
the OMNeT++ environment and the IB model scales quite
well, and there are no specific limitations regarding topology
or network size in the model itself. In addition to simulations
of network sizes similar to the examples given in this paper,
we have run extensive CC simulations of the Sun Datacenter
InfiniBand Switch 648[11]. This is an IB 1.2 compliant QDR
capable switch with 648 ports. The internal topology of the
switch is a three-stage full non-blocking Clos network. Even
for such a complex network structure, with all CC features
enabled and 648 active end nodes, the memory requirement
for a simulation is less than 1.5GB. Simulating 0.5 seconds
of real time network traffic, corresponding to approximately
100GB of data transferred in the network, takes 1-2 days to
complete depending on the CC parameters and if the CC
operates at the SL or QP level. This is when running on an
Intel Q6600 CPU, using only one out of four cores. We plan
to parallelize the model in the future in order to reduce the
simulation time.

4. THE HARDWARE TEST BED
The hardware test bed used to measure the behavior of

the IB CC is shown in figure 4. Seven Sun Fire X2200 M2
hosts (H1-H7) are connected to two InfiniScale IV Mellanox
switches (IS4). The host-to-switch links have a capacity of
20 Gbit/s each, while the switch-to-switch link has a capac-
ity of 40 Gbit/s.

The Mellanox ConnectX HCAs and IS4 switches are the
latest generation of IB hardware from Mellanox Technolo-
gies, and both the HCAs and switches include hardware sup-

H1

H3

H4

H5

H7

IS4 IS4

H2

H6

40 Gbps

20 Gbps

Figure 4: The test bed.

H1

H3

H4

H5

H7
40 Gbps

20 Gbps

H2

H6

root of congestion

S2S1

F2

F3

F4

F5

F1 (Victim)

Figure 5: Flow configuration in scenario 1.

port for the IB CC mechanism3.
The compute nodes in our test bed consists of seven Sun

Fire X2200 M2 servers that are connected as hosts H1-H7
in figure 4. Each host has a dual port DDR HCA fitted in
a 8x PCIe 1.1 slot, one dual core AMD Opteron 2210 CPU,
and 2GB of RAM. All hosts run Ubuntu Linux 8.04 x86 64
with kernel version 2.6.24-24-generic and OFED 1.4.1. The
PCIe 1.1 8x slots in these machines have a signalling rate
of 20 Gbit/s, which equals a theoretical bandwidth of 16
Gbit/s when counting for the 8b/10b encoding overhead.
The achievable bandwidth is further reduced by PCIe pro-
tocol overhead, the speed of other system components etc.

To generate traffic on the hosts we used several different
tools. Netpipe [2], which measures bandwidth and latency
for different packet sizes, is used to get some basic perfor-
mance numbers. To be able to study congestion in a con-
trolled manner we have implemented some changes to the
perftest application suite (part of OFED) to support reg-
ular bandwidth reporting and continuously sending traffic
at full capacity. The modified perftest is used to both cre-
ate congestion in the network and to measure the impact of
congestion.

5. THE VALIDATION SCENARIOS
In order to validate the performance of the simulation

model we have defined two scenarios as described below.

5.1 Scenario 1
The purpose of communication scenario 1 is twofold. First,

it illustrates the negative effect that congestion can have on
a flow not contributing to congestion, a victim flow (flow 1
from H1 to H4 in fig. 5). Second, it illustrates how this
negative effect can be avoided by using congestion control.

In this scenario we use the following communication pat-
tern (fig. 5): Flow 1 (F1) from H1 to H4, and flow 2 - 5
(F2-F5) where H2, H3, H6, and H7 all send to H5. Com-
munication starts with only F1 active, then F2 - F5 are ac-

3To enable congestion control, custom firmware is required
for both switches and HCAs. This is not yet generally avail-
able.

393



H1

H3

H4

H5

H7

H2

H6

S2S1

root of congestion

40 Gbps

20 Gbps

F1

F2

F3

Figure 6: Flow configuration in scenario 2.

tivated one by one with one second intervals. When a flow
is active it tries to send at maximum speed, using a reliable
connection.

5.2 Scenario 2
The purpose of communication scenario 2 is to study how

congestion control performs when there is no victim present,
and by that no HOL blocking to reduce in order to poten-
tially improve overall performance.

In this scenario we use the following communication pat-
tern (fig. 6): Flow 1 (F1) from H1 to H4, flow 2 (F2) from
H2 to H5, and flow 3 (F3) from H3 to H6. Communication
starts with only F1 active, then F2 and F3 are activated
one by one with one second intervals. As before, when a
flow is active, it tries to send at maximum speed, using a
reliable connection. In this scenario there is no victim flow,
but there is contention for bandwidth on the link between
S1 and S2 that is shared by all three flows.

6. THE VALIDATION RESULTS
The figures 7, 8 and 9 show the results from our validation

studies of scenario 1 and 2, comparing hardware experiments
with simulation results.

6.1 Scenario 1
We start by studying the hardware measurements from

scenario 1 with congestion control turned off. In figure 7(a)
we see the presence of both head of line (HOL) blocking and
the parking lot problem[4]: As soon as the third flow, F3, is
added after about 2.5 seconds, we see a drop in performance
for all three flows down to half the bandwidth. The link from
the switch S2 to the end node H5 has become a bottleneck,
creating a congestion tree growing towards the contributors
to congestion, H2 and H3. The congestion tree causes HOL
blocking, hindering the flow F1 from progressing any faster
between S1 and S2 than F2 and F3. As we add the flows
F4 and F5, the HOL blocking continues. In addition, due to
the fact that the switch S2 during (round robin) arbitration
considers the flows F2 and F3 as a single flow, we see an
unfairness in the amount of access the different traffic flows
are given to the bottleneck link. The two locally connected
flows, F4 and F5, are each given the same access to the
bottleneck link as the two flows F2 and F3 combined; the
parking lot problem is evident.

If we turn on congestion control in the hardware and re-
peat our scenario 1 experiment, we got the results presented
in figure 7(b). Now, both the HOL blocking and the park-
ing lot problem are removed. The flow F1 is sent through
the network independently of the other flows, and all the
contributors to congestion each got a fair share of the scarce
resources at the root of the congestion tree. This was studied

in-depth in [6].
Let us now turn our attention towards the simulator to

see how it compares to hardware. Figure 7(c) and 7(d)
show simulation results for scenario 1 with congestion con-
trol turned off and on, respectively. As we can see from fig-
ure 7(c), comparing it to figure 7(a), the simulator adheres
to the hardware quite accurately when congestion control is
turned off. The traffic flows are all experiencing the same
throughput in the simulator as in the hardware, and both
the HOL blocking and the parking lot problem is present.
When congestion control is turned on, the resemblance be-
tween the hardware and the simulator is still quite good,
as figure 7(b) and 7(d) show. The HOL blocking and the
parking lot problem are both removed at the same cost in
both the hardware and the simulator: increased oscillation
among the contributors to congestion as they are constantly
trying to adjust their injection rate to their fair share of
the bottleneck link. Figure 9 shows how the fairness has
improved for both the hardware measurements and the sim-
ulation results, when all four contributors are active. Each
colored area represents the fraction of the total throughput
given to the corresponding flow in each case. It is clear from
the figure that the parking lot problem is removed, despite
the oscillation observed for all the contributors.

There is one noticeable difference in the two figures 7(b)
and 7(d) though: In the one second time interval from 2s to
3s, the flow F1 experiences some oscillation during a sim-
ulation, an oscillation that is not present in the hardware
experiment. This difference in behavior is related to the ag-
gressiveness of the two contributors to congestion and the
utilization of the bottleneck link. The hardware is not able
to fully utilize the bottleneck link during the time where only
two contributors to congestion are active. This is clearly vis-
ible in figure 7(b). The two contributors together achieve a
throughput of approximately 11Gbps on average, while the
capacity of the bottleneck link (or actually the end node
connected to it) is just above 13Gbps. In the simulator,
during the same time interval, the two contributors to con-
gestion achieve approximately 13Gbps. This increased ag-
gressiveness makes it possible to fully utilize the bottleneck
link. Furthermore, it also results in a greater demand for
resources at the left switch, S1. More specific, if the two
contributors are too aggressive they will, together with flow
F1, request more resource from the switch-to-switch link
than the link can handle, and by that create a congestion
tree with the root of the tree at S1, and not S2. When
this happens, the flow F1 is actually a contributor to con-
gestion itself, and should lower its injection rate just like
any other contributor. This is exactly what is happening
when we see a drop in performance for the flow F1 in the
time interval between 2s and 3s during a simulation. The
F1 drop in performance is not due to any HOL blocking,
but a result of proper congestion control behavior from H1
when the switch S1 experiences congestion. This behavior
is never seen in hardware as the contributors are less aggres-
sive (resulting in an underutilization of the bottleneck link).
When the flows F4 and F5 are added during a simulation,
the congestion at the right switch, S2, is more severe, which
again means that the injection rates of the flows F2 and F3
are never high enough to create congestion at the switch S1.

6.2 Scenario 2
In figure 8(a) and 8(b) we see the results from the hard-

394



Time (s)

B
a
n
d
w

id
th

 (
M

b
/s

)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

Flow

F1 (Victim)

F2

F3

F4

F5

(a) Hardware. Congestion Control turned OFF.

Time (s)

B
a
n
d
w

id
th

 (
M

b
/s

)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

Flow

F1 (Victim)

F2

F3

F4

F5

(b) Hardware. Congestion Control turned ON.

Time (s)

B
a
n
d
w

id
th

 (
M

b
/s

)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

Flow

F1

F2

F3

F4

F5

(c) Simulation. Congestion Control turned OFF.

Time (s)

B
a
n
d
w

id
th

 (
M

b
/s

)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

Flow

F1

F2

F3

F4

F5

(d) Simulation. Congestion Control turned ON.

Figure 7: Throughput for flows in scenario 1 from both the hardware measurements and simulations.

395



Time (s)

B
a
n
d
w

id
th

 (
M

b
/s

)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

Flow

F1

F2

F3

(a) Hardware. Congestion Control turned OFF.

Time (s)

B
a
n
d
w

id
th

 (
M

b
/s

)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

Flow

F1

F2

F3

(b) Hardware. Congestion Control turned ON.

Time (s)

B
a
n
d
w

id
th

 (
M

b
/s

)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

Flow

F1

F2

F3

(c) Simulation. Congestion Control turned OFF.

Time (s)

B
a
n
d
w

id
th

 (
M

b
/s

)

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4

Flow

F1

F2

F3

(d) Simulation. Congestion Control turned ON.

Figure 8: Measured throughput for flows in scenario 2.

396



 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

CC off CC on CC off CC on

F5

F4

F3

F2

Hardware Simulation 

Figure 9: Fairness between the flows contributing to

congestion.

ware experiments of scenario 2 (fig. 6), with congestion con-
trol turned off and on, respectively. The link between the
two switches becomes the bottleneck in both experiments
as soon as we add the third flow after two seconds. At this
point the switch S1 becomes congested. When CC is turned
off(fig. 8(a)), the three flows all experience the same drop in
performance down to approximately 11.4 Gbps. The situa-
tion is both fair and stable. When CC is turned on, however,
all three flows will constantly try to adjust their injection
rates as a result of the congested situation at S1. The effect
is seen as oscillation in figure 8(b) as soon as the third flow
is added. In addition, the average throughput of the three
flows drops to approximately 9Gbps.

Figure 8(c) and 8(d) show the simulation results for sce-
nario 2. When the CC is turned off (fig. 8(c)), we see a
drop in throughput as soon as the third flow is added, just
as we experienced in hardware (fig. 8(a)). The simulator
and the hardware show the same behavior and the same
performance. If we turn the CC on(fig. 8(d)), the oscil-
lation becomes evident again at the time 2s as the three
contributors to congestion are constantly trying to adjust
their injection rates. The characteristics of the flows in the
simulator are similar to the ones in hardware, even though
the oscillation is less dominant in the simulator.

Overall, the figures 7, 8 and 9 show a good resemblance
between our simulator and the hardware. Both the through-
put and the traffic characteristics are very close for both the
scenario 1 and the scenario 2 cases, especially considered the
complex dynamics of a closed loop feedback control system
like the IB CC mechanism. We are simulating a “black box”
where several design decisions are left to the hardware de-
signer. The exact behavior and performance of the IB CC
mechanism is therefore likely to vary among switches and
HCAs from different vendors – depending on the chosen de-
sign. Our aim is to catch the general IB CC characteristics
to be able to study them. The simulator does this very well.
It is able to catch the effect of the HOL blocking as well as
the performance improvement possible with IB CC.

7. CONCLUSIONS
Congestion control is an important topic in interconnec-

tion network research because congestion can severely de-
grade performance if no countermeasures are taken. In this

paper we described a new simulation model for OMNeT++
that accurately simulates IB congestion control and that
can be used to study the effect of, and how to configure,
IB CC. Moreover, we presented measurements from a small
real cluster that validates our simulation results. We expect
the model to be a useful tool for further research, and we
already have several works in progress using the simulation
model.

8. ACKNOWLEDGMENTS
We would like to thank the HPC Advisory Council [1] for

the support throughout the development and validation ac-
tivities and for the contribution of the switches and firmware
that were used for the validation. We would also like to
thank Magne Eimot for his contributions to the develop-
ment of the simulator, and last but not least, a thank you
to Eitan Zahavi and Mellanox Technologies for the original
implementation of the IB model and for sharing it with the
OMNeT++ community.

9. REFERENCES
[1] High Performance Computing - Advisory Council.

http://www.hpcadvisorycouncil.com/.

[2] NetPIPE - Network Protocol Independent
Performance Evaluator, Sept. 2009.
http://www.scl.ameslab.gov/netpipe/.

[3] W. J. Dally. Virtual-Channel Flow Control. IEEE

Transactions on Parallel and Distributed Systems,
3:194–205, Mar. 1992.

[4] W. J. Dally and B. Towles. Principles and practices of

interconnection networks, chapter 15.4.1, pages
294–295. Morgan Kaufmann, 2004.

[5] P. J. Garćıa, J. Flich, J. Duato, I. Johnson, F. J.
Quiles, and F.Naven. Dynamic Evolution of
Congestion Trees: Analysis and Impact on Switch
Architecture. In High Performance Embedded

Architectures and Compilers, pages 266–285, 2005.

[6] E. G. Gran, M. Eimot, S.-A. Reinemo, T. Skeie,
O. Lysne, L. P. Huse, and G. Shainer. First
Experiences with Congestion Control in InfiniBand
Hardware. In Proceeding of the 24th IEEE

International Parallel & Distributed Processing

Symposium, pages 1–12, 2010.

[7] InfiniBand Trade Association. Infiniband architecture

specification, 1.2.1 edition, November 2007.
http://www.infinibandta.org/.

[8] Mellanox Technologies Ltd. ConnectX, 2009.
http://www.mellanox.com/related-docs/prod_

silicon/PB_ConnectX_Silicon.pdf.

[9] Mellanox Technologies Ltd. InfiniScale IV, 2009.
http://www.mellanox.com/related-docs/prod_

silicon/PB_InfiniScale_IV.pdf.

[10] G. F. Pfister and V. A. Norton. ”Hot Spot” Contention
and Combining in Multistage Interconnection
Networks. IEEE Trans. Computers, 34:943–948, 1985.

[11] Sun Microsystems. Sun Datacenter Infiniband Switch
648 Architecture And Deployment, 2009.
http://www.oracle.com/us/sun/.

[12] A. Varga. Using the OMNeT++ discrete event
simulation system in education. IEEE Transactions on

Education, 42(4):11 pp., Nov. 1999.

397


