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Abstract 
The growing complexity and size of software systems, along with the increasing role of 

software in everyday life, makes verification and validation, and testing in particular, 

essential in software engineering. High fault revealing power, with minimum cost, is the 

ultimate goal in software testing. Model-based testing (MBT) targets this goal by 

automating test generation in a systematic way from abstract models of the software under 

test. Automation reduces the test generation cost dramatically, but the total testing cost 

includes the cost of test execution and evaluation as well. In practice, there are limitations 

in testing budget both in terms of time and testing resources. A testing approach cannot be 

scalable and practical in large industrial systems, unless it addresses all dimensions of the 

testing cost. But the systematic test generation nature of MBT potentially results in large 

test suites with execution costs that far exceed the testing budget. Therefore, a mechanism 

for adjusting the size of the output test suite in MBT is an absolute necessity to ensure 

success in industry.  

This thesis proposes techniques that minimize the test suite size while preserving (to the 

maximum extent) its fault detection rate. The proposed family of techniques, called 

similarity-based test case selection, hypothesizes that the more diverse the test cases, the 

higher the fault detection rate. The thesis initiates with a systematic review on search-based 

techniques for test case generation, which is a starting point for identifying the potential 

approaches for search-based test case selection being used in similarity-based test case 

selection. Finding the most effective ways of defining similarity measures and selection 

algorithms constitutes the core of the thesis. The best selection techniques among different 

variants of the proposed similarity-based techniques are identified through rigorous 

empirical analyses on two industrial case studies. The cost-effectiveness of the approach is 

also compared to the existing selection techniques in the literature. Then, different 

influential factors on the effectiveness of the technique are examined through controlled 

experiments in order to gain insight on the analyzed problem, and to gain confidence in the 

reliability of the results. 

The main contribution of this thesis includes the proposal and evaluation of highly 

effective similarity-based test case selection techniques, which turns out to be extremely 

beneficial in two industrial contexts (up to 50% reduction in the number of test cases 

required for detecting the same number of faults as to the current, best alternatives). 
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Furthermore, the technique showed to be scalable with test suite size and also robust to 

variations in the fault detection rate of the test suite.  

Another contribution is a complementary study on estimating the best size for a test 

suite based on similarity comparisons among test cases. From a practical standpoint, this is 

a significant contribution to increase the usability of the proposed techniques, since testers 

are no longer required to select an arbitrary test suite size.  

In conclusion, similarity-based test case selection showed promising results on two 

industrial case studies with respect to minimizing the testing cost in MBT. The proposed 

technique is far more effective than existing techniques. It helps make MBT applicable on 

larger systems by adjusting the output test suite according to test budget. This research has 

therefore the potential to significantly impact how MBT is performed today.  
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1 Introduction 

Software is being incorporated into an ever-increasing number of systems including 

embedded and safety critical systems, and hence it is becoming increasingly important to 

thoroughly test these systems. One challenge in software testing is the effort involved in 

creating a test suite that will systematically test the system and reveal latent faults in an 

effective manner [1]. In recent years, systematically deriving test cases from a behavioral 

model of a system, Model-Based Testing (MBT), has attracted an increasingly wide 

interest from industry and academia. This interest can be seen from the many academic 

studies [2-8] and industrial projects [9-12] on MBT. This suggests that there is an 

increasing awareness of the benefits offered by MBT compared to other testing 

methodologies. However to make MBT a practical solution, it should be scalable to large 

industrial systems and assume realistic test budgets.  

One of the important problems regarding scalability is the relationship between the cost 

of the test technique and the complexity of realistic systems. The MBT cost can be divided 

into two categories: (1) test case generation and (2) test case execution. Test case 

generation cost is referred to the modeling cost plus the time and resources required by an 

MBT tool for generating executable test cases from the model. On the other hand, the test 

case execution cost is the time and resources required for execution and evaluation of the 

generated test cases. This thesis concentrates only on the latter category since test suite 

execution is an important factor for the applicability of any test case generation technique, 

though it is far less investigated in the literature than test case generation cost [13-15]. 
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Although test case execution cost is directly related to the test suite size (the number of 

generated test cases which are going to be executed), MBT does not provide any special 

support for managing the size of its output test suites. However, such support seems 

necessary because test suites generated by MBT approaches tend to be very large and they 

get exponentially larger with increasing model size (due to large software under test, or 

SUT). Furthermore, the matter gets even worse when testing is semi-automated (e.g., 

automatically generating oracles may be very difficult or impossible, such as in a 

subjective quality assessment of a video stream) and human effort is necessary for the 

evaluation of the test results. In addition, what usually happens at system level testing of 

industrial SUTs is that test cases are executed on real hardware platform and network. This 

has a huge effect on the total testing cost because (a) test case execution time is much 

longer than for desktop software, and (b) test case execution often requires physical testing 

resources (e.g., specific assigned machines and restricted-access network) whose 

availability is limited.  

During this project, applying MBT on two SUTs of different sizes and from different 

application domains showed that the cost of executing test suites generated using MBT 

(given standard coverage criteria) can be by far higher than the resources (i.e., the so called 

testing budget) available for testing the SUT. In some cases, it is not even feasible to run 

all test cases by the project deadlines. Therefore, lowering the cost of test suite execution, 

both in terms of time and resource, is a crucial success factor for MBT.  

Solving this problem, in this thesis, a novel approach for test case selection in MBT is 

investigated. The approach, referred to as similarity-based test case selection (STCS), 

selects the least similar test cases from the test suite for a given test selection size. The 

underling idea is that diversifying selected test cases will help to detect more distinct 

faults. In addition, the thesis explores how to define similarity measures and how to 

minimize the overall similarity among selected test cases.  STCS is also empirically 

evaluated on two industrial cases studies coming from two different companies located in 

Norway. The results show that it reduces the size of the test suite while nearly preserving 

the original test suite’s fault detection rate (FDR). This results in test suites with almost the 

same quality (in terms of FDR) but much less overall execution cost (because less test 

cases need to be executed), which consequently results in a more scalable MBT approach 

in practice.  

The thesis is structured in two parts: 
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Summary: This part of the thesis consists of seven sections. After this Introduction, in 

Section 2, a short background (required for understanding the included papers) on model-

based and search-based testing, plus test case selection techniques, is provided. In Section 

3, the core idea of the thesis, STCS, is introduced. Section 4 explains the research 

methodology and Section 5 provides an overview of the included papers. In Section 6, 

suggestions for future work are presented. Finally, Section 7 concludes the thesis.  

Papers: The rest of the thesis consists of six published, accepted for publication, and 

submitted papers in international journals and peer-reviewed conferences. 

2 Background 

In this section, background information is provided as a context of the papers that are 

included in the thesis. Section 2.1 introduces MBT, the approach that is used in this thesis 

for generating test cases from UML state machines, and the MBT tool that has been 

developed during this project. Section 2.2 presents a brief introduction to search-based 

software testing (SBST), which is used for test case selection in STCS. A more 

comprehensive review of SBST techniques is reported in Paper1. Finally, in Section 2.3, 

an overview of different test case selection techniques is presented.  

2.1 Model-based testing 

Model-based testing (MBT) is defined as “the generation of executable test cases from 

behavior model of the system under test” [2]. A test case specifies the present state of the 

SUT and its environment, the test inputs and conditions, and oracle information [16]. An 

example of a test input is a sequence of functions or method calls and their input 

parameters. Oracle information identifies properties that should be true after the execution 

of the test case. Several strategies can be considered to implement efficient oracles [16]. 

Since many systems, such as embedded real-time systems [17], telecommunication 

systems [18, 19], and multimedia systems [20], exhibit state-driven behavior, traditional 

Finite State Machine and its extensions are commonly used to model such behavior. Finite 

State Machine is a graph-based representation of the SUT’s behavior, where a finite 

number of graph nodes represent the states of the system and a finite number of graph arcs 

represent transitions of the system from one state to another [2]. Traditional Finite State 

Machines have some limitations. For example, they cannot model software systems with 

concurrent behavior. Therefore, the Unified Modeling Language (UML) standard 

introduced concurrency in UML state machines by defining composite states with two or 
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more regions [21]. When modeling complex software systems with Finite State Machines, 

the number of states and transitions can grow exponentially with system size. This can be 

handled by UML state machine features for modeling sub-machines. Many commercial 

and academic tools (e.g., [20, 22]) support the modeling of UML state machines.  

Several well-known MBT tools have been developed in recent years, such as TDE/UML 

(Siemens) [11], SpecExplorer (Microsoft) [12], IBM Rational Functional Tester [10], and 

Qtronic [23]. In this thesis, an MBT tool called TRansformation-based tool for Uml-baSed 

Testing (TRUST) is used, which has been developed (by the author and some other 

students) as a part of the Automated Model-based Testing of State-driven Systems (AMOS) 

project [24]. The main motivation for developing TRUST was having an easily extensible 

tool on which to base our research. Basically, TRUST is used in this thesis as an 

infrastructure that the proposed similarity-based test case selector component is deployed 

on. However, the test case selector component can be potentially integrated with any UML 

state machine-based MBT tool. TRUST accepts UML state machines containing 

concurrency and hierarchy as the input model and generates executable test cases along 

with oracles. It is integrated with IBM Rationale Software Architect (RSA) [22] as 

modeling tool and applies a series of model-to-model (in Kermeta [25]) and model-to-text 

(in MOFScript [26]) transformation rules on the input model to generate the final test 

scripts. Figure 1 illustrates this transformation-based approach for MBT. 

The general process of MBT that is used in this thesis starts with modeling the SUT and 

making it ready for test generation, e.g., by enriching a UML state machine with state 

invariants, which are used for test oracle generation. TRUST, specifically dedicates one 

step of model-transformation for preparing test ready models. Since in this project, the 

input models (UML 2.0 state machines) had hierarchy and concurrency, they were first 

flattened, to be able to apply classic, graph-based coverage criteria [27]. The flattening is 

automatically done by TRUST. The next step is deriving abstract test cases (ATCs) from 

the test ready model (flattened state machines in TRUST) according to a test strategy, 

which is typically defined based on a test model and coverage criteria (e.g., all states) to 

guide its traversal [1]. ATCs, like concrete test cases, contain the present state of the SUT 

and its environment, the test inputs and conditions, and the expected results, but expressed 

at a higher level of abstraction. Finally, executable test cases are generated by adding all 

platform dependent information to ATCs and mapping abstract information (e.g., triggers 

and state variables) of the ATC to the actual executable information (e.g. method names 

and system variables) in the test script.  
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Figure 1 Model transformation-based approach for test case generation 

 

Each component of TRUST implements one set of transformation rules (e.g., 

transformation from the test tree to the test cases is done by testScriptGenerator in Figure 

2). Each component has well-defined interfaces with other components. More specifically, 

each interface provides output to, or requires inputs from, other components by means of 

intermediate models. Separation of concerns among components has made each 

transformation responsible for providing one artifact such as the test model, test data, and 

test scripts. Therefore, adding a new feature (for example, outputting test scripts in a new 

language) can be achieved by writing a new set of transformation rules in the component 

that provides the corresponding artifact, without affecting the other components. Model 

transformation languages provide the developer direct support for navigating, creating, and 

manipulating a model, based on its metamodel. Generally, the transformation rules are 

relatively compact and easy to read, write, and change. 

Figure 2 depicts the architecture of TRUST, which consists of five components. The 

first component, stateMachineFlattener, takes the UML 2.0 state machine metamodel and 

one instance of it, which may contain hierarchy and concurrency, as inputs. Using a set of 

model-to-model Kermeta transformations, it provides the flattenedStateMachine only 

containing simple states and transitions. The stateMachine2TransitionTreeTransformer 

component takes metamodel of transition tree and a coverage criterion and generates a 

transition tree conforming to the metamodel by applying the criterion on the 

flattenedStateMachine using another set of Kermeta transformations. Finally, the 
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testScript, which is a test suite of executable test cases (currently supporting Python and 

C++), is generated by the testScriptGenerator component by traversing the tree in 

MOFScript according to the given coverage criterion. The test paths, which are generated 

by traversing the tree, are concretized using the input data for the parameters of the 

transitions operations, generated by the testDataGenerator component. Input data are 

randomly generated based on the parameters type, unless there is a guard on the transition 

to be covered. In such cases, the constraint is solved by a search-based OCL solver 

implemented in the testDataGenerator (developed by Ali et al [28]). EyeOCL [29] is the 

embedded OCL evaluator in TRUST which is used for search-based data generation and 

oracle evaluation at run-time.  

In TRUST, oracles are automatically generated as part of the testScript. Executing test 

cases, OCL expressions in the state invariants associated with the states must be evaluated. 

EyeOCL is called during the execution of a test case to evaluate the state invariant. The 

object model of the SUT at runtime, representing the current state of the system along with 

 

Figure 2 Architecture diagram of TRUST 
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the constraint to be evaluated is passed to the OCL evaluator, which in turn returns the 

Boolean result of the evaluation. Querying the current state of the system depends on the 

implementation of the SUT and the test script language’s facility to access the state of the 

SUT. More detail on the implementation of TRUST can be found in [30]. 

2.2 Search-based software testing 

The application of search and optimization techniques in software engineering, i.e., search 

based software engineering (SBSE), is a research area that has attracted a lot of attention 

from academia in the last few years [31]. In fact, search techniques have been very 

effective in solving many types of engineering problems, and they can be applied in 

software engineering as well. Many reviews and surveys recently published in this domain 

[1, 31-33] show many successful results. Based on [34], 763 articles were published from 

1976 to November 30th 2010 on SBSE and 52% of the papers (Figure 3) are concerned 

with the application of optimization techniques to software testing, i.e., search based 

software testing (SBST). Though SBST targets various problems in verification, and 

validation, most of the SBST activities till now are focused on test case generation [1, 33]. 

The main idea of search-based test case generation is that “the set of test cases forms a 

search space and the test adequacy criterion is formulated as a fitness function for the 

search technique” [33].  

    Search techniques are general strategies that need to be adapted to the problem at 

hand. In the rest of this section, a typical SBST process is explained with an example of 

 
Figure 3 Spread of 763 SBSE papers from 1976 to Nov 30th 2010 based on their 

application areas activities [34] 
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test case generation using Genetic Algorithm (GA) [35], which is the most used search 

technique in SBST [1]. Figure 4 depicts the process. 

2.2.1 Formulating test objectives and encoding of chromosomes 

Representation of a testing problem as a search problem includes the definition of a 

mapping from the solution space into the search space. This in GA involves defining an 

encoding for the genes and the chromosomes. The genes are a constituent part of 

chromosomes. The chromosome encoding is dependent on the kind of problem being 

addressed and for test case generation it can be, for example, the data for a specific test 

case. 

2.2.2 Fitness (cost) function formulation 

Fitness functions are one of the main parts of a search algorithm because they are 

responsible for guiding it in the search for (near-)optimal solutions. A fitness function is 

used to evaluate how “good” a candidate solution is. GAs tend to select and reproduce 

“fitter” solutions, and so discard solutions that are not particularly fit.   

2.2.3 Initial population and selection strategies  

GA settings can have a huge impact on the efficiency of a GA. The first two choices are on 

the strategy for making the initial population (e.g. random or a specific strategy [35, 36]) 

and selecting parents for recombination (e.g. random pairing [36], roulette wheel [37], 

tournament selection [37], rank selection  [38]). The following items explain other 

operators and settings. 

2.2.4 Search operators 

Search operators (or recombination operators) are the means by which a search algorithm 

explores the search space. Though there are guidelines for choosing the operators, but there 

is not a single best solution for all problems (No Free Lunch Theorem [39]). Usually these 

 

Figure 4 Test case generation using Genetic Algorithm 
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operators require tuning to adjust their parameters with respect to a specific problem. The 

choice of the operators and their tuning make the exploration of the search space in balance 

with the exploitation of the solution towards the target. Sometimes, based on the encoding 

of the individuals and the problem, the operators also have to be chosen carefully so that 

invalid chromosomes are impossible to generate or a rare occurrence [40]. The most 

commonly used search operators are crossover (for exploration) and mutation (for 

exploitation) operators. Mutation operators (e.g., bit-flip operator [40]) randomly change 

genes in chromosomes. Crossover allows individuals (chromosomes) to exchange 

information (genes). Different types of crossover operators (e.g., single point and two-

point crossover operators [41]) are defined based on the number, the locus, and the 

probability (i.e., rate) of choosing the chromosome for crossover.    

After applying operators such as crossover and mutation, the next generation of 

chromosomes is generated by replacing some of the parents with the generated offspring. 

Two points should be considered while defining a replacement strategy (e.g., steady-state 

[41]): How many individuals are retained from the previous population (i.e., not replaced 

by offspring) and what is the selection strategy for deciding which individuals should be 

retained. 

2.2.5 Elitism 

Elitism is a mechanism to ensure that the traits of the fittest individuals are transferred to 

the next generation. This is achieved by selecting some of the fittest individuals and 

keeping them as part of the next generation. Note that, elitism is different than a selection 

strategy since without elitism even the fittest chromosome may be replaced by some 

probabilities.  

2.2.6 Stopping criteria 

Selecting stopping criteria for GAs is one of the challenging issues. In practice, if the 

search target (optimal solution) is known, then one stopping criterion is “stopping after 

finding the solution”. However, in many problems, the optimum solution is unknown. In 

addition, the searching resource is limited. Therefore, a maximum searching time is usually 

set for stopping the search. When comparing different algorithms, other stopping criteria 

such as “a maximum number of generations” and “stopping when there is no improvement 

in fitness values” are more preferred, since they help providing more fair and valid 

comparisons.  
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In Paper 1, the systematic review on search-based test case generation with a focus on 

its application and empirical investigation is reported. Since the body of knowledge and 

empirical results are limited regarding search-based test case selection, this review helped 

us identify candidate STCS techniques based on a careful analysis of results from search-

based test case generation.  

2.3 Test case selection  

There are two main solutions to overcome the problem of large test suites in MBT. The 

first approach is using a less demanding coverage criterion to generate fewer test cases. For 

example, using all-transitions [16] instead of all-transitions pairs [16] can significantly 

decrease the number of generated test cases. However, this is often not a practical solution 

as it is difficult to control the number of test cases that way and one cannot ensure that the 

number of test cases will be below a required threshold [42]. The second solution is to 

execute only a portion of the test suite. There are three types of techniques introduced in 

the literature in this regard [43]: 

 

 Test suite minimization that tries to minimize the test suite by removing redundant 

test cases with respect to a criterion (e.g., code coverage).  

 Test case selection that, given a test selection size, tries to select a subset of the 

entire test suite that maximizes its FDR.  

 Prioritization techniques that do not remove any test case but order their execution.  

 

By this definition, the context of the problem falls into the second category (test case 

selection). However, most of the ideas used in minimization and prioritization can also be 

applied in selection. Therefore, this thesis focuses on the test case selection problem, but 

all applicable ideas including also minimization and prioritization are reviewed.  

All the above three categories are mostly studied in the context of regression testing, 

where the goal is to find an optimal subset of the original test suite that guarantees the 

execution of fault revealing test cases [43]. Most of the regression-based minimization, 

selection, and prioritization techniques are based on identifying what parts of the system 

are affected by changes and use information from previous execution of the test cases [43]. 

In the context of this thesis (i.e., reducing MBT execution cost), there is not any execution 

information available and, therefore, most regression-based selection techniques cannot be 

applied.  
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From another point of view, test case selection techniques use either code-level (e.g., 

code-based dependency analysis [44] and statement coverage [45-47]) or model-level 

information [48-50]. However, some of the code-based selection heuristics can also be 

adapted to MBT, usually by replacing the code-level inputs to analogous model-level 

information. For example, additional statement coverage [47] can be converted easily to 

additional transition coverage for state machine-based testing [50]. 

Regardless of the level of abstraction (code or model based) and the purpose of 

selection (regression testing or general minimization of the test suite), the existing 

techniques (minimization, selection, and prioritization) can be categorized into three main 

classes: 

 

1) Random [51] or semi-random [16] selection and prioritization, where there is no 

guidance to select/prioritize test cases. Usually it is used as a baseline of 

comparison, since it is simple approach that can be applied on any test suite, no 

matter how it has been generated and what information is available.  

2) Coverage-based techniques, where we hypothesize that “the test cases which have 

more coverage (such as code or model based coverage) are more likely to detect 

faults” [43]. Maximizing coverage has been a common practice over the years in 

minimization, selection, and prioritization [43, 47, 52]. In MBT, coverage is 

defined at the model level, which can be extracted from ATCs without execution. 

For example, transition coverage in a state machine [50] can be determined if 

traceability has been preserved between an ATC and its source state machine. Most 

coverage-based techniques are re-expressed into optimization problems where the 

goal is to select the best subset/permutation of test cases to achieve maximum 

coverage with minimum cost [43].  

For example, a technique presented in [47] uses a Greedy search to select, at every 

step, the test case that covers the most uncovered statements (additional coverage 

technique). Similarly, in [53-56] a GA is used to achieve maximum coverage. A 

more complete survey of coverage-based minimization, selection, and prioritization 

techniques can be found in [33] and [55]. 

3) Similarity-based techniques, where we hypothesize that “the more diverse the test 

cases the higher their fault revealing capacity” [52]. This technique is a relatively 

recent category [48, 57] of selection/prioritization techniques which can be applied 

in both code and model-based testing. A similarity-based technique maximizes 
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diversity among test cases with respect to a similarity measure, which requires 

assigning a similarity value to each pair of test cases and minimizing the average 

pair-wise similarities between the selected test cases. The next section summarizes 

the approach of this thesis to STCS as one contribution of the thesis. 

3 Similarity-based Test Case Selection in Nutshell  

The main contribution of this thesis is to address the problem of scalability in test suite 

execution in MBT. This thesis proposes and investigates a model-based test case selection 

technique that makes MBT more practical by allowing testers to adjust the size of output 

test suites based on time and resource constraints, while preserving the FDR of the original 

test suite to the maximum extent. The technique, similarity-based test case selection 

(STCS), is based on selecting the most diverse ATCs generated by applying a coverage 

criterion on a test model. In other words, the choice of the final concrete test cases to 

execute is optimized with respect to their pair-wise similarity, given an affordable testing 

budget. The underlying assumption here is the existence of a correlation between the 

similarity of test cases (measured by similarity of corresponding ATCs) and their fault 

detection, which is also studied in the thesis (Paper 4 and Paper 5). An STCS technique is 

composed of three phases:  

 

 Encoding of ATCs: In this phase, the ATCs are encoded using a sequence of model 

elements (e.g., states and/or transitions). The choice of elements determines the 

expected level of precision of the encoding. For example, an ATC represented by a 

sequence of triggers and guards is encoded at a more precise level than the ATC 

represented by a sequence of transitions. Recall that ATCs, like concrete test cases, 

contain information about test input sequences and test oracles. For example, states 

invariants in ATCs derived from UML state machine can be used to derive test 

oracles.  

 Similarity matrix generation: In this phase, all pair-wise ATC similarities are 

calculated and saved into a similarity matrix. The similarity between two ATCs is 

defined based on a similarity function. Eight similarity functions (e.g. Hamming 

distance [58], Jaccard Index [59], Gower-Legendre [59], Levenshtein [58], and 

Smith-Waterman [60]) were implemented and are available to use. In addition, the 
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effectiveness of different similarity functions has been studied and reported in 

Paper 3 and Paper 6.  

 Minimizing similarities: The last phase of STCS is minimizing the sum of all ATC 

pair-wise similarities in the selected subset. There are many applicable alternatives, 

entailing different cost and effectiveness, that were implemented such as Greedy 

search [61], Agglomerative Hierarchical Clustering [59], Adaptive Random Search 

[62], and GAs, etc (Paper 5 and Paper 6).  

 

Since there are many possible techniques applicable for each phase, STCS can be seen 

as a family of selection techniques. Therefore, an STCS variant is made by defining a 

specific combination of techniques for the three phases. This family of selection techniques 

have been implemented and integrated with TRUST. The similarity-based test case selector 

sub-system of TRUST consists of three components corresponding to the three phases of 

STCS (Figure 5). The Encoder component takes the test model (test tree), its metamodel 

(test tree metamodel), the coverage criterion, and the encoding type as inputs and applies 

the coverage criterion to the test tree and generates the ATCs corresponding to the 

encoding type. The ATCs are given to the SimilarityMatrixGenerator component which 

 

Figure 5 Architecture diagram for the test case selector component in TRUST 
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also takes the similarity function as input. Using the function, a similarity matrix is 

generated for the ATCs and is given to the Optimizer component. Applying a minimization 

algorithm for a selected size (test selection size), where both the algorithm and size are 

specified as inputs of this component, the selected ATCs are identified and the 

corresponding concrete test cases, taken from the test suite, are provided as output. 

4 Research Methodology 

This thesis relies on the combination of a systematic review, industrial case studies, and 

simulation-based controlled experiments, which were applied at different stages of the 

thesis.  

Systematic reviews are a means of synthesizing existing research results, in a systematic 

and unbiased way, regarding a specific research question [63]. They are usually performed 

to summarize the existing evidence for a particular topic and aid in the identification of 

gaps in the current research, and thus can form the basis of new research activity [1]. Since 

a main portion of this study is on the use of search-based techniques on testing 

(specifically on test case selection), a comprehensive systematic review of the current 

literature was conducted to collect, classify, and assess existing SBST empirical studies in 

order to assess the current body of evidence regarding the cost and effectiveness of SBST. 

Test case selection is not the focus of this review, since there were not enough publications 

on the use of search techniques for test case selection at the time the systematic review was 

initiated. Therefore, the focus of the review is on test case generation, since it is the most 

studied and well-established sub-domain in SBST [31]. Analysis of 

successful/unsuccessful search techniques in this sub-domain helped us to design better 

STCSs. In addition, existing surveys and reviews [33, 43] were studied to cover existing 

works related to test case selection.  

Industrial case studies are one of the main means of investigation in this thesis. A case 

study is “an empirical investigation of a phenomenon in a real-life context, particularly 

suited when the phenomenon and the context are difficult to separate” [64]. Case studies 

are necessary for the industrial evaluation of software engineering methods and tools as 

they provide results obtained in realistic conditions and address scaling problems [65]. In 

this study, since the cost-effectiveness, scalability, and practicality of the proposed 

techniques in industry were going to be investigated, the phenomenon under study (STCS) 
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could not be separated from the context (real faults, realistic models), as the context had a 

direct impact on the results.  

A controlled experiment was also conducted using simulation in Paper 5 to investigate 

some hypotheses on the effect of different test suite properties on the effectiveness of the 

selection techniques. Controlled experiments allow us to determine in precise terms how 

the variables are related and whether cause-effect relationship exists between them. The 

choice of simulation was due to the fact that conducting industrial case studies is expensive 

and it was therefore not practical for us to find real software systems satisfying the various 

combinations of conditions under investigation. 

In summary, the thesis started with a systematic review of related works (using search 

techniques for testing) in Paper 1. Then STCS was introduced and implemented. The next 

step was conducting case studies on two industrial software systems from two different 

domains (Papers 2 to 4 and Paper 6). The main research goals were finding whether the 

proposed technique performed better than other existing selection techniques and if so, 

how much can be gained in practice in terms of time and other testing resources. In 

addition, different test suite properties were analyzed using a simulation study in order to 

analyze how the proposed STCS technique performs under various conditions (Paper 5). 

5 Summary of Results 

In this section, the included papers are summarized and the key results are presented.  

5.1 Paper 1 

“A Systematic Review of the Application and Empirical Investigation of Search-based 

Test-Case Generation”, S. Ali, L. Briand, H. Hemmati, and R. K. Panesar-Walawege, in 

the IEEE Transactions on Software Engineering (TSE), vol 36, no 6, pp. 742-762, 2010. 

 

Through the systematic review we answered the following research questions: 

RQ1: What is the research space of search-based software testing? 

RQ2: How are the empirical studies in search-based software testing designed and 

reported? 

RQ3: How convincing are the reported results regarding the cost, effectiveness, and 

scalability of search-based software testing techniques? 

Among 450 papers published by the end of 2007 in SBST, 68 papers were included as 

relevant for the review. The results showed that in 75% of the papers, SBST techniques 
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have been applied on unit testing. Most papers (78%) focus on structural coverage and the 

most commonly used algorithm is the GAs and their extensions (73%). 

We found out that there is a general lack of rigor in the statistical analysis and reporting 

of results in most empirical studies reported in the included papers (77% of the studies lack 

accounting for random variation of the search algorithms or they report incomplete 

descriptive statistics without any statistical test). Furthermore, most of the papers did not 

demonstrate the benefits of SBST by comparing it with simpler techniques such as random 

search. So we concluded that most empirical studies in the context of test case generation 

using SBST techniques are still not properly conducted and reported for the reader to be 

able to draw reliable conclusions. 

The review also reports that there is a limited body of credible evidence that 

demonstrates the usefulness of SBST techniques for test case generation. However, the 

evidence consistently shows that GAs outperform random search in terms for structural 

coverage. Since the evidence was based on only a few papers and could not be easily 

generalized, we concluded that more empirical studies must be conducted in the area of 

SBST, to gain a minimum level of confidence about whether it is a promising option.  

To help researchers conduct and report better empirical studies in this domain the paper 

also provided guidelines in the form of a framework on how to conduct empirical studies 

in SBST.  

5.2 Paper 2 

“An Enhanced Test Case Selection Approach for Model-Based Testing: An Industrial Case 

Study”, H. Hemmati, L. Briand, A. Arcuri, and S. Ali, in the proceedings of the 18th ACM 

International Symposium on Foundations of Software Engineering (FSE), pp. 267-276, 

2010. 

 

Our approach to STCS is first introduced by this paper, where three similarity measures 

and two minimization algorithms are investigated. However, the concept of similarity 

measure had not yet been divided into encoding and similarity function. The measures 

were using the same similarity function but with three different encodings. The similarity 

function used in this paper was adapted from the only existing work on applying STCS in 

MBT [48] and the minimization algorithms were Greedy search and GA. We had the 

following research questions in this paper: 
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RQ1. Which similarity measure is more effective for UML state machine-based test case 

selection, in terms of FDR? 

RQ2. To which extent is using a GA for test case selection more cost-effective (in terms of 

time spent to find a solution) compared to a Greedy search? 

RQ3. To which extent are similarity-based selection techniques more effective than 

coverage-based and random selection techniques? 

RQ4. In the context of MBT, what is the practical benefit of STCS, on a representative 

industrial case study?   

The paper reports that the measure that encodes test cases by their triggers and guards 

and uses a simple counting function (defined in the paper) has the best performance among 

all variants of STCS investigated in the paper. The performance is measured by the FDR of 

the selected test cases for a given test selection size. We also found GA by far more 

effective than Greedy search. Comparing random and traditional coverage-based selection 

techniques with STCS, we showed great improvement in terms of FDR. We also reported 

the practical benefit of our approach by showing the savings that one could get in terms of 

number of test cases to execute for detecting a certain percentage of faults. Results from 

our industrial case study showed that the best STCS technique can select only 27% of the 

test cases generated by MBT while retaining a 100% FDR. 

5.3 Paper 3 

“An Industrial Investigation of Similarity Measures for Model-Based Test Case Selection”, 

H. Hemmati and L. Briand, in the proceedings of the 21st IEEE International Symposium 

on Software Reliability Engineering (ISSRE), pp. 141-150, 2010. 

 

In this paper, we differentiated between encoding and similarity function and focused on 

the effect of similarity function on the performance of STCS. We introduced six similarity 

functions (three set-based and three sequence-based) and used trigger-guard and GA as 

encoding and minimization algorithm respectively, based on the results from the previous 

work (Paper 2). The research questions of this paper were: 

 

RQ1. What is the most cost-effective similarity function for STCS? 

RQ2. In practice, how much test case execution resources do we save by using the best 

STCS compared to random selection and coverage-based selections? 
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The results based on an industrial case study (on the same SUT as Paper 2) showed that 

Jaccard Index among set-based functions and Needleman-Wunsch [60] algorithm among 

sequence-based similarity functions are comparable and the most effective functions in 

terms of FDR of the selected test cases. However Jaccard was a priori more interesting 

since it was simpler to use (no tuning needed) and faster. 

We later compared this improved STCS version (using trigger-guard encoding, Jaccard 

similarity function, and GA as minimization algorithm) with our baselines (random and 

coverage-based selection) and showed up to 77% reduction in cost (number of test cases 

required for achieving 90% FDR in the selected test suite). 

5.4 Paper 4  

“Reducing the Cost of Model-Based Testing through Test Case Diversity”, H. Hemmati, 

A. Arcuri, and L. Briand, in the proceedings of the 22nd IFIP International Conference on 

Testing Software and Systems (ICTSS), formerly TestCom/FATES, pp. 63‐78, 2010. 

 

After the promising results obtained in the previous studies (Paper 2 and Paper 3), the next 

step was to look deeper into the basic ideas and assumptions underlying STCS. Therefore, 

in this paper, we first investigated the fundamental idea of diversifying test cases. 

Furthermore, we went beyond search algorithms to find the best technique for 

minimization. The two main research questions of this paper were: 

RQ1. Why does diversifying test cases improve fault detection? 

RQ2. What is the most cost-effective way to diversify (given our similarity measure) a set 

of test cases? 

To answer RQ1, we needed to investigate whether test cases are distinctly clustered 

with respect to different faults or not. If they are, then we can conclude that diversifying 

test cases with respect to their pair-wise similarity increases chances of finding more faults. 

We have carried out an exhaustive analysis based on our industrial case study and the 

results showed that test cases which detect distinct faults are dissimilar and test cases that 

detect a common fault are similar with respect to our similarity measure. This finding 

suggests that rewarding diversity leads to finding more faults. 

In the second half of the paper, we focused on the last step of STCS techniques, the 

minimization algorithm. In the previous papers (Paper 2 and 3) we used GA and Greedy 

algorithms, which are both search techniques. In this paper, we compared the best search 

technique among those two, which was GA, with two different approaches for our 
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minimization problem. The first technique was clustering and the rationale for choosing it 

was that test cases detecting distinct faults were distinctly clustered (based on RQ1). The 

second alternative was Adaptive Random Search, which is a common approach in test case 

generation for diversifying input data (Adaptive Random Testing). The results of the 

industrial case study (the same SUT as Paper 2 and Paper 3) showed that the GA is more 

effective and less expensive than both clustering and Adaptive Random Testing.  

5.5 Paper 5  

“Empirical Investigation of the Effects of Test Suite Properties on Similarity-Based Test 

Case Selection”, H. Hemmati, A. Arcuri, and L. Briand, to appear in the proceedings of the 

4th IEEE International Conference on Software Testing, Verification and Validation 

(ICST), 2011. 

 

The three previous papers (Paper 2 to Paper 4), proposed STCS techniques, investigated 

the best approaches for encoding, similarity function, and minimization algorithm, by 

conducting case studies on one industrial software system, and compared the proposed 

technique with existing techniques. In addition, Paper 4 studied the fundamental idea and 

assumption behind the approach by an exhaustive analysis of the impact of test cases pair-

wise similarities on the test suite FDR. In Paper 5, we conducted a controlled experiment 

based on two case studies (one new) to find out in which situations, with respect to test 

suite properties, STCS performs best. Therefore, the first research question of the paper 

was: 

RQ1. Under which conditions, with respect to the similarity of fault revealing test cases in 

a test suite, STCS performs best? 

The results showed that the most ideal situation for an STCS technique is when, in a test 

suite, (1) test cases that detect a common fault are similar and (2) test cases which detect 

distinct faults are dissimilar. More importantly, our empirical study shows that property (2) 

is much more important than property (1). This result will help researchers devise 

improved similarity functions in the future, which in turn will result into more effective 

selection techniques.  

The paper also investigated (in RQ2 and RQ3) the problem of outliers (a small clustered 

set of test cases that is far away from all the others) in a test suite—which are not unlikely 

to happen in MBT—that could compromise the performance of STCS techniques. Results 

confirmed the significant impact of outliers and an approach, based on using rank scaling 



 
 

 
20 

 

measurement instead of raw similarity values, was proposed and was shown to partially 

address the problem. More investigation in this area is required.  

5.6 Paper 6  

“Achieving Scalable Model-Based Testing Through Test Case Diversity”, H. Hemmati, A. 

Arcuri, and L. Briand, submitted to ACM Transactions on Software Engineering and 

Methodology (TOSEM), 2010. 

 

Paper 6 is an extension of Papers 2 to 4 according to two dimensions: 

A. New research questions are studied and reported. 

B. New findings are presented for previous research questions, by conducting 

larger experiments. 

 

(A) Three new research questions: 

We investigated five research questions (RQ1 to RQ5) in this paper among which only 

RQ2 and RQ3 were similar to what was studied in Papers 2 to 4. The investigation of 

“How influential are STCS parameters on its effectiveness?” (RQ1), “What is the effect of 

the failure rate on the effectiveness of STCS?” (RQ4), and “How can one estimate the 

minimum number of test cases required for achieving (near) maximum FDR?” (RQ5) were 

completely new. 

(B) Larger experiments: 

This paper extends previous experiments by investigating a much larger number of STCS 

variants and an additional industrial case study. Regarding RQ2 (“What is the most cost-

effective STCS variant?”), in Paper 2 we focused on the encodings and compared four 

STCS variants. In Paper 3, we focused on similarity functions and investigated six STCS 

variants. Minimization algorithms were the focus in Paper 5, where three STCS variants 

were compared. In total, in Papers 2 to 4, we introduced and evaluated 11 STCS variants 

on one case study. 

In this paper, we introduced one new encoding, two new similarity functions, and six 

new minimization algorithms. This time we applied new analyses (including rank analysis 

and effect size comparisons) and investigated all possible combinations of the algorithms, 

which resulted in 4*8*10=320 STCS variants. We employed another extra case study 

compared to Papers 2 to 4 and evaluated the 320 variants on both case studies and 

identified the best technique on average on the two industrial case studies. 
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The results for RQ1 showed that all STCS parameters (encodings, similarity function, 

and minimization algorithm) are potentially influential on its FDR. The most cost-effective 

technique, on average across the two industrial case studies, is identified in RQ2 as the 

selection technique with state-trigger-guard-based encoding, Gower-Legendre similarity 

function, and (1+1) Evolutionary Algorithm [66]. 

 Regarding RQ3 (“What is the practical benefit of using STCS?”) we evaluated the best 

STCS technique (identified in RQ2) by comparing it with nine baselines on both case 

studies. In addition, more statistical analyses such as effect size analysis were applied. The 

results of the comparisons showed that nearly always (with a few exceptions that are 

discussed in the paper), the best STCS technique results in equal or higher FDR with fewer 

test cases. In addition, in most cases the FDR improvement is very significant (e.g., for 

some test selection sizes and case studies, 40% and 110% improvements are achieved 

when compared to the best coverage-based and random testing techniques, respectively).  

To investigate RQ4 we conducted a controlled experiment and simulated test suites with 

different failure rates. Results showed that the proposed STCS technique is more effective 

than other baseline selection techniques, regardless of the test selection size and the failure 

rate. In RQ5, we introduced and successfully evaluated a method that monitors the trend of 

test cases average similarity increments when increasing the test selection size. The 

method helps test managers in deciding about the best tradeoff regarding the test suite size. 

In addition, the scalability of the three steps of the STCS was assessed, by investigating the 

effect of larger test suites and test cases on the performance of the selection technique.  

6 Suggestions for Future Research and Extensions  

Future research in this domain can be performed in at least four directions: First there is a 

need to conduct more and larger scale case studies on STCS, along with more theoretical 

and empirical analysis in order to assess the promising results in other contexts, with other 

SUTs and application domains. All this work should then converge towards a more 

comprehensive theory for STCS.  For example, the analysis of the search space properties 

in this field of application can be helpful for gaining a more detailed understanding of how 

the approach works and may be improved. 

A second direction is to improve the technique. A possible approach, for instance, can 

be combining STCS and coverage-based selection techniques by applying multi-objective 

search techniques [55, 67] that minimizes similarities while maximizing coverage of the 
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selected test cases. Another possibility is assigning weights to test cases based on estimates 

of their execution cost and modifying the selection technique to minimize the total 

execution cost. In addition, an improvement to STCS can be obtained by improving the 

current solution for the outlier problem.  

The third direction is about trying to generalize the STCS approach for unsystematically 

generated test suites, which may have very low FDR. An interesting research question is 

whether the fundamental idea of STCS is only applicable and effective when the test suite 

is systematically generated or if it can be effective even on a randomly generated test suite. 

If the results show the effectiveness of the technique on a randomly generated test suite 

then its applicability widely increases.   

The last direction is applying STCS on other domains in software testing than test case 

selection. For example, detecting infeasible test cases might be possible by identifying test 

cases which are similar to the already identified infeasible test cases in the test suite. 

Therefore, the idea of similarity-based infeasible test case detection is also worth 

investigating.    
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7 Conclusion 

Transferring ideas from academic prototypes and projects to complex industrial software 

systems requires investigating their feasibility in practice. Addressing issues regarding 

problem size and solution cost dramatically increases the chance of a successful 

technology transfer. Model-based testing (MBT) is a good example of a field that has 

generated excellent ideas that, however, still need to be improved to be fully functional on 

real world systems.  

This thesis targets one of the drawbacks of applying MBT, as a systematic and 

automatic technique, for the system level testing of embedded systems. The problem is that 

system testing in real hardware platforms or test networks may be a highly expensive task 

and is usually very constrained. Therefore, an ideal automated testing approach should be 

adjustable to the time and resource constraints of the project. However, MBT, which 

typically results in very large test suites, does not provide such flexibility.  

The proposed solution in this thesis, similarity-based test case selection, allows MBT 

users to select a small enough portion of the original test suite that fits to their testing 

budget while preserving to the maximum extent the original fault detection rate of the test 

suite. The idea behind the proposed similarity-based test case selection technique is 

diversifying the selected test cases. The process contains three steps: (1) encoding of test 

cases into abstract test paths, (2) assigning similarity values to each test path pair, and (3) 

minimizing the sum of similarity values among all the test path pairs corresponding to the 

selected test cases.  

First 320 variants of the technique were identified using different combinations of 

possible algorithms for each step, and then several case studies (in industrial contexts) and 

controlled experiments (in the form of simulations) were conducted in this thesis. The 

results showed that the combination with state-trigger-guard-based encoding, Gower-

Legendre similarity function, and (1+1) Evolutionary Algorithm to be the most cost-

effective technique on average across two industrial case studies. Using the proposed 

technique, a much higher fault detection rate was achieved for the same number of test 

cases compared to the baselines (coverage-based and random selection). This led to very 

large savings in terms of the number of test cases that do not need to be executed (up to 

80% reduction in number of test cases required for detecting the same number of faults). 

The proposed technique is also more effective than other baseline selection techniques 

regardless of test selection size and failure rate. The technique showed a high degree of 
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scalability to larger test suites and longer test cases. In addition, a method was proposed 

that monitors the trend of test cases’ average similarity increments when increasing the test 

selection size, to help test managers in deciding about the best test selection size within 

their constraints. In summary, the similarity-based test case selection technique helps 

practitioners to reduce the cost of test case execution to fit their needs and consequently 

make it possible to apply MBT to larger systems.  
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Abstract— Metaheuristic search techniques have been extensively used to automate the 

process of generating test cases and thus providing solutions for a more cost-effective 

testing process. This approach to test automation, often coined as “Search-based Software 

Testing” (SBST), has been used for a wide variety of test case generation purposes. Since 

SBST techniques are heuristic by nature, they must be empirically investigated in terms of 

how costly and effective they are at reaching their test objectives and whether they scale up 

to realistic development artifacts. However, approaches to empirically study SBST 

techniques have shown wide variation in the literature. This paper presents the results of a 

systematic, comprehensive review that aims at characterizing how empirical studies have 

been designed to investigate SBST cost-effectiveness and what empirical evidence is 

available in the literature regarding SBST cost-effectiveness and scalability. We also 

provide a framework that drives the data collection process of this systematic review and 

can be the starting point of guidelines on how SBST techniques can be empirically 

assessed. The intent is to aid future researchers doing empirical studies in SBST by 

providing an unbiased view of the body of empirical evidence and by guiding them in 

performing well designed and executed empirical studies references. 

1 Introduction 

Software is being incorporated into an ever increasing number of systems and hence it is 

becoming increasingly important to thoroughly test these systems. One challenge to testing 

software systems is the effort involved in creating test cases that will systematically test the 

system and reveal faults in an effective manner. The overall testing cost has been estimated 

at being almost fifty percent of the entire development cost [6], if not more. Thus, a logical 

response is to automate the testing process as much as possible, and test case generation is 

naturally a key part of this automation. A possible strategy which has drawn great interest 
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in the automation of test case generation is the application and tailoring of metaheuristic 

search (MHS) algorithms [41]. The main reason for such an interest is that test case 

generation problems can often be re-expressed as optimization or search problems. 

There has been a tremendous amount of research in applying MHS algorithms to test 

case generation and a large body of research exists: a search of the most relevant databases 

(as detailed in Section 4.2.1) found 450 articles which after reading abstracts resulted in 

122 relevant articles published over the years 1996-2007 on this specific topic, often 

referred to as search-based software testing (SBST) [4]. 

Seeing the amount of research activity in this field, it is at this point in time, highly 

important to characterize what type of research has been performed and how it has been 

conducted. Among other things, it is crucial to appraise how much empirical evidence 

there is regarding the cost-effectiveness of SBST and to determine whether there is room 

for improvement in the way studies are performed and reported. The ultimate goal is to 

improve the quality of future research in this important, emerging field of research. In 

order to assess the current state of the art in SBST, we decided to conduct a comprehensive 

systematic review of the current literature, as this is commonly done in other scientific 

fields of research such as medicine [25] and social science [29]. The purpose of this 

systematic review is to collect, classify, and assess the empirical studies on SBST in order 

to assess the current body of evidence regarding the cost and effectiveness of SBST. By 

identifying the strengths and weaknesses of the current literature we hope to suggest 

improved research practices and relevant future research directions.  

This paper is organized as follows: In Section 2, we provide the background relevant to 

the material presented in this paper. Section 3 suggests a framework used to assess the 

empirical studies in SBST and Section 4 presents the method used to conduct this 

systematic review. In Section 5, we present the results of our review whilst Section 6 

outlines its validity threats. The final conclusions that we can draw from this systematic 

review are presented in Section 7. 

2 Background 

Detailed In this systematic review, we are analyzing which MHS algorithms have been 

used to address test case generation and what body of evidence exists regarding their cost-

effectiveness. As a preliminary to the review itself, we introduce here the three main 
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components involved in this paper: search-based software testing, systematic reviews, and 

empirical studies.  

2.1 Search-based software testing  

The main aim of software testing is to detect as many faults as possible, especially the 

most critical ones, in the system under test (SUT). To gain sufficient confidence that most 

faults are detected, testing should ideally be exhaustive. Since in practice this is not 

possible, testers resort to test models and coverage/adequacy criteria to define systematic 

and effective test strategies that are fault revealing. A test case normally consists of test 

data and the expected output [36]. The test data can take various forms such as values for 

input parameters of a function, values of input parameters for a sequence of method calls, 

or seeding times to trigger task executions. In the context of this review, we are not dealing 

with the expected outputs, but focus exclusively on the generation of test data as this has 

been the objective of papers making use of SBST. In order to perform test case generation, 

systematically and efficiently, automated test case generation strategies are employed. 

Bertolino [7] addresses the need for 100% automatic testing as a means to improve the 

quality of complex software systems that are becoming the norm of modern society. A 

comprehensive testing strategy must address many activities that should ideally be 

automated: the generation of test requirements, test case generation, test oracle generation, 

test case selection, or test case prioritization. In our current review, we are only dealing 

with test case generation. A promising strategy for tackling this challenge comes from the 

field of search-based software engineering [23].  

Search-based software engineering attempts to solve a variety of software engineering 

problems by reformulating them as search problems [15]. A major research area in this 

domain is the application of MHS algorithms to test case generation.  MHS algorithms are 

a set of generic algorithms that are used to find optimal or near optimal solutions to 

problems that have large complex search spaces [15]. There is a natural match between 

MHS algorithms and software test case generation. The process of generating test cases 

can be seen as a search or optimization process: there are possibly hundreds of thousands 

of test cases that could be generated for a particular SUT and from this pool we need to 

select, systematically and at a reasonable cost, those that comply to certain coverage 

criteria and are expected to be fault revealing, at least for certain types of faults. Hence, we 

can reformulate the generation of test cases as a search that aims at finding the required or 

optimal set of test cases from the space of all possible test cases. When software testing 
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problems are reformulated into search problems, the resulting search spaces are usually 

very complex, especially for realistic or real-world SUTs. For example, in the case of 

white-box testing, this is due to the non-linear nature of software resulting from control 

structures such as if-statements and loops [17]. In such cases, simple search strategies may 

not be sufficient and global MHS algorithms1  may, as a result, become a necessity as they 

implement global search and are less likely to be trapped into local optima [16]. The use of 

MHS algorithms for test case generation is referred to as search-based software testing [4]. 

Mantere and Alander [35] discuss the use of MHS algorithms for software testing in 

general and McMinn [37] provides a survey of some of the MHS algorithms that have been 

used for test data generation. The most common MHS algorithms that have been employed 

for search-based software testing are evolutionary algorithms, simulated annealing, hill 

climbing, ant colony optimization, and particle swarm optimization [12]. Among these 

algorithms, hill climbing (HC) [12] is a simpler, local search algorithm. The SBST 

techniques using more complex, global MHS algorithms are often compared with test case 

generation based on HC and random search to determine whether their complexity is 

warranted to address a specific test case generation problem. The use of the more complex 

MHS algorithm may only be justified if it performs significantly better than HC.  

2.2 Systematic reviews 

Systematic reviews are a means of synthesizing existing research regarding a specific 

research question [29]. They are usually performed to summarize the existing evidence for 

a particular topic and aid in the identification of gaps in the current research and thus can 

form the basis of new research activity. A review protocol is created at the beginning of the 

review, which lays out the research questions being answered and the methodology that 

will be used to answer these questions. The protocol specifies a specific search strategy 

that is used to select as much of the relevant literature as possible and provides justification 

for why studies are included or excluded from the systematic review. The data to be 

collected to answer the research questions is also presented in the protocol. All this 

information is published so that readers can judge the completeness of the systematic 

review, and if necessary replicate it. These features distinguish the systematic review from 

the usual literature review or survey that is usually conducted at the beginning of a 

                                                           
1 Global MHS algorithms are often contrasted with local MHS algorithms. The former are based on 

strategies for the search to avoid being stuck in local minima, thus being more effective in situations with 
complex search landscapes [12]. 
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research activity. A systematic review synthesizes the existing work in a systematic, 

comprehensive, and unbiased manner. 

2.3 Empirical studies for search-based software testing  

Kitchenham et al. [19, 31] make the case for evidence-based software engineering that 

seeks to help practitioners make informed decisions related to software development and 

maintenance by integrating current best evidence from research with practical experience. 

Thus, to determine if SBST techniques can be applied in practice, we need to conduct 

empirical studies to assess their cost-effectiveness and scalability. The cost-effectiveness 

of a SBST technique is normally measured in terms of the ability of the technique to 

generate test cases that achieve a certain testing objective at a reasonable cost. The testing 

objective, as is the case with any test case generation technique, is to detect faults of a type 

that is explicitly defined or implicitly determined by the test model (e.g., state transition 

faults for a state machine model). In this review, we have focused on empirical studies of 

SBST techniques in order to assess whether convincing evidence exists to show their cost-

effectiveness and scalability. For this purpose, it was necessary to define what we mean by 

an empirical study in this context and what constitutes a well designed and reported 

empirical study. Empirical studies are usually divided into three different types: surveys, 

case studies or experiments [52]. For this review, we have used a broad definition of 

empirical study, to include any kind of empirical evaluation that has been done in the field 

of SBST in order to be comprehensive in our investigation.  

In order to determine what constitutes a proper empirical study in SBST, we looked at 

existing guidelines [27, 32, 52] for conducting empirical studies in software engineering, 

and those for evaluating SBST techniques in other fields. Wohlin et al. [52] and 

Kitchenham [32] present guidelines on how to conduct experimentation and empirical 

research in the specific context of software engineering whereas Johnson [27] presents a 

general guide for experimental analysis of algorithms. We have tailored and augmented 

some of these guidelines to create a specific framework for conducting and reporting 

empirical studies in the domain of SBST. This was necessary as SBST studies involve the 

analysis of automation techniques in which no human subjects are involved and presents 

many specific challenges. In addition, the fact that SBST techniques are based on MHS 

algorithms makes it important to account for the inherent random variation that exists in 

their results. Furthermore, there should also be some means to show that a SBST technique 

is really necessary for the context that it is being applied in. This can be done, for example, 
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by showing that other simpler search techniques do not perform as well. The reason for 

doing this is that we want to ensure that the problems being tackled by the SBST 

techniques do warrant their use.   

The framework was created for a dual purpose. First, it was used in this systematic 

review to direct the collection of data that was used to assess the current state of empirical 

research in SBST. Second, it can also be used as a set of guidelines for conducting and 

reporting future research in the field or at least as a starting point in the development of 

such guidelines. The next section will present the framework. 

3 Framework 

As presented here, this framework is not intended to provide complete operational 

guidelines, but rather to justify the data collection that took place to perform the systematic 

review presented in the next sections and to highlight some of the most important concepts 

and issues.  

The framework is divided into four parts. First, the test problem addressed must be 

clearly specified. Second, the MHS algorithms adopted must be clearly defined. Third, 

since any SBST research should always include empirical studies aiming at assessing the 

cost and effectiveness of the proposed approaches, the design of such studies must be 

carefully described so that its validity can be assessed. Last, results must be carefully 

reported so as to be clearly interpretable and reproducible. Whenever relevant, we will 

refer to Johnson’s general guidelines on the experimental analysis of algorithms [27], 

either to point the reader to further, more general considerations, or to show that our more 

specific guidelines are a specialization of these more general ones.  

3.1 Test problem specification 

The test problem specification includes two main parts, the purpose of testing and the test 

strategy that will be employed. Each of these parts directly affects the form that the search-

based software testing strategy will take. Figure 1 outlines the constituent parts of a test 

problem specification. The general purpose of software testing is to gain sufficient 

confidence in the dependability of a software artifact. Explicitly, this is usually done by 

targeting specific types of faults at different levels (such as unit, integration, and system 

testing). The targeted faults can be categorized in many ways depending on the view one 

takes of a system. At the highest level, one differentiates functional from non-functional 

faults, e.g., faults related to performance, security, robustness, and safety requirements. 
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Figure 1 Concept diagram of test problem specification 

 

A testing strategy is defined by a model of the SUT and some specific coverage criteria 

defined on that model. Such a model is typically referred to as a test model and the 

coverage criteria aim at systematically exercising the SUT based on the test model. This 

test model may be characterized by its source and representation (i.e., notation and 

semantics). Coverage criteria definitions depend on the test model representation. The 

source of the model implies constraints on the application of the test strategy as it depends 

on the availability and reliability of precise information in a specific form. As discussed in 

[5], possible sources for a test model can be the SUT specification, design artifacts or the 

source code itself. Based on the model source (specification, design or source code), 

different types of test models can be constructed. Typical examples of models derived from 

source code include control and data flow graphs, whereas test models based on SUT 

design include state machines or Markov usage models. To be systematic, a test strategy 

generates test cases to cover certain features of the test model. For instance, in the case of 

state machines, typical coverage criteria include the coverage of all states or all transitions, 

the latter being a stronger requirement, while, in the case of control flow graphs, a typical 

coverage criterion is branch coverage. It is important to clearly specify the coverage 

criteria as it is often used to measure the effectiveness of SBST techniques regarding test 

case generation. 

3.2 Metaheuristic search algorithm specification 

MHS algorithms are general strategies that need to be adapted to the problem at hand. 

When reporting a study, this implies describing and justifying the customizations and 
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parameter settings for each specific algorithm. This will be required for replicating the 

study and also for comparisons with other SBST techniques and future studies. Each type 

of MHS algorithm has specific parameter settings to be reported, but the general idea is to 

report all settings and adjustments that may have an effect on the performance of the 

algorithm or are needed for replicating the study. In Figure 2 we show how a typical 

genetic algorithm can be used for test case generation. The important parameters to report 

for a genetic algorithm would be the encoding of the chromosomes, the fitness function 

created to guide the search, the strategy for creating the initial population, the selection 

strategy for selecting parents for the next generation, the various recombination operators 

such as crossover and mutation operators and their values, the reinsertion strategy and the 

stopping criteria. We discuss in [5] how these parameters affect the results of empirical 

studies involving the use of genetic algorithms for test case generation. 

3.3 Empirical study design  

This section will define the most important items that should be reported about the study 

definition (through its objectives and hypotheses), design, and results.   

3.3.1 Objectives and experimental hypotheses 

One must define what is going to be empirically assessed and compared. The objective is 

usually to compare various SBST techniques and alternatives in terms of code coverage, 

fault detection, test suite size, or test case generation time. The empirical study can be an 

assessment of a single SBST technique, a comparison of two or more SBST techniques, or 

a comparison of SBST techniques versus non-SBST techniques (i.e., not relying on meta-

heuristic search algorithms). The latter includes, for example, random search, static 

analysis, greedy algorithms or some other specific technique for the test problem under 

consideration, e.g., schedulability analysis in the case of real-time systems. In any case, 

what is going to be compared should be precisely specified through formal test hypotheses, 

thus leading to appropriate statistical significance testing. One notion important here is to 

 

Figure 2 Test case generation using genetic algorithms 
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state the kind of hypothesis that will be used: either a one-tailed hypothesis or a two-tailed 

hypothesis [14]. This has an impact on how we interpret the results in terms of p-values 

(probability of type I errors). In the context of SBST, a one-tailed hypothesis would be 

used in the case when, based on the properties of the fitness function, we have a theoretical 

basis to assert the direction of the expected outcome. For example, when comparing a 

guided search algorithm such as genetic algorithm with random search, we may, based on 

an analysis of the fitness function, expect the genetic algorithm to be equally or more 

effective at hitting the search target – but not worse – and as such we would use a one-

tailed hypothesis. However, as an example, when comparing two genetic algorithms with 

different fitness functions, where we cannot state upfront which one would fare better in 

terms of cost or effectiveness, we would use a two-tailed hypothesis. In other words, when 

the theory regarding the search algorithms under study allows us to be a priori confident 

regarding the possible direction of differences in cost or effectiveness, then we should use 

a one-tailed test as this will increase our chances to uncover a statistically significant 

difference. 

3.3.2 Target application domain  

Empirical studies should specify a target application domain in which their results are 

intended to be generalized. Example application domains are: real-time, concurrent, 

distributed, embedded, and safety-critical. Testing techniques typically target specific 

faults that are more relevant in certain application domains, e.g., slow response time in 

real-time systems. Moreover, assumptions are typically made regarding the availability of 

information required to build the test model. Such assumptions tend to be more or less 

realistic depending on the application domain. For example, if one assumes the use of the 

MARTE UML profile [3] to design a system and then derive a test model, this is of course 

more realistic in the context of embedded, real-time applications. Further, the selection of 

subject systems for empirical studies will then be partly determined by the target 

application domain.  

3.3.3 Subject systems (Software Under Test or SUT) specification  

After identifying the target application domain, specific SUTs fitting that domain are 

selected. It is important to carefully select SUTs and precisely justify why the selected 

SUTs are adequate matches for the target application domain as this will help the reader 

determine the extent to which the experimental results will generalize to this domain. This 

discussion should be in terms of the inherent properties of the SUT such as its size, 



 
38 

 

complexity, or structure. This is particularly important when one is creating artificial SUTs 

specifically for the experiment, a common situation when one is trying to account for 

SUTs of varying size and complexity. For each SUT in the empirical study, the function of 

the SUT together with relevant properties affecting its representativeness of the domain 

should be carefully reported in order to ensure the reproducibility of the experiment and 

help future comparisons of cost-effectiveness results. Johnson [27] discusses the general 

problem of instance selection (i.e., SUTs here) in experiments (Principle 3: Use instance 

testbeds that can support general conclusions) and defines reproducibility (Principle 6: 

Ensure Reproducibility) when experimenting with algorithms as the capacity to “perform 

similar experiments that would lead to the same basic conclusions”. The goal is to make it 

possible to confirm the results of an original experiment independently from the precise 

settings and details of the experiment. In addition to SUT properties, the hardware platform 

that the SUT executes on is also important to specify. Johnson [27] provides an in-depth 

discussion of the latter issue (Principle 7: Ensuring Comparability), which is not specific to 

SBST, and suggestions to address it. In its Principle 9, about well-justified conclusions, 

Johnson [27] also discusses the danger of drawing conclusions from small instances that 

are then generalized to much larger instances, as the former do not always predict well the 

latter, and recommends to use instances that are as large as possible.  

3.3.4 Measures of cost and effectiveness for SBST techniques 

Measuring effectiveness and more particularly cost in our context is inherently difficult 

and the validity of measures is very often context-dependent. As discussed by Johnson in 

[27] (Principle 6: Ensure Reproducibility), just reporting effectiveness and cost values is 

not very informative as it does not provide direct insights into what these values actually 

imply. It is nevertheless crucial, in order to draw useful conclusions from studies involving 

SBST techniques, to be able to use appropriate comparison baselines. In our context, one 

usually resorts to comparing the investigated technique to simpler, existing techniques (see 

Section 5 on baselines of comparisons) in order to assess the relative goodness of a search. 

The measures should be relevant for the particular study and comparable across the 

different techniques being investigated. Studies may use slight variations of an existing 

measure or introduce new ones, hence, it is important to explain the reasoning behind the 

effectiveness and cost measures and justify why they are applicable in the context they are 

being used. Along with the measure, the method used to collect the data related to the 

measures should be thoroughly explained. In the context of SBST, the effectiveness of a 
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test case generation technique is closely related to the “quality” of the test suite generated 

by the technique. A good test suite can be characterized by its ability to uncover faults or to 

give confidence in the SUT by fulfilling a certain coverage criterion. Thus we can say that, 

in practice, there are two main categories of measures of effectiveness, which can be 

referred to as coverage-based measures and fault-based measures. In the former category, 

there may be many different types of measures depending on the adequacy criteria being 

used, for example, control-flow coverage criteria such as branch or path coverage may be 

used. The fault-based measures are typically fault detection scores. They can be computed 

based on real, known faults or are estimated through mutation analysis [48]. In the latter 

case, the program is seeded with faults based on mutation operators and depending on the 

number of faults caught, a so-called mutation score is calculated. The techniques are 

assessed upon how successful they are at detecting the seeded faults.  

Cost measures are generally related to the speed of the technique to converge towards 

the test objective (in some cases it is referred to as the search technique’s “efficiency”). 

Some common cost measures used in the SBST domain are: (a) the number of iterations, 

which shows how many times a SBST technique needed to iterate in order to find its best 

solution, e.g., the number of generations in genetic algorithms, or cycles in ant colony 

optimization algorithms, (b) the cumulative number of individuals in all iterations (usually 

each individual represents a test case in SBST), (c) the number of fitness evaluations an 

algorithm needs, to find the final solution, which depends on the number of newly 

generated individuals (usually each new population is made up of some individuals from 

the previous iteration and some newly generated ones), (d) the time spent by a MHS 

algorithm to find test cases meeting the targeted test objective, which is sometimes referred 

to as “test case generation time”. This time can be either measured using clock time or 

CPU cycles. Clock time is the time from the “wall” clock and not easily comparable across 

different hardware architectures. However it is a practical measure that can be used to 

assess if a technique can be used in practice. CPU cycles on the other hand is a measure 

that can be used across techniques for comparison on other hardware architectures as well, 

and (e) the size of the resulting test suite, which is a surrogate measure for the cost of the 

time it would take to execute the resulting test suite since a larger test suite would require 

more resources to execute.  

Among the first three cost measures, the number of iterations is a very coarse grained 

measure and is not as precise as the number of individuals, which in turn is not as precise 

as the number of fitness evaluations. The number of fitness evaluations is more precise 
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than the number of individuals because in each iteration there are some individuals that are 

kept from the previous population and there is no cost for generating them. Therefore, the 

number of evaluations can more precisely estimate the real cost of a SBST technique. All 

these three measures are surrogate measures for the time used to generate the final test 

suite but none is perfect, because different search techniques may require a different 

amount of time per iteration, per creation of an individual (test case), or per fitness 

evaluation. For instance, it would not be a good idea to compare simulated annealing (SA) 

and genetic algorithms (GA) based on the number of iterations because the amount of time 

required for each iteration in GA and SA is likely to differ significantly.  

The cost of a technique is generally measured for one of two purposes: either to 

compare two techniques to assess which one will cost less for the same effectiveness or to 

assess whether a technique can be used in practice given expected time constraints. From 

the measures discussed above, “test case generation time”, if it has been measured under 

similar conditions, is the only measure that can give users an intuitive idea of whether they 

can apply a particular technique to their situation within the time constraints that they have. 

When comparing the cost of different techniques, it is also necessary to make sure that any 

other required resources are kept equal amongst the techniques. The fact that two 

techniques require the same amount of time does not mean that they have the same cost if 

one technique consumes much more memory than the other. Therefore all relevant types of 

resources must be accounted for when comparing the cost of SBST techniques.  

3.3.5 Measures for scalability assessment 

Scalability assessment is the process of assessing how the cost-effectiveness of a SBST 

technique evolves as a function of the size of the test case generation problem to be 

addressed. This involves one or more measures of SUT size and the analysis of their 

relationships with the cost or effectiveness of the SBST techniques under investigation. 

Some examples of measures that can be scaled up include the size of the SUT in terms of 

lines of code or the size of search space in terms of number and range of input data 

parameters. The effect of this scaling is then observed on different cost and effectiveness 

measures to see if the SBST technique is still cost-effective as the SUT gets larger and 

more complex. 

3.3.6 Baselines for comparison 

A SBST technique can only be assessed if it is compared with a carefully selected, 

meaningful baseline since the optimal solution is normally not known. Since it is difficult 
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to assess SBST techniques in absolute terms, it is therefore important to show, as a 

minimum, that the problem at hand could not be addressed by some simpler means. In 

other words, every study should have one or more baselines of comparison when assessing 

SBST techniques and the minimum to be expected is a comparison with random search. 

The SUT investigated may, for example, be small and simple, and the fact that a SBST 

technique performs well may not mean much. Random search can then serve as a basic 

verification that the search problem cannot be addressed by a simple random search and 

warrants the use of a SBST technique. It is also preferable to use other simple SBST 

techniques, such as HC, as a comparison baseline for other more expensive SBST 

techniques. This further demonstrates that the use of a SBST technique is justified given 

the test case generation problem at hand. In addition—but this is context dependent—other 

SBST techniques, previously published or considered plausible alternatives, can also be 

used as baselines of comparisons for the proposed SBST techniques.  

As discussed in [27], once baseline techniques are selected, one must ensure that 

reasonably efficient implementations are used for all techniques in order for cost and 

effectiveness to be comparable. Documentation, source code, URLs for downloadable 

tools, or at the very least a careful description of the implementation, should be provided.  

3.3.7 Parameter settings 

Most SBST techniques require parameter settings which tend to have a significant impact 

on their performance. In many studies, alternative parameter settings are investigated and 

compared.  It is therefore highly important, to make any study reproducible, to specify 

these parameters in a precise manner. It is also interesting to justify their values based on 

existing studies, when possible, as this provides insights into how cost and effectiveness 

could be affected if they were changed or if a different SUT with different properties was 

used. One particularly important parameter in our context is the stopping criterion of the 

search (Principle 6: Ensure Reproducibility). It can be based on whether the search 

objective has been reached (or one is sufficiently close), execution time or a surrogate 

measure (due to practical constraints), or any significant progress is observed over a period 

of time.  

3.3.8 Accounting for random variation in SBST results  

Since SBST techniques use MHS algorithms; their results can vary from one execution to 

another. So, it is important to ensure that we run the algorithms a sufficient number of 

times to capture the random variation of results and be able to perform statistical 
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comparisons with other search techniques. It is difficult to precisely specify the number of 

runs required in general but, as a ballpark number, it should probably be above ten, so as to 

allow the use of basic statistical hypothesis testing and obtain a reasonable statistical power 

to detect large differences [52]. Based on the expected (minimum) difference between 

techniques (if this can be estimated) and the statistical tests used to compare cost and 

effectiveness across techniques, the minimum required number of runs can be estimated 

using power analysis [18].  

When dealing with multiple runs, in our context, we are often interested in the best run, 

yielding the best test suite or test case according to some fitness function (e.g., bringing the 

execution time of a task as close as possible to its deadline). Another frequent case is when 

we are interested in the frequency with which a certain target was reached across runs (e.g., 

test input data satisfying certain constraints). In both cases, it is important to report the 

execution time and other cost measures of all runs and, when relevant, information about 

their fitness distribution. The basic principle is that it should be possible to estimate the 

total cost of achieving the best solution or, depending on what is relevant, the expected 

cost to achieve the search target. From a more general standpoint, Johnson (Principle 6: 

Ensure Reproducibility) [27] warns against reporting only effectiveness and cost data for 

the best run.  

3.3.9 Data analysis 

During the design of an empirical study, it is important to decide about the data analysis 

methods that will be applied to cost-effectiveness and scalability results.  

Data analysis methods for comparing cost-effectiveness. Performance in the case of 

SBST usually relates to measuring the cost-effectiveness of the various search techniques. 

The cost and effectiveness of a SBST technique are used together for assessing its 

performance. For example, a technique that has higher coverage than another technique 

may not be considered to have better performance, because it uses significantly more 

fitness evaluations (higher cost) to achieve that effectiveness, thus making it impractical 

for larger SUTs. Any claims of better performance should be backed by empirical evidence 

demonstrating lower cost or higher effectiveness when compared to the baseline and 

alternative techniques. In the ideal case, a study that is concentrating on measuring cost, 

should keep the effectiveness measures constant. For example, the study may measure the 

number of fitness evaluations needed to achieve 100% branch coverage. If, however, the 

aim is to measure effectiveness, then this can be done by keeping the cost constant, for 
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example, by measuring how much branch coverage is achieved in some constant amount of 

time or number of fitness evaluations. The reported performance results should include the 

results of the comparison baselines. At a high level, reported results should follow the 

structure below: 

Reporting descriptive statistics. Both cost and effectiveness distributions should be 

reported (e.g., as a table with descriptive statistics) and analyzed. Looking at their standard 

deviation may indicate the level of uncertainty in terms of cost and effectiveness associated 

with a SBST technique. This in turn may help determine how many runs would in practice 

be necessary to guarantee that we obtain a satisfactory result, i.e., achieve the objective.  

Results of hypothesis testing. The purpose of statistical testing is to determine whether 

differences across SBST techniques in terms of central tendencies for cost and 

effectiveness can be attributed to chance or whether they really capture a trend. Statistical 

hypothesis testing is necessary as SBST techniques are always associated with a certain 

level of random variation in terms of cost or effectiveness. Because statistical testing is a 

standard practice, we will not detail it further here and interested readers may consult 

reference [40] for more details.  

Statistical hypothesis testing should be used to accept/reject research hypotheses related 

to the cost-effectiveness analysis of SBST techniques and comparison baselines. The 

choice of a specific statistical test depends on the specific objective of SBST. In our 

context, hypothesis testing falls into three broad categories: (1) Comparing samples of runs 

in terms of effectiveness and cost. For example, comparing average or maximum branch 

coverage achieved across runs of alternative SBST techniques and baselines of 

comparison. (2) Comparing samples of runs in terms of “successful” runs. For example, 

comparing the proportion of runs that find a deadlock across alternative SBST techniques 

and baselines of comparison. (3) Comparing samples of targets (e.g., control flow 

branches) in terms of cost (e.g., iterations) or effectiveness (e.g., percentage of runs 

reaching that branch). In this last case, the samples are not independent, because 

observations in each sample are paired (identical targets). This leads to the application of 

specific statistical tests for paired samples. Moreover, though this is a standard issue, there 

can be two or more samples, and this will also affect the specific statistical test to be used. 

Moreover, as usual in other contexts, specific statistical tests have to be selected and 

justified based on the data distributions of the samples being compared to avoid drawing 

incorrect conclusions from the analysis. Statistical tests are usually classified as parametric 

and non-parametric [52].  When the sample follows a specific distribution (e.g., normal), 
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certain parametric tests are applicable (e.g., t-test). Alternatively, non-parametric statistical 

tests are used when no appropriate assumptions can be made about the sample 

distributions. The issues related to selecting appropriate tests are however discussed in 

standard textbooks and will not be further addressed here. In Table 1, as a guideline, we 

provide a mapping between the analysis situations we have encountered in SBST studies 

and the type of statistical tests that are suitable (for the sake of simplicity, we are assuming 

two samples, that is, the comparison of two techniques). This mapping is illustrated with 

examples. 

 Data analysis should both address statistical and practical significance of differences 

among alternative search techniques. The former assesses whether differences among 

search techniques can be due to chance. The latter assesses whether the difference can be 

considered of practical significance, that is, whether they would make any difference in the 

day-to-day practice of test case generation given the specific test objectives being 

considered. For example, if statistical testing based on a large number of runs show that 

there is a significant difference between the cost of two search techniques in terms of time 

required for finding the best test suite, the actual difference may not be of practical 

importance if it is in the range of a few minutes. On the other hand, a lack of statistical 

significance despite a visible difference may be due to small samples, and therefore a lack 

of statistical power, which in our context means that the number of runs for each compared 

Table 1 Mapping of SBST problems to statistical tests 

SBST Analysis 
Type 

Type of Statistical 
Comparison 

Example in the Context 
of SBST 

Type of Statistical Test 
(assuming two samples) 

Comparing 
samples of runs in 
terms of 
effectiveness and 
cost 

Comparing central 
tendencies of two or more 
independent samples, 
each corresponding to a 
SBST technique 

Comparing maximum 
branch coverage achieved 
across all runs between 
two SBST techniques  

Parametric t-tests or 
Non-Parametric Mann-
Whitney U test 

Comparing 
samples of runs in 
terms of 
“successful” runs 

Comparing proportions in 
independent samples, 
each corresponding to a 
SBST technique 

Comparing the proportion 
of runs finding deadlocks 
across different SBST 
techniques 

z-score test for 
proportions  
 

Comparing 
samples of target 
in terms of cost to 
reach them or 
frequency at which 
runs reach them  

Comparing central 
tendencies of matched 
pairs across samples 

Comparing the frequency, 
across samples of runs 
matching each SBST 
technique, according to 
which a branch (target) is 
covered. Note that the 
observations across 
samples are paired as they 
correspond to identical 
branches.  

Parametric Paired t-tests 
or Non-Parametric 
Wilcoxon or Sign test  
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search technique may be too small. The larger the number of runs, the more likely one is to 

obtain statistical significance when observing differences. 

Data analysis methods for scalability. Scalability is used to assess whether a SBST 

technique can be applied to either larger or more complex SUTs and still have satisfactory 

effectiveness and cost. If the aim of the empirical study is to show the scalability of a 

SBST technique then appropriate measures of size and complexity should be clearly 

defined. There will be at least two measures involved – one size measure that will be 

scaled up through successive SUTs and the other that will measure the corresponding 

performance (cost and effectiveness). Then the effect of scaling up a particular measure 

can be reported in terms of a statistical relationship (recall the unavoidable random 

variation). For example, we may investigate several SUTs of variable sizes in terms of 

lines of code and then assess whether a SBST technique can still reach a certain level of 

coverage at acceptable cost (e.g., measured as the number of generations) for larger SUTs 

and analyze how this cost evolves with the size of the SUT. A positive, exponential 

relationship between size and cost might then be problematic, for example, as it would 

undermine the applicability of the technique for large scale test models and systems. 

Similarly, if effectiveness (e.g., in terms of achieved coverage) is strongly decreasing as a 

function of SUT size, we also have a scalability problem.  

As for scalability analysis, we need to characterize relationships between SUT size 

variables and measures of the SBST technique’s cost and effectiveness. Such techniques 

are typically analyzed through regression analysis, though in practice, because the number 

of SUTs under study is likely to be small, such analysis is more likely to be qualitative, 

that is simply based on observing scatter plots in the cost-effectiveness and size space. 

3.3.10 Discussion on validity threats  

Validity threats should be considered throughout any empirical study, right from the 

study definition and design up to the analysis and interpretation of results [52]. The 

following types of threats can be discussed:  

Construct validity threats. Measures of cost, effectiveness, and SUT size should be 

appropriate and justified given the context and objectives of investigation. No measure is 

expected to be perfect as the above concepts are usually not readily measurable. But in 

practice, by using several, complementary measures of cost, effectiveness, and SUT size, 

one is in a position to compare the cost-effectiveness and scalability of alternative search 

techniques.  
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Internal validity threats. If a SBST technique performs better than another one, 

whether regarding effectiveness or cost, can it be due to something other than the SBST 

technique?  This could possibly be due to the following: 1) poor parameter settings of one 

or more of the SBST techniques, 2) the biased selection of SUTs that have certain 

characteristics that can favor a certain SBST technique.  

Conclusion validity threats 

 Has random variation been properly accounted for? Since SBST techniques use 

MHS algorithms, randomness in results (inherent to metaheuristic approaches) 

should be accounted for, as discussed above. Has it been done in such a way as 

to enable statistical comparisons? It implies that a sufficient number of 

independent runs be performed to obtain a sufficient number of observations. 

 Was the right statistical test employed? Statistical test procedures should be 

carefully selected given the hypothesis method (e.g. one-tailed vs. two tailed 

hypothesis) and the data collected (distributions of cost and effectiveness). 

Otherwise, certain required properties of a particular statistical test could be 

inadvertently violated leading to incorrect conclusions. For example, many 

statistical tests assume that data distributions be normal [52].  

 Is there any practically significant difference? To answer this question, the 

magnitude of the differences must be reported– this is known as the effect size 

and determines the practical significance of the results.  

External validity threats. This is a difficult issue, as whether results can be generalized 

depends on whether the SUTs under investigation are representative of the targeted 

application domain and whether the faults considered (if used to assess test effectiveness) 

are representative of real faults. Ideally, SBST empirical studies should also be run on 

many different SUTs of the target type, but every research endeavor faces limitations in 

terms of time and resources. At the very least, the issue should be carefully discussed and a 

good case should be made as to why one should be able to trust that the observed results 

can be generalized.  

4 Research Method 

In this section, we will explain our review protocol. We define the research questions that 

this review attempts to answer, along with how we selected papers for inclusion and the 

data that we extracted.  
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4.1 Research questions  

The most important stage of any systematic review is to precisely define the research 

questions. Once the research questions have been specified, the systematic review can then 

proceed with the search strategy to identify relevant studies and extract the data required to 

answer the questions [13]. In this paper, we are interested in investigating empirical studies 

in the domain of SBST. To proceed with our investigation, we defined the following three 

research questions: 

 
RQ1: What is the research space of search-based software testing?  

The objective of this question is to characterize the research that has been undertaken so 

far. Though the research space can be identified from different angles, because our 

systematic review is about SBST, basic features of software testing (such as test level, 

targeted faults, test model, type of test cases, and application domain) and the type of MHS 

algorithms seem relevant characteristics to define the research space. Because of size 

constraints, RQ1 will not be addressed in detail in this paper and the results will be simply 

summarized to provide context information to the reader and facilitate the interpretation of 

subsequent research results. Interested readers may consult the technical report [5] 

corresponding to this paper for a detailed discussion of the results.  

 
RQ2: How are the empirical studies in search-based software testing designed and 

reported? 

A study that has been properly designed and reported (as discussed in Section 3) is easy to 

assess and replicate. The following sub-questions aim at characterizing some of the most 

important aspects of the study design and how well studies are designed and reported:  

 RQ2.1: How well is the random variation inherent in search-based software testing, 

accounted for in the design of empirical studies? 

 RQ2.2: What are the most common alternatives to which SBST techniques are 

compared? 

 RQ2.3: What are the measures used for assessing cost and effectiveness of search-

based software testing? 

 RQ2.4: What are the main threats to the validity of empirical studies in the domain 

of search-based software testing? 

 RQ2.5: What are the most frequently omitted aspects in the reporting of empirical 

studies in search-based software testing? 



 
48 

 

RQ3: How convincing are the reported results regarding the cost, effectiveness, and 

scalability of search-based software testing techniques?  

This research question attempts to synthesize the actual results reported in the studies in 

order to assess how much empirical evidence we currently have. To answer this question, 

we address the following sub-questions: 

 RQ3.1: For which metaheuristic search algorithms, test levels, and fault types, is 

there credible evidence for the study of cost-effectiveness? 

 RQ3.2: How convincing is the evidence of cost and effectiveness of search-based 

software testing techniques, based on empirical studies that report credible results? 

 RQ3.3: Is there any evidence regarding the scalability of the metaheuristic search 

algorithms for test case generation? 

4.2 Study selection strategy 

This is the step of a systematic review that aims at ensuring the completeness of the 

selection of papers on which the review is based. Study selection involves two main steps: 

(1) selection of the source repositories and identification of the search keywords (2) 

inclusion or exclusion of studies based on certain inclusion and exclusion criteria.  

4.2.1 Source selection and search keywords 

The process of selecting papers is started by executing a search query on the source 

repositories, which provides a set of papers. Since this set of papers is then subsequently 

used for all manual inclusions and exclusions, the selection of appropriate repositories and 

search strings is of utmost importance as it directly affects the completeness of the 

systematic review. The repositories that we used are: IEEE Xplore, The ACM Digital 

Library, Science Direct (including Elsevier Science), Wiley Interscience, Springer, and 

MIT Press. The first two repositories covered almost all important conferences, workshops, 

and journal papers, which are published either by IEEE or ACM. The next four repositories 

were mostly used for finding papers that are published in leading software engineering 

journals. 

We selected the following journals based on [13]: IEEE Transactions on Software 

Engineering (TSE), ACM Transactions on Software Engineering and Methodologies 

(TOSEM), IEEE Software (SW), Springer: Software Testing Verification and Reliability 

(STVR), Springer: Empirical Software Engineering, Elsevier Science: Information and 

Software Technology (IST), and Elsevier Science: Journal of Systems and Software (JSS). 
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Since our review is about SBST, we also included journals relating to software quality 

assurance and evolutionary computing:  Springer: Software Quality Journal, Springer: 

Genetic Programming and Evolvable Machines, IEEE: Transactions on Evolutionary 

Computation, and MIT Press: Evolutionary Computation. Another important source of 

publications that we included was the Genetic and Evolutionary Computation Conference 

(GECCO). Based on the impact factor, GECCO is one of the top conferences in the fields 

of artificial intelligence, machine learning, robotics, and human-computer interaction [1] 

and is directly related to the field of genetic and evolutionary computation. GECCO’s 

proceedings were published by Springer in 2003 and 2004 and afterwards by ACM. 

A systematic way of formulating the search string includes (1) identifying the major 

search keywords based on the research questions (2) finding alternative words and 

synonyms for the major keywords and (3) creating a search string by joining major 

keywords with Boolean AND operators, and the alternative words and synonyms with 

Boolean OR operators. 

Based on our main research focus, which is investigating empirical studies in the domain 

of SBST, the following major search keywords are used in this paper: software testing and 

metaheuristic search algorithm.  

We did not use empirical study as a keyword because we realized that not all papers that 

perform an empirical study, in the broad sense that we have defined it, use this keyword. 

To formulate our search query we tried a number of search strings and came to the 

conclusion that ‘software testing’ as an expression is not a good keyword because there are 

many papers which don’t use these two words together but are nevertheless related to 

software testing. These papers may use terms such as testing, test case, test data and so on. 

On the other hand if we used the term testing alone, we would find too many unrelated 

papers. So we decided to use the terms software and test linked together with a Boolean 

AND instead of using ‘software testing’ as an expression. Using ‘software’ and ‘test’ will 

find almost all related papers to software testing, but to make sure that we do not miss any 

interesting papers in test case generation we used the expression of ‘test case generation’ 

as an alternative for software testing.  

Metaheuristic search algorithm is the second major term and also has many alternatives. 

We used general terms such as ‘evolutionary algorithm’, ‘meta-heuristic’, and ‘search 

based’ to explore the domain. Also, names of different MHS algorithms were used to make 

sure that no related papers were missed. 

We also wanted to make sure that we do not miss any papers that have explicitly used 
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the widely used term ‘evolutionary testing’, and thus included the expression of 

‘evolutionary testing’ as a separate search string joined with the main string by an OR 

Boolean operator. The above decisions lead to the following search string shown in   

Figure 3. 

 The whole string is searched in each repository in all titles, keywords, and abstracts. 

The expression ‘evolutionary testing’ is searched in the entire contents of all papers in the 

repositories as well. 

One problem that we realized after some manual checking of the results of the search 

query was the fact that some search engines, such as IEEE Xplore, differentiate between 

the singular and plural form of words. To deal with this, we had to add some more 

alternative words and expressions to the search string by adding a ‘s’ to the end of all the 

words we already had. For example, we added ‘evolutionary algorithms’, ‘meta-

heuristics’, ‘genetic algorithms’ and so on. 

After finalizing the search string, the search query was run on the search engines of 

different repositories. 

4.2.2 Study selection based on inclusion and exclusion criteria  

Metaheuristic search algorithms have been used to automate a variety of software testing 

activities such as test case generation, test case selection, test case prioritization, and 

optimum allocation of testing resources. Since the focus of this systematic review is on test 

case generation, it is therefore necessary to define suitable inclusion and exclusion criteria 

for selecting relevant papers. In this section, we will discuss and justify the inclusion and 

exclusion criteria that were used.  

We executed our search query on all selected databases and found 450 (after removing 

duplicates from different repositories) research papers in total. We only included papers up 

to the year 2007. In order to select the relevant papers to answer our research questions, we 

applied a two-stage selection process. At the first stage, we excluded papers based on 

abstracts and titles. All the papers were divided into three sets and each set was read by a 

researcher. We applied the following exclusion criteria: 

 Abstracts or titles that do not discuss test case generation or any of the alternate 

terms that we used were excluded.  

 Abstracts or titles that do not discuss the application of any MHS algorithm to 

automate test case generation were excluded. 
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If a researcher was unsure about a paper after reading its title and abstract, then the paper 

was included for the second phase of selection. After applying the inclusion criteria for the 

first phase, we were left with 122 papers.   

At the second stage, we again divided the papers into three equal sets and divided them 

among three researchers to check the contents of each paper. We excluded papers based on 

the following exclusion criteria: 

 Posters, extended abstracts, technical reports, PhD dissertations, and papers with 

less than three pages were excluded. Our goal was to account only for peer-

reviewed, published papers that presented sufficient technical details.  

 The papers that do not automate test case generation were excluded because this is 

the scope of our review. 

 The papers that do not report any empirical study (see Section 2.3 for details on 

what we mean by empirical studies) were excluded.  

In the cases where a researcher could not decide whether to keep or exclude a paper, 

then the paper was discussed with other researchers and a decision was made, by 

consensus. It is important to mention that we didn’t exclude papers based on the realism of 

SUTs used in their case studies. The reason is that exclusion would then be subjective as no 

precise criterion can be defined and would probably lead to a very small number of 

selected papers. After applying the second phase of selection, we remained with 68 papers 

that contained empirical studies about test case generation using MHS algorithms. 

However, four of these 68 papers, presented empirical studies that had already been 

reported in some other paper. This occurred, for example, when the journal version of a 

conference paper was found. In these cases we extracted data about the study from both the 

conference and journal versions of the paper and reported them as one study. Thus in the 

rest of the review we mention only 64 papers in total, even though we did analyze 68 

papers. Details on the number of papers found in each database and number of papers 

included after applying inclusion and exclusion criteria are listed in Table 2. 

Figure 3 The search string used for selecting the papers from repositories 

{(((software AND test) OR ‘test case generation’) AND (‘evolutionary algorithm’ OR 

‘hill climbing’ OR ‘metaheuristic’ OR ‘meta-heuristic’ OR ‘genetic algorithm’ OR 

‘optimization algorithm’ OR ‘search-based’ OR ‘search based’ OR ‘simulated 

annealing’ OR ‘ant colony’)) <in abstract, keywords, and title>} OR ‘evolutionary 

testing’ <in abstract, keywords, title, and whole content> 



 
52 

 

Table 2 Distribution of papers after applying inclusion and exclusion criteria 

Repository 
Number of Included 

Papers After Applying 
Search Query 

Number of Papers 
After Stage 1 Exclusion 

Criteria 

Number of Papers 
After Stage 2 Exclusion 

Criteria 
IEEE Xplore 297 77 33 
ACM Digital Library 117 27 22 
Wiley  Interscience 8 2 2 
Science Direct 8 3 2 
Springer 19 12 8 
MIT Press 1 1 1 
Total 450 122 68 

 

4.2.3 Data extraction 

We designed a data extraction form in Microsoft Excel to gather data from the research 

papers. We collected two sets of information from each paper. The first set included 

standard information [30] such as name of the paper, authors’ names, a brief summary, 

researcher’s name, and additional comments by the researcher. The second set included the 

information directly related to answering the research questions (see Table 3 for a summary 

list and [5] and Section 3 for details on each data item). To assess and improve consistency 

of data extraction among the researchers, a sample of papers were selected and read by all 

researchers and the relevant data extracted. The extracted data was then discussed by the 

researchers to ensure a common understanding of all data items being extracted and where 

necessary, the data collection procedure was refined. The final set of selected papers from 

each repository was then divided amongst three researchers. Each researcher read the 

allocated papers and extracted the data from the papers. In order to mitigate data collection 

errors, the data extraction forms of each researcher were read and discussed by two others. 

All ambiguities were clarified by discussion among the researchers. 

  

Table 3 Research questions and type of data collected 

Research Questions Type of Data Collected 

RQ 1 
Type of MHS algorithms, test levels, targeted faults, test model, type of test 
cases, and application domain 

RQ 2 

RQ 2.1 Number of runs, analysis method 
RQ 2.2 Comparison baseline 
RQ 2.3 Measures of cost, measures of effectiveness 
RQ 2.4 Conclusion, external, internal, and construct validity threats 

RQ 2.5 
All of the information from RQ2.1 to RQ2.4 is used, formal hypothesis, object 
selection strategy, data collection method 

RQ 3 
 

RQ 3.1 Test level, fault type, MHS algorithm 
RQ 3.2 Test purpose, comparison baseline, cost and effectiveness results 
RQ 3.3 Scalability results 
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5 Results 

The following section outlines the results related to the research questions. No formal 

meta-analysis of the results of the empirical studies could be performed because of the 

variations in the way empirical studies are conducted and reported, and as such, results are 

compiled in structured, tabular form. 

5.1 RQ1:  What is the research space of search-based software testing?  

As previously mentioned, we provide here only the most salient results to the research 

question. The reader is invited to read the technical report [5] corresponding to this paper 

to obtain detailed results. The results show that in the majority of the papers, SBST 

techniques have been applied at the unit testing level (75%). Moreover, most papers (78%) 

do not target any specific faults but rather focus on structural coverage of different test 

models. The most commonly used algorithm is the GA and its extensions (73%), followed 

by a more limited use of simulated annealing and its extensions (14%). There could be 

several reasons for this frequent use of genetic algorithms. First, there are numerous 

publications on the application of GA to various problems [21]. Furthermore, substantial 

empirical data is available for the different parameter settings required by GAs and this 

greatly helps the choice of appropriate parameters for a specific problem to be solved [46]. 

This, together with the many books [16, 26] that exist on genetic algorithms, makes it 

easier for researchers to learn how to adapt genetic algorithms to their context. Second, 

being a global search algorithm, GAs have been shown to usually perform better than local 

search algorithms [53], though there is no evidence showing that GA is better than other 

global search algorithm [21]. Last, GAs have many well known implementations in the 

form of commercial tools [42] and frameworks [2, 34], which greatly facilitate their 

practical application.  

5.2 RQ2: How are the empirical studies in search-based software testing designed 
and reported?  

The purpose of this research question is to investigate and assess the design and reporting 

of empirical studies in the domain of search-based software testing. To answer this 

question, we further divided this question into five sub-questions. By answering each sub-

question individually, we will answer the main research question. Though the results are 

presented in tables that summarize the main findings, the reader can obtain a break-down 

of which papers led to these findings in the technical report [5] corresponding to this paper.  
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5.2.1 RQ2.1: How well is the random variation inherent in search-based software 
testing, accounted for in the design of empirical studies? 

We discussed the necessity and importance of accounting for random variation and using 

appropriate data analysis methods in Section 3.3. To assess whether random variation has 

been accounted for, we classified the papers into two main categories: (1) papers which 

accounted for random variation in their design and reported this information and (2) papers 

which either did not account for random variation or did not report it well. To be classified 

in the first category, the study in the paper had to report the number of times the MHS 

algorithm was executed, sufficient information to determine whether the runs were 

independent, and report the data analysis methods used to compare alternative algorithms 

and baseline solutions. The independence of different runs can be determined in different 

ways in different MHS algorithms. For instance, in the case of the HC algorithm, if it is 

started from the same starting point in each run using the same strategy to select neighbors, 

then all the runs will not be independent and hence every time the algorithm will find the 

same solution. Different runs in HC are normally made independent by choosing different 

starting points in each run or by using a random strategy to select neighbors. Additionally, 

the number of runs for each MHS algorithm had to be at least ten, a ballpark figure to 

enable the application of statistical hypothesis testing with minimal statistical power. 

Papers that did not report the number of runs or were executed less than ten times were 

placed in the second category (Random Variation Not Accounted). 

Within the first category, we further divided the papers according to the type of data 

analysis that had been performed. If only the average of the results or the percentage of 

successful runs over all runs was reported, then these papers were classified as having 

“poor” descriptive statistics (the definition of successful run varies across papers, but 

generally speaking, if the test target to be covered is found, then the run is considered 

successful. A test target, for example, could be a branch to cover). This is because the 

average does not convey any information about the dispersion of the results being 

examined. Papers which report the level of variation as well as the measures of central 

tendency are counted in the sub-category “good” descriptive statistics. The final category is 

the set of papers that in addition to reporting “good” descriptive statistics also reported the 

results of statistical hypothesis tests comparing MHS algorithms and baselines and 

establishing the statistical significance of differences. However, most of the papers did not 

have detailed information on sample distributions and the validity of statistical test 

assumptions. It was therefore usually not possible to determine if a paper used the correct 
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statistical procedure for a particular problem and data set.  

The results in Table 4 show that 25 papers did not account for random variation. Most of 

these, 20 papers, either did not provide any information about the number of runs or just 

reported the result of one unknown run (the best or the only run). In five papers, the study 

was repeated less than ten times. 

Amongst 39 papers which accounted for random variation, 24 papers reported only the 

average of the cost or effectiveness results across all runs, for example, the average number 

of killed mutants as an effectiveness result or the average number of iterations as a cost 

result. In some cases, the percentage of successful runs amongst all runs is reported instead 

of, or along with the average of the effectiveness results (e.g., average coverage or average 

mutation score). At least one measure of dispersion like standard deviation, variance, or the 

variation interval ([Min, Max]) was reported for eight papers. These papers are categorized 

as having “good” descriptive statistics. There were seven papers that reported statistical 

tests as well as good descriptive statistics. One or more of the following statistical tests 

were used: t-test, paired t-test, Mann-Whitney test, F-test, ANOVA, and Tukey test [40, 

44]. There was one paper in this sub-category, which reported the use of statistical tests, 

but did not specify the specific test being used and did not provide any descriptive 

statistics. From the results, we can see that 39% of the papers did not account for random 

variation at all, and 38% of the papers only had “poor” descriptive statistics, so in total 

77% of papers either did not account for random variation or reported it poorly. The 

remaining 23% of papers are divided between 12% providing only good descriptive 

statistics and just 11% performing some kind of statistical hypothesis testing to assess the 

statistical significance of differences that is whether they can be due to chance. To answer 

RQ2.1, this review suggests that SBST would greatly benefit from paying more attention 

to accounting for random variation in search heuristics and applying more rigor in 

analyzing and reporting cost and effectiveness results.   

 

Table 4 Results of how random variation is accounted for in empirical studies 

Random Variation Accounted Random Variation Not Accounted 
Poor 

Descriptive 
Statistics 

Good 
Descriptive 

Statistics 

Statistical Data 
Analysis 

Random 
variation not discussed 

or accounted for 

Insufficient 
number of runs 

24 8 7 20 5 
38% 12% 11% 31% 8% 
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5.2.2 RQ2.2: What are the most common alternatives to which SBST techniques are 
compared? 

In assessing the cost-effectiveness of any technique, the comparison baseline is an 

important factor. In order to classify the papers we defined four categories of comparison 

baselines: (1) ‘Global SBST’, where the baseline of comparison is a SBST technique using 

a global MHS algorithm, (2) ‘Local SBST’ includes the techniques that use a local MHS 

algorithm such as HC, (3) ‘Non-SBST’ baselines do not use a SBST technique and feature 

baselines such as random search, and (4) ‘Not discussed’ addresses papers that do not 

report any comparison baseline.  

The comparison to non-SBST techniques or local SBST techniques serves a dual 

purpose: it helps determine if the problem at hand is simple enough to be satisfactorily 

solved by a simple search algorithm; otherwise it provides justification for why a more 

complex SBST technique is necessary. In addition, a simple baseline of comparison is 

necessary to assess the benefits of using complex SBST techniques. 

As shown in Table 5, 16 studies did not discuss the comparison baseline at all. These 

studies did not include any kind of comparison; they usually introduced the use of a MHS 

algorithm for test case generation and performed an empirical study to show that the 

technique does indeed generate satisfactory test cases. These papers are missing the 

justification for why the SBST technique was necessary to address the test case generation 

problem at hand and how much better it actually is compared to other existing, simpler 

techniques that are available to solve the problem at hand.  

There were 34 studies that reported ‘Non-SBST’ baselines within which random search 

is used in 24 studies, static analysis in three, greedy algorithm in three, constraint solving 

in one study and three studies used some other technique specific to their context. We see 

that random search is the most commonly used comparison baseline amongst Non-SBST 

techniques. There is limited use of ‘Local SBST’ baselines with only three studies using 

HC. There are many studies (33) that used Global SBST techniques as comparison 

Table 5 Comparison baselines used in SBST in terms of number of papers  

Global SBST 
baselines 

Local 
SBST 

baselines 
Non-SBST baselines 

Not 
Discussed GA 

and 
Ext. 

SA 
and 
Ext. 

Others 
Hill 

Climbing 
Random 
Search 

Static 
Analysis 

Greedy 
Algorithm 

Constraint 
Solving 

Others 

22 6 5 3 24 3 3 1 3 16 
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baselines. This is usually done when investigating the effects of different parameter 

settings of MHS algorithms. This is most evident within GA and SA where 22 studies used 

either GA or its extensions as baselines and six studies used SA and its extensions. 

5.2.3 RQ2.3: What are the measures used for assessing cost and effectiveness of search-
based software testing? 

Assessing the cost-effectiveness of SBST techniques for test case generation is the main 

objective of empirical studies in our context. Therefore, measuring cost and effectiveness 

in a valid manner is a basic requirement for all empirical studies.  

Effectiveness measures. As it is discussed in Section 3, effectiveness measures are 

categorized into two main classes: coverage-based and fault-based measures. Under the 

coverage-based category, we found three main sub-categories: (1) control flow based 

coverage criteria such as branch, statement, path, condition, and condition-decision 

coverage (2) data flow based coverage criteria such as all-DU coverage, and (3) N-wise 

coverage criteria, when SBST techniques are used for testing combinatorial designs [36]. 

In the category of fault-based measures, mutation analysis is the core strategy and mutation 

score and the number of mutants killed are measures that were found in this review. 

We found some other measures for effectiveness, which are still related to the quality of 

the generated test cases, but do not fit into any of the above categories. In this review, these 

measures are labeled “Others”. Based on the papers included in this review, we identified 

two sub-classes among them and labeled the rest as miscellaneous. Papers in the first sub-

category use different kinds of measures related to the execution time of test cases and we 

called these time-based measures. The second sub-category addresses the distribution of 

fitness values of individuals (solutions) as the measure of effectiveness (e.g., average, 

maximum fitness). Such a measure is usually used when the goal of a search algorithm is 

not finding a targeted solution, but the goal is to be as close as possible to the targeted 

solution. An example of such papers is in [8, 9], where the goal was stressing the real-time 

systems by scheduling input sequences to maximize delays in the execution of targeted 

aperiodic tasks. In this study, the cost is measured by fitness values, which shows how 

close the completion time of a specific task is to its deadline.  Table 6 presents the number 

of papers in our review per the category of effectiveness measures. 
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The data we collected revealed 61 papers using one or more effectiveness measures in a 

total of 72 different effectiveness measurements across reported studies. There were three 

papers that did not discuss the effectiveness of the SBST technique at all. There were 47 

instances (65%) that used some type of coverage criterion as the measure of effectiveness. 

The most often used criteria were control flow based criteria with 43 instances (60%). 

Among them, 23 instances (32%) used branch coverage, which is the most frequently used 

effectiveness measure. All-DU coverage, which is based on data flow analysis, was used in 

two instances and two instances used N-wise coverage as the coverage criterion.  

There were 11 instances (15%) that used fault detection rate as the measure of 

effectiveness, where mutation analysis is used so as to report the mutation score or the 

number of killed mutants. In some cases, the fault-based measures are reported along with 

other effectiveness measures. Among the 14 instances (19%), which used the other 

measures for the quality of test cases, five papers used the fitness value of individuals and 

six papers used different kinds of execution-time based measures. Most of the time-based 

measures were related to CPU cycles spent for test case execution. They are used in studies 

which try to use SBST techniques to generate test cases that will find the best/worst case 

execution time of a program.  

Looking at the results in Table 6, we can see that control flow based coverage criteria 

targeted at white-box testing are the most often used effectiveness measures and as we 

mentioned in the above discussion, branch coverage is the criterion that has received the 

most attention. As a result, this problem is now pretty well understood and there is a widely 

accepted, standard way of calculating fitness values based on approximation level and 

branch distance [37] on control flow graphs. Fault-based effectiveness measures received 

relatively little attention in the literature reporting SBST studies as compared to coverage-

based measures. Similarly, the applications of SBST techniques to artifacts other than code 

are rare as white-box testing seems to have been by far the main focus. 

Cost Measures. Based on the definition of cost measures in Section 3 and what we 

found in this review, we categorized cost measures into two main classes (1) ‘cost of 

finding the target’, which is related to the cost of automating test case generation and (2) 

Table 6 Distribution of effectiveness measures across empirical studies 

Coverage-based measures 
Fault -
based 

measures 

Others
No 

effectiveness 
measure 

Control 
flow 

Data 
flow 

N-
wise 

Time-
based 

measures 

Fitness 
value of 

individuals 
Miscellaneous 

43 2 2 11 6 5 3 3 
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‘cost of executing the generated test suite’, which is related to the cost of test case 

execution. These are both relevant and complementary. Based on the measures found in the 

studies, the first category is classified into four sub-categories:  

(a) the number of iterations  

(b) the cumulative number of individuals in all iterations 

(c) the number of fitness evaluations an algorithm needs to find the final solution 

(d) test case generation time.  

The only measure for the category of ‘the cost of executing generated test suite’ that we 

found in the papers was the size of the test suite, which is a surrogate measure for test 

execution time.  

Table 7 shows that among 64 papers, seven papers did not perform any cost analysis and 

in the remaining 57 papers most empirical studies reported at least one cost measure in 70 

different cost measurements reported across studies. 

Based on the abovementioned classification, 62 instances (86%) used measures in the 

category “Cost of finding the target”. The most often used measure among them was the 

number of iterations, which is used in 27 instances (39%). A total of six instances (4%) 

used the number of individuals (test cases) and the number of fitness evaluations is used by 

14 instances (20%) as the measure of cost. Finally, there were 15 instances (21%) that used 

the ‘test case generation time’ measure. 

In the second main category, ‘cost of executing the final test suite’, the size of test suite 

was the only measure that we found and it was used in eight instances. Some of these 

instances, which report the number of test cases in the final solution, reported the cost of 

finding the target as well. In some of these instances, the target of the SBST technique was 

actually creating test suites with minimum size for covering a specific criterion such as a 

minimal test suite that exhibits pair-wise coverage [20].   

Summarizing the results of cost measures, we can see that the most commonly used 

measure is the number of iterations. This measure is, however, the least precise measure 

based on the discussion in the framework in Section 3.  Another conclusion is that most 

studies use cost measures only for comparison purposes with other alternative techniques. 

There are just 15 instances (21%) that used measures such as test case generation time, 

which conveys whether a particular technique is likely to be practical and scale up.  
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Table 7 Distribution of cost measures across empirical studies 

Cost of finding the target 
Cost of executing 

the final test suite 
No cost 

Measure 
Number of  
iterations 

Number of  
individuals 

Number  
of fitness 

evaluations 

Test case 
generation time Size of test suite 

27 6 14 15 8 7 

 

5.2.4 RQ2.4: What are the main threats to the validity of empirical studies in the domain 
of search-based software testing? 

In order to answer this question, we carefully assessed the studies using the proposed 

framework in Section 3. For the construct validity threats, we looked at the validity of the 

cost and effectiveness measures. The most frequently observed threat was using some 

measures of cost that have severe limitations as they are not precise. As discussed in the 

framework, the imprecision of cost measures such as ‘the number of iterations’ makes the 

comparison between different SBST techniques very coarse grained. In addition, measures 

such as the number of iterations, the number of individuals, and the number of fitness 

evaluations can only be used for comparison across SBST techniques and cannot 

demonstrate the practicality of SBST techniques. On the other hand, cost measures such as 

‘test case generation time’, if measured as clock time, are suitable for showing the 

practicality of a technique under time constraints. Such measures are, however, platform 

dependent and therefore not easy to use for comparisons across techniques and studies.    

The most frequently encountered conclusion validity threat is related to accounting for 

the random variation that exists in the results obtained from SBST techniques. As 

discussed in RQ2.1, 39% of the papers did not take the random variation of results into 

account and 38% did not analyze or report it properly. This leads to a frequent threat 

regarding the statistical significance of the results. Therefore, not accounting for 

randomness and not applying proper data analysis (Section 3.3 and RQ 2.1) makes it very 

difficult to confidently draw practical conclusions from the results reported in most studies. 

Moreover, among the 11% of papers that discussed statistical hypothesis tests, just one 

paper has discussed the practical significance of differences that is whether differences 

among techniques justify the use of more complex techniques. 

Regarding internal validity threats, the most important concern is the instrumentation of 

code and the use of different tools for data collection without reporting sufficient 

information about them. If the data collection and code instrumentation is not done through 
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a well-identified and available tool, then detailed information about the process of data 

collection should be reported. An example of this would be the use of a tool that 

instruments the code to collect, for instance, branch coverage information. If the tool is 

developed for experimentation purposes only and has not been thoroughly tested, then the 

coverage information generated by the tool might not be reliable and hence lead to an 

internal validity threat. A possible way to deal with this validity threat is to use readily 

available (open source, downloadable, or commercial) tools for this purpose.  

The lack of clearly defining the target SUTs and having a clear object selection strategy 

are the most common threats to external validity. Usually the algorithms are executed on 

very small programs and no clear justification is provided for their choice and why they 

may be representative of the target domain, if specified. This can result in invalid 

generalization of the results.  

5.2.5 RQ2.5: What are the most frequently omitted aspects in the reporting of empirical 
studies in search-based software testing? 

In the previous sections, we have discussed the lack of properly reported descriptive 

statistics and statistical hypothesis testing (statistical significance) as the most commonly 

missing aspects in many empirical studies. Only 23% of the reviewed papers reported 

proper descriptive statistics or statistical significance results. In addition to this aspect, as 

discussed in the framework, there are other aspects that are also important and should be 

reported. These aspects are: discussion of validity threats, specification of formal test 

hypotheses, object selection strategy, parameter settings, and data collection method. For 

validity threats, 10% discussed conclusion validity, 6% discussed external validity, 3% 

discussed construct validity, and only 3% of the papers discussed internal validity threats. 

We found that only two papers out of 64 specified formal hypotheses, 44% of the papers 

discussed object selection strategies, and 39% of the papers described their data collection 

methods. Parameter settings (see [5]) were discussed by most, but not all of the papers 

(88%). However, all papers did not discuss all parameters required for their study; usually 

there is only a partial discussion.  In some cases the authors provide justification of why 

they chose particular values for the parameters but this was rare. 

Summarizing the above information, Table 8 depicts the most frequently omitted aspects 

in the reporting of empirical studies. Not reporting this information makes the full 

interpretation of the results very difficult. For example, poor reporting may make it 

difficult to determine whether differences are statistically significant, and whether 



 
62 

 

differences are expected to matter in practice. It is also usually difficult to determine if 

results can be generalized and to what domain. 

5.2.6 Conclusion 

In our context, defining good and relevant cost and effectiveness measures is a prerequisite 

for a useful empirical study. Almost all of the papers use appropriate (though not perfect) 

cost and effectiveness measures to perform empirical studies. However, there were two 

major problems in the majority of the papers. First, most of the papers do not account for 

the random variation in cost and effectiveness of SBST techniques. Even the majority of 

the papers that did account for the random variation didn’t use proper data analysis and 

reporting methods (descriptive statistics and statistical hypothesis testing). Thus, there is a 

general lack of rigor in the statistical analysis and reporting of results in most empirical 

studies assessing the use of MHS algorithms for test case generation. Second, most of the 

papers didn’t demonstrate the benefits of SBST by comparing it with simpler, techniques 

such as random search or HC. These two factors are highly important for yielding 

interpretable empirical studies in the context of test case generation using SBST 

techniques. Furthermore, many other relevant aspects of empirical studies such as the 

reporting of validity threats, the definition of formal hypotheses, the object selection 

strategy, and data collection methods are not reported by most of the papers. We can 

therefore conclude that most empirical studies in the context of test case generation using 

SBST techniques are still not properly conducted and reported and that improving this 

situation should be an important objective of the research community for future studies. 

Table 8 The most omitted aspects of empirical studies 

The most omitted aspects in the reporting of 
empirical studies 

Number of papers Percentage 

Good Descriptive statistics and statistical test 15 23% 

Validity threats 

Construct 2 3% 

Internal 2 3% 

Conclusion 7 10% 

External 4 6% 

Formal Hypothesis 2 3% 

Object selection strategy 28 44% 

Data collection method 25 39% 
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5.3 How convincing are the reported results regarding the cost, effectiveness, and 
scalability of search-based software testing techniques? 

There is a lot of research being conducted on test case generation based on MHS 

algorithms. In order to draw general conclusions from the current body of work, we need 

to assess how convincing is the evidence regarding the cost, effectiveness, and scalability 

of SBST techniques. The first step is to clearly identify studies that provide complete and 

credible evidence from an empirical standpoint. Credible results are the consequence of a 

well designed and conducted empirical study. Based on the discussions in Section 3, a well 

designed study in the context of SBST should account for the random variation present in 

the results and have a meaningful comparison baseline to show that the targeted test 

problem benefits from a MHS approach. Therefore, in order to answer this research 

question, we first selected papers that at a minimum account for the random variation of 

results and compare their technique with the results of a simpler, non-SBST technique 

(such as random search, static source code analysis, or some other technique applicable to 

the test problem under consideration) or with HC. The first sub question, RQ3.1, will 

provide an overview of these papers. The second step to answer RQ3 is to select those 

papers that performed and reported proper data analysis. To satisfy this criterion, we expect 

papers to report descriptive statistics on the variation in the results (cost, effectiveness), 

where relevant or results of statistical hypothesis testing comparing alternative test case 

generation algorithms, and in particular MHS algorithms with simpler baseline 

alternatives. We deemed this set of papers as having credible evidence regarding the cost, 

effectiveness, and scalability of SBST. In sub question RQ3.2, we provide detailed 

information about the cost and effectiveness results presented in these papers along with a 

short description of the test problem that they tackled. 

5.3.1  RQ3.1: For which metaheuristic search algorithms, test levels, and fault types is 
there credible evidence for the study of cost-effectiveness? 

This sub-question provides a summary of the research papers that met the minimum 

criteria of accounting for random variation in results and performing comparisons with a 

simpler non-SBST or local SBST techniques. Out of the 64 papers that we analyzed, we 

found 39 that accounted for random variation of results. This number was reduced to 18, 

after selection of only those papers that also had either a non-SBST or a simple, local MHS 

comparison baseline. Thus, based on the criteria that we used, we had to exclude 46 papers 

as not being applicable for answering our research question. It is worth mentioning that 

there were 14 papers among those 46 discounted papers that had the minimum requirement 
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of accounting for random variation, but did not have a non-SBST or local MHS 

comparison baseline. For example, they may have proposed an extension to a genetic 

algorithm that would possibly enhance its capacity for test case generation and compared 

their results to a genetic algorithm not having this extension. In this review, those studies 

are not considered as credible evidence, since they do not show, in any way, that a simple 

non-SBST technique such as random search or a local MHS such as HC could not, in this 

particular context, equal or outperform their technique. This is an important consideration, 

since there is no a priori reason to believe that a MHS algorithm is more cost-effective and 

efficient than simpler algorithms in all test case generation contexts. The size of the search 

space is only a weak indicator of the extent of the search challenge as the search difficulty 

also depends on the search space landscape and distribution of satisfactory solutions across 

this space. Table 9 summarizes this set of 18 papers in terms of the MHS algorithms used, 

the testing levels, and the fault types targeted in the empirical studies. These papers are 

referred to as ‘Minimum Criteria papers’ in Table 9. 

As can be seen in Table 9, amongst the 18 papers that report credible evidence, most 

papers (13 out of 18) applied a SBST technique at the unit testing level. The most 

commonly investigated MHS algorithm is the genetic algorithm with 12 papers out of 18, 

followed by simulated annealing with just four papers. This trend is the same as that 

observed in the full set of 64 papers in Section 5.1 There are also only two papers that 

target specific faults, one targeting functional faults and the other non-functional faults. 

5.3.2 RQ3.2: How convincing is the evidence of cost and effectiveness of search-based 
software testing techniques, based on empirical studies that report credible results? 

Along with accounting for random variation in the results and having a non-SBST or local 

MHS comparison baseline, studies must also report proper descriptive statistics or 

statistical hypothesis testing results in order to present credible and interpretable evidence. 

After the application of these criteria, there were just eight papers left and the results of 

these papers, referred to as ‘Sufficient Criteria Papers’, are summarized in Table 10.  

Based on the information presented in Table 10, it is apparent that there is a scarcity of 

convincing evidence regarding the cost-effectiveness of SBST techniques. Nevertheless, 

these papers are a representative sample from the different types of investigations that are 

performed with MHS algorithms for test case generation. MHS algorithms have been 

recently applied to increasingly diverse types of problems and this is seen in this sample of 

papers by comparing the content of the “test purpose” column across papers. This ranges 



 

 
65 

 

from specialized purposes such as testing the performance of real time systems to more 

general purposes such as testing non-public methods in object-oriented programs. Despite 

the diversity of objectives, we can see that in most of these papers, MHS algorithms, 

mostly GA, were compared with random search and the results show that GA 

outperformed random search for the test case generation problems at hand. This suggests 

that this type of problems indeed requires guided search algorithms. It would also be 

interesting to see how the quality of the empirical studies that have been performed in this 

field have improved over the years. In order to investigate this, we compare three series as 

shown in Figure 4. 

The ‘All papers’ series shows the number of papers per year expressed as a percentage 

of the total number of papers (64 papers). The ‘Minimum Criteria papers’ series shows the 

percentage per year of the papers satisfying our minimum criterion of accounting for 

Table 9 Test levels, fault types, and the type of metaheuristic algorithms used by ‘minimum criteria 
papers’ 

 Test Level Fault Type Type of Metaheuristic Search Algorithm 

Paper Unit 
Integrati

on 
System 

Non-
Functio

nal 
Functional GA EGA SA ESA ACO GP PSO 

Jones et. al. [28] √ – – – – √ – – – – – – 
Puschnerand 
Nossal [43] √ – – – – √ – – – – – – 
Tracey et. al. 
[47] √ – – – – -  – √ – – – – 
Bueno and Jino 
[10] √ – – – – √ – – – – – – 
Michael et. al. 
[38] √ – – – –   √ – – – – – 
Wegener et. al. 
[51] √ – – – – √ – – – – – – 
Shiba et. al. [45] – – √ – – √ – – – √ – – 
Briand et. al. [8, 
9] –  – √ √ – √ – – – – – – 
Miller et. al.  
[39] √ – – – – √ – – – – – – 
Watkins and. 
Hufnagel  [50] √ – – – – √ –   – – – – 
Zhan and Clark  
[54] – – √ – √ – – √ – – – – 
Zhan and Clark  
[55]  – – √ – – – – √ √ – – – 
Bueno et. al. 
[11] – – √ – – – – – – – – √ 
Harman et. al. 
[33] √ – – – – – √ – – – – – 
Harman and 
McMinn  [24] √ – – – – √ – – – – – – 
Harman et. al. 
[22] √ – – – – √ – – – – – – 
Wappler and 
Schieferdecker   
[49]  √ – – – – √ – – – – – – 
Xiao et. al. [53] √ – – – – √ – √ √ – – – 
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random variation (as reported in Table 9 and the ‘Sufficient Criteria papers’ series shows 

the percentage per year of papers satisfying our secondary criteria of having an appropriate 

baseline and proper descriptive statistics or results of statistical hypothesis testing (as 

reported in Table 10). From Figure 4 we can see that 40% of all papers, 55% of all 

minimum criteria papers and 88% of all sufficient criteria papers were published in recent 

years (2006 and 2007). The trends that become apparent are that firstly, the number of 

SBST publications has been steadily growing over the years, and secondly, that the quality 

of empirical studies has increased dramatically in recent years. 

 

 

5.3.3 RQ3.3: Is there any evidence regarding the scalability of metaheuristic search 
algorithms for test case generation? 

During our systematic review, we did not find any paper specifically targeting the 

scalability of the MHS algorithm in the context of SBST. However, there was one paper 

where the authors performed a small scale scalability analysis [53]. The study was 

conducted on five small test objects written in C/C++. There were 36 to 87 test 

requirements to achieve full condition-decision coverage for all test objects and the size of 

the search space ranged from 26 to 232. The study was performed using different 

algorithms including GA, SA, Genetic Simulating Annealing (GSA), SA with Advanced 

Adaptive Neighbors (SA/AAN), and random search. In two of the SUTs used for the study, 

two different search spaces (one small and one large) were used to measure the 

performance (condition-decision coverage vs. the number of SUT iterations) of different 

MHS algorithms and random search. Based on the empirical evaluation, it was concluded  

Figure 4 Quality trends of SBST empirical studies based on the publication year 



 

 
67 

 

 

Table 10 Test purposes, comparison baselines, and result highlights for the ‘sufficient criteria papers’ 

Paper Test purpose 
Comparison 

baseline 
Result highlights 

Puschner 
and Nossal, 
1998 

Creating an input data set 
with the worst-case 
program execution time 

RS 
BEDG 

StA 

In most cases, GA performed equal to or better than 
RS in terms of effectiveness measured as execution 
time of the SUT. For smaller size SUTs, GA had 
results as good as BEDG and StA  

Briand et. 
al., 2005 
and 2006  

Stressing a real-time 
system by creating input 
sequences that maximize 
delays in the execution of 
target tasks and increase 
chances of missing 
deadlines. 

ScA 

The technique can schedule tasks to miss the 
deadline(s) even though schedulability analysis 
identified them as schedulable. The GA is successful in 
bringing task completion times closer to their 
deadlines, thus leading to stressing the system in that 
respect.  
 

Miller et. 
al., 2006 

Test case generation 
using genetic algorithms 
and program dependence 
graphs. 

RS, GA 

1) The results showed that, for simple programs there 
is little difference in the results (branch coverage) 
between RS and their proposed GA approach 
(TDGen). 
2) The difference is seen in larger programs, where a 
much smaller number of generations are required to 
achieve 100% branch coverage. 
3) It is also observed that for some SUTs, TDGen can 
achieve 100% branch coverage, where RS and 
GADGET cannot.  

Watkins et. 
al., 2005 

Comparison of different 
fitness functions for path 
coverage 

RS 

Based on the study, it was concluded that there is no 
single fitness function that works well in all cases. A 
two-step method using two best fitness functions is 
therefore suggested in the paper. 

Harman 
and 
McMinn, 
2007 
 

Test data generation to 
answer three research 
questions formulated 
based on royal road 
theory (see [24]) for GA  

RS, HC 

1) GA was able to find inputs to exercise the branches 
that have royal road features and HC and RT were not 
successful at all. 
2) GA was unable to find the inputs to exercise the 
branches that have royal road features if crossover 
operators were removed.   
3) HC performed better or no worse than GA for the 
branches that do not have royal road features. 

Harman et. 
al., 2007 

Investigation of the 
relationship between the 
size of the search space 
(consisting of test inputs) 
and the performance of 
search algorithms 
measured as the number 
of fitness evaluations to 
cover a branch   

RS, HC 

1) There is no relationship between search space 
reduction and reduction in cost for random search. 
2) There is significant improvement in cost reduction 
for both hill climbing and the genetic algorithm. 
3) The reduction in cost is more for the genetic 
algorithm than for hill climbing. 
4) There is no relationship between search space 
reduction and search effectiveness in terms of coverage 
for any of the search algorithms.  

Wappler 
and 
Schieferde
cker, 2007 

An approach for testing 
non-public methods 
without breaking the 
encapsulation of the 
class, using an objective 
function specifically 
designed to cover non-
public methods via public 
methods.  

RS, GP 
The new GP technique achieved higher overall branch 
coverage than RS and higher coverage of non-public 
methods than their existing GP based approach. 

Xiao et. al., 
2007 

Empirical evaluation of 
different MHS algorithms 
and RS for test data 
generation. 

GA, SA, two 
extensions of 

SA (SA/AAN, 
GSA), RS 

GA performed better than all other algorithms 
including random search. After GA, SA/AAN 
performed better in terms of both cost (number of SUT 
executions) and effectiveness (condition decision 
coverage). 
 

 
HC: Hill Climbing, RS: Random Search, GA: Genetic Algorithm, SA: Simulated Annealing, GP: Genetic Programming, 
SA/AAN: SA with Advanced Adaptive  Neighbors, GSA: Genetic SA, ScA: Schedulability Analysis, BEDG: Best Effort 
Data Generation, StA: Static Analysis 
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that GA performed well for both the small and the large search space. SA/ANN was the 

second best. SA and GSA performed well only for the small search space. All MHS 

algorithms performed better than random search. As a result, we can say that scalability 

analyses of SBST techniques in the domain of test case generation are very rare and there 

is a need to focus more on scalability analysis in future studies.  

5.3.4 Conclusion 

Based on the discussions in the three sub-questions above, the number of papers which 

contain well-designed and reported empirical studies in the domain of test case generation 

using SBST is very small. As a result, there is a limited body of credible evidence that 

demonstrates the usefulness of SBST techniques for test case generation. This evidence is, 

in addition, very partial as it mostly focuses on the use of genetic algorithms at the unit 

testing level. This evidence, however, consistently shows that the genetic algorithms 

outperform random search in terms of structural coverage. However, this evidence is just 

based on eight papers and cannot be generalized to state that genetic algorithms at the unit 

testing level will always outperform random search regardless of the test objectives. More 

empirical studies must be conducted to provide strong and generalizable evidence about 

the suitability and applicability of different MHS algorithms for test case generation at 

different testing levels and for test objectives other than structural coverage.  

6 Threats to the Validity of this Review 

The main validity threats to our review are related to the possible incomplete selection of 

publications, inaccuracy of data extraction, and bias in quality assessment of studies. 

6.1 Incomplete selection of publications 

In Section 4.2, we have discussed and justified the systematic and unbiased selection 

strategy of publications. However, it is still possible to miss some relevant literature. One 

such instance is the existence of grey literature such as technical reports and PhD theses. In 

our case, this literature can be important if the authors report the complete study which is 

briefly reported in the corresponding published paper. In this review, we did not include 

such information. 

Another instance that may lead to an incomplete selection of publications is the 

difficulty of finding an appropriate search string. In Section 4.2 we provide justification for 

the repositories that we selected and the search string that we used. However, there may 
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still be some papers, which have used some other related terms other than our keywords. 

We refined our search string several times because we found a paper missing from our 

selected papers, which was in the reference list of another paper. In order to deal with this 

problem, we refined our search string until it included all such papers and we were sure 

that our set of selected papers did not miss any paper that is referred to and relevant for this 

review.    

6.2 Inaccuracy in data extraction 

Inaccurate data can be the result of subjective and unsystematic data extraction or invalid 

classification of data items. In our review, we tried to deal with this problem by two means. 

First, we defined a framework, which clearly identified the data items that should be 

extracted. Second, all the data extracted was reviewed by three researchers and all 

discrepancies were settled by discussion to make sure that the extraction was as objective 

as possible. Therefore, the remaining problem is the validity of the framework itself. We 

have defined the framework based on the current guidelines for empirical studies in 

software engineering and adapted them to our domain of interest based on experience. 

Hence, we believe that it is a good starting point, but it can be further improved by 

feedback and discussion from other researchers in the domain. 

6.3 Unbiased quality assessment  

Assessing the quality of the papers for answering RQ3 was a challenging issue. Even 

though the data extracted from the papers to judge their quality was detailed and based on a 

well thought framework, the criteria used to select the papers themselves could be thought 

of as subjective. Our justification for the validity of this criterion is discussed in the 

Section 5.3 and we re-emphasize the fact that this is the minimum requirement for having a 

valid empirical study in the domain of SBST.  

7 Conclusion 

The automation of test case generation has been a long-standing problem in software 

engineering. Search-based software testing, or in other words the application of 

metaheuristic search (MHS) algorithms for test case generation, has shown to be a very 

promising approach for solving this problem by re-expressing test case generation 

problems as search problems. As a result, a great deal of research has been conducted and 

published. The time was therefore ripe to perform a systematic review of the state of the art 
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and appraise the evidence regarding the cost-effectiveness of such an approach. A 

systematic review is very different from more informal, traditional surveys, in the sense 

that it aims at being comprehensive in its coverage and repeatability by relying on well-

defined paper selection and analysis procedures. This systematic review focuses, due to 

space constraints, on one specific but crucial aspect: the way SBST techniques have been 

empirically assessed. This aspect is highly important as all MHS algorithms are heuristics 

and therefore cannot guarantee their success in solving a test case generation problem or 

any other problem for that matter. Only an empirical investigation can provide the 

necessary confidence that a specific MHS algorithm is appropriate for a given test case 

generation problem.  

In addition to a large-scale, systematic review, our contribution also includes guidelines, 

in the form of a framework, on how to conduct empirical studies in search-based software 

testing. Results of our review have shown that the research reported so far has mostly 

focused on structural coverage and unit testing. However, the research is increasingly more 

diversified in the types of topics being tackled. Results also show that empirical studies in 

this field would benefit from more standardized and rigorous ways to perform and report 

studies. More specifically, three important empirical issues stand out from our analysis. 

Studies need to, more systematically and rigorously, account for the random variation in 

the results generated by any MHS algorithm. Such random variation implies that 

alternative techniques can only be compared by statistical means, that is, statistical 

hypothesis testing. This, unfortunately, is not performed well in most published papers and 

our framework provides guidelines about which statistical test to perform in which 

circumstance. Last, another important issue is that it is impossible to assess how a MHS 

technique performs in absolute terms: to be able to conclude on its usefulness to tackle a 

specific test case generation problem, a proposed technique needs to be compared with 

simpler and existing alternatives to determine whether it brings any advantage. This is 

again missing in an important number of papers and needs to be carefully addressed by all 

studies in the future.   

Despite the above limitations, credible results are available and existing results confirm 

that MHS algorithms are indeed promising for solving a wide variety of test case 

generation problems. Future research work will have to better establish their limitations 

and the types of problems for which they are applicable and required. 
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Abstract— In recent years, Model-Based Testing (MBT) has attracted an increasingly 

wide interest from industry and academia. MBT allows automatic generation of a large and 

comprehensive set of test cases from system models (e.g., state machines), which leads to 

the systematic testing of the system. However, even when using simple test strategies, 

applying MBT in large industrial systems often leads to generating large sets of test cases 

that cannot possibly be executed within time and cost constraints. In this situation, test case 

selection techniques are employed to select a subset from the entire test suite such that the 

selected subset conforms to available resources while maximizing fault detection. In this 

paper, we propose a new similarity-based selection technique for state machine-based test 

case selection, which includes a new similarity function using triggers and guards on 

transitions of state machines and a genetic algorithm-based selection algorithm. Applying 

this technique on an industrial case study, we show that our proposed approach is more 

effective in detecting real faults than existing alternatives. We also assess the overall 

benefits of model-based test case selection in our case study by comparing the fault 

detection rate of the selected subset with the maximum possible fault detection rate of the 

original test suite. 

1 Introduction 

Model-Based Testing (MBT) is getting increasing attention both in industry and academia 

as a test automation approach [1]. The idea is to generate executable test cases by 

systematically traversing specification models (e.g., represented as UML state machines 

[2]) based on a test strategy such as a coverage criterion that aims to cover certain features 

of the model (e.g., all transitions). There are many academic and commercial MBT tools 

[3] and some studies report on the applicability and cost-effectiveness of MBT [1]. 

Unfortunately, in practice, more specifically at the integration and system levels, MBT 

may lead to very large test suites, even for simple coverage criteria. We have observed 
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cases [3] leading to the generation of thousands of test cases for relatively modest 

industrial case studies with well-known coverage criteria such as all transition-pairs and all 

round-trip paths [4]. Therefore, in many situations where deadlines are tight, resources 

limited, or the testing cost is high due to the use of hardware-in-the-loop or access to 

dedicated test infrastructures (e.g., network), executing the entire test suite is not an option. 

This is typically the case for many embedded and distributed systems. For example, system 

level testing of a video conferencing system requires establishing connections with other 

video conferencing systems over the network and streaming audio and video and 

communicating control data. To test the software of such system, we have to assign enough 

resources (actual physical devices dedicated for the test) to the test case, which increases 

the cost of executing each test case compared to running a test case created for testing a 

local function on a PC. In addition, such test cases should properly handle acceptable 

delays in the system execution and the network communication, which means that the 

execution time of each test case can be quite high in such systems. 

The goal of selection techniques, given limited resources leading to an estimated 

maximum test suite size, is to maximize the fault detection rate of the selected subset. In 

general, this test case selection problem is NP hard (traditional set cover) [5]. Other than 

random selection, there have been two main types of test case selection heuristics proposed 

in the literature. The first class of techniques (coverage-based) tries to directly maximize 

the coverage (e.g., code or model coverage) of the selected subset [6] and the second type 

(similarity-based), which has recently been getting more interest among researchers, is 

about minimizing similarity (where its definition varies on different studies) between 

selected test cases [7].  

In this paper, we propose a new similarity-based selection technique which is applied on 

test suites automatically generated from UML state machines. The approach, which does 

not require any execution information and is applied before executing any test case, first 

improves the similarity function for model-based test case selection introduced in [7], by 

using triggers and guards on transitions of UML state machine as a basis of measuring 

similarity. Second, it improves the selection algorithm by using Genetic Algorithms (GAs) 

[8] instead of a Greedy search. This work, to the best of authors’ knowledge, is the first to 

address similarity-based test case selection for UML-based testing. The selection technique 

is integrated with a fully automated test case generation tool (TRUST) [3], where the 

inputs are UML state machines and outputs are the selected executable test cases. The 

context and objectives of our industrial case study can be briefly characterized as follows: 
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(1) our selection technique is applied to an industrial system where MBT was already used 

for test case generation, (2) there are no seeded faults and all faults are based on actual 

mistakes made by developers, (3) the size of the test suite is significantly larger than that of 

previous, similar studies [7, 9] (more than double of their largest test suite), (4) a 

comparison is performed not only with other similarity-based techniques (even those 

which are not specific to MBT but are applicable), but also with all other well-known 

selection techniques (additional coverage-based [10, 11], GA-based coverage [12, 13], and 

random selection [4]),  (5)  we provide a thorough discussion on cost analysis, (6) the 

improvement, in terms of fault detection rate, by our selection technique is compared to 

using a stricter coverage criterion, and (7) the practical benefits of using our test case 

selection technique for MBT is investigated by showing that our approach can select a 

small (approximately 10%) subset of the automatically generated test suite which can find 

more than 90% of the faults detectable by the entire test suite. 

The rest of the paper is organized as follows. The next section reports on background 

information about test case selection.  Section 3 discusses the basic principles regarding 

GA which are necessary to understand the paper. Section 4 provides a brief overview of 

related works covering similarity-based selection techniques. Section 5 introduces our 

approach for test case selection in state machine-based testing, and Section 6 reports the 

experimentation results of applying the technique on an industrial case study. Section 7 

concludes the paper and outlines our future work plan. 

2 Test Case Selection 

There are several strategies for reducing the number of automatically generated test cases 

in MBT. One can try using a less demanding coverage criterion (i.e., a criterion that results 

in fewer number of test cases). For instance, if using all transition-pairs [4] generates a far 

too large test suite, the all-transitions [4] criterion can be adopted instead to decrease the 

number of test cases, which still achieves systematic testing but may reduce the fault 

detection rate. However, often this is not a practical solution as one cannot ensure that the 

number of test cases will be below a required threshold. Test suite reduction can also be 

useful when the goal is to minimize the test suite by removing redundant test cases with 

respect to a criterion (e.g., code coverage). In test case selection, given a maximum number 

of test cases, the goal is to select a subset of the entire test suite that maximizes fault 

detection. Prioritization techniques, on the other hand, do not remove any test case but 
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order their execution [11], and therefore do not address our problem. As a result, we focus 

in this paper only on test case selection.  

Test case selection is mostly studied in the context of regression testing, where the goal 

of test case selection is to find a subset of the original test suite that guarantees the 

execution of fault-revealing test cases [4, 5]. The main differences between model-based 

test case selection and selection in the context of regression testing are that, in our context, 

we are not interested in finding the affected parts of the system and we do not have 

execution information of the test suite as it is the case in regression testing. Therefore, 

heuristics such as using component meta data [14], and execution traces (e.g., call stack 

[15]) are not applicable here. In addition, most studies in test case selection (even those 

which are general purpose and not specific to regression testing) are based on code-level 

information and do not directly apply to MBT (e.g., code-based dependency analysis [16] 

and additional statement coverage [10, 11]). Rather, MBT selection heuristics are based 

only on the characteristics of the (abstract) test cases. 

There are three main classes of selection techniques which are introduced for MBT:  

1) Random [5] or semi-random selection [4], where there is no guidance to select test 

cases.  

2) Coverage-based selections, where we hypothesize that “the test cases which have 

more coverage (such as model-based and requirement-based coverage) are more 

likely to detect faults”. The idea is inspired from redundant test case removal in test 

case reduction, where redundant test cases are those which have the same coverage. 

Note that assessing the coverage of a test case must not necessarily require its 

execution. For example, transition coverage in a state machine can be determined if 

traceability has been preserved between a test case and its source state machine. 

Most coverage-based techniques are re-expressed into optimization problems where 

the goal is to select the best combination (or permutation in case of prioritization 

[11]) of test cases to achieve full coverage [17-20]. For example, in [11] a Greedy 

search selects, at every step, the test case that covers the most uncovered statements 

whereas in [12, 19] a GA is used to find the maximum coverage.  

3) Similarity-based selections, where we hypothesize that “the more diverse the test 

cases the higher their fault revealing capacity [21]”. To use this approach one 

needs a (dis)similarity function to measure the diversity of a subset by averaging all 

pair-wise similarity values. Code-based similarity functions have been proposed in 

the literature. However, to the best of authors’ knowledge, there is only one model-
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based similarity function [7], denoted here as Identical Transitions Similarity (It). 

For any two test paths tpi and tpj,  It(tpi , tpj) is defined as:  

“The number of identical transitions (which in UML state machines means: same 

source states, triggers, and target states) in tpi and tpj divided by the average length 

(number of transitions in the test path) of tpi and tpj”.  

After defining a similarity function, a selection algorithm is required to choose a sample 

of test cases with the minimum pair-wise similarity among its members. 

3 Genetic Algorithms  

For a given similarity measure, several alternative selection techniques can be used, such 

as optimization techniques, Greedy search, and clustering. In this paper we use a GA and 

compare it with Greedy search (which is the only reported similarity-based test case 

selection algorithm to date in the context of state-based testing and MBT in general [7]) as 

a baseline. The GA is used in this paper since the nature of our problem, which is a form of 

optimization, resembles typical problems addressed in search-based software engineering 

[22] where GAs are the most used and successful reported technique [22]. A more 

comprehensive study of selection algorithms will be part of our future work. Though 

further details on how we have employed a GA in a test case selection context will be 

discussed in Section 4, we provide below minimum background information on GAs. 

GAs rely on four basic features: population, selection, crossover and mutation. More 

than one solution is considered at the same time (population). At each generation (i.e., at 

each step of the algorithm), some good solutions in the current population chosen by the 

selection mechanism generate offspring using the crossover operator. This operator 

combines parts of the chromosomes (i.e., the solution representation) of the offspring with 

a certain probability; otherwise it just produces copies of the parents. These new offspring 

solutions will fill the population of the next generation. 

The mutation operator is applied to make small changes in the chromosomes of the 

offspring. To avoid the possible loss of good solutions, a number of best solutions can be 

copied directly to the new generation without any modification. Another option is to use a 

steady state approach, in which only the offspring that are not worse than their parents are 

added to the next generations. Fitter individuals should have more chances to survive and 

reproduce. This is represented by the selection mechanism, and there are several variants 
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for it. Eventually, after a number of generations, an individual that solves the addressed 

problem will be evolved. 

4 Related Work 

In this section, we only review studies on similarity-based test case selection, 

minimization, and prioritization techniques, since we have already discussed about 

alternative techniques and their limitations for our context in Section 2. Although there 

exist studies regarding similarity-based selection, minimization, and prioritization on code-

based testing, model-based test case selection using a similarity function has not been a 

focus of study in the literature. However many ideas from code-based techniques can be 

adapted to MBT.  

Not surprisingly, most similarity-based techniques have been performed in the context 

of code-based regression testing and use code coverage or other types of execution 

information. In [23] the similarity function is based on all def-use pairs coverage and they 

use a classification algorithm as a reduction technique, where they classify similar test 

cases in one class and distribute their selection over different classes. Basic block coverage 

in the code (e.g., statement coverage) is a basis for defining similarity functions in [24], 

[13], and [21, 25]. Greedy search, adaptive random selection, and clustering are used in 

these studies for selection/prioritization. In [26] different heuristics are used based on 

execution information from the original test suite to support regression testing (e.g., 

memory operations with values from dynamic execution of a test case is used in a 

similarity function). Ledru et al. [9] have introduced a similarity-based prioritization 

technique which can be applied on both code-based and model-based techniques, since it is 

based on the test scripts and not the source code or a specification model. The basic idea is 

to analyze the test script as a string and compare each pair of test cases as two strings using 

edit-distance functions such as Levenshtein [27]. In this paper, we refer to this similarity 

function as String-Based Similarity (Sb). Using this function Ledru et al. applied a Greedy 

search to select test cases.  

The only similarity-based test case selection technique in MBT is introduced in [7], 

where sequences of transitions in a Labeled Transition System model of the software under 

test (SUT) are used for representing test paths. The similarity function is It, as defined in 

Section 2, and the selection technique is a Greedy search. This work and the work of Ledru 

et al. in [9] can be considered as potential baselines of comparison for our study. 
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Some empirical studies [13, 26] do not use basic random selection as a baseline of 

comparison. However, it is very important to at least compare any (meta)heuristic-based 

technique with random selection to show that the improvement, if any, is worth the extra 

cost which is incurred when using such heuristics. Furthermore, other studies [7, 9, 23] do 

not have a comparison with coverage-based techniques, which may be considered state-of-

practice. 

5 Test Case Selection Based on Similarities between 
Test Paths using Triggers and Guards 

The problem of test case selection in our context can be formalized as:  

 

“Given a fixed sample size n and test suite TS that detects a set of faults (F) in 

the system, our goal is to find a subset of TS of size n (sn) with maximum 

FD(sn), where FD(sn) is the percentage of F which is detected by sn”.  

 

Since there is no information about the fault detection rate of each test case without 

prior execution, a surrogate measure for FD(sn) is required. In similarity-based selection 

techniques the assumption is that the more diverse the selected subset, the larger the 

number of detected faults. Therefore, the problem is reformulated as minimizing 

 :௡ሻݏሺݎݏܯ݉݅ܵ

SimMsrሺs୬ሻ ൌ ෍ SimFuncሺtp୧ , tp୨ሻ

୲୮౟ , ୲୮ౠ∈ୱ౤ ∧ ୧வ௝

 

 

Where SimFunc(tpi , tpj) returns the similarity of two test paths (abstract test cases in 

MBT) in sn represented by tpi and tpj. According to this definition, we need to define (1) a 

representation for a test path (tp), (2) a similarity function (SimFunc), and (3) a selection 

algorithm to select the optimal sn. 

In MBT finding the best test case representation depends on the type of input model, 

which in our case is a UML 2.0 state machine. A path on the model (test path) seems to be 

the best representation, since it is both abstract enough to be used as a similarity function 

input and rich enough to contain all relevant state-based testing information. Abstract test 

cases in this notation (called test path) are sequences of states and transitions, identified by 

their corresponding trigger. If a transition has k triggers it will be considered to be k 
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transitions from the same source to the same target but with different triggers. A test path 

can therefore be formalized as follows:   

 

<tp>      ::= <init> “,” <trans> 

<trans> ::= <event> “,” <target> | <event> “,” <target> “,” <trans> 

<event> ::= <triggerName>|<guardValue>|<Id>|<guardValue>“,”<triggerName> 

 

where <init> and <target> are taken from the set of states and <triggerName> and 

<guradName> from the set of triggers and guards on the transitions of the model and 

<Id> is a unique id assigned to transitions which do not have any trigger or guard. If a 

transition is guarded <event> contains <guardValue>. 

The similarity function that we use in this study is similar to It in [7] with a minor but 

important difference. Because It is based on identical transitions, they do not consider two 

transitions which have the same trigger (same method call or same signal reception) but 

different source or target state, to be identical. However, our similarity measure (trigger-

based similarity, Tb) is based on identical triggers. According to this definition of identical 

triggers, Tb is defined as follows: 

 

“Tb(tpi , tpj) = Number of identical triggers in tpi and tpj divided by the average 

length (number of transitions in the test path) of tpi and tpj”. 

 

Since identical triggers are more likely than identical transitions to be present in two test 

paths, Tb can be considered less strict than It in assigning similarity to test paths. As a 

result, Tb might be more effective in cases where there are identical triggers in different 

transitions in the state machine, which is a common situation. Tb tends to distinguish 

similarity among transitions in a more gradual fashion.  For example, let us assume tp1 = 

<1,a,2,b,3>, tp2 = <1,c,4,b,3>, and tp3 = <1,d,5,e,6>, where numbers are state identifiers 

and characters are trigger names (no guard). Note that tp3 has no similarities with tp1 and 

tp2 except for the initial state “1”. Though similarity-based test case selection seeks to keep 

the selected test cases as diverse as possible, It cannot detect any similarity between any 

pair of test paths as there is no identical transitions among tp1, tp2, and tp3. However, 

Tb(tp1 , tp2) = 0.5 since there is one identical trigger “b” and the average length of the two 

test paths is two. Therefore, if we want to select two test paths out of the three, It selects 
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randomly (since all similarity values are zero), but Tb will choose one of tp1 or tp2 to 

discard, thus achieving more diversity among remaining test cases.  

In this paper, we use a steady state GA as a selection technique. An individual (i.e., a 

solution to the problem) is sn (subset of TS with size n). Given a similarity function 

SimFunc(tpi , tpj), the fitness function f  to minimize is the sum of SimFunc(tpi , tpj) for 

each pair of (tpi , tpj) in TS (ܵ݅݉ݎݏܯሺݏ௡ሻ). We do not tune our GA parameters and use 

what is suggested in the literature to increase the applicability of the approach in industry. 

The selection mechanism is the rank selection which has been shown to work well [28]. 

The population size is set to 50 since population sizes between 20 and 80 have shown 

promising results for different search space sizes [29]. We also have tried some other sizes 

in this range and the GA was not very sensitive to the changes. A single point crossover is 

used to combine two different parents ݏ௡
௫ and  ݏ௡

௬. A random position r such that 0<r<n is 

chosen. All test paths in  ݏ௡
௫ from position r and onward are swapped with the values in the 

same positions in ݏ௡
௬. Crossover is applied with probability Pxover (0.75 in our experiments, 

a high probability as suggested in [8]) with probability 1-Pxover, the offspring are just be 

copies of their parents. For example, if  ݏସ
ଵ and  ݏସ

ଶ are two individuals of the population in 

iteration i, and r = 2, there is a probability of 0.75 that they will be replaced by  ݏସ
ଵሖ  and  ݏସ

ଶሖ  

in iteration i+1, where: 

 

ସݏ 
ଵ ൌ൏ , ଵ݌ݐ , ଶ݌ݐ , ଷ݌ݐ ସ݌ݐ ൐ ସݏ ݀݊ܽ

ଶ ൌ൏ , ௔݌ݐ , ௕݌ݐ , ௖݌ݐ ௗ݌ݐ ൐ 

ସݏ 
ଵሖ ൌ൏ , ଵ݌ݐ , ଶ݌ݐ , ௖݌ݐ ௗ݌ݐ ൐ ସݏ ݀݊ܽ

ଶሖ ൌ൏ , ௔݌ݐ , ௕݌ݐ , ଷ݌ݐ ସ݌ݐ ൐ 

 

The selected mutation operator is similar to what is typically used for bit strings [8, 29]. 

Each test path in sn is mutated with probability 1/n. A mutated test path is replaced by a 

test path that is selected at random from the set of all possible test paths. For example if 

ସݏ 
௫ ൌ൏ , ଵ݌ݐ , ଶ݌ݐ , ௖݌ݐ ௗ݌ݐ ൐ and ݌ݐହ ∈ ܶܵ then  ݏସ

௬
ൌ൏ , ଵ݌ݐ , ଶ݌ݐ , ହ݌ݐ ௗ݌ݐ ൐ can be a 

mutated version of  ݏସ
௫. Notice that we only accept “valid” solutions. A solution sn is valid 

if all the test paths in sn are unique. The first randomly generated population is forced to 

contain only unique test paths. However, search operators such as crossover and mutation 

can produce new offspring that have repeated test paths in them. There are several ways to 

handle constraints in evolutionary algorithms. One way is to design search operators that 

always produce valid individuals. In this paper, we simply discard the offspring that are not 

valid. The smaller the sample (test suite) size, the lower the probability of such 
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occurrences. Since we focus here on small samples of test cases, this seems as a more 

suitable strategy in our context. For example, in our case study experiments, while 

sampling less than 2% of the total test suite, the probability of generating an invalid 

individual in one GA run is less than 3%. Increasing the sample size to 30% of the test 

suite increases this probability up to 30%. However, even with a 30% chance of invalid 

individual generation, given the fixed short time for one run of the GA, it is still more 

effective than its baseline of comparison (Greedy search) in detecting faults. Note that this 

probability also depends on the stopping criterion, since if we let the GA run longer, the 

diversity in the GA population decreases, which then results in less invalid individuals 

generated by the crossover operator. We have applied three types of stopping criteria for 

GAs in this study: (1) stopping after specific number of iterations, (2) stopping after a fixed 

period of time (e.g., 1 second (sec)), and (3) letting the GA run for some time (e.g., 1sec) 

and then stop only if there is no improvement over a specified period of time (e.g., 200 

milliseconds (ms)). However, in this paper, we only report the result taken from 

experiments with a fixed execution time stopping criterion since we wanted to keep cost 

constant when comparing GAs with Greedy search. The pseudo-code of the employed GA 

is defined as follows: 

 

Sample a population G of m test cases uniformly from the search space (i.e., 

the set of all possible valid sets with a given size n) 

Repeat until the specified time is expired 

    Choose ݏ௡
௫ and ݏ௡

௬ from G  

    ቀݏ௡
௫ሖ  , ௡ݏ

௬ሖ ቁ ∶ൌ crossover (ݏ௡
௫ , ௡ݏ

௬
, ௫ܲ௢௩௘௥) 

    Mutate(ݏ௡
௫ሖ  , ௡ݏ

௬ሖ ) 

    If valid (ݏ௡
௫ሖ  , ௡ݏ

௬ሖ ) ∧ min (݂ሺݏ௡
௫ሖ ሻ, ݂ሺݏ௡

௬ሖ )) ൑ min ( fሺݏ௡
௫ሻ, fሺݏ௡

௬)) 

   Then ݏ௡
௫ ∶ൌ ௡ݏ

௫ሖ  and ݏ௡
௬
∶ൌ ௡ݏ

௬ሖ  

 

6 Empirical Evaluation 

In this section, we assess the effectiveness of the proposed approach by applying it on an 

industrial case study. In addition, we evaluate its fault detection rate (referred below as 
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FDR) by comparing it to other alternatives already reported in the literature. Information 

about the case study is sanitized due to confidentiality restrictions.  

6.1 Case study description 

The SUT is a safety monitoring component in a safety-critical control system implemented 

in C++. We chose this system because it exhibits a complex state-based behavior that is 

modeled as UML state machines complemented by constraints specifying state invariants 

and guards, which are useful to derive automated test oracles. This SUT is typical of a 

broad category of reactive systems interacting with sensors and actuators. The first version 

of the system (including models and code) was developed and verified by company experts 

and our research team. A total of 26 faults were found. They were introduced during 

maintenance activities of subsequent versions of the SUT by developers and re-introduced 

for the purpose of the experiment in the latest version of the SUT. 

The correct and most up-to-date UML state machine, representing the latest version of 

the SUT’s behavior, consists of one orthogonal state with two regions. Enclosed in the first 

region are two simple states and two simple-composite states. The simple-composite states 

contain two and three simple states. The second region encloses one simple state and four 

simple-composite states that again consist of, respectively, two, two, two, and three simple 

states. This adds up to one orthogonal state, 17 simple states, six simple-composite states, 

and a maximum hierarchy level of two. The unflattened state machine contains 61 

transitions and the flattened state machine consists of 70 simple states and 349 transitions. 

Among the 26 faults, 11 of them were sneak paths (illegal transitions in the modified 

model) [4]. To detect such faults the model should account for the behavior of the SUT 

when receiving unexpected triggers. Such robustness behavior is not currently modeled 

and therefore, these 11 faults could not be caught by any test case generated from the 

model. The remaining 15 faults (detectable by the test cases generated from the model) are 

collected and 15 faulty versions of the code (mutant programs) are made by introducing 

one fault per program. The faults are due to both code and design level faults and belong to 

one of the following categories: wrong guards on transitions, wrong state invariant, 

missing transition, and wrong OnEntry action of states. The purpose was to study each real 

fault in isolation in order to avoid masking effects and compute fault detection scores. 

Since a test case stops executing after detecting the first failure, in a program with multiple 

faults we should either rerun test cases on the SUT after each bug fix, or isolate faults by 

seeding one fault per mutant program. We chose the latter case to avoid manual bug fixing 
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after each run. Our approach should not be confused with mutation testing which makes 

use of mutation operators to create faults and then seed them in the SUT one by one. In our 

approach, all faults were real faults, as described above. 

In the next step, the correct UML state machine is given to our test case generation tool 

[3] as an input model and executable test cases were automatically generated. Note that our 

selection technique is based on similarities between test paths (abstract test cases without 

test data). In general different faults can be detected by the same test path instantiated with 

different test data. Therefore, it is necessary to run the selected test paths with different 

input data and compare the FDR distribution of the test paths selected by different 

techniques. However, in our case study if a test path has the ability to detect a fault, it can 

be detected by any valid test data for that test path. Therefore, in our experiment, we have 

one test case per test path and the FDR of a test path is equal to the FDR of the 

corresponding test case.  

6.2 Experiment design 

To evaluate our selection technique we formulated the following four research questions: 

RQ1. Which similarity measure is more effective for UML state machine-

based test case selection, in terms of FDR? 

RQ2. To which extent is using a GA for test case selection more cost-effective 

(in terms of time spent to find a solution) compared to a Greedy search?  

RQ3. To which extent are similarity-based selection techniques more effective 

than coverage-based and random selection techniques? 

RQ4. In the context of MBT, what is the practical benefit of test case selection, 

on a representative industrial case study, when applying a GA using our 

similarity measure (Tb)?  

For the first three research questions, the input test suite is generated by TRUST using 

All-Transitions coverage and in RQ4 we will discuss about the effect of using other 

coverage criteria. The test suite is made of 281 test cases and can detect all 15 detectable 

faults. Among 281 test cases 207 cannot detect any faults and 74 catch at least one fault. 

The average number of detected faults per test case is 0.72 and the maximum is five. Each 

fault is also detected on average by 13 test cases. There are nine faults which are only 

detected by three test cases and two faults are detectable by 65 test cases. 

To capture the randomness of FDR results, which exists for all selection algorithms 

(even in Greedy search when it needs to select among test cases which have the same 
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similarity measure), we ran each experiment 100 times and report distribution statistics. 

We report the results of different techniques for sample sizes less than 140 (~50% of the 

test suite) with intervals of 10, since our focus is, for practical reasons, on smaller size 

subsets. This is due to the fact that in practice test case selection is mostly used for 

selecting a relatively small sample of the test suite. Furthermore, for large sample sizes all 

selection techniques will usually be as good as random selection which typically detects 

most faults. We have performed non-parametric (Mann-Whitney) statistical tests, with a 

significance level ߙ ൌ 0.05, to compare the FDR distributions of the proposed and 

alternative selection techniques. The Mann-Whitney U-test is more robust than a 

parametric test such as the t-test when there are strong departures from normality and a 

large enough sample of observations (in our case 100). In addition, we provide FDR means 

and medians over different runs.  

To compare effectiveness of different techniques, we use three measures based on FDR. 

These measures are complementary and help interpreting the FDR from different angles:  

 ௜ (a subset of size i selected by techniqueݏ ሺ݅ሻ୻ is the number of faults detected byߩ (1)

Γ from the test suite TS with size n) divided by the total number of detectable faults 

in TS (15 in our case). This measure is used in the paper wherever we want to 

simply report the FDR for a given technique and sample size. Since we run each 

test suite 100 times on faulty programs we report the FDR distributions as 

Boxplots.  

௠ܴܦܨܣ (2)
ఊ
ሺΓሻ. Enables the overall comparison of two selection techniques for a range 

of sample sizes.  ܴܦܨܣ௠
ఊ
ሺΓሻ, which is inspired by the APFD measure [11] for test 

case prioritization, is adapted to test case selection in our context. It is a measure 

for comparing curves and measures the sum of all ߩሺ݅ሻ୻ for all sample sizes in the 

given intervals and range (0 to m). More precisely, it is equal to the area under the 

curve representing ߩሺ݅ሻ୻ (y-axis) over different sample sizes (x-axis). Since sample 

size has discrete values, the area under the curve is calculated as:   

௠ܴܦܨܣ
ఊ ሺΓሻ ൌ

ሺ0ሻߩ ൅ ሺ݉ሻߩ
2

൅ ∑ ሺ݅ߩ ∗ ሻ୻ߛ
ቀ
௠
ఊ ቁିଵ

௜ୀଵ

݉
ߛ

 

where 0 ൑ ௠ܴܦܨܣ
ఊ ሺΓሻ ൑ 1. As we discussed, in this paper we report the result of 

sample sizes less than 140 (~50% of the test suite) with intervals of 10, therefore 

we always report ܴܦܨܣଵସ଴
ଵ଴ ሺΓሻ.    
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(3) min୩ሺΓሻ is the minimum number of test cases from the given test suite TS that are 

selected by technique Γ to detect at least ݇% of the detectable faults. This measure 

is more useful, from a practical standpoint, when selection techniques are compared 

with respect to their reduction in cost while ensuring a given fault detection rate. 

To compare the cost of GA and Greedy, the execution time spent by the algorithms to 

select a subset is used as cost measure. The experiments has been conducted on a PC with 

Intel Core(TM)2 Duo CPU 2.40 Hz and 4 GB memory running Windows 7.  

6.3 Experiment results 

In the following subsections, we investigate each of the research questions stated above. 

6.3.1 Which similarity measure is more effective for UML State Machine-based test case 
selection, in terms of FDR? 

Since there is no reported similarity-based selection measure for UML state machines, we 

need to tailor results from the most similar studies to obtain a baseline of comparisons. Sb 

by Ledru et al. in [9] and It by Cartaxo et al. in [7] are two potential similarity functions 

that we can adapt and apply on UML state machine-based test paths.  

The measure It was straightforward to apply in our case, using the representation of our 

test paths from Section 5. We identify each transition uniquely, by a string composed of its 

source state, trigger, guard, and target state. States are identified by their name, triggers by 

the name of the operation or signal reception, and guards by their constraint. This means 

that transitions can be considered identical only if the entire string is the same. Since Sb is 

a general purpose function (it applies to the text of test scripts), it requires some 

modifications to be useful for our case. This was necessary since our executable test scripts 

are long and contain significant platform dependant information. Therefore, comparing 

such test scripts as strings results in useless similarity measures which are significantly 

blurred by irrelevant information. But we nevertheless decided to implement our adjusted 

version of Sb for strings using abstract test scripts, which in our case are the test paths 

defined in Section 5. Therefore, all elements of the test paths (states, triggers, and guards) 

constitute the alphabet of the strings to be compared. We then applied Levenshtein distance 

with standard parameters (1 for match and 0 for mismatch and gap) [30] on these strings. 

We denote this technique as modified Sb (Ms). The main difference between Ms and It is 

the fact that Ms accounts for orders of states and triggers (with or without guards) in the 

paths, whereas It only looks at the number of common transitions. We also have introduced 

yet another measure using only state similarities, Identical State Similarity (Is), which is 
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equal to the number of identical states in two test paths divided by their average number of 

states. This measure is at the same level of detail as It but targeting different state-related 

faults.  

We compare Ms, Is, and Tb with It as it is the only directly applicable solution from the 

literature for our models. We use a Greedy search since this is the technique used with It in 

the original study [7]. In short, for all similarity measures, our implementation of 

similarity-based Greedy search is exactly the same as in [7] and works as follows: In each 

step, the algorithm finds the most similar pair of test cases and removes the one which has 

less number of transitions from the test suite. This will continue till the number of 

remaining test paths in the test suite becomes equal to the required sample size. Removing 

the shorter test path in the selected pair actually aims to keep transition coverage as high as 

possible, while diversifying the subset. In cases where there is more than one pair with 

maximum similarity value, one of them is randomly chosen.  

Figure 1 and Figure 2 show the FDR means of the Greedy search using Tb, Is, Ms, and 

It (ߩሺ݅ሻ்௕ୋ୰, ߩሺ݅ሻூ௦ୋ୰, ߩሺ݅ሻெ௦ୋ୰, and ߩሺ݅ሻூ௧ୋ୰) after running the algorithms 100 times for 

sample sizes less than 140 (~50% of the test suite). In addition, Table 1 summarizes means 

and medians of ρሺiሻ for these techniques and reports the Mann-Whitney U-test results 

highlighting cells in gray shade when there is a statistical difference between the selected 

comparison techniques and our proposed similarity measure Tb. 

The results show that Tb and Is have the highest and lowest fault detection rates, 

respectively. The reason that Is is by far worse than the others can be explained by the fact  

 

Figure 1 The average FDR of TbGr, ItGr, MsGr, IsGr for different sample sizes 
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Table 1 RQ1: The median and mean FDRs per sample size (10 to 100 by intervals of 10) over 100 runs 
and the Mann-Whitney U-test results  (significant differences on medians with TbGr highlighted as gray 

cells) for different measures using Greedy search  

Selection 
technique 

FDRs per sample  size 
10 20 30 40 50 60 70 80 90 100 

TbGr median 0.4 0.57 0.93 1 1 1 1 1 1 1
mean 0.41 0.57 0.90 0.97 0.97 0.97 0.98 1 1 1

ItGr median 0.33 0.53 0.6 0.6 0.5 0.8 0.8 0.8 1 1
mean 0.33 0.53 0.62 0.65 0.63 0.70 0.79 0.87 0.95 1

IsGr median 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
mean 0.29 0.42 0.43 0.43 0.44 0.44 0.44 0.45 0.44 0.44

MsGr 
median 0.13 0.4 0.4 0.6 0.6 0.6 0.8 1 1 1

mean 0.18 0.35 0.5 0.53 0.57 0.6 0.77 0.99 1 1 

 
 
 
Table 2 RQ2-3: The median and mean FDRs per sample size (10 to 100 by intervals of 10) over 100 

runs and the Mann-Whitney U-test results (significant differences on medians with TbGa(175ms) 
highlighted as gray cells) for different selection techniques 

Selection 
technique 

FDR per sample  size 

10 20 30 40 50 60 70 80 90 100 
TbGa 
175ms 

median 0.53 0.93 0.93 1 1 1 1 1 1 1 
mean 0.56 0.83 0.92 0.96 0.97 0.97 0.99 0.98 0.98 0.98 

TbGa 
1000ms 

median 0.53 0.9 0.93 0.93 0.93 1 1 1 1 1 
mean 0.55 0.82 0.94 0.95 0.95 0.97 0.99 1 1 1 

TbGr median 0.4 0.57 0.93 1 1 1 1 1 1 1 
mean 0.41 0.57 0.90 0.97 0.97 0.97 0.98 1 1 1 

ItGr median 0.33 0.53 0.6 0.6 0.5 0.8 0.8 0.8 1 1 
mean 0.33 0.53 0.62 0.65 0.63 0.70 0.79 0.87 0.95 1 

CvGr median 0.4 0.53 0.6 0.6 0.6 0.8 0.8 0.8 0.8 0.8 
mean 0.37 0.52 0.63 0.67 0.69 0.77 0.77 0.81 0.85 0.86 

Rnd median 0.27 0.37 0.5 0.6 0.6 0.6 0.8 0.8 0.8 0.8 
mean 0.28 0.38 0.5 0.57 0.61 0.65 0.76 0.76 0.8 0.84 

 
 

that there are normally several transitions per state and Is simply ignores differences 

between them as far as they have the same source or target states. The results also show 

that It is more effective than Sb for smaller sample sizes. This means that even when string 

similarity measures (e.g., Levenshtein) use detailed path information (e.g., the order of 

states and triggers), it may not be effective without careful tuning (e.g., gap and mismatch) 

and therefore makes such an approach less practical.  

Since It is more effective than Ms and Is, we now take it as a baseline of comparison 

with our proposal Tb. As it is shown in Figure 1, Figure 2, and Table 1, for sample sizes 

less than 90 (~32% of the test suite) ߩሺ݅ሻ்௕ୋ୰ is always higher than ߩሺ݅ሻூ௧ୋ୰ and after 90 

both techniques find all faults. This difference between Tb and It goes up to 35% (sample 

size 50) and is also shown to be statistically significant. An overall comparison of the two 

curves also shows the improvement brought by Tb (ܴܦܨܣଵସ଴
ଵ଴ ሺܾܶݎܩሻ ≅ 0.88 vs. 
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ଵସ଴ܴܦܨܣ
ଵ଴ ሺݎܩݐܫሻ ≅ 0.76). This shows that in practice, our case study suggests it is likely 

better to use Tb than It. TbGr is also very effective with respect to finding most faults with 

fewer test cases: minଽହሺܾܶሻ ≅ 35 ≅ ሺ12% of the test suiteሻ vs. minଽହሺݐܫሻ ≅ 90 ≅ 

(~32% of the test suite). Although on average Tb is always more effective than It, looking 

at Figure 2 suggests that both techniques show a large variance for smaller sample sizes. In 

practice, this means that in the worst case, selecting a subset of test cases can lead to a very 

low fault detection. In the next section we show how using GAs can help increase our 

confidence in Tb by decreasing its variance. 

 

 

 
 
 
 

 
 
 

 

Figure 2 FDR (y-axis) Boxplots for different selection techniques (x-axis) for sample sizes ranging 
from 10 to 110 by intervals of 20 over 100. The Boxplots show the 10th, 25th, 50th, 75th, and 90th 

percentiles and means 
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6.3.2 To which extent is using a GA for test case selection more cost-effective (in terms 
of time spent to find a solution) compared to a Greedy search? 

Before discussing about the cost-effectiveness analysis between GAs and Greedy search, it 

is worth mentioning that using an exhaustive search in our case (and for most realistic 

cases) is not an option, since the search space size for selecting a subset of size n is equal 

to the number of  possible n-combinations within a test suite of a given size. In our case, as 

an example, the search space size for n=28 (~10% of the test suite) is ቀ281
28

ቁ ≅2.9*10^38. 

For a given sample size and a selection technique (here a GA vs. a Greedy both using 

the Tb similarity measure), our effectiveness measure is the FDR of the selected test cases 

and the cost  is measured in execution time since this drives the applicability of a test 

strategy as discussed in Section 1. Running Greedy search 100 times for sample sizes from 

10 to 140 showed that it needs 175ms on average for each selection. Therefore, we set the 

GA stopping criterion to 175ms to compare their FDR using constant execution time. Next, 

we will increase execution time to a significantly larger but yet practical number (1000ms) 

and investigate how much more effective the GA can be. Note that Greedy search cannot 

be improved even if one can afford running it for a longer period of time as opposed to the 

GA which can potentially be improved within practical bounds.  

Using our proposed similarity measure Tb, we investigate the extent to which a GA can 

improve FDR compared to using Greedy search. Using execution times of 175ms (as for 

Greedy search), Figure 2 and Figure 3 show FDR distributions for the GA and Greedy 

search using Tb (ߩሺ݅ሻ்௕ୋୟ and ߩሺ݅ሻ்௕ீ௥) while running the algorithms 100 times for each 

sample size from 10 to 140 (~50% of the test suite). Greedy always shows a lower FDR 

(Table 2 shows that the differences are statistically significant) than the GA for sample 

sizes less than 75 (~27% of the test suite), with a maximum difference of ~30% (sample 

size 25). In practice, for large test suites, this is probably the most important part of the 

sample size range. For larger sample sizes, an execution tie of 175ms does not seem to be 

enough for the GA to be as effective as Greedy search. The main reason is that for larger 

sample size the GA takes a great deal of time to generate an initial population with unique 

test paths and does not have enough time to generate many subsequent populations. Still 

for the overall sample size range the GA is more effective: ܴܦܨܣଵସ଴
ଵ଴ ሺܾܶݎܩሻ ≅ 0.88 vs. 

ଵସ଴ܴܦܨܣ
ଵ଴ ሺܾܶܽܩሻ ≅ 0.90. To find 95% of the faults both techniques need the same number 

of test cases: minଽହሺܾܶܽܩሻ ൌ minଽହሺܾܶݎܩሻ ≅ 35. However, the FDR variance for 

Greedy search is significantly higher than that for the GA (Figure 2), especially for sample 



 

 
93 

 

sizes less than 50 (~ 18% of the test suite).  This means that although both techniques, on 

average, can find 95% of the faults with 35 test cases, the GA entails less risk. In practice, 

people need to be confident in the results of a technique to use it. They cannot rely on 

chance. One selects only one subset, and no one wants to incur the risk (no matter how low 

the probability) of missing most of the faults.    

The increase in execution time for the GA’s stopping criterion shows that on average 

there is no practically significant FDR improvement (ܴܦܨܣଵସ଴
ଵ଴ ሺܶீܵܤ஺ሻ ≅ 0.90 for both 

175ms and 1sec execution times). In this case, running the GA for longer execution times 

does not seem to produce significantly better results. An explanation could be within 

175ms the GA finds a (near-)optimal solution in our case. However, increasing execution 

time helps decrease the FDR variance and therefore decreases the risk involved in test 

selection. Another point is that the GA needs less time for smaller sample sizes. Therefore, 

the GA running 175ms starts to perform slightly worse than the GA running 1000ms for 

subsets larger than 70 (~25% of the test suite), as illustrated in Figure 2 (sample sizes>70).   

6.3.3 To which extent are similarity-based selection techniques more effective than 
coverage-based and random selection techniques? 

In this research question, we are interested in the improvement that similarity-based 

techniques can provide for model-based test case selection when compared to simpler 

alternatives. We compare our proposal (TbGa) with three different techniques: (1) Random 

selection (RnD) as a baseline of comparison for any type of (meta)heuristic search, (2) 

Additional coverage Greedy selection [10, 11] (CvGr), and (3) ItGr as the state of the art 

 

Figure 3 The average FDR of TbGr and TbGa(175ms) for different sample sizes 
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for similarity-based techniques. We also have experimented with using a GA for coverage-

based selection as it is defined in [12, 19]. The results show that CvGr outperforms the 

GA-coverage-based technique in our case study, as visible in Figure 2. Therefore, we 

compare with CvGr in this section. 

All techniques are spending almost the same execution time for selection (on average less 

than 200 ms). Figure 2 and Figure 4 show FDR for the different techniques (ߩሺ݅ሻ்௕ୋୟ, 

 ሺ݅ሻୖ୬ୢ) when running the algorithms 100 times for each sample sizeߩ ,ሺ݅ሻ஼௩ீ௥ߩ ,ሺ݅ሻூ௧ୋ୰ߩ

from 10 to 140. Based on Table 2, for all sample sizes, TbGa(175ms) is significantly more 

effective than the others. 

As we can see that, on average, the FDR of TbGa is significantly higher than that for 

Rnd and CvGr for all sample sizes, with maximum differences of 35% (Rnd) and 30% 

(CvGr). The comparison over the entire sample size range also confirms this observation: 

ଵସ଴ܴܦܨܣ
ଵ଴ ሺܴ݊݀ሻ ≅ ଵସ଴ܴܦܨܣ ,0.66

ଵ଴ ሺݎܩݒܥሻ ≅ 0.72 and ܴܦܨܣଵସ଴
ଵ଴ ሺܾܶܽܩሻ ≅ 0.90. The next 

best technique, both in terms of ߩሺ݅ሻ and ܴܦܨܣ௠
ଵ଴, is ItGr, which shows that again a 

similarity-based technique outperforms the coverage-based and random selection. TbGa is 

also very effective in finding more faults with less number of test cases. For example, 

TbGa (175ms) can find 95% of the faults with only 35 test cases (minଽହሺܾܶܽܩሻ ≅ 35) 

where both coverage-based and random selection techniques cannot find 95% of the faults, 

even when using 140 test cases. Another observation is that coverage-based techniques are 

not much more effective than random selection. 

6.3.4 In the context of MBT, what is the practical benefit of test case selection, on a 
representative industrial case study, when applying TbGa?  

In this subsection, we look at a broader question which is about the usefulness of test case 

selection for reducing the size of the test suite generated by MBT tools, which is the main 

motivation for this study. We will answer RQ4 by answering two sub- questions:  

RQ4.1. Are test selection techniques more effective than using stricter 

coverage criteria?  

RQ4.2. How effective is test selection in reducing the cost of testing in MBT? 

As we discussed in Section 2, using a stricter criterion (for example using all-transitions 

instead of all-transition-pairs) is an alternative to selection techniques. If after using the 

least demanding criterion (e.g., all-transitions), the test suite is still too large, then using 

criteria such as all-length-N, where N is the maximum test path length can be used. Here 

we compare these alternatives with using a similarity-based selection technique. In our 



 

 
95 

 

case, N=3 results in around 150 test cases and N=2 yields 27 test cases. Since TbGa (1sec) 

shows on average a 100% FDR with 75 test cases, then a test suite of 150 is obviously 

suboptimal. Comparing the result of length-2 with TbGa(175ms) yields ߩሺ27ሻ்௕ீ௔ ≅ 0.90 

whereas ߩሺ27ሻ௟௘௡௚௧௛_ଶ ≅ 0.34. This result confirms our claim that stricter criteria cannot 

be a replacement for test selection techniques. 

With respect to RQ 4.2, we are looking at the reduction of cost that a selection 

technique like TbGa can provide for a MBT testing strategy. In our case the original test 

suite contains 281 test cases. For a one-second execution time, minଵ଴଴ሺܾܶܽܩሻ ≅ 75 

meaning that 75 test cases are as effective (same FDR) as the entire test suite (281 test 

cases), entailing a 73% reduction in cost. As we discussed earlier, in distributed and 

embedded software systems (as our case study system), where test execution cost can be 

very significant, this 73% reduction is of practical importance.  

6.3.5 Discussion on validity threats 

In this subsection we discuss the potential threats to the validity of the study using the 

framework discussed in [31] about conducting empirical studies for search-based testing.  

Construct validity: For measuring test execution cost, we used the actual time spent by 

different algorithms and running all algorithms on the same machine. Our effectiveness 

measure (FDR) is based on a set of real faults, as explained earlier, that we used to create 

mutant programs.  

 

Figure 4 The average FDR of Rnd, CvGr, ItGr, TbGa(175ms), for different sample sizes 
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Internal validity: We implemented both Greedy algorithm and the GA and strived to 

achieve the same level of optimization. The GA parameter tuning may have positive effect 

on its performance (which we have not systematically carried out) but Greedy does not 

have any influential parameter. This means that GA could possibly work better with some 

fine tuning. However, that would compromise the applicability of the approach as tuning 

can be time consuming and difficult. Regarding our implementation of It, since we had to 

adapt its definition to our context (UML state machine and the encoding and representation 

of test paths), it might be a potential threat and one could argue that it is possible to more 

effectively implement it.  

Conclusion validity: Hundred independent runs were performed to account for random 

variation and obtain a sufficient number of observations to report means, medians, and 

standard deviations. We used the Mann-Whitney U-test for independent samples to check 

the statistical differences in FDR across selection techniques, but only reported the latter 

here for reasons explained earlier. We also discussed about practical significance by 

looking at the magnitude of the differences between FDR and cost of different techniques.   

External validity: Our results rely on one industrial case study using a given set of real 

faults. Though running such studies is very time consuming, it is obviously required to 

replicate it as many times as possible. However, as discussed earlier, the system used here 

is typical of a broad category of industrial systems: control systems with state-dependent 

behavior, controlling sensors and actuators.  

7 Conclusions and Future Work 

In this paper, we introduced a new technique for selecting test cases in the context of 

Model-Based Testing (MBT), more specifically UML state machine-based testing.  Our 

motivation is to make MBT scalable in situations where executing test cases satisfying a 

coverage criterion (e.g., all transitions) is too expensive, such as when there is hardware in 

the loop, interacting external systems, or test case executions are lengthy.  

We propose a new similarity-based test case selection technique, which contains a 

similarity measure based on UML state machines’ triggers and guards on the transitions. It 

uses a Genetic Algorithm (GA) as a selection mechanism in order to minimize similarity 

among test cases. The GA uses parameter settings recommended by studies in the literature 

and is therefore easy to apply. Our results, based on an industrial case study of a safety 

controller, showed that our approach yields significantly better results than other 
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alternatives such as random, coverage-based, and other existing similarity-based selection 

techniques. We also have shown that our technique can significantly reduce the cost of test 

case execution in MBT by selecting 27% of the test suite to be executed, while retaining a 

100% fault detection rate. In the future, we plan to have a more exhaustive investigation of 

other possible similarity measures and selection techniques. We will also investigate 

hybrid techniques which use both coverage and similarity measures, for example using a 

multi-objective GA. We will also conduct additional studies on other industrial systems to 

replicate the current study. 
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Abstract— Applying model-based testing (MBT) in practice requires practical solutions 

for scaling up to large industrial systems. One challenge that we have faced while applying 

MBT was the generation of test suites that were too large to be practical, even for simple 

coverage criteria. The goal of test case selection techniques is to select a subset of the 

generated test suite that satisfies resource constraints while yielding a maximum fault 

detection rate. One interesting heuristic is to choose the most diverse test cases based on a 

pre-defined similarity measure. In this paper, we investigate and compare possible 

similarity functions to support similarity-based test selection in the context of state 

machine testing, which is the most common form of MBT. We apply the proposed 

similarity measures and a selection strategy based on genetic algorithms to an industrial 

software system. We compare their fault detection rate based on actual faults. The results 

show that applying Jaccard Index on test cases represented as a set of trigger-guards is the 

most cost-effective similarity measure. We also discuss the overall benefits of our test 

selection approach in terms of test execution savings. 

1 Introduction 

In recent years the software industry has shown increasing interest in automating the 

process of test case generation using models of the system under test. The main idea 

behind model-based testing (MBT) is to generate executable test cases (including oracles) 

by systematically traversing system models (e.g., represented as UML state machines) 

based on test strategies usually involving some form of coverage criterion that aims to 

cover certain features of the model (e.g., all transitions in state machine-based testing 

(SMBT)) [1]. MBT tools are becoming increasingly sophisticated and robust and MBT is 

becoming the best test automation solution for many practitioners. However, there are still 

many unsolved issues regarding how to scale up MBT to large industrial software systems. 
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Our experience has shown that in many practical contexts even simple coverage criteria 

yield far too many test cases to be usable.  

In general, system test case execution can be very costly in most embedded and 

distributed systems when there is hardware in the loop or test execution requires access to 

dedicated test infrastructures or no automated oracle is available. Testing such systems 

requires, for example, assigning enough resources (e.g., actual physical devices) to the test 

case, properly handling acceptable delays in the system execution and the network 

communication, and manually analyzing the results when there is no automated oracles. 

This can be a major hindrance for making MBT practical, especially in the context of 

system testing when release deadlines are close and the project is already often behind 

schedule. 

Test case selection is used to reduce test suite sizes to what can be handled in a specific 

context while retaining the largest possible fault revealing power. In general, regardless of 

the heuristic used, this test case selection problem is NP hard (traditional set cover) [2]. 

Other than random selection, where there is no guidance to select test cases, there have 

been two main types of test case selection heuristics proposed in the literature. In 

coverage-based selection [3], the underlying hypothesis is that “the test suites which 

achieve more coverage (of model or code) are more likely to detect faults”. In similarity-

based test case selections (STCS) [4], the underlying hypothesis is that “the more diverse 

the test suites the higher their fault revealing power”. To use this latter approach one needs 

a (dis)similarity measure to calculate the diversity of a subset by averaging all pair-wise 

similarity values. After defining a similarity measure, a selection algorithm is required to 

choose a set of test cases with the minimum pair-wise similarity among its members. In 

[5], we introduced a new STCS technique for SMBT, which includes a new similarity 

measure using triggers and guards on transitions of state machines and a genetic algorithm 

(GA)-based selection algorithm. Applying this technique on an industrial case study, we 

showed that STCS in general and more specifically our proposed approach is by far more 

effective at detecting real faults than coverage-based and random selection.  

In this paper, we take a deeper look into the effect of similarity measures in test case 

selection by distinguishing the test case representation (encoding) from the similarity 

function as two distinct parameters of a similarity measure. A comprehensive investigation 

of different similarity functions is performed through an industrial empirical study where 

the software under test (SUT) is a safety controller system which is modeled using UML 

state machines and test cases are generated using our MBT tool (TRUST) [1]. The case 
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study, although modest compared to other industrial systems, is much larger both in terms 

of models and number of generated test cases, than what is reported in related works. 

Moreover, the faults we use are real (no seeded faults) thus significantly increasing the 

level of realism. The results show that choosing a proper similarity measure has a very 

significant effect on fault detection. The best similarity measure results in increasing the 

fault detection rate (FDR) by 50% when compared to the best alternative, coverage-based 

selection in this case, for small sample sizes (~10% of the test suite). In addition, our 

approach for test case selection reduces significantly the cost of MBT by reducing the 

number of test executions. For example, to achieve a FDR higher than 90%, we only need 

to execute 20 test cases selected with our approach, whereas other alternatives select at 

least 85 test cases to achieve the same FDR. Our approach therefore entails a 77% saving 

in execution cost.  

The rest of the paper is organized as follows. Section 2 reports on background 

information about test case selection. Section 3 discusses on different similarity functions 

which are used in this study. Section 4 provides a brief overview of related works covering 

STCS techniques. Section 5 reports the experimentation results of applying different STCS 

techniques on an industrial case study. Section 6 concludes the paper and outlines our 

future work plan. 

2 Test Case Selection 

In general, there are two options for decreasing the number of test case executions. The 

first is generating fewer test cases which in the context of MBT means using a less 

demanding coverage criterion. For instance, if using all transition-pairs [6] generates a too 

large test suite, the all-transitions [6] criterion can be adopted instead to decrease the 

number of test cases. This still results in systematic testing but may reduce the FDR. The 

second approach is to select a subset of test cases from the test suite for execution. This can 

be done either by test suite reduction where the goal is to minimize the test suite by 

removing redundant test cases with respect to a criterion (e.g., code coverage) or by test 

case selection where the goal is to select a subset of the entire test suite that maximizes 

fault detection based on a heuristic, given a maximum number of test cases. Using a less 

demanding coverage criterion or test suite reduction is often impractical as one cannot 

precisely select a maximum number of test cases. Furthermore, we have shown in [5] that 

even when the scale of reduction achieved by using less demanding criteria is acceptable, it 
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is still much less cost-effective than a STCS. Test case prioritization, which does not 

remove any test case but order their execution [7], could also be considered but does not 

directly address our problem, though some of the underlying ideas could be adapted. For 

example, as we will see in the related work section, most similarity measures that are used 

in similarity-based test case prioritization can be used in test case selection as well. In this 

study, the focus is on test case selection.  

The problem of test case selection in our context can be formalized as: “Given a test 

suite TS that detects a set of faults (F) in the system, our goal is to maximize FD(sn), where 

sn is a subset of TS of size n and FD(sn) is the percentage of F which is detected by sn”. We 

can classify test case selection techniques as follows: (1) those which make use of test 

execution information as it is usually the case in regression testing and (2) those which 

select test cases solely based upon the characteristics of the (abstract) test cases. The latter 

category is the one of interest in our context where the test suite cannot be executed before 

selection. Therefore, execution-based heuristics such as execution traces (e.g. call stack 

[8]) are not applicable here. 

2.1 Coverage-based test case selection  

Maximizing coverage has been a common practice in selection and prioritization for years. 

Most studies in test case selection (even those which are general purpose and not specific 

to regression testing) are based on code-level information (e.g., additional statement 

coverage[7]) and cannot directly be applied to MBT. However, it is possible to extract 

additional information from test cases to help the selection even without executing it. For 

example, transition coverage in a state machine can be determined if traceability has been 

preserved between a test case and its source state machine. Most coverage-based selection 

techniques are re-expressed into optimization problems where the goal is to select the best 

subset of test cases to achieve full coverage. For example, a technique in [7] uses a Greedy 

search to select, at every step, the test case that covers the most uncovered statements 

(additional coverage-based technique) whereas in [9] a GA is used to achieve maximum 

coverage.  

2.2 Similarity-based test case selection  

In STCS techniques, a (dis)similarity measure is used for comparing similarity (diversity) 

between a pair of test cases. A similarity measure is the value that a similarity function 

assigns to two inputs which are being compared. Inputs are usually encoded as a set or 

sequence of elements. In the context of MBT, the inputs are abstract test cases instead of 
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concrete test cases. We do not need the execution information of the test case and abstract 

test cases are naturally generated as a first step by MBT. Therefore, we reduce the cost of 

test case generation by only generating executable test cases for the selected abstract test 

cases and also by hiding the unnecessary information for similarity comparisons. For 

example, in SMBT an abstract test case representation can be a path in the state machine 

specifying the SUT. In general, different faults can be detected by the same test path 

instantiated with different test data. Therefore, to compare different techniques, it is 

necessary to run the selected test paths with different input data and use their FDR 

distribution. 

Representation (encoding) of the test cases has an important effect on the similarity 

measure. Though in state-based testing a test path represents an encoded abstract test case, 

the test path can be described at different levels of details. We consider three possible 

encodings for a test path in UML state machine: state-based, transition-based, and trigger-

guard-based:  

 

1. state-based:             <tp> ::= state | state “,” <tp> 

2. transition-based:        <tp> ::= trans | trans “,” <tp> 

3. trigger-guard-based:  <tp> ::= <TrGu> | <TrGu> “,” <tp> 

< TrGu > ::= trig |guard | id | guard “+” trig  

 

where state is the id of a state, trans the id of a transition, trig the id of a trigger, and 

guard the id of a guard in the state machine. In the case of trigger-guard-based encoding, a 

transition is identified by its trigger and guard. It can be only a trigger, or a guard or both 

together. If there is a transition with no guard and trigger, we use the transition id as its 

identifier. Note that the difference between trigger-guard-based and transition-based 

encoding is that in trigger-guard-based encoding transitions with the same trigger-guard 

but different source or target state are identical. 

Given an encoding, one may use different similarity functions to calculate the similarity 

value. Similarity is usually defined on either two sets or two sequences of elements. The 

main difference is that set-based similarity measures as opposed to sequence-based ones do 

not take the order of elements into account. For example, if test case 1 includes method 

calls A and B and test case 2 includes method calls B and A, respectively, and method calls 

are the only encoded elements in the test path, set-based similarity functions assume these 

two test cases as identical. In the next section, the functions which are used in our study are 
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introduced. In this paper, we take the best encoding from our previous study [5] and 

investigate the effect of different similarity functions on the FDR of the selected test cases. 

Given a set of encoded test cases (ݏ௡) and a similarity function (ܵ݅݉ܿ݊ݑܨ), the test case 

selection problem is reformulated as minimizing ܵ݅݉ݎݏܯሺݏ௡ሻ: 

 

௡ሻݏሺݎݏܯ݉݅ܵ ൌ ෍ , ௜݌ݐሺܿ݊ݑܨ݉݅ܵ ௝ሻ݌ݐ

௧௣೔ , ௧௣ೕ∈௦೙ ∧ ௜வ௝

 

 

Where ܵ݅݉ܿ݊ݑܨ (݌ݐ௜ , ݌ݐ௝) returns the similarity of two test paths (or other encoded 

abstract test cases in MBT) in ݏ௡ represented by ݌ݐ௜  and ݌ݐ௝. The last step in STCS is 

applying a selection algorithm which selects a subset of test cases with minimum average 

pair-wise similarity (ܵ݅݉ݎݏܯ). Our experience in [5] showed that using a GA is more cost-

effective than a Greedy search which is common in the STCS literature [4]. Therefore, in 

this study we use a GA as our selection mechanism. GAs rely on four basic features: 

population, selection, crossover and mutation. More than one solution is considered at the 

same time (population). At each generation (i.e., at each step of the algorithm), some good 

solutions in the current population are chosen by the selection mechanism to generate 

offspring using the crossover operator. This operator combines parts of the chromosomes 

(i.e., the solution representation) of the offspring with a certain probability; otherwise it 

just produces copies of the parents. These new offspring solutions will be part of the 

population of the next generation. The mutation operator is applied to make small changes 

in the chromosomes of the offspring. Eventually, after a number of generations, an 

individual that solves the addressed problem will be evolved. We use a steady state GA 

where an individual (i.e., a solution to the problem) is ݏ௡ (subset of TS with size n). 

SimFunc(݌ݐ௜ , ݌ݐ௝) is the fitness function to be minimized. A mutated test path is replaced 

by a test path that is selected at random from the set of all possible test paths. We do not 

tune our GA parameters and use what is suggested in the literature (e.g. [10])—a high 

crossover probability (0.75) and low mutation probability (inversely proportional to the 

population size) and a reasonable sample size (50). The stopping criterion used in this 

study is stopping after a fixed period of time (175ms), which is 10 times more than the 

amount of time that a basic Greedy search would take on average in our case study. 

Though the GA is more costly than the Greedy, the GA is still a better option since 175ms 

is negligible compared to the execution time of a test case and no improvement can be 
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obtained with Greedy even if we let the algorithm search for longer periods of time (e.g., 

175ms). 

3 Similarity Function 

As we mentioned in Section 2.2, common similarity functions are either set-based or 

sequence-based. In this study, we compare measures which have been used in the 

similarity-based selection or prioritization literature (Counting, Hamming, Jaccard, and 

Levenshtein functions) and  measures (Global and Local alignments) which have not been 

used in software testing but are commonly used in other disciplines (such as 

bioinformatics) for similarity comparisons. 

3.1 Set-based similarity functions 

The main two measures in this category are the Jaccard Index [11] and the Hamming 

Distance function [12]. However, we also compare another measure (we call it Counting 

function) which is used in the only other reported study about STCS in MBT [4].  

3.1.1 Counting function 

The Counting function (Cnt) is the simplest way of comparing two sets which we have 

reused from the measure used in [4] for comparing two sets of transitions. Given two sets 

S1 and S2, Cnt(S1, S2) = number of identical members in S1 and S2 divided by the average 

number of members in S1 and S2. 

3.1.2 Hamming Distance 

Hamming Distance is one of the most used distance functions in the literature which is a 

basic edit-distance. The edit-distance between two sequences is defined as the minimum 

number of edit operations –insertions, deletions, and substitutions– needed to transform the 

first sequence into the second [12-14]. Hamming is only applicable on identical length 

inputs and is equal to the number of substitutions required in one input to become the 

second one [12]. If all inputs are originally of identical length, the function can be used as 

a sequence-based measure. However, in most applications, inputs have different lengths. 

Therefore, to force them to have an identical length, a binary vector is made per input that 

indicates which elements from the set of all possible elements of the encoding exist in the 

input. As a result, the function does not preserve the original order of elements in the input 

anymore and it becomes a set-based similarity function. In our case, to use Hamming 

Distance, each encoded test case is represented as a binary vector of length n, where n is 
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the number of all possible elements for that encoding (e.g., n is the number of all states, if 

state-based encoding is used). A bit in the vector is true only if the encoded test case 

contains the corresponding element (e.g., the state in the above example). We also need to 

change distance into similarity in our study. Therefore, our version of the Hamming 

function (denoted Ham) counts identical bits in the two input vectors, as opposed to the 

standard Hamming Distance where differences are counted.  

3.1.3 Jaccard Index 

Jaccard Index or Jaccard similarity coefficient (denoted Jac) is defined to compare 

similarity of sample sets [11]. It is defined as the size of the intersection divided by the size 

of the union of the sample sets: 

,ܣሺܿܽܬ ሻܤ ൌ
ܣ| ∩ |ܤ

ܣ| ∪ |ܤ
 

3.2 Sequence-based similarity functions 

Sequence similarity is usually applied on string matching in text mining [14] and 

homologous pattern recognition in bioinformatics [13]. Here we are using basic edit 

distance (Levenshtein) from text mining and global and local alignment from 

bioinformatics. 

3.2.1 Levenshtein 

One of the the most well-known algorithms implementing edit-distance which is not 

limited to identical length sequences is Levenshtein [14] where each mismatch 

(substitutions) or gap (insertion/deletion) increases the distance by one unit. To change 

distances into similarities, we need to reward each match and penalize each mismatch and 

gap. The dynamic programming [15] implementation of the algorithms in addition to 

examples can be found in [14]. The relative scores assigned to matches, mismatches, and 

gaps can be different (operation weight). Moreover, in some versions of the algorithm 

there are different match scores based on the type of matches (alphabet weight). Here we 

use a basic setting for the function (denoted Lev) where matches are rewarded by one point 

and mismatch and gap are treated the same by giving no reward.  

3.2.2 Global and local sequence alignments 

An alignment of two sequences is a mapping between positions in them [13]. In local 

alignment the goal is finding the best alignment for sub-sequences of given sequences 

while in global alignment the entire sequences must be aligned. The most basic global and 
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local alignment algorithms are respectively Needleman-Wunsch (NW) [13] and Smith-

Waterman (SW) [13]. The dynamic programming implementation of the algorithms, along 

with examples, can be found in [13]. The scoring matrix F for Needleman–Wunsch 

alignment is defined as: 

F[0][ ݆] = - ݆ * ݀, F[݅][0] = - ݅ * ݀ 

F[݅][ ݆]=maxቐ
Fሾ݅ െ 1ሿሾ݆ െ 1ሿ ൅ sim൫ݔ௜, ,௝൯ݕ

Fሾ݅ െ 1ሿሾ݆ሿ െ ݀,

Fሾ݅ሿሾ݆ െ 1ሿ െ ݀.

 

 

Where the sim൫ݔ௜,  ௝൯ returns the match/mismatch scores between the ith member of xݕ

and the jth member of y, and ݀ is the gap penalty. The similarity between the two 

sequences is F[n][m] where n and m are the lengths of the input sequences. The scoring 

matrix F for SW alignment is defined in a similar way as in the NW scoring matrix but 

with a small change: 

F[0][ ݆] = - ݆ * ݀, F[݅][0] = - ݅ * ݀ 

F[݅][ ݆]=max

ە
۔

ۓ
Fሾ݅ െ 1ሿሾ݆ െ 1ሿ ൅ sim൫ݔ௜, ,௝൯ݕ

Fሾ݅ െ 1ሿሾ݆ሿ െ ݀,

Fሾ݅ሿሾ݆ െ 1ሿ െ ݀,
0

 

 

Having zero as one option in the max function results in having only positive values. In 

this approach, the similarity value is the highest F[i][j] which identifies the longest most 

similar subsequence between input sequences as well. Note that each alignment technique 

uses a similarity function to align the input sequences. The NW alignment algorithm 

actually uses the Levenshtein similarity function but with different weightings for match, 

mismatch and gap. In this study, we use Levenshtein with match score +3, mismatch -2, 

and a gap penalty of 1 as the similarity function for global alignment (denoted Glb). The 

same settings are used for local alignment as well (denoted Loc). These parameters were 

selected based on the result of a small tuning experiment that we have applied for different 

parameter settings of Glb and Loc but not reported here due to space restrictions. The fact 

that we only tune the parameters of Glb and Loc does not introduce any bias in the results 

since Cnt, Ham, Jac, and Lev do not have parameters to be set. However, the need for 

tuning is an impediment since it might be time consuming and not easy in practice. Note 

that in the case of Lev, we assume the basic Levenshtein definition (with fix parameters as 

+1 for match and zero for mismatch and gap). Levenshtein algorithms with other weights 
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than what is used in Lev are actually called Global alignment similarity functions in this 

paper and Glb is one of them, which is tuned for our case.  

4 Related Work 

As we discussed in Section 2, there have been many studies on code-based test case 

selection and selection for regression testing which are not applicable in our context. There 

exist studies regarding similarity-based selection, minimization, and prioritization for 

code-based testing. However, model-based test case selection using a similarity function 

has not been a focus of many studies in the literature though many ideas from code-based 

selection can be adapted to MBT. For example the authors in [16] use a bit vector encoding 

for some code features (e.g. statement coverage) and Hamming Distance to measure 

diversity. In [17] test cases are encoded again as bit vectors for some basic block coverage 

in source code (e.g., statement coverage) but this time the Euclidian distance is used to 

measure diversity. In [18] the authors use Jaccard Index on a set of covered statement and 

the work in [19] applies Levenshtein on a sequence of memory operations. In [20] authors 

use the whole test script as their encoded test case and apply Hamming, Euclidian, 

Manhattan, and Levenshtein distance on it. However, this encoding is not very effective 

when the test script contains a great deal of irrelevant platform dependant information, 

which is usually the case in industrial systems.  

STCS techniques for MBT are proposed in [4] and our initial work [5]. Both studies use 

Cnt as their similarity function but the work in [4] uses transition-based encoding whereas 

we employ the trigger-guard-based encoding. In [5] we implemented the three encodings 

explained in Section 2.2 (state, transition, and trigger-guard-based) and compared their 

effectiveness in terms of average FDR. The results showed that trigger-guard is the best 

encoding among them. Using it with the Cnt similarity function and a GA as a selection 

algorithm, we significantly increased the effectiveness of the current selection techniques 

such as random, coverage-based, and the transition-based approach (the only reported 

STCS in MBT [4]). In this paper, we further improve our approach in [5] by using the 

same encoding (trigger-guard-based) and selection algorithm (the GA) but a better 

similarity function than Cnt. We compare different similarity functions introduced in 

Section 3 in terms of their FDR on an industrial case study and also discuss the cost of 

each function. The practical benefits of our proposed approach compared to other 

alternatives are also reported.  
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5 Empirical Study 

In this section, we investigate the effect of similarity functions on the fault detection ability 

of STCS techniques by applying them on an industrial case study. We also compare the 

results of the best STCS approach with random and coverage-based selection techniques.  

5.1 Case study description 

The SUT is a safety monitoring component in a safety-critical control system implemented 

in C++. We chose this system because it exhibits a complex state-based behavior that is 

modeled as UML state machines complemented by constraints specifying state invariants 

and guards, which are useful to derive automated test oracles. This SUT is typical of a 

broad category of reactive systems interacting with sensors and actuators. The first version 

of the system (including models and code) was developed and verified by company experts 

and our research team. The 26 faults used in the study were introduced during maintenance 

activities of subsequent versions of the SUT by developers and re-introduced for the 

purpose of the experiment in the latest version of the SUT. 

The correct and most up-to-date UML state machine, representing the latest version of 

the SUT’s behavior, consists of one orthogonal state with two regions. Enclosed in the first 

region are two simple states and two simple-composite states. The simple-composite states 

contain two and three simple states. The second region encloses one simple state and four 

simple-composite states that again consist of, respectively, two, two, two, and three simple 

states. This adds up to one orthogonal state, 17 simple states, six simple-composite states, 

and a maximum hierarchy level of two. The unflattened state machine contains 61 

transitions and the flattened state machine consists of 70 simple states and 349 transitions. 

Among the 26 faults, 11 of them were sneak paths (illegal transitions in the modified 

model) [6]. To detect such faults the model should account for the behavior of the SUT 

when receiving unexpected triggers. Such robustness behavior is not currently modeled 

and therefore, these 11 faults could not be caught by any test case generated from the 

model. Since the focus of this paper is on improving test cases selection rather than 

generation, faults which cannot be caught by the original test suite is not of interest. The 

remaining 15 faults (detectable by the test cases generated from the model) are collected 

and 15 faulty versions of the code (mutant programs) are made by introducing one fault per 

program. Each of these faults belongs to one of the following categories: wrong guards on 

transitions, wrong state invariant, missing transition, and wrong OnEntry action of states. 
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The purpose was to study each real fault in isolation in order to avoid masking effects and 

compute fault detection scores. Since a test case stops executing after detecting the first 

failure, in a program with multiple faults we should either rerun test cases on the SUT after 

each bug fix, or isolate faults by seeding one fault per mutant program. We chose the latter 

case to avoid manual bug fixing after each run. Our approach should not be confused with 

mutation testing which makes use of mutation operators to create faults and then seed them 

in the SUT one by one. In our approach, all faults were real faults, as described above. 

In the next step, the correct UML state machine is given to TRUST [1] as an input 

model and executable test cases were automatically generated. Note that in our case study 

if a test path has the ability to detect a fault, it can be detected by any valid test data for that 

test path. Therefore, in our experiment, we do not need to run the test path several times 

with the different input data and we have only one test case per test path and the FDR of a 

test path is equal to the FDR of the corresponding test case.  

The original test suites which selections are applied on is generated by TRUST using 

All-Transitions coverage. The test suite is made of 281 test cases and can detect all 15 

detectable faults. Among 281 test cases 207 cannot detect any faults and 74 catch at least 

one fault. The average number of detected faults per test case is 0.72 and the maximum is 

five. Each fault is also detected on average by 13 test cases. There are nine faults which are 

only detected by three test cases and two faults are detectable by 65 test cases. 

5.2 Experiment design  

In [5] we showed that trigger-guard-based encoding is by far more effective than the other 

alternatives for SMBT (transition-based and state-based). Also, we showed that the 

improvement yielded by GA compared to Greedy search was significant. Therefore, to 

evaluate different similarity functions we use the best encoding and selection technique 

based on our previous study. Our research questions in the current paper can be 

summarized as follows: 

RQ1. What is the most cost-effective similarity function for similarity-based test case 

selection in SMBT? 

RQ1.1 Which similarity function (among set and sequence based functions) is 

more effective in terms of FDR? 

RQ1.2 Which similarity functions (set or sequence based functions) are less 

expensive in terms of execution cost? 
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RQ2. In practice, how much test case execution resources do we save by using the 

best STCS compared to random selection and coverage-based selections? 

 

To account for the randomness of FDR results, which exists for all selection algorithms, 

we run each experiment 100 times and report distribution statistics. We report the results of 

different techniques for sample sizes less than 140 (~50% of the test suite) with intervals of 

10, since our focus is on smaller size subsets. This is due to the fact that in practice test 

case selection is mostly used for selecting a relatively small sample of large test suites. 

Furthermore, for large sample sizes, all selection techniques will usually be as good as 

random selection which typically detects most faults. We have performed non-parametric 

(Mann-Whitney) statistical tests, using a significance level ߙ ൌ 0.05, to compare the FDR 

medians of the proposed and alternative selection techniques. Non-parametric tests are 

more robust than a parametric test (e.g., the t-test) when there are strong departures from 

normality and they do have enough statistical power for the sample size we deal with in 

this study (100 observations). In addition, we provide FDR means, standard deviations, and 

distributions as Boxplots over different runs for the six smaller sample sizes (10 to 60), 

where differences among techniques are more visible. 

The measures that we use for comparing the effectiveness of different techniques are 

defined in [5] as follows:  

 

 ௜ (a subset of size i selected by techniqueݏ ሺ݅ሻ୻ is the number of faults detected byߩ .1

Γ from the test suite TS with size n) divided by the total number of detectable faults 

in TS (15 in our case). This measure is used in the paper wherever we want to 

simply report the FDR for a given technique and sample size. Since we run each 

test suite 100 times on faulty programs we report the FDR means and variances.  

௠ܴܦܨܣ .2
ఊ
ሺΓሻ. Enables the overall comparison of two selection techniques for a range 

of sample sizes.  ܴܦܨܣ௠
ఊ
ሺΓሻ, which is inspired by the APFD measure [7] for test 

case prioritization, is adapted to test case selection in our context. It is a measure 

for comparing curves and measures the sum of all ߩሺ݅ሻ୻ for all sample sizes in the 

given intervals and range (0 to m). More precisely, it is equal to the area under the 

curve representing ߩሺ݅ሻ୻ (y-axis) over different sample sizes (x-axis). Since sample 

size has discrete values, the area under the curve is calculated as:   
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where 0 ൑ ௠ܴܦܨܣ
ఊ ሺΓሻ ൑ 1. As we discussed, in this paper we report the result of 

sample sizes less than 140 (~50% of the test suite) with intervals of 10, and 

therefore always report ܴܦܨܣଵସ଴
ଵ଴ ሺΓሻ.    

3. min୩ሺΓሻ is the minimum number of test cases from the given test suite TS that are 

selected by technique  Γ to detect at least ݇% of the detectable faults. This measure 

is more useful when selection techniques are compared with respect to their 

reduction in cost while ensuring a given fault detection rate. 

The three measures above are complementary and help interpreting the FDR from 

different angles. The experiments have been conducted on a PC with Intel Core(TM)2 Duo 

CPU 2.40 Hz and 4 GB memory running Windows 7.  

5.3 Experiment results 

In this section we answer research questions RQ1 and RQ2 based on our case study. 

5.3.1 Experiment results for RQ1 

We start with RQ1.1 and first compare the effectiveness of set-based and sequence-based 

techniques separately and identify the best function in each class. We then compare the 

best set-based similarity versus the best sequence-based function. Figure 1.a shows the 

average FDR of the three set-based functions introduced in Section 3.1 (ߩሺ݅ሻ஼௡௧ , ߩሺ݅ሻ௃௔௖ , 

 ሺ݅ሻு௔௠). The results show that Jac has the largest average FDR and Ham the smallest oneߩ

for almost every sample size and especially so for smaller sample sizes. An overall 

comparison of the curves also suggests that Jac fares better than Cnt and Ham. 

ଵସ଴ܴܦܨܣ)
ଵ଴ ሺܿܽܬሻ ≅ ଵସ଴ܴܦܨܣ , 0.95

ଵ଴ ሺݐ݊ܥሻ ≅ ଵସ଴ܴܦܨܣ , 0.93
ଵ଴ ሺ݉ܽܪሻ ≅ 0.89). Using Jac is 

also better in finding faults with fewer test cases as for example minଽ଴ሺJacሻ ≅ 20 (~7% of 

the test suite) whereas minଽ଴ሺCntሻ ≅ 30 (~11% of the test suite) and minଽ଴ሺHamሻ ≅

40 (~14% of the test suite). Table 1 contains the FDR means and standard deviations of the 

three functions over 100 runs for various sample sizes. Mann-whitney U-tests shows that 

Jac median FDR is significantly higher than those of Cnt and Ham, for sample sizes less 

than 50. For sample sizes between 50 and 140, Jac and Cnt show similar FDR results, 

which are significantly higher than the FDR results for Ham.  Looking at Boxplots in 
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Figure 2 and the standard deviations in Table 1 however suggests that Jac is a better option 

since it shows less variance for sample sizes above or equal to 30. For sample sizes higher 

than 140 (50%), all techniques’ FDR quickly converges to 1.0. 

The most plausible reason explaining the above results is that although all three 

algorithms consider the number of identical elements in the inputs, Ham only reports this 

value without any normalization. Jac and Cnt, however, normalize the number of identical 

elements with respect to the total elements in both inputs, which makes the similarity value 

more precise. For example, let A, B, and C be three input sets. A and B are identical both 

containing one member x. On the other hand C contains three members x, y, and z. 

Therefore, a good similarity function should assign higher similarity value to (A,B) than 

(A,C). Since the number of identical elements in both pairs (A,B) and (A,C) is one, 

Ham(A,B)=Ham(A,C)=1 whereas Cnt(A,B)=Jac(A,B)=1 but Cnt(A,C)=0.5 and 

Jac(A,C)=0.34.  Therefore, Jac and Cnt are more precise than Ham. Comparing Jac and 

Cnt, we notice that both use the same information (number of identical and different 

 

(a) Set-based similarity functions 

 

(b) Sequence-based similarity functions 

 

(c) The best set and sequence-based functions 
 

(d) The best similarity-based selection vs. 
baselines 

Figure 1 The average FDR of different selection techniques for sample sizes 10 to 140 
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elements in the input sets). Assume the number of identical elements in two inputs A and B 

is S and the number of different elements is D. Then Cnt(A,B)=S/(S+D/2) and 

Jac(A,B)=S/(S+D). Theoretically, none is preferable to the other but our case study is 

showing that Jac, which normalizes the similarity value by treating S and D the same, is 

more effective in finding faults than Cnt which gives more weight to identical elements (S) 

than different ones (D). 

Figure 1.b shows the average FDR of three sequence-based selection techniques, 

introduced in Section 3.2 (ߩሺ݅ሻ௅௘௩ , ߩሺ݅ሻீ௟௕ , ߩሺ݅ሻ௅௢௖). Not surprisingly Glb performs better 

than Lev. With sample sizes less than 130, Glb is always significantly more effective in 

terms of FDR (based on Mann- Whitney U-test) since it is basically a tuned version of Lev. 

However, Loc with the same settings as Glb is much less effective. A plausible reason is 

that this algorithm is designed for long sequences in bioinformatics, where aligning the 

whole sequence results in very bad scores. Therefore, they align the sequences locally, 

which is not as precise as globally aligning them. However, in our case where the average 

and maximum length of test paths is 5 and 7, respectively, Glb performs better. Comparing 

the overall curves shows clear differences (ܴܦܨܣଵସ଴
ଵ଴ ሺݒ݁ܮሻ ≅ ଵସ଴ܴܦܨܣ , 0.88

ଵ଴ ሺܾ݈ܩሻ ≅

ଵସ଴ܴܦܨܣ , 0.92
ଵ଴ ሺܿ݋ܮሻ ≅ 0.85). In terms of finding more faults with fewer test cases, Glb is 

significantly better than other sequence-based similarity functions. For example, 

minଽ଴ሺLevሻ ≅ 50, minଽ଴ሺGlbሻ ≅ 25, minଽ଴ሺLocሻ ≅ 60. Furthermore, Lev and Loc show 

high variance (Table 1 and Figure 2), which makes them very risky to use. For example, 

even with a large sample size like 110, 10% of the 100 selections using Loc result in an 

FDR below 0.6 whereas Glb, even with sample size 20, ensures that FDR > 0.6 with a 

confidence over 90%.  

In Figure 1.c the best sequence-based (Glb) is compared with the best set-based (Jac) 

similarity function. From average FDR’s point of view, for sample sizes less than 50, Jac 

performs better than Glb. In addition, an overall comparison of the curves shows a similar 

performance (ܴܦܨܣଵସ଴
ଵ଴ ሺܾ݈ܩሻ ≅ 0.92 vs. AFDRଵସ଴

ଵ଴ ሺJacሻ ≅ 0.95) and a similar results for 

variance comparisons (Table 1 and Figure 2). However, the differences are not practically 

significant in most cases. On the other hand, Jac is from a practical standpoint easier to use 

since it does not require any parameter settings, whereas weights and penalties in Glb 

require tuning. Therefore, based on these results, we suggest using Jaccard Index as 

similarity function in STCS. 

Answering RQ1.2 we compare the cost of different similarity functions both in terms of 

computational complexity and the actual time required for the similarity calculation. We 
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notice that set-based measures are less expensive (O(n+m)) than sequence-based measures 

(O(n*m)), where n and m are the size of two test cases being compared represented as sets 

of trigger-guards. In terms of the actual time spent for the calculation, set-based measures 

required around 0.5 seconds in average for building the similarity matrix (filled with 39340 

similarity values between all pairs of test cases in the test suite), whereas sequence-based 

measures require more than 3 seconds to build such matrix. These results also suggest that 

set-based measures are less expensive. Therefore, we suggest Jaccard Index, given its low 

cost, high effectiveness, low variation, and ease of use.  

5.3.2 Experiment results for RQ2 

We compare our suggested selection technique (Jac) with random selection (Rnd), 

coverage-based Greedy selection (CovGr), coverage-based GA selection (CovGA), and the 

state of the art in STCS [4] (TransGr). TransGr uses a transition-based encoding, a 

Counting similarity function, and a Greedy search for selection. Note that Jac refers to a 

STCS which uses trigger-guard-based encoding, Jaccard Index as similarity function, and a 

GA for selection. Figure 1.d shows all average FDRs for different sample sizes for all the 

techniques. The improvement we get using our technique is clearly visible from the graph 

and is confirmed by Mann-Whitney U-tests, for sample sizes less than 90. For example, for 

sample size 30 (~10% of the test suite), we get a 50% improvement from the best 

alternative technique (CovGrd). The results get even more interesting when we see that the 

best improvements are on the smaller sample sizes (less than 30% of the test suite), which 

are more likely to be used in practice. The overall comparison of curves also show large 

differences (ܴܦܨܣଵସ଴
ଵ଴ ሺܿܽܬሻ ≅ ଵସ଴ܴܦܨܣ ,0.95

ଵ଴ ሺܶݎܩݏ݊ܽݎሻ ≅ ଵସ଴ܴܦܨܣ ,0.80
ଵ଴ ሺݎܩݒ݋ܥሻ ≅

ଵସ଴ܴܦܨܣ ,0.76
ଵ଴ ሺܣܩݒ݋ܥሻ ≅ 0.7, and ܴܦܨܣଵସ଴

ଵ଴ ሺܴ݊݀ሻ ≅ 0.69). As we have mentioned, the 

minimum number of test cases required for Jac to yield an average FDR above 0.9 is 20 

(minଽ଴ሺJacሻ ≅ 20 (or ~7% of TS) whereas the best alternatives require at least 85 test 

cases (minଽ଴ሺTransGrሻ ≅ 85 or ~30% of TS), thus implying a near 77% reduction in cost. 

Note that, for sample sizes larger than 100, the mean FDR of TransGr is 1.0 whereas the 

mean FDR of Jac is below 1.0. The most plausible reason is that Jac uses the GA with a 

175ms stopping criterion, which is a very short time for exploring the solution space for 

large sample sizes. Therefore, among these techniques, the best for yielding 100% FDR 

with minimum number of test cases is a GA with longer stopping time (e.g., using 1 sec 

instead of 175ms, Jac can find all faults for sample sizes less than 30).  Given the small 



 
116 

 

execution times involved, this has no practical consequences on the applicability of the 

GA. 

The other interesting observation from Figure 2 and Table 1 is the confidence that we 

gain by using our approach rather than coverage-based selection, random selection, or even 

the best existing STCS approaches. For example, looking at results for sample size 40 in 

Figure 2, we see that 90% of the 100 runs of our approach resulted in a median FDR equal 

to 1.0, while 75% of all runs, for all the alternative approaches (Rnd, CovGrd, CovGA, and 

TransGrd), yield a median FDR below 0.80. These results strengthen further our 

confidence in recommending Jac to support SMBT (and in general MBT) in practice. 

Analyzing the cost of STCS compared to alternatives, we consider the actual selection 

time spent by each technique, since no better measure is applicable in our context. For 

example, the number of fitness evaluations in GAs, a better alternative in some cases, is 

not applicable to CovGr and Rnd. We use 175ms as stopping criterion for the GA, which 

seems unfair given that CovGr only requires on average one tenth of this time and Rnd less 

than 1 ms. However, CovGr and Rnd could not be improved even with increased execution 

time. Moreover, stopping the GA exactly at the execution time used by CovGr, still 

improves the FDR though the improvement is not practically significant. From a practical 

standpoint, all these differences are anyway negligible as 175ms, even when considering 

the overhead of the similarity matrix creation (in average 500ms for Jac), is very small 

compared to the actual test case execution time (which is in the range of minutes). In cases 

where the number of test cases is much larger than in our case study, our conclusions 

Table 1 The mean FDRs ( highest values per sample size are in bold) and their standard deviations 
per sample size over 100 runs 

Selection 
technique 

FDRs per sample  size 

10 20 30 40 50 60 
M S M S M S M S M S M S 

A 
Jac 0.72 0.14 0.90 0.11 0.96 0.07 0.98 0.05 0.97 0.06 0.97 0.07 
Cnt 0.57 0.18 0.84 0.14 0.90 0.12 0.95 0.08 0.96 0.07 0.97 0.06 

Ham 0.52 0.14 0.71 0.14 0.85 0.14 0.91 0.12 0.92 0.11 0.93 0.10 

B 
Glb 0.67 0.14 0.88 0.12 0.93 0.08 0.97 0.05 0.98 0.05 0.98 0.05 
Lev 0.48 0.16 0.67 0.14 0.80 0.14 0.86 0.12 0.92 0.10 0.93 0.09 
Loc 0.44 0.13 0.61 0.14 0.76 0.13 0.82 0.13 0.85 0.12 0.90 0.12 

C 

TranGr 0.35 0.13 0.54 0.13 0.65 0.14 0.62 0.15 0.67 0.14 0.74 0.13 
CovGr 0.35 0.14 0.53 0.13 0.62 0.13 0.67 0.13 0.73 0.14 0.75 0.15 

CovGA 0.35 0.14 0.50 0.15 
0.54

5 
0.17 0.63 0.16 0.66 0.19 0.72 0.15 

Rnd 0.28 0.16 0.42 0.18 0.50 0.16 0.56 0.16 0.63 0.19 0.66 0.18 
 

  M: Mean, S: Standard Deviation. A: Set-based, B: Sequence-based, C: Baselines 
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would still hold as both the time of executing test cases and computing similarities would 

increase, the latter still being negligible. Overall, in order to minimize the overall testing 

effort, we recommend the use of Jac over existing alternatives.  

5.4 Discussion on validity threats 

This study was conducted according to recently proposed guidelines for conducting 

empirical studies in search-based testing [21]. In terms of the construct validity of our 

measures, effectiveness (FDR) is based on a set of real faults, as explained earlier, that we 

used to create mutant programs. Comparing the cost of different similarity functions we 

considered the computational complexity of their implementations along with their actual 

time consumptions to gain a more precise understanding of their relative cost. The cost 

discussion on different selection techniques was not practically interesting in our case 

because the difference between the execution time of different techniques is negligible 

compared to even one test case execution time (less than a second compared to minutes). 

However, for very large test suites with faster test case executions, the differences among 

selection techniques may no longer be negligible compared to test execution time. 

However, in most cases, we expect the selection time to be negligible compared to the total 

reduction in test execution time (time required for executing all excluded test case). The 

exact threshold above which a selection technique will no longer be cost-effective depends 

on the test suite size, the percentage of selection, and the average test case execution time. 

Note that, in our implementation of STCS algorithms, the similarity matrix is created 

beforehand and kept in memory. This creates an initial overhead and will generate a 

memory problem for large test suites. The other option which may be even quicker 

(depending on the number of distinct similarity evaluations that GA requires during its 

execution and the matrix size) is the on-demand calculation of similarities. In addition, the 

most used similarities may be cached. Except for sequence-based similarity functions 

(which implementation is taken from [13]) we implemented the other similarity functions 

and search techniques and strived to achieve the same level of optimization. Our proposed 

similarity function (Jac) does not require any tuning but the parameter tuning for Glb and 

Loc, which is done with a small experiment on a small sample set might not be optimal 

This means that it is in theory possible to obtain a better FDR than Jac using an optimal 

Glb or Loc. However, this tuning, in general, is not easy to apply in practice and entails 

extra cost.  
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One hundred independent runs were performed for each selection technique to account 

for random variation and obtain a sufficient number of observations to report means, 

medians, and standard deviations. We used the non-parametric Mann-Whitney U-test for 

independent samples to check the statistical differences in FDR across selection techniques 

and we are thus not relying on any assumption. We also discussed about practical 

significance by looking at the magnitude of the differences between FDR (percentage of 

improvement) and cost (actual time) of different techniques. Our results rely on one 

industrial case study using a set of real faults. Though such realistic studies are rare in the 

research literature and very time consuming, it must be replicated on other systems and 

Figure 2 FDR (y-axis) Boxplots for different selection techniques (x-axis) for sample sizes ranging from 
10 to 60 by intervals of 10 over 100 runs. The Boxplots show the 10th, 25th, 50th, 75th, and 90th 

percentiles and means 
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sets of faults. However, as discussed earlier, the system used here is typical of a broad 

category of industrial systems: control systems with state-dependent behavior. 

6 Conclusion and Future Work 

In the context of embedded and telecom software, among many other examples, system 

testing must often occur on realistic infrastructure and test networks involving limited 

access time and entailing significant costs. Though Model-Based Testing (MBT) has been 

found to be an interesting solution in practice, on typical industrial models, the number of 

test cases generated is still very large. In addition, for many systems, automatically 

generating oracles from models is very difficult or impossible. In such cases, test cases 

should be evaluated manually, greatly increasing the cost of test execution and analysis. In 

this paper, we investigate ways to select an affordable subset with maximum fault 

detection rate by maximizing diversity among test cases with respect to a similarity 

measure. In the context of state machine-based testing, a common but specific type of 

MBT, we used a trigger-guard-based encoding for test case representation and proposed 

six different similarity measures. A Genetic algorithm was used for optimizing the selected 

subsets for each measure and their fault detection rates were compared. Applying the 

techniques on an industrial case study, we showed that using Jaccard Index to measure the 

trigger-guards similarity of the respective test paths yields a subset of the test suite with the 

best fault detection rate. Comparing the results of our best proposal with currently existing 

approaches such as coverage-based and random selection, and other similarity-based 

selection techniques, we also showed that we are far more effective than other alternatives 

for smaller sample sizes (which are more interesting in practice) and can save up to 77% of 

the test execution cost of state machine-based testing. In the future, we plan to look at the 

effect of other search techniques and other combination of encodings and similarity 

functions on similarity-based selections. In addition we will replicate the study on another 

industrial system to analyze the generalizability of the approach. 
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Abstract— Model-based testing (MBT) suffers from two main problems which in many 

real world systems make MBT impractical: scalability and automatic oracle generation. 

When no automated oracle is available, or when testing must be performed on actual 

hardware or a restricted-access network, for example, only a small set of test cases can be 

executed and evaluated. However, MBT techniques usually generate large sets of test cases 

when applied to real systems, regardless of the coverage criteria. Therefore, one needs to 

select a small enough subset of these test cases that have the highest possible fault 

revealing power. In this paper, we investigate and compare various techniques for 

rewarding diversity in the selected test cases as a way to increase the likelihood of fault 

detection. We use a similarity measure defined on the representation of the test cases and 

use it in several algorithms that aim at maximizing the diversity of test cases. Using an 

industrial system with actual faults, we found that rewarding diversity leads to higher fault 

detection compared to the techniques commonly reported in the literature: coverage-based 

and random selection. Among the investigated algorithms, diversification using Genetic 

Algorithms is the most cost-effective technique. 

1 Introduction 

In The idea of model-based testing (MBT) [1] is to generate executable test cases by 

systematically analyzing specification models (e.g. represented as UML state machines) 

following a test strategy such as a coverage criterion, that aims to cover certain features of 

the model (e.g., all transitions). MBT brings many advantages but also entails the 

additional cost of modeling the software under test (SUT). In addition, there are two 

factors that significantly increase the cost of MBT: (1) the lack of automated oracle (e.g., 

when assessing the subjective perception of a media quality in a videoconference system), 

and (2) the high cost of test case execution (e.g., when testing must be performed on actual 

hardware or a restricted-access network). In both situations, the test suite must be as small 
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as possible while, to the extent possible, preserving its fault revealing power. However, for 

real world size models, MBT techniques usually generate large sets of test cases regardless 

of the applied coverage criteria. Therefore, a model-based technique is required to select an 

optimal subset of test cases to be executed, which is, in general, a NP-hard problem.  

In similarity-based test case selection, the idea is to diversify the selected test cases with 

respect to a similarity measure. In [2, 3], we proposed a similarity-based selection 

technique for testing based on UML state machines (SMBT). We compared different 

similarity measures in terms of what information from the test cases they have to evaluate 

(test case encodings) and how this evaluation should be done (similarity functions). The 

results showed that, in the context of SMBT, the similarity measure that represents a test 

case as a set of trigger-guards [2] and uses Jaccard Index [4] as the similarity function [3] 

is the most effective measure in terms of fault detection rate (FDR).  

In this paper, we take a deeper look into the idea of diversifying test cases and 

investigate why similarity-based selected test cases are effective in finding faults. We also 

study different strategies that, given a similarity measure and a test suite, we can use to 

select a subset of the test suite. We applied our experiments on an industrial software 

system and a set of actual faults, and the results clearly showed that rewarding diversity is 

effective. The main explanation is that the test cases that find different faults belong to 

distinct clusters based on the similarity measure. In addition we found that, among 

different selection strategies, Genetic Algorithms (GAs) [5] are the most cost-effective 

technique for similarity-based test case selection. We also have shown that, in our case 

study, we could save up to 80% of test case executions, and get more than 99% FDR, by 

using a GA compared to a coverage-based selection technique.  

The rest of the paper is organized as follows. Section 2 introduces the similarity-based 

test case selection technique. Section 3 discusses the different strategies which are used in 

this paper to diversify test cases. Section 4 provides a brief overview of related works 

covering similarity-based selection techniques. Section 5 reports the experimentation 

results of applying the selection techniques on an industrial case study. Section 6 concludes 

the paper and outlines our future work plan. 

2 Similarity-based Test Case Selection 

Unlike coverage-based selection, where the goal is maximizing the coverage of the test 

model by the selected test cases (e.g. transition coverage in SMBT) to maximize chances 
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of fault detection, similarity-based selection techniques maximize diversity among the 

selected subset. Diversity is calculated using a (dis)similarity measure between pairs of test 

cases. A similarity measure is the value that a similarity function assigns to two inputs 

which are being compared. In a testing context, inputs are usually encoded as a set or 

sequence of elements. In the context of MBT, the inputs are abstract test cases defined on 

the test model rather than concrete test cases. We do not use the execution information of 

the test case as, in our context, the goal is to select them before execution. Abstract test 

cases are naturally generated as a first step by MBT and can hide the unnecessary 

information for similarity comparisons. For example, in SMBT an abstract test case 

representation can be a path in the state machine specifying the SUT. In general, different 

faults can be detected by the same test path instantiated with different test data (e.g., event 

parameter values). Therefore, to compare different techniques, it is necessary to run the 

selected test paths with different input data and analyze their FDR distribution. 

Representation (encoding) of the test cases has an important effect on the similarity 

measure. Though in SMBT a test path represents an encoded abstract test case, the test 

path can be described at different levels of details. In [2], we studied three encodings for a 

test path in UML state machine: state-based, transition-based, and trigger-guard-based, and 

reported that trigger-guard-based encoding is the most effective one in terms of fault 

detection, where a test path(tp) is represented as: 

 

<tp>      ::= <TrGu> | <TrGu> “,” <tp> 

< TrGu > ::= trig |guard | id | guard “+” trig 

 

where trig is the identification of a trigger, and guard is the identification of a guard in 

the state machine. In this representation, a transition is identified by its trigger and guard. It 

can be only a trigger, or a guard or both together. If there is a transition with no guard and 

trigger, we use the transition id (id) as its identifier.  

Given an encoding, one may use different similarity functions to calculate the similarity 

value. In [3] we studied different set-based and sequence-based similarity functions and 

proposed Jaccard Index as the most cost-effective. Given a set of n encoded test cases (sn) 

and a similarity function (SimFunc), the test case selection problem is reformulated as 

minimizing SimMsr(sn): 
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where SimFunc(tpi , tpj) returns the similarity of two test paths (or other encoded 

abstract test cases in MBT) in sn represented by tpi and tpj. The last step in similarity-based 

selection is using a strategy to select a subset of test cases with minimum average pair-wise 

similarity (SimMsr). In the rest of this paper, we focus on finding the best strategy for this 

selection.  

3 Strategies for Maximizing Diversity 

Given a similarity measure we have two strategies to select the most diverse test cases. 

One is based on clustering test cases and taking samples from each cluster and the second 

is searching for the most diverse subsets. In this section, we introduce one clustering and 

two search techniques that will be investigated.  

3.1 Clustering-based techniques  

Clustering algorithms divide data instances into natural groups by maximizing their 

internal homogeneity and external separation [6]. Regardless of the specific algorithm 

which is used for clustering, most clustering techniques use a proximity measure as a mean 

to determine the closeness (similarity), or dissimilarity (distance) between pairs of 

instances and pairs of clusters. 

In this study, we are using one of the simplest clustering algorithms, which has been 

frequently used in software engineering, including software testing [7]: Agglomerative 

Hierarchical Clustering (AHC) [6]. AHC starts with forming clusters containing each 

exactly one object (a test case in this study). A sequence of merge operations is then 

performed until the desired number of clusters is achieved. At each step, the two most 

similar clusters will be joined together. The measure that we used for assessing similarity 

between two clusters, inter-cluster similarity, is Average Linkage and it is defined as the 

average of all pair-wise similarities between all instances of those two clusters [6]. After 

applying clustering, we need a sampling technique for selecting one or more test case per 

cluster. We use one-per-cluster sampling where the number of clusters is the same as the 

selected sample size and then randomly select one member from each cluster. The pseudo-

code of the employed AHC follows: 
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(1) Make one cluster (Ck) per test path (tpi). 

(2) While the number of clusters is more than sampleSize 

(3) Find the two most similar clusters Cx and Cy (with the maximum 

InterClusterSim(Cx, Cy)). Where: 

,௫ܥ൫݉݅ܵݎ݁ݐݏݑ݈ܥݎ݁ݐ݊ܫ ௬൯ܥ ൌ
∑ , ௜݌ݐ൫ܿ݊ݑܨ݉݅ܵ ௝൯௧௣೔∈஼ೣ⋀௧௣ೕ∈஼೤݌ݐ

|௫ܥ| ∗ หܥ௬ห
 

(4) Merge the two clusters.  

 

3.2 Test case selection using Adaptive Random Testing 

Another technique that we investigate is Adaptive Random Testing (ART), which has been 

proposed as an extension to Random Testing [8]. Its main idea is that diversity among test 

cases should be rewarded, because failing test cases tend to be clustered in contiguous 

regions of the input domain. This has been shown to be true in empirical analyses 

regarding applications whose input data are of numerical type [8]. Recently, Object-

Oriented software has been also shown to manifest such a property [9]. Therefore, ART is 

a candidate selection strategy in our context as well. In this paper, we use the basic ART 

algorithm described in [8], but we ensure that no replicated test case is given in output. The 

pseudo-code for ART is: 

 

(1) Z={} 

(2) Add a random test case to Z  

(3) Repeat until |Z|= sampleSize 

(4)  Sample K random test cases that are different from Z 

(5)  For each of these test cases k  

(6)   k.maxSim = max(SimFunc(k , z ∊ Z)) 

(7)   Add the k with minimum maxSim to Z 

 

3.3 GA-based test case selection 

A GA [5] is used in this paper since the nature of our problem, which is a form of 

optimization, resembles typical problems addressed in search-based software engineering 

[10]. GAs are the most used and successful reported technique in this domain [10] and rely 

on four basic features: population, selection, crossover and mutation. More than one 
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solution is considered at the same time (population). At each generation (i.e., at each step 

of the algorithm), some good solutions in the current population, selected by the selection 

mechanism, generate offspring using the crossover operator. This operator combines parts 

of the chromosomes (i.e., the solution representation) of the offspring with a certain 

probability; otherwise it just produces copies of the parents. These new offspring solutions 

will fill the population of the next generation. The mutation operator is applied to make 

small changes in the chromosomes of the offspring. Eventually, after a number of 

generations, an individual that solves the addressed problem will be evolved.  

In this paper, we use a steady state GA as a selection technique, in which only the 

offspring that are not worse than their parents are added to the next generations. An 

individual in our context is a subset of size n from the original test suite (denoted sn). 

Given a similarity function SimFunc(tpi , tpj), the fitness function f to minimize is the sum, 

for all pairs (tpi , tpj) in sn, of SimFunc(tpi , tpj), denoted SimMsr. We use a single point 

crossover with probability of Pxover to combine two different parents ݏ௡
௫ and  ݏ௡

௬. A mutated 

test path is replaced by a test path that is selected at random from the set of all possible test 

paths. A valid solution is a set of test cases in which there is no duplicate. We have applied 

two types of stopping criteria for the GA in this study: (1) stopping after specific number 

of fitness evaluations, and (2) stopping after a fixed period of time (e.g., 350ms). The 

pseudo-code of the employed GA follows: 

 

(1) Sample a population G of m sets of test cases uniformly from the search space 

(i.e., the set of all possible valid sets with a given size n) 

(2) Repeat until the stopping criterion is met 

(3)  Choose s୬
୶ and s୬

୷ from G  

(4) ൫ś୬
୶ , ś୬

୷
൯ ∶ൌ crossover (s୬

୶ , s୬
୷
, P୶୭୴ୣ୰) 

(5) Mutate(ś୬
୶, ś୬

୷) 

(6)   If valid (ś୬
୶ , ś୬

୷) ∧ min (fሺś୬
୶ሻ, fሺś୬

୷)) ൑ min ( fሺs୬
୶ሻ, fሺs୬

୷)) 

(7)  Then s୬
୶ ∶ൌ ś୬

୶ and s୬
୷
∶ൌ ś୬

୷ 

 

4 Related Work 

There are three approaches reported in the literature to select a subset of test cases from a 

test suite that can be applied in our context: (1) Random or semi-random selection [11], 
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where there is no guidance to select test cases; (2) Coverage-based selections, where we 

hypothesize that “the test cases which have more coverage are more likely to detect faults” 

(e.g., in [12] a Greedy search selects, at every step, the test case that covers the most 

uncovered statements whereas in [13, 14] a GA is used to find the maximum coverage.); 

(3) Similarity-based selections try to diversify test cases, given a similarity measure, 

assuming that maximizing diversity among the selected test cases maximizes the number 

of detected faults. 

Diversifying test cases has been studied on code-based test case selection and mostly in 

the context of regression testing. The similarity measure in such cases is usually based on 

code coverage [7, 15-18]. In [19] a sequence of memory operations is used to calculate the 

similarity and in [20] the authors use the whole test script in string format as the input for 

similarity function. The work in [21] is the only one where the similarity function is based 

on model-level information. Test cases are represented as sequence of transitions in a LTS 

model of the system and the number of identical transitions in the sequence is the 

similarity function. Our similarity measure is different from theirs, both in terms of 

encoding and similarity function—we use trigger-guard sets on UML state machines and 

apply the Jaccard Index. In [2, 3] we have compared the effectiveness of our similarity 

measure with the measure in [21] and the results showed a great improvement using our 

technique, which therefore is applied in this study as well. Given a similarity measure, 

different strategies have been used to diversify the selected subsets: Greedy search in [17, 

19-21], Neural network based classification in [18], ART in [17], AHC in [7, 15, 16]. In 

this paper, using our similarity measure, we compare ART, AHC, and a GA. 

5 Empirical Evaluation 

5.1 Case study description 

The SUT under study is a typical safety monitoring component in a safety-critical control 

system implemented in C++ and modeled as UML state machines complemented by 

constraints specifying state invariants and guards. This SUT is typical of a broad category 

of reactive systems interacting with sensors and actuators. The first and the subsequent 

maintained versions of the system (including models and code) were developed and 

verified by company experts and our research team. The correct and the most up-to-date 

UML state machine, representing the latest version of the SUT’s behavior, consists of one 

orthogonal state, 17 simple states, six simple-composite states, and a maximum hierarchy 
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level of two. The unflattened state machine contains 61 transitions and the flattened state 

machine consists of 70 simple states and 349 transitions. 

The correct latest UML state machine was given to our test case generation tool 

(TRUST) [22] as an input model. Using All-Transitions coverage, 281 test paths and 

corresponding executable test cases were automatically generated. In our case study, if a 

test path has the ability to detect a fault, it can be detected by any valid test data for that 

test path. Therefore, in our experiment, we have one test case per test path and the FDR of 

a test path is equal to the FDR of the corresponding test case. As it is typical in many 

embedded systems, the average execution time for these test cases is in the order of 

minutes, which makes running all the 281 test cases very time consuming. 

We use 15 faulty versions of the code that are made by introducing one real fault per 

program. The 15 faults used in the study were introduced during maintenance activities by 

developers and re-introduced for the purpose of the experiment in the latest version of the 

SUT. Each of these faults belongs to one of the following categories: wrong guards on 

transitions, wrong state invariant, missing transition, and wrong OnEntry action in states. 

Among 281 test cases, 207 cannot detect any faults and 74 catch at least one fault. The 

average number of detected faults per test case for the 15 faulty versions is 0.72 and the 

maximum is five. Each fault is also detected on average by 13 test cases. There are nine 

faults which are only detected by three test cases and two faults are detectable by 65 test 

cases. 

5.2 Experiment design 

In our industrial case study, we investigate the following research questions: 

RQ1. Why does diversifying test cases improve fault detection? 

o RQ1.1. Do test cases that find the same faults tend to be more similar to 

each other than with other test cases?  

o RQ1.2. Do test cases that find different faults tend to be more different 

from each other than test cases that find the same faults? 

RQ2. What is the most cost-effective way to diversify (given our similarity measure) a set 

of test cases? 

o RQ2.1. Does clustering-based test case selection improve the average FDR 

compared to coverage-based and random selection?  

o RQ2.2. Are search-based techniques more cost-effective than clustering-

based selection in terms of fault detection? 
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RQ3. How cost-effective is diversifying test cases compared to state of practice techniques 

for test case selection? 

In RQ1 we are analyzing why diversifying test cases improves FDR. In other words, are 

test cases distinctly clustered with respect to different faults? We have carried out an 

exhaustive analysis based on our industrial case study. Given N=281 test cases, we ran all 

of them on the actual SUT and all its faulty version to check which of the M faults they are 

able to detect (in our case study M=15). We then calculated the similarity of each pair of 

test cases, for a total of N*(N-1)/2 pairs. Note that the exhaustive analysis of the search 

space landscape is based on the similarity values of all test case pairs. However, test case 

selection is performed for any arbitrary sampleSize where using an exhaustive search is not 

an option, since the search space size for selecting a subset of size sampleSize is equal to 

the number of possible sampleSize combinations within a test suite of a given size. In our 

case, as an example, the search space size for sampleSize =28 (~10% of the test suite) is 

2.9*10^38.  

To address RQ1, we investigate two hypotheses: (1) For each fault cluster, the similarity 

between pairs of test cases that find the same faults is, on average, significantly higher than 

the similarity of other test case pairs in the test suite, and (2) For each pair of fault clusters, 

the similarity between test cases that find different faults is significantly lower than the 

similarity of test case pairs that find the same fault in the test suite. If hypothesis (1) holds, 

then test cases finding the same faults will cluster in close areas of the test case space. As a 

result, rewarding diversity in test case selection would be beneficial. But hypothesis (2) 

should also hold, otherwise diversity might be harmful since we would need more than one 

test case from the same area to detect all faults.     

In RQ2, we are interested in how to diversify the test cases, given the similarity measure 

used in RQ1. Our baselines of comparison are random selection (Rnd) and a coverage-

based selection technique (CovGr) which is based on one of the most used selection 

techniques in the literature: it applies a Greedy search to maximize the coverage of the 

selected test cases [12]. In this paper, in each step of the Greedy search in CovGr, we look 

for the test cases which cover the most yet uncovered transitions on the UML state 

machine representing the SUT. Finally, in RQ3 we look at the practical benefits of our 

proposed approach based on our industrial SUT. In this study, as mentioned in Section 3, 

AHC is used as our clustering algorithm and a GA and ART as search-based techniques. 

Our measure of effectiveness is the FDR of the selected subset from the original test suite. 

Ideally, given the same amount of computational cost, we would say that a technique is 
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better than the other if it obtains higher average FDR. For practitioners, such cost would 

typically be measured as the time that an algorithm takes before completing its task. 

Comparing algorithms using time is not a robust option from a practical standpoint though. 

Low-level implementation details may have a strong effect on computational time. If we 

use time as stopping criterion, then we may not truly compare algorithms but instead their 

implementations [23]. To cope with this problem, a measure that is independent from 

implementation details would be useful. For example, when comparing search algorithms, 

it is a common practice to allow each algorithm to run until a maximum number of fitness 

evaluations is executed (e.g., 100,000 [24]). However, the assumption here is that the total 

search cost is proportional to the number of fitness evaluations and the cost of other 

operations than fitness evaluation is either equal or negligible in both algorithms.  

To compare GAs with ART, following the same general reasoning, we use the number 

of similarity comparisons (C) as stopping criterion, where n is the size of the output test 

case set. We hence can run both the GA and ART with the same preset number of 

similarity comparisons. For a GA that runs for W fitness evaluations (each consisting of Q 

similarity comparisons), we have that C(GA) = W * Q = W * n * (n-1)/2 whereas for ART 

we have [8]: C(ART) = K * n * (n-1)/2.  

We would like to run both ART and the GA such that C(ART)=C(GA), but that might 

not be possible because K (the size of the candidate set in ART) is a constant that is upper 

bounded by N (281 in our case). In other words, the basic ART cannot be run for an 

arbitrary amount of computational resources as it is the case for GAs (for which we can 

choose arbitrarily high values for W). To cope with this problem, we can just run ART 

several independent times (e.g., J times), and then take the best result out of these J runs. 

Therefore, to obtain fair comparisons using similarity measures, we can simply enforce 

W=J*K. 

Whenever we could not use a fair metric (as the number of fitness evaluations) for 

comparing different algorithms for test selection, we used the time expressed in 

milliseconds as stopping criterion, which is the time spent by our implementation of the 

algorithms on a PC with Intel Core(TM)2 Duo CPU 2.40 Hz and 4 GB memory running 

Windows 7. As we previously discussed, though this is not particularly robust in general, it 

is a reasonable option in our context as a significant effort was made to optimize 

implementations and the execution environment was stable.        

To account for the randomness of the results, which exists for all selection algorithms, 

we ran each experiment 100 times and analyzed distributions. We report the results for 
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different techniques for sample sizes less than 140 (~50% of the test suite) with intervals of 

10, since our focus is, for practical reasons, on smaller size subsets. (In practice, test case 

selection is mostly used for selecting a relatively small sample of large test suites.) 

Furthermore, for large sample sizes, all selection techniques will usually be as good as 

random selection and typically detect most faults. We have performed non-parametric 

(Mann-Whitney U-test) statistical tests, using a significance level of 0.05, to compare the 

FDR distribution of the proposed and alternative selection techniques. Non-parametric 

tests are more robust than a parametric test (e.g., the t-test) when there are strong 

departures from normality and for large enough samples, as this is the case in this study 

(100 observations). 

5.3 Experiment results 

5.3.1 Why does diversifying test cases improve fault detection? 

For each of the M=15 faults, we calculated the similarity of the test case pairs that both 

found each of these faults (groups of test case pairs, from F1 to F15). Mann-Whitney U-

tests were performed (α =0.05) to see whether there was a difference in similarity value 

between the pairs in F1 to F15 and the set of all remaining pairs of test cases (T - Fi). Table 

1 summarizes the results where bold median values represent statistically significant 

differences between the distributions of these Fi with T - Fi. Note that F1 and F2, F3 and 

F4, and F7 to F15 are on the same table row, as they have the same descriptive statistics. 

This is due to the fact that most test case pairs are the same and those that are not the same 

have high similarity values (according to our similarity measure).   

The results show that the difference is significant for the first six groups. The other 

groups also show a high difference in terms of mean and median but, since there are only 

three observations for each of those groups, we cannot get statistically significant 

differences. Therefore, the first hypothesis of RQ1.1: “Test cases that find the same faults 

tend to be more similar to each other than with other test cases” is confirmed. 

To investigate RQ1.2, for each pair of fault clusters Fi and Fj, let us consider the 

similarity distribution (Dd) of test case pairs which belong to two different clusters, i.e., 

test cases that find different faults. We compare Dd with the similarity distribution (Ds) of 

test case pairs which both are in one of those two clusters, i.e., test cases that find the same 

fault. The median of Dd and Ds per cluster pair is reported above the diagonal in Table 2.   

There are cases where fault clusters Fi are exactly the same, i.e., their respective faults are 

found by exactly the same set of test cases. Distinguishing them does not have any effect 
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on the FDR results (either all or none of the faults will be revealed by a selected set of test 

cases) and therefore such clusters are not distinguished. As a result, there are seven distinct 

fault clusters (labeled as A to G) matching the columns and rows of Table 2. Their 

mapping to the 15 fault clusters is as follows: A(F1 and F2), B(F3 and F4), C(F5), D(F6), 

E(F7 to F9), F(F10 to F12), G(F13 to F15). 

The bold values show the cases where there is a statistically significant difference 

between Dd and Ds, based on a Mann-Whitney U-test. The presence of significant 

differences support the claim that fault clusters are far away from each other and therefore 

that rewarding diversity is useful. In cases where two clusters are overlapping, the size of 

the overlap compared to the size of their union will determine whether rewarding diversity 

is harmful. If the ratio of the overlapping part (intersection) over the union is high, a test 

case that finds one of the two faults would have a high probability of finding the other. In 

this case, rewarding diversity is still a reasonable option. We measure this ratio by dividing 

the size of two clusters’ intersection |I| by the size of their union |U|: IU=|I|/|U|. The cells 

below the diagonal of Table 2 report this measure per cluster pair. 

Among 21 cluster pairs, 15 contain distinct clusters with significant differences between 

Dd and Ds. There are three clusters (E, F, and G) that only contain a few test cases (three 

per cluster), which are not amenable to statistical analysis and show no statistically 

Table 1 Min, max, median, mean, and standard deviation of similarity values of the test 
cases that find the same faults 

Groups Pairs Min Median Mean Max SD 
T 39340 0.076 0.250 0.291 1.000 0.166 
F1,F2 2080 0.181 0.4 0.432 1.000 0.173 
F3,F4 91 0.375 0.571 0.561 0.833 0.143 
F5 28 0.200 0.464 0.475 0.800 0.168 
F6 28 0.714 0.714 0.714 0.714 0.000 
F7 to 15 3 0.375 0.428 0.434 0.500 0.062 

 

Table 2 Each cell above the diagonal shows the median of Dd and Ds (Dd/Ds) and each cell 
below the diagonal shows the overlapping measure (IU), per cluster pairs. Bold median 
values highlight significant differences (Mann-Whitney U-test) between the Dd and Ds  

 A B C D E F G 
A - 0.33/0.42 0.33/0.40 0.71/0.40 0.18/0.40 0.18/0.40 0.18/0.40 
B 0.21 - 0.37/0.57 0.71/0.66 0.37/0.57 0.37/0.57 0.37/0.57 
C 0.12 0 - 0.71/0.71 0.37/0.42 0.37/0.42 0.37/0.42 
D 0.12 0.57 0 - 0.11/0.71 0.11/0.71 0.11/0.71 
E 0 0 0 0 - 0.37/0.42 0.37/0.42 
F 0 0 0 0 0 - 0.37/0.42 
G 0 0 0 0 0 0 - 
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significant differences. Clusters B and D which are not significantly different from each 

other show a high overlapping value (0.57), implying that although these clusters are not 

distinct, there is a 57% probability that a test case that is selected from their union can find 

both faults. Two cluster pairs, <A,D> and <C,D>, show unexpected results—Dd median 

lower than the Ds median—and they are not highly overlapping. Therefore, since among 

21 pairs, 15 pairs fit the situation where similarity-based selection is effective, two do not, 

and four are neutral, we can conclude that, overall, in most cases “test cases that find 

different faults tend to be more different from each other than test cases that find the same 

faults”.  

Overall, the results of our analysis confirm that diversity in test case selection should be 

encouraged and that our similarity measure is adequate. It also seems that since test cases 

finding the same faults are clustered together and these clusters are mostly distinct, 

clustering algorithms are a reasonable candidate approach to achieve diversity, though we 

will investigate what is the best strategy in the next research question. 

5.3.2 What is the most cost-effective way to diversify a set of test cases? 

To answer RQ2 we first compare the AHC clustering algorithm with CovGr and Rnd 

introduced in Section 5.2. Figure 1 shows the FDR results of the algorithms.  

Overall, the results show that for all sample sizes AHC is more effective than its two 

alternatives except that for sample sizes less than 30 (~10% of the test suite) the difference 

between the average FDRs of CovGr and AHC is not statistically significant (based on 

Mann-Whitney tests). Considering the fact that in practice the results for smaller sample 

 

 

Figure 1 The average FDR of AHC, Rnd, and CovGr for different sample sizes 
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sizes are more important, AHC may not be preferred to CovGr given the high cost of a 

clustering technique compared to simple Greedy search. On average (for all sample sizes 

over 100 runs) each selection requires 350ms, 10ms, and less than 1ms when using AHC, 

CovGr, and Rnd, respectively. Though those time differences may not seem relevant, they 

may become so on much larger test suites of thousands of test cases. However, for sample 

sizes higher than 40, there is a huge (up to 40%) improvement using AHC compared to 

CovGr. In addition, AHC ensures 100% FDR with 80 test cases whereas CovGr and Rnd 

find less than 95% of the faults even with 140 test cases.  

Note that, in theory, since Rnd does not use any heuristic to increase FDR, we cannot 

improve it. However, we can improve CovGr by running it several time with different 

random selections, wherever the coverage among alternative test cases is equal, and 

reporting the best result out of all runs. To compare the FDR results of CovGr when it 

costs exactly the same as AHC, we let CovGr improve its results by random reselection 

and stopped the algorithm after 350ms. The results showed that in our case, there is no 

practically significant difference in CovGr FDR for 10 and 350 ms of running time. 

Addressing RQ2.1, given that the FDR of AHC is always equal or superior to that of 

CovGr or Rnd, and the fact that we cannot predict for a given test suite the sample size 

threshold above which AHC will be certain to fare significantly better, we favor the 

systematic use of AHC over CovGr and Rnd. Moreover, in practice, this strategy makes 

even more sense when considering that test case execution time (which in our case is in the 

range of minutes) is usually much higher than selection time for any of the techniques 

(which in our case is in the range of milliseconds). 

 

 

Figure 2 The average FDR of ART and the GA with 10,000 fitness evaluations for different 
sample sizes 
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Comparing search-based techniques with AHC, first we need to find out which search 

technique is more cost-effective. In this study, we compare the FDR of ART and a GA. 

The GA is stopped after 10,000 fitness evaluations, and ART is run 1000 times with K=10 

(so both algorithms use the same number of similarity comparisons). Figure 2 shows the 

average FDR of the techniques for each sample size over 100 runs. In general, the GA 

fares better and more particularly so from sample size 20 (~7% of the test suite) to 70 

(~25% of the test suite). For sample sizes larger than 70, the FDR of both techniques 

converges to 1.0. The differences for smaller sample sizes are statistically significant but, 

because these differences may not practically significant (at most 10% improvement for 

the GA), we need to look closely at the relative cost of ART and the GA.  

As we mentioned earlier, the number of fitness evaluations is usually a good platform-

independent measure for the cost of search techniques. However, in our implementation, a 

matrix made of all pair-wise similarities is created before any search. Therefore, this 

overhead is the same for all search algorithms and the fitness evaluation is not an 

expensive part of the search. Therefore, we cannot be sure that total cost is proportional to 

the number of fitness evaluation. In Figure 3, we have plotted the actual time spent by the 

two algorithms (ART and the GA with 10,000 fitness evaluations). The required time for 

10,000 fitness evaluations using both techniques is exponentially increasing and they both 

spend almost the same time for very small sample sizes (less than 20). For sample sizes 

higher than 20 (~7% of the test suite), ART quickly gets more expensive than the GA. 

 

Figure 3 The time in milliseconds required by the GA and ART to run 10,000 fitness 
evaluations for different sample sizes 
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Given that it always has equal or worse FDR results, there is no reason for choosing ART 

over the GA.  

In the next step, we compare AHC with the GA but using the same execution time that 

AHC requires for its selection (350ms). Figure 4 shows that the GA is clearly preferable 

over AHC considering that spending the same time as AHC, the GA fares in general much 

better and can almost double the average FDR results of AHC for small sample sizes. It is 

also more effective in finding all faults: AHC requires 80 test cases whereas the GA only 

needs 40 test cases to achieve 100% FDR. To draw more conservative conclusions 

regarding the superiority of the GA, we even conducted another experiment and ran AHC a 

relatively long time (20,000ms) to compare its FDR result with the GA using 350ms 

(Figure 4). However, even when letting AHC work for almost 60 times longer than the GA 

it still yields much lower FDR. Therefore, our suggested answer to RQ2 is using the GA 

over the other alternatives. 

5.3.3 How cost-effective is diversifying test cases compared to state of practice 
techniques for test case selection? 

To answer RQ3, we compare our best candidate based on RQ2, which is similarity-based 

selection using a GA, with a coverage-based Greedy search (CovGr). Looking at Figure 1, 

the first observation is that the GA can save more than 80% of the test case execution cost, 

given the fact that the GA, on average, finds more than 99% of the faults by 40 test cases 

whereas CovGr requires more than 220 test cases to achieve the same (not plotted in the 

figure). To have a more detailed cost-effectiveness assessment, we look at the 

 

 

Figure 4 The average FDR of the GA with 350ms and AHC with 350 and 20,000ms for 
different sample sizes 
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improvement that the GA may provide over time. Since this improvement varies over 

sample sizes as well, we plotted in Figure 5 the percentage of FDR improvement provided 

by the GA over CovGr for five sample sizes: 10, 15, 20, 25, and 50 (ranging from 4 to 18 

% of the test suite), over a time period of 10ms (the average time required by CovGr to 

select test cases) to 350ms (the average time required by AHC to select test cases). Note 

that as we mentioned earlier, as opposed to the GA, CovGr does not improve over time.  

A first observation from Figure 5 is that the smaller the sample size, the larger the 

improvement provided by the GA. Also, it is interesting to see that the GA, even with 

10ms execution time, always detects more faults than CovGr. For example, the average 

FDR of the GA is 80% larger than the CovGr FDR for 10ms. Finally, a cost analysis shows 

that in cases where we can afford spending more time for selection, the GA can be greatly 

improved. For all five sample sizes shown in Figure 5, the GA’s improvement over CovGr 

almost doubles if we give it 350ms instead of 10ms. This improvement over time gets very 

large when the sample size gets smaller. For example, for sample size 10 the GA can yield 

a 160% higher FDR than CovGr, which in practice is a great benefit given that the cost for 

this improvement is only 350ms for a test suite of 281 test cases where the cost of running 

one extra test case is in the order of minutes. 

6 Discussion on Validity Threats 

The main threats to the validity of this study are firstly the fairness of comparisons in terms 

of cost and secondly the generalizability of the results.  

 

Figure 5 The percentage of improvement of similarity-based selection using GA over 
CovGr for different sample sizes (SS) in time range of 10 to 350ms 
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Similarity comparisons of test cases and clusters are the most influential part of 

selection techniques. In our implementations of the algorithms, all pair-wise similarities 

are pre-calculated in a similarity matrix which is given to the selection algorithm as an 

input parameter. Obviously, this implementation is not scalable and the similarity matrix 

will face memory limitations for large test suites. However, if we can afford pre-

calculation, then the most expensive part of the search algorithms may not be the fitness 

evaluation anymore. We can see its effect on comparing ART and the GA where having 

the same number of similarity evaluations ART requires much more time. We have not 

studied on-demand similarity calculations, which might give different FDR results using 

the same stopping time. In addition, inter-cluster similarity calculation in AHC is very 

expensive and in our implementation it is repeated for each iteration of the algorithm. The 

code can be optimized by caching the similarities between clusters in each iteration and in 

the next iteration only calculate the similarities if it is not already available. However, 

implementing this improvement is not trivial since saving similarities of all combinations 

of clusters in all iterations may be not possible due to memory limitations. There is a 

tradeoff to be made between memory cost and execution speed.  

The second issue is due to the fact that all our results and conclusions rely on a single 

industrial case study using a given set of real faults. Though running such studies is time 

consuming, it must obviously be replicated. However, as discussed earlier, the system used 

here is typical of a broad category of industrial systems: control systems with state-

dependent behavior, controlling sensors and actuators. 

7 Conclusion and Future Work 

In practice, executing test cases generated by model-based testing (MBT) techniques is 

costly. This cost is due to the large test suites which are typically generated by MBT tools 

on industrial-scale systems to systematically achieve a coverage/adequacy criterion. 

However, for system level testing, in many situations testing should take place on the 

deployment platform where the cost (time and resource) of each test execution may be 

high. This may be due to the cost of using actual hardware, potential damages in case of 

failure, or access to restricted infrastructure (e.g., test network). In addition, for many 

systems, automatically generating oracles from models is very difficult or impossible. In 

such cases, test cases should be evaluated manually, greatly increasing the cost of test 

execution and analysis. In cases such as the ones mentioned above, one must execute a 
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subset of the generated test suite whose size is dependent on context. In this paper, we 

propose a new approach for test case selection from UML state machines, by maximizing 

the diversity of the selected test cases. To measure diversity we used a specific test case 

representation for UML state machines (triggers-guards sets), which should be adapted in 

case of using other models, and a model-independent similarity function (Jaccard Index). 

We investigated why diversifying test cases with respect to our similarity measure 

increases fault detection rates and compared different strategies to diversify the test cases: 

Clustering, Adaptive Random Testing, and Genetic Algorithms (GAs). The results of our 

study on an industrial software system and actual faults showed that: (1) rewarding 

diversity leads to finding more faults, (2) our proposed similarity-based selection (using 

Jaccard Index on the set of trigger-guards with a GA selection) is the most cost-effective 

approach compared to the other alternatives. In addition, we showed that in practice this 

approach can reduce the cost of test case execution in MBT by selecting a small set of test 

cases which can find all (or most) faults in short amount of time. In the future, we plan to 

replicate the study on another industrial system. In addition, we will evaluate alternative 

optimization and search techniques.  
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Abstract— Our experience with applying model-based testing on industrial systems 

showed that the generated test suites are often too large and costly to execute given project 

deadlines and the limited resources for system testing on real platforms. In such industrial 

contexts, it is often the case that only a small subset of test cases can be run. In previous 

work, we proposed novel test case selection techniques that minimize the similarities 

among selected test cases and outperforms other selection alternatives. In this paper, our 

goal is to gain insights into why and under which conditions similarity-based selection 

techniques, and in particular our approach, can be expected to work. We investigate the 

properties of test suites with respect to similarities among fault revealing test cases. We 

thus identify the ideal situation in which a similarity-based selection works best, which is 

useful for devising more effective similarity functions. We also address the specific 

situation in which a test suite contains outliers, that is a small group of very different test 

cases, and show that it decreases the effectiveness of similarity-based selection. We then 

propose, and successfully evaluate based on two industrial systems, a solution based on 

rank scaling to alleviate this problem. 

1 Introduction 

Rewarding diversity in test cases has been shown to lead to higher fault detection in 

numerical applications, because failing test cases tend to cluster in contiguous regions [1]. 

 In previous work [2-4], we proposed similarity-based test case selection (STCS) 

techniques for model based testing (MBT), which applied the idea of rewarding diversity 

on abstract test cases generated from UML state machines.  

Our motivation was that running all the system-level test cases generated by a standard 

criterion, e.g., round trip path for UML state machines, was not feasible, due to the high 

cost of running them on the deployed platform or test network. So, from a practical 
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standpoint, to solve the testing problems of our industrial partners, it was necessary to 

devise techniques to select smaller test suites. Our approach is, given a small budget of test 

cases that can be run, to reward diversity (i.e., penalize similarity) in the chosen test cases.  

We assessed different similarity measures and diversified test cases using Genetic 

Algorithms (GAs) and Adaptive Random Testing (ART). The proposed techniques were 

applied on one industrial case study where the goal was to decrease test execution cost 

down to an affordable number of test cases while preserving, to the maximum extent, the 

fault detection rate (FDR) of the original test suite. Results showed that, compared to 

random and coverage-based selection, much higher FDR can be achieved when using 

STCS. 

These promising results motivated the need to gain a better understanding of STCS, 

which is essential to develop novel and more effective techniques. Unlike our previous 

work [2-4], where we were exploring alternative STCS techniques, in this paper we 

analyze their variation in effectiveness, in a controlled manner and using simulation, when 

varying the relationship between similarity distributions and fault detection among test 

cases. In other words, the goal is to investigate under which circumstances STCS is more 

effective. The results shed light on the best and worst conditions for STCS, thus preparing 

the ground for improved similarity measures and STCS results.  

The intuition is that STCS would perform better when test cases which detect distinct 

faults are dissimilar and test cases that detect a common fault are similar. Such a condition 

was verified [2] in one industrial case study, where we found that test cases finding a 

common fault were indeed clustered together in the test case space and these clusters were 

mostly distinct.  

In this paper, to investigate the above intuition in a more precise and systematic way, 

we resort to a large number of experiments based on simulation. Two industrial case 

studies were used to guide the simulations and thereby obtain more realistic results. On one 

hand, the results of our empirical study confirm our intuition about what drives the 

effectiveness of STCS, though they provide insights that are more complex than what was 

originally expected. On the other hand, such analyses pointed out a particular characteristic 

of MBT (compared to numerical applications) that can make STCS less effective. The 

situation appears when there is a small clustered set of test cases that is far away from all 

the others (referred to as outliers), which is not uncommon, for example, in state machine-

based testing when a small group of transition paths is mostly disconnected from the rest of 

the state machine. Our empirical analyses show that, in that case, the FDR of STCS can 
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significantly decrease. We hence propose an approach, based on rank scaling, to 

manipulate similarity values so as to alleviate this problem. 

The rest of the paper is organized as follows. The next section provides background 

information about similarity-based test case selection. Section 3 discusses the problems 

related to outliers and outlines our solution to alleviate it. Section 4 describes the 

experiment design and reports the results. Section 5 provides a brief overview of related 

works covering similarity-based selection techniques. Finally, Section 6 concludes the 

paper and outlines our future work plan. 

2 Similarity-based Test Case Selection 

Unlike coverage-based selection, where the goal is maximizing the coverage of a test 

model (e.g., transition coverage in a state machine) by the selected test cases to maximize 

chances of fault detection, STCS techniques maximize diversity among the selected test 

cases. Diversity is calculated using a (dis)similarity measure between pairs of test cases. A 

similarity measure is a value that a similarity function assigns to the pair. Inputs of the 

function are usually an encoded test case as a set or sequence of elements. In the context of 

MBT, the inputs are abstract test cases defined on the test model rather than concrete test 

cases. We do not use the execution information of the test case as, in our context, the goal 

is to select them before execution. Abstract test cases are naturally generated as a first step 

by MBT and can hide the unnecessary information for similarity comparisons. For 

example, in state machine-based testing, an abstract test case representation can be a path 

in the state machine specifying the software under test (SUT). In general, different faults 

can be detected by the same test path instantiated with different test data (e.g., event 

parameter values). Therefore, to calculate the FDR of a technique, it is necessary to run the 

selected test paths with different input data and analyze its FDR distribution. 

2.1  Encoding and similarity functions 

The representation (encoding) of test cases has an important effect on a similarity measure. 

Though in MBT a test path represents an encoded version of a test case, the test path can 

be described at different levels of details. In [4], we studied three encodings for a test path 

in UML state machines: state-based, transition-based, and trigger-guard-based. We 

reported that trigger-guard-based encoding is the most effective one in terms of fault 

detection, where a test path (tp) is represented as: 
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<tp>      ::= <TrGu> | <TrGu> “,” <tp> 

< TrGu > ::= trig |guard | id | guard “+” trig 

 

where trig is the identification of a trigger, and guard is the identification of a guard in 

the state machine. In this representation, a transition is identified by its trigger, a guard, or 

both. If there is a transition with no guard and trigger, we use the transition id (id) as its 

identifier.  

Given an encoding, one may use different similarity functions to calculate the similarity 

value. In [3] we studied six set-based and sequence-based similarity functions. We 

proposed Jaccard Index [5] as the most cost-effective set-based and Needleman-Wunsch 

(NW) [6] as the best sequence-based similarity function. The Jaccard Index is defined as 

the size of the intersection divided by the size of the union of the two encoded test cases, 

whereas the NW algorithm assigns a similarity value based on the global alignment [6] of 

the two encoded test cases by arranging the sequences of elements in the test cases to 

identify regions of similarity between the sequences. 

From an STCS point of view, the only required constraints on the similarity measures 

are that they must be positive and symmetric, which is true for all proposed set and 

sequence based measures. This means that properties such as reflexivity 

(Sim(݌ݐ௜ , ௜݌ݐ ௝)=maximum iff݌ݐ  ൌ , ௜݌ݐ)௝) and triangular inequality (D݌ݐ  +(௝݌ݐ 

D(݌ݐ௝ , , ௜݌ݐ)௞)>= D݌ݐ  , ௜݌ݐ)௞) where D݌ݐ  , ௜݌ݐ)௝) = 1/ Sim݌ݐ   ௝)) do not necessarily hold݌ݐ 

among different pairs of test cases [7]. For example, NW values can be in any range and, 

except for symmetry, does not feature any other well-known property of distance/similarity 

measures [8].  

Given a set of n encoded test cases (sn) and a similarity function (Sim), the test case 

selection problem is reformulated as minimizing SimMsr(sn): 

 

௡ሻݏሺݎݏܯ݉݅ܵ ൌ ෍ ܵ݅݉൫݌ݐ௜ , ௝൯݌ݐ

௧௣೔ , ௧௣ೕ∈௦೙ ∧ ௜வ௝

 

 

where Sim(tpi , tpj) returns the similarity of two test paths (encoded abstract test cases in 

MBT) in sn represented by tpi and tpj. The last step in STCS is using a strategy to select a 

subset of test cases with minimum average pair-wise similarity (SimMsr). This test case 

selection problem is NP hard (traditional set cover) [9] and using an exhaustive search in 
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our cases (and for most realistic cases) is not an option, since the search space size for 

selecting a subset of size n is equal to the number of  possible n-combinations within a test 

suite of a given size. As an example from our case studies, the search space size for n=28 

in a test suite of size 281 (~10% of the test suite) is ቀ281
28

ቁ ≅2.9*10^38. 

In [2] we have examined GA, ART, and a hierarchal clustering algorithm as selection 

algorithms and found out that GA was the most cost-effective technique among them. In 

this paper, we show our analyses when both using GA as our proposed technique (called 

STCS_GA) and ART as the most well-known algorithm (called STCS_ART) for 

diversifying test cases. The algorithms are introduced in the following subsections. 

2.2  Adaptive Random Testing 

ART has been proposed as an extension to Random Testing [1]. Its main idea is that 

diversity among test cases should be rewarded, because failing test cases tend to be 

clustered in contiguous regions of the input domain. This has been shown to be true in 

empirical analyses regarding applications whose input data are of numerical type [1]. 

Therefore, ART is a candidate selection strategy in our context as well. In this paper, we 

use the basic ART algorithm described in [1], but we ensure that no replicated test case is 

given in output. The pseudo-code for ART is: 

 

(1) Z={} 

(2) Add a random test case to Z  

(3) Repeat until |Z|= sampleSize 

(4) Sample K random test cases that are different from Z 

(5)  For each of these test cases k  

(6)   k.maxSim = max(Sim(k , z ∊ Z)) 

(7)   Add the k with minimum maxSim to Z 

 

2.3  Genetic Algorithms 

In this paper, we use a steady state GA with the same settings as it has been used in [2], in 

which only the offspring that are not worse than their parents are added to the next 

generations. An individual in our context is a subset of size n from the original test suite 

(denoted sn). Given a similarity function Sim(tpi , tpj), the fitness function f to minimize is 

the sum, for all pairs (tpi , tpj) in sn, of Sim(tpi , tpj), denoted SimMsr. We use a single point 
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crossover with probability of Pxover to combine two different parents ݏ௡
௫ and  ݏ௡

௬. A mutated 

test path is replaced by a test path that is selected at random from the set of all possible test 

paths. A valid solution is a set of test cases in which there is no duplicate. The stopping 

criterion is 10,000 fitness evaluations, which is equal to the cost of 1,000 runs of ART with 

a candidate size 10 in terms of the resulting number of distance calculations. The pseudo-

code of the employed GA is as follows: 

 

(1) Sample a population G of m sets of test cases uniformly from the search space 

(i.e., the set of all possible valid sets with a given size n) 

(2) Repeat until the stopping criterion is met 

(3)  Choose s୬
୶ and s୬

୷ from G  

(4) ൫ś୬
୶ , ś୬

୷
൯ ∶ൌ crossover (s୬

୶ , s୬
୷
, P୶୭୴ୣ୰) 

(5) Mutate (ś୬
୶, ś୬

୷) 

(6)   If valid (ś୬
୶ , ś୬

୷) ∧ min (fሺś୬
୶ሻ, fሺś୬

୷)) ൑ min (fሺs୬
୶ሻ, fሺs୬

୷)) 

(7)  Then s୬
୶ ∶ൌ ś୬

୶ and s୬
୷
∶ൌ ś୬

୷ 

(8) Else If valid (ś୬
୷) ∧ min (fሺs୬

୶ሻ, fሺś୬
୷)) ൑ min (fሺs୬

୶ሻ, fሺs୬
୷)) 

(9)            Then s୬
୷
∶ൌ ś୬

୷ 

(10)           Else If valid (ś୬
୶) ∧ min (fሺś୬

୶ሻ, fሺs୬
୷)) ൑ min (fሺs୬

୶ሻ, fሺs୬
୷)) 

(11)                     Then s୬
୶ ∶ൌ ś୬

୶ 

 

3 Impact of Outliers and Rank Scaling Solution 

Unlike test suites for numerical applications, where the population of all possible input test 

data is distributed with similar density in the input space, it is not uncommon in MBT that 

a subset of test cases be very dissimilar to the rest of the test suite (outliers). For example, 

if the test suite is derived from a state machine and (1) the state machine contains a 

partition which is initiated by a transition from the initial state, (2) this partition has no 

transition to/from the rest of the state machine and (3) the triggers of the transitions in the 

segment are very different than the triggers of the transitions in the main part of the state 

machine, then the test suite generated from such a model will contain a small set of test 

cases, which will be very dissimilar to the rest of the test suite, that covers that segment. 

Investigating the behavior of STCS in such a situation is necessary in order to gain 

confidence about STCS effectiveness in the context of MBT. But because we are 
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evaluating STCS on industrial case studies, and such artifacts are difficult to obtain in large 

numbers to support a systematic investigation, we perform simulations based on industrial 

case studies to increase realism. 

We can show that both STCS_GA and STCS_ART will try to select half of the test 

cases from the outlier clusters (for simplicity, we will assume the presence of only one 

outlier cluster). The reason is that the similarity between any pair, in which one test case is 

from the main set of test cases and the other from the outlier set, would have a very low 

value compared to the other similarity values in the matrix. Therefore, to minimize 

 .௡ሻ, the selection algorithm is guided to select as many as possible of these pairsݏሺݎݏܯ݉݅ܵ

Given a minimized test suite of size n, there will be m test cases from the main set, and o 

test cases from the outlier set, with the constraint m+o=n. The number of pairs in which 

the two test cases are from different sets would be m*o. Under the constraint m+o=n, the 

term m*o is maximized when m=o, from which it follows o=n/2 (Schur-concave function 

[10]). Therefore, nearly half of test cases will be chosen from the outlier cluster regardless 

of the proportion of the cluster sizes. Consequently, if the outlier cluster is small and does 

not contain any fault revealing test case, the FDR of STCS will likely be low.  

Since we expect poor results in the presence of no-fault revealing outlier, we suggest 

using a rank scaling technique to alleviate the problem. In this technique, the raw values in 

a similarity matrix are replaced by their rank. The rank is simply the index of the value 

after ordering all similarity values of the matrix in an array. This rank scaling approach is 

derived from solutions for solving outlier problem in statistics [11] and help decreases the 

large similarity differences between test cases from the outlier cluster and the rest of the 

test suite.   

Notice that, in this paper, we are assuming N (test suite size) small enough such that a 

N*N matrix can be stored without significant overheads (this was the case for the two 

industrial case studies analyzed in this paper). When this is not possible, and we need to 

compute the similarity values on the fly each time we evaluate the similarity of a set of test 

cases, a dynamic rank scaling is needed. For example, a data structure (e.g., a hash-table) 

could be used to store all the unique similarity values encountered so far during the search 

(e.g., while using STCS_GA). Rank scaling would hence be based on those values. 
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4 Empirical Study 

In this section we report the design and results of our empirical analysis. The high-level 

goal of this study is to investigate under which circumstances, characterized by the 

correlation between similarities of test cases and their fault detection, and the distribution 

of test cases in their definition space, a STCS is most effective in terms of fault detection 

rate (FDR).  

4.1  Test suites description 

In this study, we test different hypotheses regarding the effectiveness of STCS on different 

input test suites to minimize. Given a test suite of size N, we can consider a N*N matrix to 

represent the test suite in which all similarity pairs are stored (actually, only half of it is 

necessary, due to the symmetric property of the similarity functions).  

These matrices are all based on the modification of test suites from two industrial case 

studies. However, we had to manipulate the matrices to create all the possible situations of 

a test suite with respect to the properties we want to investigate, as further explained 

below.  

The SUT in case study A is a safety monitoring component in a safety-critical control 

system implemented in C++. A flattened version of the state machine representing the SUT 

consists of 70 states and 349 transitions. There are 15 real faults in the SUT which are 

detectable by a test suite automatically generated from a UML state machine representing 

the SUT’s behaviour. The test suite, which is generated using our MBT tool (TRUST) 

[12], contains 281 abstract test cases (test paths) covering all round trip paths [13] in the 

state machine. Each test path either detects a certain fault or not regardless of its input data. 

In other word, the FDR values of the test paths of this case study are independent from 

input data.  

The SUT in case study B is the core subsystem of a video-conference system which 

manages sending and receiving of multimedia streams implemented in C. As the previous 

case study, we deal with real faults detectable by an automatically generated test suite 

using TRUST. Case study B is smaller than A with 11 states, 70 transitions, 59 test cases 

(covering all round trip paths in the state machine) and only four detectable faults. But 

unlike case study A, the FDR of the test paths are not independent from input data. 

Depending on which data are chosen as input parameters for the events on the state 

machine, a fault may or may not be detected.  
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4.2 Research questions 

The high level goal of this study leads to the following research questions: 

RQ1. Under which conditions, with respect to the similarity of fault revealing test cases in 

a test suite, STCS performs best?  

RQ1.1. Is STCS more effective if test cases which detect distinct faults are dissimilar? 

RQ1.2. Is STCS more effective if test cases which detect common faults are similar? 

These questions directly target the hypothesis on rewarding diversity, as discussed in 

Section 1, and seek to confirm it in the context of MBT. The diversity hypothesis is 

investigated with respect to two distinct properties through RQ1.1 and RQ1.2.  

RQ2. Is rewarding diversity robust to small clusters of test case outliers (test cases which 

are very dissimilar to the rest of test suite)? 

RQ3. What is the effect of rank scaling in the presence and absence of outliers? 

RQ3.1. Does using rank scaled similarities improve STCS effectiveness in the presence of 

outliers? 

RQ3.2. Does using rank scaled similarities impact negatively STCS effectiveness when 

there is no outlier? 

The problem of outliers, discussed in Section 3, is being examined in RQ2. Our 

motivation, as mentioned above, is that in contrast to numerical applications, outliers are 

not a rare feature of test suites when they are generated using MBT. In question RQ3, the 

first sub-question RQ3.1 asks whether rank scaling is useful to alleviate the effect of 

outliers. RQ3.2 investigates whether rank scaling can reduce FDR when there is no outlier. 

If results show that rank scaling does not reduce the FDR in such situations and that rank 

scaling alleviates the outlier problem, then it would be recommended to always apply rank 

scaling in STCS. 

4.3 General settings of the experiments 

We designed two experiments Exp1 to answer RQ1 and Exp2 to answer RQ2 and RQ3. In 

both experiments we use STCS_GA and STCS_ART based on trigger-guard encoding and 

NW as similarity function when it must be specified. Note that the results of our study in 

[3], which was based on only case study A, showed the same level of effectiveness for both 

NW and Jaccard Index. We had recommended the Jaccard Index in that study since it is 

easier to apply than NW. However, in case study B, NW provides much better results. The 

most plausible explanation for this difference is that the sequence of test path elements 
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matters regarding fault detection in case study B and NW is a sequence-based function. 

Therefore, in this paper NW is used for both case studies.  

Since we have built this study based on our previous work, the overall settings of the 

algorithms are the same as our previous study settings. For GA, the stopping criterion is 

10,000 fitness evaluations, the crossover probability is 0.75 and the population size is 50. 

For ART, the candidate size is 10 and 1000 repetitions (from which we select the best) are 

performed for each run of the algorithm to ensure fair comparisons with GA. More details 

regarding the settings and rationale behind our choices can be found in [2].  

Each experiment uses input matrices which are generated by modifying similarity 

matrices of the case studies A and B, which we refer to as simulations. We repeat the 

experiments on different sample sizes (four for case study A and six for case study B) to 

check whether the results are consistent across the size range. Although the actual sizes for 

the sample sets are different for the two case studies, the percentage of selected test cases 

among all test suites is almost the same: sample sizes for experiments driven from case 

study A are equal to 5, 15, 25, and 35, and sample sizes for the experiments driven from 

case study B range from 3 to 8. The important point here is running the experiments on 

relatively small sample sizes, since this is the most interesting case in practice, when it is 

not possible to run many test cases on the actual hardware and platform (as for the 

industrial systems used as a case study in this paper). Furthermore, for larger sizes all 

techniques converges to 100% FDR and differences will not be significant.  

For both algorithms and all sample sizes, each experiment is repeated 1000 times (100 

runs for search technique with different random seeds and 10 different input matrices per 

each matrix type to account for random variation in both search techniques and matrix 

generation). A rigorous statistical procedure has been used to evaluate and compare the 

effectiveness of these randomized algorithms [14]. 

4.4 Design and results of Exp1 

To answer RQ1, we designed Exp1 where STCS_GA and STCS_ART, are applied on nine 

different types of input similarity matrices. These similarity matrices are artificially built—

though based on case study A—to simulate all possible combinations of two properties of a 

test suite with respect to its test cases’ similarities. Property X denotes the similarity 

between test cases that detect a common fault and Property Y denotes the similarity 

between test cases that detect distinct faults. In other words, RQ1.1 and RQ1.2 address the 

effect of Property Y and X on STCS effectiveness. In our simulations, each of these two 
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properties can have three values: High (top 10%: [0.9,1.0]), Low (bottom 10%: [0.0,0.1]), 

and Random (randomly picked from the valid range: [0.0,1.0]), which makes nine possible 

combinations of the properties as an identifier for a test suite. For example, a test suite 

where test cases that detect a common fault are highly similar and those that detect 

different faults are very dissimilar, is identified by Property X=High and Property Y=Low. 

Note that, since the similarity functions we use only need to be positive and symmetric, 

when we generate matrices for our experiments, we do not need to validate each similarity 

value by checking its relationship with other values for other test case pairs in the same 

matrix.  

To generate matrices with different property combinations while remaining as realistic 

as possible, we kept the original number of faults (15) and same failure rate as in case 

study A (74/281) and built matrices with sizes 300, 600, 6,000, and 12,000 (nine matrices 

for each matrix size). Recall that the reason for using different sizes is to test the 

independence of the results from test suite size and therefore help the generalization of the 

results to larger case studies (i.e., does the technique scale?). Though this is only realistic 

when the system under test has already undergone significant verification, to make the 

analysis tractable, we assumed that each test case can find at most one fault. At this stage it 

is difficult to assess the consequences of this assumption and it therefore constitutes a 

threat to validity.  

For each matrix type, 10 instances are generated. Both STCS_GA and STCS_ART are 

applied on these matrices 100 times, which yields a total of 1000 runs. In total, given that 

there are four sample sizes, nine matrix types, 1000 runs, and two selection techniques, 

then 288,000 (4*9*10*2*100*4) observations are collected in Exp1, each with an FDR 

value for the selected test cases. The FDR is the average number of faults detected by the 

selected test cases, for each run of the STCS, divided by the total number of faults (15). 

Figure 1 and Figure 2 shows partial results for Exp1. Due to space constraints, we chose to 

present only the FDR results for two sample set sizes (15 and 25) and two matrix sizes 

(300 and 12000) for each of the STCSs, but the same trend was observed over all sample 

sets and matrices as illustrated in Figure 3 for effect sizes. The first observation is that, 

regardless of the type of SCTS, sample size, and matrix size, test suites with a Low value 

for Property Y show higher FDR. This means that the most important factor for ensuring 

the success of STCS is having test cases detecting distinct faults as far (dissimilar) as 

possible from each other. This confirms our hypothesis and answers RQ1.1.  
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To answer RQ1.2, if we first look at cases where Property Y has a Low value, we can 

see significant differences in test suites with High values for Property X when compared to 

the others. This means that the combination of High/Low values for property X/Y is the 

best combination for STCS. This directly confirms the hypothesis discussed in RQ1. 

However, Property Y seems to have stronger effect since its value completely overrides the 

effect of Property X.  

To gain more confidence in the conclusions drawn from this empirical study, we also 

carried out a series of statistical tests. For each of the 16 combinations of matrix sizes and 

test sample sizes, we used a Mann-Whitney U-test to compare the performance of the 

property combination High/Low against the other eight combinations. This test verifies 

Figure 1 FDR of a sample set (of size 15 and 25) of test cases selected by STCS_GA from different 
matrix types of size 300 and 12000. Matrix types on X_Axis are identified as Property X/Property 

Y where each property can be random (r), low (l) or high (h). Each boxplot shows 1000 
observations (100 STCS runs per matrix on 10 different matrix instances) 
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whether two FDR distributions are statistically different. For STCS_GA, the p-values were 

always lower than our selected level of significance (0.05). For STCS_ART, resulting p-

values were lower than 0.05 in all cases but four out of the 16*8=128 comparisons. This 

provides strong statistical evidence to support the claim that High/Low is the best condition 

under which to use STCS.  

To quantify the magnitude of improvement in a standardized way, in Figure 3 we plot 

the effect size measure of STCS_GA and STCS_ART for different sample and matrix sizes 

using the Vargha-Delaney’s A statistic. This statistic estimates the probability that a data 

point randomly taken from a set (i.e., a probability distribution) will have higher value than 

another point randomly taken from a second data set. When the two distributions are the 

same, we would have A=0.5. The results in Figure 3 show that, most of the time, the A 

Figure 2 FDR of a sample set (of size 15 and 25) of test cases selected by STCS_ART from 
different matrix types of size 300 and 12000. Matrix types on X_Axis are identified as Property 

X/Property Y where each property can be random (r), low (l) or high (h). Each boxplot shows 1000 
observations (100 STCS runs per matrix on 10 different matrix instances) 
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values are close to 1. This means that, for the High/Low combination, it is nearly certain 

that STCS will yield better results than in the other eight cases, even when we take into 

account the variance of the results due to the randomized nature of these algorithms. 

4.5 Design and results of Exp2 

For Exp2, we apply STCS_GA and STCS_ART on four types of matrices per case study. 

We manipulated the original matrices from each case study to examine the effect of 

outliers on the FDR of the test suites. We did so by adding extra percentages of outlier test 

cases. For case study A and B, respectively, we built matrices with 1, 2, 5, 10, and 20 and 

5, 10, and 20 percent extra test cases (1 and 2 percent would not make sense for the smaller 

case study B with only 59 test cases). Four types of matrices are generated for each case 

study and size: (1) Random/Base: The original matrix from the case study plus extra test 

cases with random similarity values in the same range of similarity values as in the original 

matrix. This matrix is the baseline for the FDR comparisons; (2) Cluster/Base: The original 

matrix plus extra test cases with random similarity to each other but very low similarity 

(outliers) to the rest of the test suite (original test cases). This low similarity value must be 

set to be much lower than the minimum values within each of the groups containing the 

original and additional test cases. If min and max are the minimum and maximum values in 

the original matrix, we first change the matrix by replacing every value x with x+10*(max-

 
(a) 

 
(b) 

Figure 3 Effect size measure A (each calculated out of 1000 observations) for FDR of a sample set 
selected by STCS_GA (a) and STCS_ART (b) shown as boxplots for the eight comparisons. The 
effect size compares the High/Low matrix type with the all other eight matrix types of Figure 1 

and Figure 2. X_Axis shows the sample size/matrix size 
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min) to ensure much higher NW similarity values among the original test cases compared 

to such values with outliers. The NW values between outliers are then generated to be in 

the same range as the original matrix. Last, to simulate a low similarity between the 

outliers and the original test cases, we set the NW value between them to zero. The 

constructed matrix therefore represents the situation where outlier test paths are present in 

the test suite; (3) Random/Ranking: The same matrix as Random/Base but after applying 

rank scaling as introduced in the research question subsection; (4) Cluster/Ranking: The 

same matrix as Cluster/Base but after applying rank scaling.   

To answer RQ2, we compare the FDR of a selected subset of test cases (for four 

different sizes) from a test suite represented by the Cluster/Base matrix with the FDR of a 

same size subset using the Random/Base matrix. This comparison investigates the effect of 

outliers on the STCS effectiveness. 

To investigate RQ3, we compare STCS effectiveness on the matrices from 

Cluster/Ranking and Cluster/base, we will assess whether rank scaling has significantly 

alleviated the effect of the outliers (RQ3.1). We also compare the effectiveness of STCS on 

the Random/Ranking and Random/Base matrices to check for possible negative effects of 

rank scaling when there is no outlier (RQ3.2). 

We generate 10 instances of each of the 32 matrices (four matrix types and eight outlier 

percentages in the two case studies) to account for random variation in matrix generation. 

Both STCS_GA and STCS_ART are applied on these matrices 100 times to account for 

random variation in search techniques. In total, given that there are four sample sizes in 

case study A and six sample sizes in case study B, 320 matrices, 100 runs, and two 

selection techniques, then 640,000 (10*320*100*2) observations are collected for Exp2. 

Each observation has an FDR value for the selected test cases. The FDR calculation for 

case study A is the same as for Exp1 but is different for case study B, since, in the latter 

case, whether each test path detects a fault depends on which input data is used. For case 

study B, we randomly (with equal probability for each input data value) generated 10 

different test cases per test path. Therefore, probability ௙ܲ of finding a specific fault ݂ with 

the selected subset of test paths is equal to one minus the probability of not finding the 

fault by any of the test paths in the chosen set: ௙ܲ ൌ(1 െ ∏ ሺ1 െ ௜ሻ݌
௡
௜ୀଵ ) where n is the size 

of the subset and ݌௜ is the estimated probability of detecting fault ݂ with test path i in the 

subset: number of times the fault is detected by the 10 test cases generated for that test path 

divided by 10. The FDR is hence computed by averaging these probabilities ∑ ௙ܲ/|ܨ|, 
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where |ܨ| is the number of faults. From the results of Exp2, answering RQ2 and RQ3, 

Figure 4 and Figure 5 are chosen to show one representative example since the trend is 

again the same over different sample sizes and algorithms for case study A. In Figure 4.a, 

the clear gap between Cluster/Base and Random/Base shows a strong drop in STCS 

effectiveness in the presence of outliers (RQ2). Comparing Cluster/Base and 

Cluster/Ranking we can clearly see that rank scaling helps STCS improve its effectiveness 

in the presence of outliers (RQ3.1) and comparing Random/Base and Random/Ranking 

clearly shows there is no reduction in FDR when there is no outlier in the test suite 

(RQ3.1).  

In case study B, outliers also decrease effectiveness of STCS, though to a lesser extent 

(RQ2), and rank scaling once again does not compromise the potential FDR for test suites 

without outliers (RQ3.2). However, as it can be seen in the Figure 4.b, the improvement for 

case study B when comparing Cluster/Base and Cluster/Ranking is relatively small 

(RQ3.1), perhaps in part because the impact of outliers is already smaller to start with in 

this case study.  

As in the previous experiment, to get more reliable results, we also carried out a 

rigorous statistical procedure using Mann-Whitney U-tests and Vargha-Delaney’s A 

statistics (effect size) to compare FDR distributions across the four types of matrices. 

Comparing the performance of Random/Base with Random/Ranking (RQ3.2) yields p-

 

(a) 

 

(b) 

Figure 4 FDR of a sample set selected by STCS_GA from test suites based on case study A with 
size 35 (a) and case study B with size 8 (b). Four combinations are compared: with (Clustered) or 
without outliers (Random), and using rank scaling (Ranking) or not (Base). The graphs show the 

average FDR over 1000 STCS_GA runs. X_Axis shows the percentage of outliers 
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values lower than 0.05 in only one case out of 20 comparisons (five extra test case 

percentages time four matrices) for STCS_GA and two out of 20 comparisons for 

STCS_ART, where, even in those cases, the FDR difference between Random/Base and 

Random/Ranking is practically negligible. This statistically confirms that rank scaling is 

not particularly harmful in most cases when no outlier is present. However, when we 

compare Cluster/Base against Cluster/Ranking (RQ3.1), we obtain 11 cases with 

significant p-values for STCS_GA, and six cases for STCS_ART.  

In Figure 5, we plot the effect size measure of STCS_GA for different sample and 

matrix sizes when we compare Cluster/Base against Cluster/Ranking (RQ3.1) in case study 

A. For small sample sizes and small outlier cluster, the effect is minimal (i.e., very close to 

0.5). However, for larger sizes, the effect gets much stronger (close to 0.7). 

As explained before, the main reason for which we apply rank scaling is to balance the 

distribution of the selected test cases from each cluster of outliers (if present). To examine 

this phenomenon, we considered one scenario (case study A with 20% extra test cases 

 
Figure 5 The effect size measure A for FDR of sample sets selected by STCS_GA from the test 

suite driven from case study A. X and Y axes show the outliers percentage and the sample set size 
 

Table 1 Average number of test cases selected by STCS_GA from the outlier cluster (20% extra 
test cases on the case study A) with and without rank scaling 

Sample Size Best No Ranking Ranking 
5 1 2.95 2.94 
15 3 7.06 6.77 
25 4 12.01 10.61 
35 6 17.00 14.41 
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forming a cluster of 56 test case outliers) and applied STCS_GA for selecting test case 

subsets (four sample sizes). Table 1 shows the average number of test cases taken from the 

outlier cluster with and without rank scaling. The best column shows the optimal number 

of test cases if we would select by only considering the size of the test suite and its outlier 

cluster, as expressed by the formula below. 

 

ݐݏ݁ܤ ൌ 1 ൅ ሾ
݁ݖ݅ܵݎ݁ݐݏݑ݈ܿ ∗ ሺ݁ݖ݈݅ܵ݁݌݉ܽݏ െ 1ሻ

݁ݖ݅ܵ݁ݐ݅ݑܵݐݏ݁ݐ
 

 

Based on the results in Table 1—Note the relation between Table 1 and Figure 4: the 

last row of Table 1 corresponds to Figure 4.a, with 20% extra test cases — it is clear that 

without rank scaling roughly half of the sample set is taken from the outlier cluster. The 

data suggest that rank scaling partially alleviates the problem. We get better improvement 

for larger sample sizes and the reason why this is the case will require further investigation.  

One possible alternative to rank scaling for solving the outlier problem could be an 

approach that can be summarized as (1) finding the outlier cluster(s) using a clustering 

technique and identifying an outlier cluster based on the ratio of the inter-cluster distances 

to the intra-cluster distances (2) assigning a sample size to the outlier cluster based on the 

proportion of its size to the entire test suite size (3) and finally applying the STCS 

separately on the outlier and the main test cases.  In previous work [2], we found that 

clustering techniques were less effective than STCS. Furthermore, rank scaling is easier 

and computationally cheaper than clustering techniques. However, hybrid combinations 

would be promising areas for further research. 

4.6 Discussion on threats to validity of the results 

This study was conducted according to recently proposed guidelines for conducting 

empirical studies in search-based testing [15] and using statistical tests to assess 

randomized algorithms in software engineering [14]. Regarding construct validity of the 

experiments, the most important factor is the validity of the measures used for assessing 

FDR and similarity comparisons. These measures are taken from previously published 

studies [2-4] and their validity are already discussed there. Another remaining concern is 

the artificially generated similarity values in the experiments. As discussed in the 

background section, we are using the NW similarity measure, which entails no constraint 

on the different pairs of similarities. Therefore, the assignment of High, Low, and Random 
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values cannot lead to incorrect matrices. However, the assumption in Exp1 that each test 

case can find at most one fault constitutes a threat to validity of the results. A more general 

experiment where each test case can find each fault with a certain probability should be 

conducted to achieve more reliable results. 

The randomized nature of the employed algorithms poses a threat to internal validity. 

To account for it, the experiments were run many times with different random seeds, thus 

leading 1000 observations for each case study/sample size/search technique/matrix type 

combination (100 runs of search technique on 10 randomly generated input matrices). In 

addition, a rigorous statistical procedure (comprising significance tests and effect size 

measures) has been used to strengthen the conclusion validity of the results.  

To cope with external validity, we conducted experiments using many different 

combinations of sample sizes, test suite sizes, case studies, and STCS techniques. In 

particular, the use of two industrial systems to drive the simulations (by retaining some of 

their characteristics such as failure rate of test cases and number of faults) provides 

stronger support to the applicability of our approach to other industrial systems. But, as for 

all empirical studies, our results might not generalize to other case studies and only 

replications will help build confidence.  

5 Related Work 

STCS for MBT was first introduced in [16], where sequences of transitions in a Labeled 

Transition System model of the SUT are used for representing test paths. The similarity 

function is simply counting the common transitions in two test paths and a Greedy Search 

is used for minimizing the sum of pair similarities. Later, Hemmati et al. [4] introduced 

and improved STCS for UML based testing by using a trigger-guard based encoding of test 

paths, by using better similarity measures [3] and by resorting to more powerful search 

techniques [2]. 

Except for these works on model-based STCS, diversifying test cases has been studied 

on code-based test case selection, minimization and prioritization, mostly in the context of 

regression testing. The basis for computing test case similarity in these studies is usually 

on code coverage or on some other execution information. For example, in [17] and in 

[18], all def-use pairs coverage and a sequence of memory operations are used to calculate 

the similarities, respectively. 
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To the best of authors’ knowledge, no existing study systematically investigates the 

impact of test suite properties on STCS in the context of MBT. Similar studies published to 

date have been conducted in the numerical application domain to examine the effect of test 

suite properties, with respect to test case similarities and their fault detection, on the ART 

algorithm. Several papers have been published on this subject [1], in which for example 

optimal conditions for ART have been theoretically studied [19]. However, as discussed in 

Section 3, MBT is very different from the unit-testing of numerical applications in terms of 

the distribution of input test data in the input space (e.g., clusters of outliers are unlikely in 

the numerical application domain). 

6 Conclusion and Future Work 

In previous studies we proposed similarity-based test case selection (STCS) techniques to 

reduce the cost of model-based testing (MBT) [2-4]. Though the technique was 

successfully applied on one industrial system, we needed more empirical evidence to 

support the idea that maximizing the diversity of test cases was a good principle for test 

case selection and understand under which conditions.  

In this paper, we conducted a large scale simulation, based on two industrial case 

studies, to investigate, in a controlled manner, how relevant properties of a test suite affect 

the effectiveness of STCS. When considering properties are about the relationship between 

fault detection and similarity distributions among test cases, our results showed that the 

most ideal situation for a STCS is when, in a test suite, (1) test cases that detect a common 

fault are similar and (2) test cases which detect distinct faults are dissimilar. Our empirical 

study shows that property (2) is much more important than property (1). This result will 

help us devise improved similarity functions in the future, which in turn will result into 

more effective STCS. 

In this paper, we also investigated the problem of outliers in a test suite—which are not 

unlikely to happen in MBT—that could compromise the performance of STCS. Results 

confirmed the significant impact of outliers and an approach, based on using rank scaling 

measurement instead of raw similarity values, was proposed to address the outlier problem. 

Though rank scaling had a positive effect, it only partially addressed the outlier problem 

and additional strategies remain to investigate.  
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Future work will examine other solutions for the outlier problem based on combining 

clustering and STCS techniques. We will also use the insights that we gained from this 

study to develop techniques to improve STCS.   
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Abstract— The increase in size and complexity of modern software systems entails 

scalable, systematic, and automated testing approaches. Model-based testing (MBT), as a 

systematic and automated test case generation technique, is being successfully applied to 

verify industrial-scale systems and is supported by commercial tools. However, scalability 

is still an open issue for large systems as in practice there are limits to the amount of 

testing that can be performed in industrial contexts. Even with standard coverage criteria, 

the resulting test suites generated by MBT techniques can be very large and expensive to 

execute, especially for system level testing on real deployment platforms and network 

facilities. Therefore, a scalable MBT technique should be flexible regarding the size of the 

generated test suites and should be easily accommodated to fit resource and time 

constraints. Our approach is to select a subset of the generated test suite in such a way that 

it can be realistically executed and analyzed within the time and resource constraints, while 

preserving the fault revealing power of the original test suite to a maximum extent. In this 

paper, to address this problem, we introduce a family of similarity-based test case selection 

techniques. We evaluate 320 different similarity-based selection techniques and then 

compare the effectiveness of the best similarity-based selection technique with other 

common selection techniques in the literature. The results based on two industrial case 

studies show significant benefits and a large improvement in performance when using a 

similarity-based approach. We complement these analyses with further studies on the 

scalability of the technique and the effects of failure rate on its effectiveness. We also 

propose a method to identify optimal tradeoffs between the number of test cases to run and 

fault detection. 
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1 Introduction 

Model- Model-based testing (MBT) [1] has been used for many years with the intent of 

generating executable test cases by systematically analyzing specification models (e.g., 

represented as UML state machines) following a test strategy such as a coverage criterion, 

that aims to cover certain features of the model (e.g., all transitions). One of the main 

obstacles to the transfer of MBT technology into industrial practice is scalability [2-5]. 

Scalability is an issue spanning all steps of the MBT procedure [1, 6], from handling large 

system models to generating and executing large test suites [2]. In this paper, we focus on 

an important but neglected scalability aspect of MBT: Given a software under test (SUT), 

how to optimize MBT fault revealing power within resource and time constraints?  

In practice, system testing must be at least partially performed on the actual hardware 

platform (e.g., with actual sensors and actuators) or on a network specifically configured to 

help controlled and systematic testing (e.g., emulating IP traffic). This can have a large 

effect on the overall cost of testing since (a) test case execution time may be much higher 

than what can be expected, for example, at the unit test level, and (b) test case execution 

may require dedicated physical resources (e.g., specific assigned machines and restricted-

access network) of limited availability. In an example from one of our industrial case 

studies, which will be introduced later in Section 5.1.1, each test case execution requires 

several communicating machines (video conferencing systems) dedicated to the test 

execution and takes a couple of minutes to complete. Therefore, in this context lowering 

the cost of test suite execution, both in terms of time and resource usage, is crucial for the 

scalability and therefore applicability of MBT. Our experience in applying MBT on two 

industrial case studies, with different sizes and from different application domains, 

suggests that the cost of executing test suites generated by MBT (given standard coverage 

criteria) can entail the use of far higher resources and time than what the budget and 

deadlines permit.  

To address this problem, we introduced in [3] a flexible technique to allow the tester to 

adjust the size of the test suites according to the project’s budget and deadlines while 

maximizing the test suite fault revealing power. The technique, that we call similarity-

based test case selection (STCS), is based on selecting the most diverse subset of test cases 

among those which are generated by applying a coverage criterion on a test model 

(denoted the original test suite). In other words, the choice of test cases to execute is 

optimized with respect to their pair-wise similarity, based on the underlying assumption 
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that there is a positive correlation between the diversity of test cases and their fault 

detection [2, 7].  

In this paper, we introduce 320 different STCS techniques (STCS variants), which 

result from different combinations of decisions regarding the three components 

(parameters) characterizing any such technique: the encoding (representation) of abstract 

test cases (ATCs, that are the platform-independent representations of test cases), the 

similarity function, and the algorithm employed to minimize similarities. We apply all 

these alternative STCS techniques on two industrial case studies, spanning different 

application domains. First, based on analyzing the fault detection rate (FDR) and selection 

cost of the techniques, we found that the choices made for any of the abovementioned three 

parameters has a significant impact. Second, we obtain the best results with an STCS that 

encodes ATCs using a state-trigger-guard-based encoding, generates similarity matrices 

using a Gower-Legendre similarity function [8], and applies an (1+1) Evolutionary 

Algorithm [9] to minimize average pair-wise similarities in the selected ATCs. Third, to 

assess the effectiveness of STCS when compared to simpler and common options for 

selection in the testing literature, we further compare our best STCS variant to random 

selection and coverage-based selection techniques, where one maximizes model coverage 

in the selected ATCs. The results of such comparisons show a staggering reduction in cost 

(50% to 80%) and improvement in FDR (e.g., up to 45% over coverage-based and 110% 

over random selection) when using the best STCS variant.  

To obtain more general results, we also study the effect of varying the failure rate (θ) on 

the effectiveness of STCS by manipulating one of the original test suites from the case 

studies and generating different input test suites with various  θs. The results show that the 

best STCS is never worse than non-STCS techniques regardless of the  θ value. We also 

analyze the relationship between test case similarities and FDRs and devise a heuristic to 

estimate when increasing test suite size is unlikely to increase FDR. This heuristic enables 

practitioners to select a tradeoff between test suite size and FDR by analyzing the variation 

in average similarity among selected test cases. In summary, the main contributions of this 

paper are: 

 

 We analyze the impact of the three STCS parameters on STCS effectiveness 

 We identify the best STCS among 320 possible variants resulting from the setting 

of three parameters 



 

 
166 

 

 We compare the best STCS with other, more common test selection alternatives 

 We analyze the impact of the test suite failure rate on STCS effectiveness  

 We study the scalability of STCS 

 We propose a heuristics which helps select a tradeoff between test suite size and 

fault detection 

 

The rest of the paper is organized as follows. The next section motivates the study by 

explaining the importance of test suite scalability in MBT. Section 3 provides background 

information about model-based test case selection. Section 4 introduces our approach for 

test case selection (STCS). Section 5 describes the experiments’ design and reports the 

results. Section 6 provides an overview of related works covering similarity-based 

selection techniques. Finally, Section 7 concludes the paper and outlines our future work 

plan.  

2 Test Suite Scalability in Model-based Testing 

The cost of test suite execution is an important factor for applicability of any test case 

generation technique. The number of generated test cases, which are going to be executed, 

has a direct relation with this cost. However, test suites generated by MBT approaches tend 

to be very large and they get exponentially larger with increasing model size (larger 

SUTs). Further, the problem gets even worse when the testing is semi-automated (e.g., 

automatically generating oracles may be very difficult or impossible, such as in a 

subjective quality assessment of a video stream) and human-effort is necessary in the 

execution and analysis of the test cases. 

Using different coverage criteria seems to be a solution for this problem, since one may 

apply a less demanding criterion to end up with a smaller (less costly) test suite. However, 

our previous investigation [3] showed that such an approach does not solve the problem 

because (a) A coverage criterion is a mean for systematically targeting specific types of 

faults, e.g. in UML state machine-based testing (USBT), if one changes the coverage 

criterion from all transitions to all states to reduce the size of test suite, the new test cases 

may not detect the same type of faults anymore; (b) Even if one is flexible regarding the 

targeted type of faults, there is a limited number of standard coverage criteria that are 

applicable on a given model. Therefore, often this is not a practical solution as one cannot 
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ensure that the number of test cases will be below a required threshold corresponding to 

the testing budget.  

The above discussion suggests there is a need for a more flexible approach to solve the 

problem of test suite scalability in MBT. Such an approach should be based on applying a 

reasonable coverage criterion (based on the domain and project information) and then 

eliminating some of the generated ATCs to only produce a concrete test suite of 

manageable size, which can be completely executed and analyzed within the project 

deadlines and resource constraints. This elimination step is usually based on one criterion 

(e.g., maximizing a code coverage measure such as statement coverage) that is assumed to 

have a correlation with the FDR of the test suite. Applying the criterion on the original test 

suite can be done in three ways: test case selection, test suite minimization, and test case 

prioritization. A selection technique, given a maximum number of test cases, selects a 

subset of the original test suite that optimizes the chosen criterion. The goal of a test suite 

minimization is to minimize the test suite by removing redundant test cases with respect to 

the criterion. Note that the main difference between selection and minimization is that a 

selection technique requires the output test suite size as an input parameter, but 

minimization techniques may generate test suites of any size. Therefore, in our context we 

favor a selection technique that ensures a maximum number of test cases. However, it is 

always useful to be able to minimize the test suite (while preserving its original FDR) in 

cases where there is no restriction or no clear criteria to select the test suite size. It is also 

possible to order the execution of all test cases in the test suite using a prioritization 

technique, but this is not required to solve our problem. Therefore, in this paper, we focus 

on test case selection and extend the idea to minimization when we try to estimate the 

optimal size of the test suite.  

3 Model-based Test Case Selection 

Test case selection/minimization is mostly studied in the context of regression testing, 

where the goal is to find a subset of the original test suite that guarantees the execution of 

fault-revealing test cases [10-13]. The main differences between model-based test case 

selection and selection in the context of regression testing are that, in our context: (a) we 

are not interested in identifying the changed parts of the system and (b) we do not have test 

execution information, as it is the case in regression testing, because selected test cases will 

be executed for the first time. Therefore, heuristics such as using component metadata [14], 
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and execution traces (e.g., call stack [15]) are not applicable here. In addition, most studies 

in test case selection (even those which are general purpose and not specific to regression 

testing) are based on code-level information and do not directly apply to MBT (e.g., code-

based dependency analysis [16] and additional coverage [10]). Rather, MBT selection 

heuristics are based only on the characteristics of the (abstract) test cases.  

There can be different classes of applicable selection techniques in MBT. The simplest 

technique is Random Testing (RT) [17], where there is no guidance to select test cases. 

Maximizing coverage has been a common practice over the years in selection and 

prioritization [10, 18]. In MBT, coverage is defined at the model level, which can be 

extracted from ATCs without execution. For example, transition coverage in a state 

machine [19] can be determined if traceability has been preserved between an ATC and its 

source state machine. Most coverage-based selection techniques are re-expressed into 

optimization problems where the goal is to select the best subset of test cases to achieve 

full coverage. For example, a technique presented in [10] uses a Greedy search to select, at 

every step, the test case that covers the most uncovered statements (additional coverage 

technique). Similarly, in [20] a Genetic Algorithm is used to achieve maximum coverage 

in the selected subset of test cases. STCS is a newly introduced [3, 21, 22] category of 

selection techniques which can be applied in both code and model-based testing.  

An STCS technique selects the most diverse test cases with respect to a similarity 

measure, which requires assigning a similarity value to each pair of test cases and 

minimizing the average pair-wise similarities between the selected test cases. In the next 

section, we will explain STCS steps in details. The underling idea behind STCS techniques 

is borrowed from rewarding diversity among input data [23]. The same idea is applied by 

STCS to diversify the selected test cases assuming that “the more diverse the test cases, the 

higher their fault detection rate”. To investigate, in a controlled manner, the relationship 

between fault detection and similarity distributions among test cases, we have conducted a 

large scale simulation [7], based on two industrial case studies. Our results showed that the 

most ideal situation for an STCS is when, in a test suite, (1) test cases which detect distinct 

faults are dissimilar and (2) test cases that detect a common fault are similar. We have also 

studied these hypotheses on one industrial case study [2] and found that test cases finding a 

common fault were indeed clustered together in the test case space (defined by the 

similarity measure) and that these clusters were mostly distinct.  
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4 Similarity-based Test Case Selection 

In this section, we explain the procedure of STCS and introduce all alternative techniques 

that we have used in this study in each step of the STCS. As we mentioned earlier, the 

basis of STCS is minimizing the average pair-wise similarity between the selected test 

cases. This requires identifying a similarity measure for pairs of ATCs and an optimization 

algorithm to minimize the output set of ATCs with respect to that measure. Therefore, an 

STCS is composed of three phases: (1) encoding of ATCs, (2) similarity matrix generation, 

and (3) minimizing similarities. 

4.1 Encoding of abstract test cases 

Before identifying any similarity measure, the inputs to the similarity function should be 

represented at a proper level of abstraction, containing relevant information and no 

unnecessary details. In the context of MBT, the inputs are ATCs instead of concrete test 

cases since we do not need platform dependent information and ATCs are naturally 

generated as a first step by MBT. As a result, we reduce the cost of test case generation by 

only generating executable test cases for the selected ATCs and also by hiding the 

unnecessary information for similarity comparisons. Encoding of the ATCs has an 

important effect on the effectiveness of the STCS. Though in USBT a test path represents 

an encoded ATC, the test path can be described at different levels of details. We consider 

four possible encodings for a test path in UML state machine: state-based (SB), transition-

based (TB), trigger-guard-based (TGB), and state-trigger-guard-based (STGB):  

 

 SB:   <tp> ::= state | state “,” <tp> 

 TB:       <tp> ::= tran | tran “,” <tp> 

 TGB:  <tp> ::= <TG> | <TG> “,” <tp> 

< TG > ::= trig |guard | id | guard “+” trig  

 STGB:  <tp>::= state | state “,” <TG> “,” <tp> 

 

where state is the id of a state, trans the id of a transition, trig the id of a trigger, and 

guard the id of a guard in the state machine. In the case of TGB encoding, a transition is 

identified by its trigger and guard. It can be only a trigger, or a guard or both together. If 

there is a transition with no guard and trigger, we use the transition id as its identifier. SB 

encoding focuses on state level faults whereas TB and TGB can better extract relevant 
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information to detect transition-based faults. Note that the difference between TGB and TB 

encoding is in the level of abstraction, because TGB does not differentiate between 

transitions with the same trigger-guard but different source or target state. STGB contains 

both state and trigger-guard information and has therefore the highest level of details. But 

the extra information may introduce noise when existing faults are of a certain type that 

could be more directly detected if the encoding contained only the relevant information for 

those faults. For example, if the existing faults are all detectable by traversing certain states 

of the system, regardless of how that state was reached (state-based faults), then including 

triggers and guards in the encoding would result in unnecessary noise in the similarity 

calculations, as we will show in our empirical analysis. 

As an illustrative example, assume that the UML state machine in Figure 1 represents 

the SUT. Applying an all-transition criterion (with a breadth-first search) on this model 

results in the transition tree of Figure 2 and a test suite ts_example containing tp1 to tp4. 

Table 1 shows these four ATCs encoded with SB, TB, TGB, and STGB. 

4.2 Similarity matrix generation 

Once the ATCs are encoded, they are given to a similarity function (SimFunc) which takes 

two sets/sequences of elements (we use “{ }” to represent sets and “< >” for representing 

sequences) and assigns a similarity value to each pair. The results of measuring all these 

similarity values are recorded in a similarity matrix (in case of large test suites we can 

replace this matrix generation phase with an on-the-fly similarity calculation, which will be 

discussed in Section 5.4). The similarity matrix can be an upper/lower triangular matrix, 

since the similarity measure should be symmetric (the similarity between test case A and 

Figure 1 Example UML State Machine 
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test case B is equal to the similarity between test case B and test case A). Therefore, we 

only need to store half of the matrix.  

Given an encoding, one may use different set/sequence-based similarity functions [24]. 

The main difference between them is that set-based similarity measures, as opposed to 

sequence-based ones, do not take the order of elements into account. For example, if the 

encoding is SB, and the first test case corresponds to a path in the state machine that visits 

state A and then state B, whereas the second test case corresponds to a path that visits state 

B and then state A, set-based similarity functions, unlike sequence-based functions, assume 

these two test cases as identical. In [24] we have introduced three set-based and three 

sequence-based functions. In the following of this section, those functions and two more 

set-based functions, which are used in this study, are defined and explained by examples.  

 

Figure. 2 Example transition tree 

Table 1 Encoded ATCs using SB, TB, TGB, and STGB 

Abstract 
Test 
Case 

SB Encoding 
TB 

Encoding
TGB Encoding STGB Encoding 

tp1 <A,E,END> <7,8> <b,8> <A,b,E,8,END> 
tp2 <A,B,C,D,A> <1,2,4,6> <a,[G1]b,[G3],c> <A,a,B,[G1]b,C,[G3],D,c,A>
tp3 <A,B,C,D,B> <1,2,4,5> <a,[G1]b,[G3],b> <A,a,B,[G1]b,C,[G3],D,b,B>
tp4 <A,B,C,C > <1,2,3> <a,[G1]b,[G2] > <A,a,B,[G1]b,C,[G2],C > 
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4.2.1  Set-based similarity functions 

Set-based similarity measures are widely used in data mining [25] to assess the closeness 

of two objects described as multidimensional feature vectors, where the set is composed of 

the features’ values [8]. In our case, each ATC is a vector of elements. Each element is 

either a state, a transition, or a trigger-guard, depending on the encoding of the ATC (SB, 

TB, TGB, and STGB). Each element in the vector is taken from a limited alphabet of 

possible states, transitions, or trigger-guards in the model. However, the vector size can be 

different since the length of ATCs may vary.  

 

Hamming Distance. Hamming Distance is one of the most used distance functions in 

the literature and is a basic edit-distance. The edit-distance between two strings is defined 

as the minimum number of edit operations (insertions, deletions, and substitutions) needed 

to transform the first string into the second [26-28]. Hamming is only applicable on 

identical length strings and is equal to the number of substitutions required in one input to 

become the second one [26]. If all inputs are originally of identical length, the function can 

be used as a sequence-based measure. However, in realistic applications test inputs usually 

have different lengths. Therefore, to obtain inputs of identical length, a binary string is 

produced to indicate which elements, from the set of all possible elements of the encoding, 

exist in the input. This binary string, however, does not preserve the original order of 

elements in the inputs and therefore leads to a set-based similarity function.  

In our case, to use Hamming Distance, each ATC is represented as a binary string 

Hamtp, where |Hamtp| is equal to the number of all possible elements for that encoding 

(e.g., |Hamtp| is the number of all states, if a SB encoding is used). A bit in Hamtp is true 

only if the ATC contains the corresponding element (e.g., the state for SB). We also need 

to change distance into similarity in our study. Therefore, our version of the Hamming 

function (denoted HAM) counts identical bits in the two input strings, and not differences 

as in the standard Hamming Distance, and then divides it by the number of all possible 

elements for that encoding (|Hamtp|).  

As an example, let us take tp3={A,B,C,D,B} and tp4={A,B,C,C} as input sets from 

Table 1, where the encoding is SB. Let us assume that bits one to five in any Hamtpi 

represent the existence of states A to E in the tpi, then Hamtp3 = {11110} and Hamtp4 = 

{11100}, and as a result: HAM(tp3,tp4)=4/5=0.8.  
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Jaccard Index, Gower-Legendre(Dice), and Sokal-Sneath(Anti-Dice) measures. This 

family of measures is defined based on commonalities and differences between two sets of 

inputs. The general formula for calculating similarity of two ATCs (denoted by A and B) 

with these similarity functions is: 

 

,ܣሺ݉݅ݏ ሻܤ ൌ
ܣ| ∩ |ܤ

ܣ| ∩ |ܤ ൅ ܣ|ሺݓ ∪ |ܤ െ ܣ| ∩ ሻ|ܤ
 

 

Where |ܣ ∩ ܣ| is the size of intersection of A and B and|ܤ ∪  is the size of union of |ܤ

A and B. When w=1, the above formula corresponds to Jaccard Index or Jaccard similarity 

coefficient (denoted JAC), that is the size of the intersection divided by the size of the 

union of the sample sets. When w=1/2, we get the Gower-Legendre or Dice measure 

(denoted GOW), and when w=2 this is called Sokal-Sneath or Anti-Dice (denoted SOK). 

The difference between these three measures is on the weight that the measure puts on 

differences between input sets (|ܣ ∪ |ܤ െ ܣ| ∩  where for the same inputs, similarity is ,(|ܤ

higher/lower for GOW/SOK than JAC. For instance, for tp3 and tp4 in the above example, 

with the same encoding SB, |3݌ݐ ∪ |4݌ݐ ൌ 4, and |3݌ݐ ∩ |4݌ݐ ൌ 3. Therefore, 

JAC(tp3,tp4) = 3/4 = 0.75, GOW(tp3,tp4) = 6/7 = 0.86, and SOK(tp3,tp4) = 3/5 = 0.6. 

 

Counting function. The Counting function is defined based on the similarity measure 

used in [21] for comparing two sets of transitions in a specific modeling language (Labeled 

Transition System). We have defined a generalized version of this function (denoted as 

CNT) as the number of identical elements in the input sets divided by the average length of 

inputs (in our case ATCs). CNT is equal to GOW in cases where all elements are unique in 

the input ATCs. Note that, to be precise, inputs of CNT are not sets, since their elements 

are not unique, but for the sake of simplicity we consider them as set-based measures. As 

an example, CNT(tp3,tp4)=3/4.5=0.67 for tp3 and tp4 with SB encoding. 

4.2.2 Sequence-based similarity functions 

In sequence-based similarity functions, as opposed to set-based functions, the order of 

elements in the input sequences matters. As we discussed, edit distance functions such as 

the base version of the Hamming Distance are sequence-based. However, the Hamming 

Distance is limited to identical length input strings. In this sub-section, we introduce 
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Levenshtein as an edit-distance function. We also introduce the concepts of Global and 

Local alignment from bioinformatics and describe one similarity function per alignment.  

 

Levenshtein. One of the most well-known algorithms implementing edit-distance, and 

which is not limited to identical length sequences, is Levenshtein [28]: Each mismatch 

(substitutions) or gap (insertion/deletion) increases the distance by one unit. To change 

distances into similarities, we need to reward each match and penalize each mismatch and 

gap. The relative scores assigned to matches, mismatches, and gaps can be different 

(operation weight). Moreover, in some versions of the algorithm there are different match 

scores based on the type of matches (alphabet weight) [28]. Here we use a basic setting for 

the function (denoted LEV) where matches are rewarded by one point and mismatch and 

gap are treated the same by giving no reward. For example, given the same inputs as 

previous examples (tp3 and tp4 using SB encoding), the first three elements in tp3 and tp4 

match, and there is one mismatch and one gap at the end. Since matches increment the 

similarity value and mismatches and gaps do not change the value, then LEV(tp3,tp4)=3.  

 

Global alignment and Needleman-Wunsch similarity function. An alignment of two 

sequences is a mapping between positions of their elements [27]. An alignment score is 

assigned to each pair of sequences, measuring the matches, mismatches, and gaps. The 

goal of an alignment algorithm is finding the best way of positioning the elements of input 

sequences to maximize the alignment score. Global alignment is an algorithm that aligns 

the entire input sequences. In our context, we are not interested in the actual aligned ATC 

pairs. However, the score assigned to each pair is actually a similarity value, which is 

defined based on matches, mismatches, and gaps. The most basic global alignment 

algorithm is Needleman-Wunsch (NW) [27] where the scoring function is actually the 

same as the Levenshtein similarity function. We use match score +3, mismatch -2, and a 

gap penalty of -1 (which are justified in the next paragraph) as the operation weights of 

NW similarity function for global alignment.  

Note that the only difference between LEV and NW are the operation weights. In the 

case of LEV, we assume the basic Levenshtein [28] definition (with +1 for match and zero 

for mismatch and gap), and in the case of NW we use different operation weights as it is 

usual in Global alignment. The chosen weights are based on our context (USBT) rationale. 

Given the fact that STCS focuses on similarity, we do not want to miss any similarities 

between ATCs. Therefore, we give more weight to similarities as otherwise most values 
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would be negative. Every gap and mismatch decreases the total similarity value but we 

penalize mismatches more than gaps. That is because in USBT, when comparing two 

ATCs, gaps only represent missing behavior, but any mismatch distinguishes ATCs from 

each other. To assess this weighting scheme we  also had a small tuning that compared the 

effectiveness of different NWs when match scores vary between 0 to 5 and gap penalty and 

mismatch scores between 0 to -5. The results showed that higher values for matches than 

for mismatches are the best. However, there is not a significant and consistent 

improvement while increasing the differences between these values. Therefore, we kept the 

relative weighing order but with the smallest differences in the actual values. One can 

argue that NW settings may not be the best possible weighting. Although this is indeed 

true, any tuning is expensive and problem dependant. 

Let us look at one example. Given tp3 and tp4 with SB encoding from Table 1, 

NW(tp3,tp4)=3*(+3)+1*(-2)+1*(-1)=+6 and the actual aligned sequences are: 

<A,B,C,D,B> and <A,B,C,C, – >, where the dash symbol identifies a gap. The dynamic 

programming [29] implementation of the algorithms, along with examples, can be found in 

[27]. The scoring matrix F for NW alignment is defined as: 

 

F[0][ ݆] = - ݆ * ݀, F[݅][0] = - ݅ * ݀ 

F[݅][ ݆]=maxቐ
Fሾ݅ െ 1ሿሾ݆ െ 1ሿ ൅ sim൫ݔ௜, ,௝൯ݕ

Fሾ݅ െ 1ሿሾ݆ሿ െ ݀,

Fሾ݅ሿሾ݆ െ 1ሿ െ ݀.

 

 

Where x and y are input sequences. The sim൫ݔ௜,  ௝൯ returns the match/mismatch scoresݕ

between the ith member of x and the jth member of y, and ݀ is the gap penalty. The 

similarity between x and y is F[N][M] where N and M are the lengths of x and y 

respectively.  

 

Local alignment and Smith-Waterman similarity function. In Local alignment, the 

goal is to find the best alignment for sub-sequences of the given input sequences. The 

output of a Local alignment is two aligned substrings with the highest alignment score. 

Like Global alignment, we are not interested in the actual aligned sequences, but the score 

assigned to each pair is a similarity function. The most basic Local alignment algorithms is 

Smith-Waterman (SW) [27], where the scoring matrix F is defined in a similar way as in 

the NW scoring matrix, but with a small change: 
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F[0][ ݆] = - ݆ * ݀, F[݅][0] = - ݅ * ݀ 

F[݅][ ݆]=max

ە
۔

ۓ
Fሾ݅ െ 1ሿሾ݆ െ 1ሿ ൅ sim൫ݔ௜, ,௝൯ݕ

Fሾ݅ െ 1ሿሾ݆ሿ െ ݀,

Fሾ݅ሿሾ݆ െ 1ሿ െ ݀,
0

 

 

Having zero as one option in the max function results in having only positive values. In 

this approach, the similarity value is the highest F[i][j] which identifies the most similar 

subsequence between input sequences as well. We used the same operation weights as NW 

for SW with the same reasoning. As an example, SW(tp3,tp4)=3*(+3)=+9 and the actual 

aligned sequences are: <A,B,C> and <A,B,C>. 

4.3 Minimizing similarities 

In the last step of STCS, the similarity matrix and the desired number of selected test cases 

(test selection size) is given to an algorithm which minimizes the average pair-wise 

similarity between all pairs of ATCs in the selected set. Note that this problem is, in 

general, an NP-hard problem (traditional set cover) [30]. Therefore, using an exhaustive 

search in most realistic problems is not an option, since the search space size for selecting 

a subset of size n is equal to the number of possible n-combinations within a test suite of a 

given size. For example, in one of our case studies, the search space size for n=28 (~10% 

of the test suite with size 281) is ቀ281
28

ቁ ≅2.9*10^38. Given a similarity matrix, we have 

analyzed four strategies to select the most diverse test cases: (1) Greedy-based, (2) 

Clustering-based, (3) Adaptive Random Testing, and (4) Search-based.  

4.3.1  Greedy-based minimization  

In this paper, what we call a similarity-based Greedy algorithm (SimGrd) is an exact 

implementation of the selection technique which is used in the only published related 

(STCS for MBT) work [21] (that we are aware of), and we will use it as an STCS baseline. 

Assume we want to select n ATCs (sn) out of a test suite (TS). In each step, a pair of ATCs 

that has the maximum similarity in the similarity matrix (maximum SimFunc(tpi , tpj)) is 

chosen. If there is more than one pair with the same similarity (maximum similarity) all are 

chosen. Then, among all ATCs in all selected pairs the one with shortest length is selected 

and removed from the original TS. The algorithm is stopped when there are n ATCs 

remaining from the TS. Selecting the shortest ATC is done to avoid purely random 
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elimination assuming that longer ATCs can detect more faults [31]. However, some degree 

of randomness might still affect the results if more than one ATC in the set of selected 

pairs have the shortest length. There are potential improvements to this algorithm, but we 

keep this as the original proposal in [21] to have a valid baseline of comparison.  

4.3.2 Clustering-based minimization  

Clustering algorithms partition objects into groups, using a similarity/distance measure 

between pairs of objects and pairs of clusters, so that objects belonging to the same groups 

are similar and those belonging to different groups are dissimilar. Though clustering 

techniques are not minimization techniques, the fact that clusters are formed based on the 

similarities/distances among inputs makes these algorithms a potential solution for our 

selection problem. To select n ATCs, a clustering-based technique partitions the ATCs in 

the original test suite into n non-empty clusters so that (dis)similar ATCs (do not) fall in 

the same cluster. Then a one-per-cluster sampling method (in this study we randomly 

select one ATC per cluster) is applied to provide the final n diverse ATCs. In this paper, 

we have tried two of the most used clustering techniques in software engineering, which 

will be introduced next. 

 

K-Means clustering. The first clustering algorithm used in this paper (KMC) is inspired 

from the most popular clustering algorithm, K-Means clustering [32]. Though  K-Means 

was proposed over 50 years ago and thousands of clustering algorithms have been 

designed since then, K-Means and its extensions are still widely used [32]. K-Means 

objective is to minimize the average squared Euclidean distance of objects from their 

cluster means [33]. 

 

Squared Euclidean distance ൌ ෍ | ሬԦݔ

௫ሬሬԦ∈஼ೖ

െ ߤሬሬԦ ሺܥ௞ሻ|
ଶ 

 

Where a cluster mean is the centroid ߤሬሬԦ of a cluster (C) 

 

ሬሬԦߤ ሺ߱ሻ ൌ
1

|ܥ|
෍ݔሬԦ

௫ሬሬԦ∈஼
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In our context, where we do not use Euclidean distance but our defined similarity 

functions, we do not have a geometrical centroid. One alternative could be to define one of 

the cluster members as the representative of the cluster, but it is not always easy to devise a 

rationale for such a representative in our context. Because for example, most of the 

similarity measures, unlike Euclidian distance, are not transitive and violate the triangle 

inequality property [26], which can results in an ATC being similar to a cluster 

representative (which is similar to all ATCs in the cluster) but not similar at all to any of 

the ATCs in the cluster.  

Our version of K-Means clustering (denoted as KMC), instead of comparing one single 

cluster representative, uses intra/inter-cluster similarity measures based on Average 

Linkage. The Average Linkage intra-cluster similarity between an ATC (tpi) and a cluster 

   .௫ members (tpx)ܥ is defined as the average similarities between the tpi and all (௫ܥ)

 

, ௫ܥሺ݉݅ܵݎ݁ݐݏݑ݈ܥܽݎݐ݊ܫ ௜ሻ݌ݐ ൌ
∑ , ௫݌ݐሺܿ݊ݑܨ݉݅ܵ ௜ሻ௧௣ೣ∈஼ೣ௔௡ௗ ௧௣ೣஷ௧௣೔݌ݐ

|௫ܥ|
 

 

Each iteration of KMC assigns an ATC to the cluster with maximum intra-cluster 

similarity for that ATC. Using intra-cluster similarities, we no longer can use the original 

stopping criterion of K-Means clustering: “stopping when the average squared Euclidean 

distance between objects and their cluster centroids does not decrease from iteration m to 

iteration m+1”, since there is no centroid anymore. Instead KMC uses inter-cluster 

similarity measure (the average similarity between all possible pairs of ATCs from two 

clusters) and stop iterating when inter-cluster similarity does not decrease from iteration m 

to iteration m+1. 

, ௜ܥ൫݉݅ܵݎ݁ݐݏݑ݈ܥݎ݁ݐ݊ܫ ௝൯ܥ ൌ
∑ , ௜ܥ൫݉݅ܵݎ݁ݐݏݑ݈ܥܽݎݐ݊ܫ ௝൯௧௣ೕ∈஼ೕ݌ݐ

หܥ௝ห
 

 

Agglomerative Hierarchical Clustering. One of the clustering algorithms which has 

been frequently used in software engineering, including software testing [18, 34, 35], is 

Agglomerative Hierarchical Clustering (AHC) [8]. AHC starts with forming clusters each 

containing exactly one object (an ATC in this study). A sequence of merge operations is 

then performed until the desired number of clusters is achieved. At each step, the two most 

similar clusters will be joined together. The measure that we use for assessing similarity 
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between two clusters, inter-cluster similarity, is the Average Linkage. The pseudo-code of 

the employed AHC follows: 

 

(1) Make one cluster (Ck) per ATC (tpi). 

(2) While the number of clusters is more than sampleSize (n) 

(3) Find the two most similar clusters Cx and Cy (with the maximum 

InterClusterSim(Cx, Cy)).  

(4)  Merge the two clusters.  

 

4.3.3  Adaptive Random Testing 

Adaptive Random Testing (ART) has been proposed as an extension to Random Testing 

[23]. Its main idea is that diversity among test cases should be rewarded, because failing 

test cases tend to be clustered in contiguous regions of the input domain. This has been 

shown to be true in empirical analyses regarding applications whose input data are of 

numerical type [36]. Therefore, ART is a candidate similarity minimization strategy in our 

context as well. In this paper, we use the basic ART algorithm described in [23], but we 

ensure that no replicated ATC is given in output. The pseudo-code for ART is: 

 

(1)  Z={} 

(2) Add a random ATC to Z  

(3) Repeat until |Z|= sampleSize (n) 

(4) Sample K random ATCs that are different from Z 

(5) For each of these ATCs k  

(6)  k.maxSim = max(SimFunc(k , z ∊ Z)) 

(7)  Add the k with minimum maxSim to Z 

 

4.3.4 Search-based minimization techniques 

Many software engineering problems can be re-formulated as search problems, for which 

search algorithms can be applied to solve them [37]. This has led to the development of a 

research area often referred to as Search-Based Software Engineering, for which several 

successful applications can be found in the literature [38], with a large representation from 

software testing [39]. Therefore, in this paper we also analyze the use of search algorithms 

for STCS.   
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Given a set of n encoded ATCs (sn) and a similarity function (SimFunc), the test case 

selection problem is reformulated as minimizing SimMsr(sn): 

 

௡ሻݏሺݎݏܯ݉݅ܵ ൌ ෍ , ௜݌ݐ൫ܿ݊ݑܨ݉݅ܵ ௝൯݌ݐ

௧௣೔ , ௧௣ೕ∈௦೙ ∧ ௜வ௝

 

 

where SimFunc(tpi , tpj) returns the similarity of two ATCs in sn represented by tpi and 

tpj. The space of all possible sub-sets of size n represents the search space. The sets with 

the minimum fitness values are called global optima. SimMsr is used as the fitness function 

to guide the search algorithms to find (near-)optimal sets of ATCs.  

A search algorithm can be run for an arbitrarily amount of time. The more time is used, the 

more elements of the search space can be evaluated. This would lead to better results on 

average. Unfortunately, in general we cannot know whether an element of the search space 

is a global optimum, because such knowledge would require an evaluation of the entire 

search space. Therefore, stopping criteria need to be defined, as for example timeouts or 

fixed number of fitness evaluations. 

The minimization problem we address in this paper must address constraints on the 

elements of the search space. In particular, each element is a set of ATCs, and therefore no 

duplicate ATC is allowed. Running a test case twice would not lead to find more faults (as 

long as the execution of each test case is independent, as it is the case in our industrial case 

studies). There are several ways to handle constraints [40], and in this paper we simply 

enforce each search operator to always sample valid sets, because it is the simplest feasible 

solution in our context (see next section on Random Search, for more information on 

unique ATC selection).     

There are several types of search algorithms that one can choose. On average, on all 

possible problems, all search algorithms perform equally, and this is theoretically proven in 

the famous No Free Lunch theorem [41]. Nevertheless, for specific classes of problems 

(e.g., software engineering problems) there can be significant differences among the 

performance of different search algorithms. Therefore, it is important to study and evaluate 

different search algorithms when there is a specific class of problems we want to solve, as 

for example software testing and its sub-problems. This type of comparisons in software 

testing can be found for example in [42-44]. In this study, we have applied and evaluated 

six widely used search techniques to minimize SimMsr(Sn). In the following sections, we 

describe each of them in turn. 
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Random Search. Random Search (RS) is the simplest search algorithm. It samples 

search elements at random (i.e., sets of n ATCs), and then, once the algorithm is stopped 

(e.g., due to a timeout), the element with best fitness value is given as output. RS does not 

exploit any information about previously visited elements when choosing the next 

elements to sample. Often, RS is used as a baseline for evaluating the performance of other 

more sophisticated meta-heuristics [39]. Note the difference between RS, which is a search 

algorithm, and RT which simply selects ATCs at random without any iteration.  

What distinguishes alternative RS algorithms is the probability distribution used for 

sampling the new solutions. In general, a uniform distribution is employed. However, for 

the problem we address in this paper, we need to guarantee that no duplicate ATC is 

present in a selected test set. To sample a subset sn of size n of unique elements from an 

original set of size k, we use the following procedure to generate sn. We start from an 

empty s, and we add one ATC at a time, until n ATCs are inserted. When we add a new 

ATC, we choose it randomly from the k ATCs. If the chosen ATC is already present in s, 

we choose another one at random. Because this ATC could be already in s, we repeat this 

process until we find one ATC that is not present in s. How long is this process going to 

take? On average, it is really fast. The probability of sampling an ATC that is not in s is 

equal to p=(k-|s|)/k. The goal of STCS is to produce small subsets of effective test cases 

and, therefore, in general we would have n<<k. We can realistically consider the case n ≤ 

k/2 (i.e., we consider the cases in which the selected test suites are not larger than 50% of 

the original suite). In this case, p=(k-|s|)/k ≤ (k-k/2)/k=0.5. Because we can describe the 

process of sampling a unique ATC as a geometric distribution with probability p [45], then 

the expectation E of this process would be E=1/p ≤ 2. Therefore, to generate a set of n 

unique ATCs, on average we just need to sample at most 2n ATCs.  

 

Hill Climbing. Hill Climbing (HC) belongs to the class of local search algorithms [46]. 

It starts from a search element, and then it looks at neighbor solutions. A neighbor solution 

is structurally close, but the notion of distance among solutions is problem dependent. If at 

least one neighbor solution has better fitness value, then HC “moves” to it and it 

recursively looks at the new neighborhood. If no better neighbor is found (i.e., the current 

element represents a local optimum), then HC re-starts from a new element in the search 

space. HC algorithms differ on how the starting points are chosen, on how the 

neighborhood is defined and on how the next element is chosen among better ones in the 

neighborhood.  
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Often, the starting elements are chosen at random, and this is what we employ for the 

HC used in this paper. We use the common strategy to visit the neighborhood that makes 

HC move to the first found neighbor solution with better fitness. Another common strategy 

would be to evaluate first all the elements in the neighborhood, and then moving to the best 

one (i.e., the so called steepest ascent). In this paper, the neighborhood of a set sn is defined 

as follows: for each of the n ATCs, consider its replacement with a random ATC that is not 

already in sn. The size of the neighborhood is hence n. Notice that considering all possible 

ATCs, instead of just one at random, would lead to a far too large neighborhood of size 

n*(k-n), since there is k-n possible neighbors per ATC. 

 

Steady State Genetic Algorithms. Genetic Algorithms (GAs) [47] are inspired from 

evolutionary theory, and they are the most used search algorithm in search-based software 

engineering [37-39]. GAs rely on four basic features: population, selection, crossover and 

mutation. More than one solution is considered at the same time (population). At each 

generation (i.e., at each step of the algorithm), some good solutions in the current 

population, selected by the selection mechanism, generate offspring using the crossover 

operator. This operator combines parts of the chromosomes (i.e., the solution 

representation) of the offspring with a certain probability; otherwise it just produces copies 

of the parents. These new offspring solutions will fill the population of the next generation. 

The mutation operator is applied to make small changes in the chromosomes of the 

offspring.  

In this paper, we use a steady state GA (SSGA), in which only the offspring that are not 

worse than their parents are added to the next generations. Parents are chosen using rank 

selection [48]. We use a single point crossover with probability Pxover to combine two 

different parents ݏ௡
௫ and  ݏ௡

௬. Each ATC in an offspring is mutated with probability 1/n. A 

mutated ATC is replaced by an ATC that is selected at random from the set of all possible 

ATCs. The crossover and mutation operators could generate invalid elements (i.e., sets 

with non-unique ATCs). To cope with this problem, the offspring go through a repair 

phase in which all repeated ATCs are randomly replaced with new ones until all are unique 

(in a similar way in which random sets are sampled, see Random Search in Section 4.3.4).  
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(1)  Sample a population G of m sets of ATCs uniformly from the search space (i.e., 

the set of all possible   valid sets with a given size n) 

(2) Repeat until the stopping criterion is met 

(3)  Choose ݏ௡
௫ and ݏ௡

௬ from G  

(4) ൫́ݏ௡
௫ , ௡ݏ́

௬
൯ ∶ൌ crossover (ݏ௡

௫ , ௡ݏ
௬
, ௫ܲ௢௩௘௥) 

(5) Mutate (́ݏ௡
௫, ௡ݏ́

௬) 

(6) if ((́ݏ௡
௫, ௡ݏ́

௬) is invalid) 

(7)  Then Repair (́ݏ௡
௫, ௡ݏ́

௬) 

(8)  If   min (ܵ݅݉ݎݏܯሺ́ݏ௡
௫ሻ, ௡ݏሺ́ݎݏܯ݉݅ܵ

௬)) ൑ min (ܵ݅݉ݎݏܯሺݏ௡
௫ሻ, ௡ݏሺݎݏܯ݉݅ܵ

௬)) 

(9)  Then  ݏ௡
௫ ∶ൌ ௡ݏ́

௫ and ݏ௡
௬
∶ൌ ௡ݏ́

௬ 

  

(1+1) Evolutionary Algorithm. (1+1) Evolutionary Algorithm (EA) [9] is a single 

individual evolutionary algorithm. It starts from a single individual (i.e., an element of the 

search space) that is in general chosen at random. Then, a single offspring is generated at 

each generation by mutating the parent. The offspring never replace their parents if they 

have worse fitness value. In our context, we can see (1+1) EA as being an instance of the 

SSGA described in the previous section when the population size is set to one single 

individual.  

 

Memetic Algorithms. Memetic Algorithms (MAs) [49] are a meta-heuristic that uses 

both global and local search (e.g., a GA with a HC). It is inspired by Cultural Evolution. A 

meme is a unit of imitation in cultural transmission. The idea is to mimic the process of the 

evolution of these memes. From an optimization point of view, we can approximately 

describe a MA as a population-based meta-heuristic in which, whenever an offspring is 

generated, a local search is applied to it until it reaches a local optimum. A simple way to 

implement a MA is to use a GA, with the only difference that, at each generation, on each 

offspring a HC is applied until a local optimum is reached. The cost of applying those local 

searches is high, hence the population size and the total number of generations are usually 

lower than in GAs. 

 

Simulated Annealing. Simulated Annealing (SA) [50] is a search algorithm that is 

inspired by a physical property of some materials used in metallurgy. Heating and then 

cooling the temperature in a controlled way often brings to a better atomic structure. In 
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fact, at high temperature the atoms can move freely, and a slow cooling rate gets them 

fixed in suitable positions. In a similar way, a temperature is properly decreased in SA to 

control the probability of moving to a worse solution to escape from local optima in the 

search space. 

From an algorithmic point of view, SA is similar to HC. SA stores one element at a time 

and, at each step of the algorithm, it samples a new neighbor. If this neighbor has better 

fitness, then SA moves to it and discards the previous element. Otherwise, SA moves to 

this new neighbor according to a probability function that is based on the current 

temperature. In contrast to HC, SA does not restart from a random element in the search 

space in case of local optima. Given a starting temperature T, one common way to reduce it 

is to update it every x steps, using for example T’=λT, where λ<1. 

5 Empirical Study 

In this section, we report the design and results of our empirical analysis. The section starts 

with description of the case studies and research questions, follows by explaining the 

experiments settings, the study design, and results. The section ends with discussion on 

scalability and threats to validity of the results. 

5.1 Test suites description  

There are two different SUTs used in this study, which are subsystems of two industrial 

software systems. There is also a set of similarity matrices, which are built based on one of 

the industrial case studies to simulate different SUTs with specific characteristics. The 

simulated matrices will be explained in Section 5.3.3. The remainder of this section 

introduces the two industrial case studies. 

5.1.1 Case study A 

The SUT in case study A is the core subsystem of a video-conference system at Tandberg 

AS (now part of Cisco), which manages sending and receiving of multimedia streams 

implemented in C. Audio and video signals are sent through separate channels and there is 

also a possibility of transmitting presentations in parallel with audio and video. 

Presentations can be sent by only one conference participant at a time and all others 

receive it. A three-level hierarchical state machine describes A’s behavior and consists of 

four submachine states. The first submachine state hides three simple states, whereas the 

second contains two additional submachine states, each having three simple states. This 
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state machine was modeled by the authors and verified by the company’s experts. The 

flattened version of the state machine (automatically generated by our USBT tool, TRUST 

[6]) consists of 11 states and 70 transitions. Constraints specifying state invariants and 

guards are expressed in the Object Constraint Language (OCL) [51] and are used to derive 

automated test oracles. Applying TRUST, 59 ATCs, covering all transitions in the state 

machine, are generated as the original test suite. Ten concrete test cases (each concrete test 

case is an instantiation of one ATC with a given value for each trigger’s input parameter) 

are randomly generated per ATC (with equal probability for each input data value). 

Running these 590 concrete test cases on four releases of the SUT resulted in detecting 

four distinct faults. These faults are all reported in bug reports of the releases and are 

detected by ATCs either by visiting a specific state, taking a specific path, or using a 

specific input data for the triggers. Note that there are reported faults which are not 

detected by our test suite because they are either related to functionalities which are not 

modeled, e.g., user interface, or they are related to non-functional requirements, e.g., 

robustness behaviors, which are not accounted for in the current model of the SUT.  

Since each ATC corresponds to several concrete test cases, which may or may not 

detect a fault, in our experiments we need to estimate the FDR of a set of ATCs (sn). Given 

the 10 concrete test cases per ATC, the FDR of sn is equal to the average probability of 

finding the existing faults. Probability ௙ܲ of finding a specific fault ݂ with the selected 

subset of ATCs is equal to one minus the probability of not finding the fault with any of 

the ATCs in the chosen set: ௙ܲ ൌ(1 െ ∏ ሺ1 െ ௜ሻ݌
௡
௜ୀଵ ) where n is the size of the subset and 

 ௜ is the estimated probability of detecting fault ݂ with ATC i in the subset: number of݌

times the fault is detected by the 10 test cases generated for that ATC divided by 10. The 

FDR is hence computed by averaging these probabilities: ∑ ௙ܲ/|ܨ|, where |ܨ| is the 

number of faults. 

5.1.2 Case study B 

The SUT in case study B (information about this case study is sanitized due to 

confidentiality restrictions) is a safety monitoring component in a safety-critical control 

system implemented in C++. This SUT is typical of a broad category of reactive systems 

interacting with sensors and actuators. The first version of the system (including models 

and code) was developed and verified by the company experts and our research team. A 

total of 26 faults were introduced during maintenance activities of subsequent versions of 
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the SUT by developers and re-introduced for the purpose of the experiment in the latest 

version of the SUT. 

The correct and most up-to-date UML state machine, representing the latest version of 

the SUT’s behavior, consists of one orthogonal state with two regions. Enclosed in the first 

region are two simple states and two simple-composite states. The simple-composite states 

contain two and three simple states. The second region encloses one simple state and four 

simple-composite states that again consist of, respectively, two, two, two, and three simple 

states. This adds up to one orthogonal state, 17 simple states, six simple-composite states, 

and a maximum hierarchy level of two. The unflattened state machine contains 61 

transitions and the flattened state machine consists of 70 simple states and 349 transitions. 

The correct, most recent UML state machine was given to TRUST as an input model. 

Using all-transitions coverage, 281 ATCs and the corresponding executable test cases 

along with their test oracles were automatically generated. In this case study, if an ATC 

has the ability to detect a fault, it can be detected by any valid test data for that ATC. 

Therefore, unlike case study A, we only need one concrete test case per ATC to compute 

its FDR and the test suite FDR is simply the number of faults detected by the concrete test 

cases corresponding to the set of selected ATCs (sn), divided by the total number of 

detectable faults in the system. 

Among the 26 faults, 11 of them were sneak paths (illegal transitions in the modified 

model) [52]. To detect such faults the model should account for the behavior of the SUT 

when receiving unexpected triggers. Such robustness behavior is not currently modeled 

and therefore, these 11 faults could not be detected by any test case generated from the 

model. The remaining 15 faults (detectable by the test cases generated from the model) are 

used to produce 15 faulty versions of the code by introducing one fault per program. The 

faults are due to both code and design level faults.  

There are four main differences between these two case studies: (1) Case study A is 

smaller both in terms of the model size (number of states and transitions) and the test suite 

size (number of ATCs generated for the input model); (2) The number of faults detected by 

the test suite is much higher for case study B. Recall that we do not account for faults that 

relate to robustness behavior, which is not modeled in the current state machines, as this 

case studies focus exclusively on the nominal behavior of the SUTs; (3) The fault detection 

in case study A depends on the input data, whereas ATCs in case study B either detect or 

not a fault regardless of input data; and (4) The failure rate ( θ)—i.e. the probability that a 

test case chosen at random from the original test suite triggers any failure (we assume a 
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uniform probability and not a usage profile)—is much higher for case study A. Notice that, 

in these case studies, the θ is expected to be much higher than testing scenarios in which 

all possible test cases are considered. This is because MBT is effective in generating test 

suites with high fault detection rates. In case study B, 74 out of 281 ATCs detect at least 

one fault thus yielding θ = 74/281≅0.26. However, θ in case study A is higher. Because in 

this case study each ATC has a probability of detecting a fault that depend on input data, 

we calculate the probability for an ATC i to detect at least one fault as ௜ܲ ൌ 1 െ

∏ ሺ1 െ ௜௙ሻ݌
ସ
௙ୀଵ , where ݌௜௙ is the probability for ATC i to detect fault f. Therefore, the θ is 

ሺ∑ ௜ܲ
ହଽ
௜ୀଵ ሻ 59⁄  = 43.28/59≅0.73. This high θ is a direct consequence of the faults types in 

case study A. Since the SUT in case study A was rather stable, we had to look back into 

the earliest releases to be able to detect faults, and therefore, since the SUT was of poor 

quality (was not well tested at that stage), it contained faults which were relatively easy to 

detect with MBT.  

Case study A is smaller but it has interesting characteristics such as a high failure rate 

and a dependency between FDR and input data. Therefore, we report the results from both 

case studies separately to show potential differences due to differences in SUT 

characteristics. In a subsequent step, we also summarize the results in a more general way 

by looking at the two cases together along with the results from a simulation study. Table 2 

summarizes the SUT features.  

5.2 Research questions 

The main goal of this study is to propose a model-based test case selection technique that is 

adjustable based on available testing budget and resources. This is expected to make MBT 

more scalable in situations where, for a number of possible reasons, test case execution is 

Table 2 Summary of case study features 

Feature Case study A Case study B 
Domain Multimedia 

systems 
Safety control 

systems 
Number of states in the flattened state machine 11 70 
Number of transitions in the flattened state machine 70 349 
Number of ATCs covering all transition of the state 
machine 

59 281 

Number of detectable faults 4 15 
Failure rate 73% 26% 
Are input data important in fault detection? YES No 



 

 
188 

 

expensive. To achieve this goal, we perform a series of experiments to (1) investigate 

many alternative STCS techniques, (2) assess how effective STCS is compared to other 

techniques, (3) determine in which situations it can be expected to be more effective, and 

(4) what benefits can be expected in practice. The experiments are designed to answer the 

following five research questions: 

RQ1: How influential are STCS parameters on its effectiveness? 

STCS consists of three phases (Section 4) within which many variants of the technique can 

be formed. Setting parameters of the phases leads to a completely specified STCS 

technique (one variant). An important question is to assess how the choice of techniques—

for encoding, similarity function, and minimization algorithm—affects STCS 

effectiveness. In other words, we want to understand whether all three parameters matter, 

which ones have a significant effect, and why it is so. 

RQ2: What is the most cost-effective STCS variant? 

Since choosing a specific STCS strategy requires to set three parameters out of a large 

possible number of combinations, one needs clear guidance to choose the best combination 

possible in a given context. Therefore we aim at identifying the most cost-effective 

variants of these parameters in the case studies, explain the results, and attempt to 

generalize them to provide guidelines. 

RQ3: What is the practical benefit of using STCS? 

Once the best STCS strategy has been identified (RQ2), we want to assess the 

improvement we gained over the state of the art. The non-STCS baselines of comparison 

are Random Testing (RT) [17]—randomly selecting n ATCs from the original test suite—

and coverage-based techniques (described in details in Section 5.3.2). A coverage-based 

technique maximizes a model coverage measure (e.g., number of covered transitions in 

USBT) in the selected test cases. We will describe them in more details in the design 

section (Section 5.3.2). Improvement is achieved either with higher FDR for the same 

number of test cases or the same level of FDR but with fewer test cases.  

RQ4: What is the effect of the failure rate on the effectiveness of STCS? 

Since θ in both of our case studies is quite high, it is important to apply STCS in SUTs 

with lower θ before generalizing the results. Therefore, in this question we specifically 

address the effect of θ on STCS effectiveness. 

RQ5: How one can estimate the minimum number of test cases required for achieving 

(near) maximum FDR? 
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In practice choosing a test budget is a tradeoff within constrained limits. For a software 

tester, it may be possible to argue for a larger budget and obtain it if justified. Therefore, 

we investigate the relationship between average similarity within a test set and its FDR to 

assess whether this can help us decide when enough test cases have been selected. Can we 

conclude that, if after increasing test suite size average pair-wise similarity reaches a 

plateau, then there is little chance to expect any further improvement in FDR when 

augmenting further the test suite? 

5.3 Experiment design and results 

We designed four experiments to answer the five research questions described in Section 

5.2. Two different analyses on the results of the first experiment help answer RQ1 and 

RQ2 and there are three other experiments to answer the three remaining questions, 

respectively. Each experiment consists of running several STCS variants on the SUT 

similarity matrices, either actual or manipulated for the sake of simulation. The techniques 

are implemented by the authors in Java and our large empirical study is concurrently 

executed on an IBM multicore-based cluster of 84 computer nodes, each with eight cores 

(each computing node has dual Intel quad-core 2.5GHz processors) with eight GB shared 

memory and Linux Ubuntu operating system.   

5.3.1 Experiment 1: answering RQ1 and RQ2 

In this experiment, we look at all the STCS variants discussed in Section 4 and perform 

two different analyses to answer RQ1 and RQ2. We investigate a total of 320 STCS 

variants (four encodings: SB, TB, TGB, STGB; eight similarity functions: LEV, NW, SW, 

CNT, HAM, JAC, SOK, GOW; and 10 minimization algorithms: SimGrd, KMC, AHC, 

ART, RS, HC, SSGA, (1+1)EA, MA, SA).  

There is no specific parameter setting for encoding definitions and similarity matrix 

generations in the experiments other than what is defined in Section 4. However, certain 

minimization algorithms need parameter settings. SimGrd, KMC, and AHC involve no 

parameters. For ART, we used k=10 (as suggested in [23]). For search-based techniques, 

we made choices based on what is suggested in the literature [47] and our previous 

experience (e.g., [2, 3, 7, 24]). We use a high crossover probability (0.75) for GA and MA. 

Mutation probability is the standard one: 1/n, for SSGA, MA, and (1+1)EA. Population 

size is set to 50 for SSGA and 10 for MA. The rank selection for SSGA and MA uses a 1.5 

bias. For SA, the initial temperature is set to 0.9, and it is reduced by 5% (i.e., λ=0.95) 
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every 10*n steps of the algorithm. We will discuss about potential threats to validity of the 

results due to these parameter settings in Section 5.5.   

Each STCS variant is applied on both case studies A and B for different test selection 

sizes (3 to 15 by intervals of one for case study A and 10 to 140 by intervals of 10 for case 

study B). The reason that we do not continue after 15 (case A) and 140 (case B) ATCs, 

respectively, is that most techniques converge to the maximum FDR over these sizes. 

Comparisons are more important for smaller test selection sizes since they represent more 

realistic scenarios in practice. For each size, each STCS variant is executed 100 times and 

FDR is computed for the selected ATCs. In addition, to take into account the random 

nature of these STCS algorithms, we followed a rigorous procedure to assess whether there 

is any statistically significant difference among the performances of these STCS variants 

[53]. To rank the variants, we assign a score to each variant called variant score, which is 

initialized to zero. For each variant and test selection size, we perform 319 non-parametric 

Mann-Whitney U-tests to assess the statistical significance of FDR differences (if any) 

between the considered variant and all the others over 100 runs. This resulted in 

13*320*319/2=663,520 and 14*320*319/2=714,560 statistical tests for case studies A and 

B, respectively. If the results of the tests show a significant difference (at level α =0.05) 

between the variants’ results, the effect size is calculated using the A statistic [53, 54] for 

the FDR of the two variants and the variant score of the better variant (with higher A 

statistic) increments while the score of the worse variant decrements. There will be no 

change if the test result shows no significant difference (i.e., if the p-values are higher than 

0.05). Note that Vargha-Delaney’s A statistic, which is an effect size measure, is used 

instead of comparing the medians of the distributions since we cannot state that the 

compared distributions have same shape [53]. This statistic estimates the probability that a 

data point randomly taken from a set (i.e., a probability distribution) will have higher value 

than another point randomly taken from a second data set. When the two distributions are 

the same, we would have A=0.5. 

After performing all statistical tests, each test selection size of a variant has a score in 

the range [-319, +319]. The scores are replaced by ranks from 1 to 320 (lower rank 

represents higher FDR). The average of the ranks over test selection sizes makes a one 

rank value per pair (variant, case study). We also combined the results from the two case 

studies in one rank value by averaging the two ranks of each variant. Note that we cannot 

take both case study results together while performing the ranking, since the number of 

samples is different in the two cases. Therefore, we first rank variants in each case study 



 

 
191 

 

and then average them. In the next step, given the rank values for each variant, a Kruskal-

Wallis test, which is a non-parametric analysis of variance test, is applied per each of the 

three variant parameters separately. Table 3 reports the p-value and Chi-squared results, 

which show how much of variance is explained by each parameter from the Kruskal-

Wallis tests. 

In addition, Figure 3 to Figure 5 show the boxplots of the variant ranks when 

considering one parameter at a time. For example, Figure 3.a shows the distribution of 

ranks when using any of the four encodings in case study A as boxplots (the middle line is 

the median). There are 80 observations per category (eight similarity functions times 10 

minimization algorithms). Figure 3.b and Figure 3.c show the same boxplots for case study 

B and both studies together, respectively. As visible from the boxplots and confirmed by 

the statistical tests, all parameters have a significant effect on ranks (and consequently the 

FDR). The only non-significant result is for similarity functions on case study B (p-

value=0.83). However, by considering both studies together, similarity functions also show 

significant differences. To answer RQ1, we account for both case studies, and results 

suggest that all parameters, when taken individually, have a significant effect on the FDR. 

However, we cannot say which parameter is more important than the other, since the Chi-

squared statistic values vary greatly for the three parameters across case studies. 

RQ2 can also be answered based on the boxplots by choosing the best parameter value 

per parameter. However, that might be misleading since there is no consistent, dominant 

parameter across case studies (RQ1) and interaction effects might take place between 

parameters, e.g., the best encoding and the best similarity function may not form the best 

combination. Therefore, the most accurate way of finding the best STCS variant is to 

analyze the ranks of all 320 variants. To do this, we built a rank table per case study and 

Table 3 The Kruskal-Wallis test results on the effect of different variant parameters on FDR 

Parameters 
Case study A Case study B 

Both case studies 
together 

p-value 
Chi-

squared
p-value 

Chi-
squared

p-value 
Chi-

squared
Encoding 1.344e-14 67.67 < 2.2e-16 170.64 1.874e-5 24.60 
Similarity 
function 

< 2.2e-16 161.62 0.8349 3.50 < 2.2e-16 159.64 

Minimization 
algorithm 

0.0028 25.11 5.836e-9 56.67 6.886e-6 40.23 
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for both case studies together. Table 4 to Table 6 show the first top 20 rows out of 320 

rows of each rank table. 

 Looking at each case study individually shows that JAC, SOK and GOW are the best 

similarity functions and that (1+1)EA, MA, and SA are the best candidates for 

minimization algorithm in both case studies. The fact that set-based similarity measures 

perform better than sequence-based ones shows that the difference between the orders of 

elements in ATCs does not play an important role in their FDR. This may be, however, a 

characteristic of the faults in our case studies. Search-based techniques definitely overcome 

Greedy, ART, and clustering-based techniques— this may be expected since they are 

meant to be optimization techniques, as opposed to the other alternatives. SB is the best 

encoding for case study A followed by STGB whereas TGB followed by STGB are more 

effective on case study B. The difference in best encoding between case studies A and B 

can be explained by differences in the number of faults, fault rate, and types of faults in the 

two case studies. In case study A, faults are mostly state faults and are easy to find. 

Therefore, a simple state-based encoding is enough to differentiate ATCs according to the 

faults they detect, whereas in case study B we need to account for more details in the test 

to differentiate ATCs revealing different faults. 

To draw a conclusion based on both case studies together, we need to look at the rank of 

the best STCS variants in Table 4, where the average ranks over the two case studies are 

computed. STGB appears to be the best encoding—most probably because it contains all 

necessary information from the path—but it is also slightly suboptimal in each study 

individually, as it introduces irrelevant information in the similarity computations. Unless 

we know exactly the type of faults we can expect in a case study, we should select as a 

default STGB to ensure we do not miss any useful information from the ATCs, though it 

might be somewhat suboptimal. Among JAC, SOK and GOW, which are the best 

similarity functions in the case studies, GOW shows the best results when averaging the 

ranks. That implies that assigning more weight to similarities than differences—that is 

what differentiates GOW compared to JAC and SOK—seems more effective, though 

differences are relatively minor. Regarding minimization algorithms, we already knew that 

search-based techniques like SSGA are more effective than ART and clustering-based 

techniques, such as AHC [2]. Looking at the results of each study individually confirms 

that finding. However, a more interesting result is that (1+1)EA, which is a simplified GA 

(a non-population-based GA), is more effective in both case studies than SSGA and 

actually is the best when considering both case studies together.  In general, whether this 
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(a) Case study A 

 
(b) Case study B 

 
(c) Both case studies together 

Figure 3 The effect of encoding on FDR of STCS 
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(a) Case study A 

 
(b) Case study B 

 
(c) Both case studies together 

Figure 4 The effect of similarity function on FDR of STCS 
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(a) Case study A 

 
(b) Case study B 

 
(c) Both case studies together 

Figure 5 The effect of minimization algorithm on FDR of STCS 
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Table 4 Top 20 STCS variants in the rank table for both case studies together 

 

Table 5 Top 20 STCS variants in the rank table for case study A 

 

Table 6 Top 20 STCS variants in the rank table for case study B 
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result stands depends on the search landscape, but considering the simplicity of the 

(1+1)EA, for example in terms of parameters, together with the results from the two case 

studies, we suggest to adopt it as the best minimization algorithm for STCS. 

When we analyzed the cost of different techniques, we saw no significant difference 

between the execution time when generating encoded ATCs. There is a significant 

difference in execution time between sequence and set-based similarity matrix generations. 

But the more effective techniques (set-based ones) are actually the cheaper ones. Among 

set-based techniques there is no significant difference. For example, for the bigger case 

study (case study B) the whole matrix generation time is in the range of 400 to 800 

milliseconds (ms) using the set-based functions depending on the encoding and the 

function, but sequence-based techniques need more than three seconds to generate the 

same size matrices. These differences are not practically significant for these case studies, 

but for larger SUTs the difference may matter. In Section 5.4, where we investigate 

scalability issues, more details about the cost of sequence and set-based techniques will be 

provided. 

To perform a fair comparison of minimization algorithms, we evaluate the FDRs of 

different STCSs while keeping their execution cost equal. We force algorithms to have 

exactly the same cost by using the same stopping criterion. When comparing search-based 

minimization algorithms and ART, we can force them to have the same number of 

similarity comparisons and thus obtain a platform independent cost measure. Given a test 

selection size n, search-based techniques stop after 10,000 fitness evaluations (each 

consisting of n*(n-1)/2 similarity comparisons). For ART, the candidate size is 10 

(resulting in 10*n*(n-1)/2 similarity comparisons). Therefore, we run ART 100 times and 

select the best among them to have the same number of total similarity comparisons as the 

search-based techniques. However, it is not possible to use the same cost measure for 

SimGrd, KMC, and AHC. Therefore, we have to rely on execution time even though this is 

an imperfect measure of cost [39]. What makes comparisons simpler however is that AHC 

and KMC, which are worse in terms of FDR, are also more expensive, thus dismissing 

them as valid alternatives. SimGrd is the only algorithm that is quicker but less effective. 

We borrowed this algorithm from the only related work on STSC [21] and treat it as a 

baseline of comparison for our work. Therefore, we do not change its design and the 

current algorithm cannot be run for a longer time to achieve better results. Thus, we cannot 
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fix the selection time of SimGrd in the same way we do with search-based algorithms in 

order to perform a fair comparison. However, SimGrd does not appear to be an interesting 

alternative since: (a) It is one of the worst algorithms in terms of rank based on Figure 5 

(its median is very low and there is a high variation in its results, especially visible in case 

study B) and it only appears twice out of 60 among the best variants in Table 4 to Table  6; 

(b) its FDR cannot be improved by assigning more time to its execution; (c) the algorithm 

is more expensive for smaller test selection sizes, which are more of interest in practice, 

since instead of selecting test cases, it removes them from the test suite to reach the 

preferred size. Therefore smaller test selection sizes require more eliminations that makes 

them more expensive. The cost of selection by SimGrd for small test selection sizes is even 

more expensive than search-based techniques. For example, for case study B and test 

selection size 10, SimGrd takes 175ms on average whereas (1+1)EA only needs 17ms.  

As a result, we can summarize Experiment 1 as follows: All STCS parameters are 

potentially influential on FDR and the most cost-effective variant is STGB, GOW, and 

(1+1)EA for encoding, similarity function, and minimization algorithm, respectively. In the 

rest of this paper we denote this variant as Best_STCS.  

5.3.2 Experiment 2: answering RQ3 

In Experiment 2, we are interested in evaluating STSC cost and effectiveness compared to 

state of the art, non-STCS test case selection strategies. The goal is to assess the magnitude 

of improvement that STSC provides, which can be measured both in terms of higher FDR 

with the same number of test cases but also by achieving the same FDR with fewer test 

cases. In this experiment, based on the results of Experiment 1, we take Best_STCS as the 

best representative of STCS selection techniques and compare it with other possible non-

STCS selection strategies, which are either coverage-based test case selection or random 

testing (RT). RT is simply randomly selecting n ATCs with uniform probability from the 

original test suite. Coverage-based techniques vary in two dimensions: what should be 

covered and how this coverage should be maximized. Therefore, we first need to determine 

the best coverage-based technique as a representative of this category. In a model-based 

selection context, coverage can only be defined based on the ATCs, since no execution or 

source code information is available. The most well-known USBT coverage criterion, 

which is used for test case selection in the literature, is transition coverage [19]. Based on 

our encoding for STCS, we also define state, trigger-guard, and state-trigger-guard based 

coverage criteria. Regarding maximization of coverage, we apply two of the most used 
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techniques in the literature: Greedy [19, 55] and GA [20, 56]. In the Greedy-based 

technique (CovGrd), which is inspired by the additional coverage technique [10], a greedy 

algorithm selects in a stepwise manner one additional ATC which covers the most 

uncovered elements, based on the selected coverage criterion. In our context, an element is 

one of the following: state, transition, and trigger-guard, based on the encoding. In case of 

the STGB encoding, the goal is covering both all states and all trigger-guards. The second 

approach (CovGA) uses a SSGA (with the same settings and stopping criterion as the 

SSGA used in STCS) to maximize the total coverage of the selected test set. Applying 

these two techniques (CovGrd, CovGA) with the four coverage criteria (corresponding to 

the four encodings), we evaluated the FDR of the selected ATCs on the two case studies. 

Figure 6 shows FDR means, over a range of test selection sizes, for the eight variants of 

coverage-based techniques labeled with the name convention: 

Encoding_MaximizationAlgorithm. The first observation (more visible on Figure 6.b, case 

study B) is that the effectiveness trend among coverage criteria is the same as the 

effectiveness trend among encodings in STCS techniques. For case study A the ordering of 

FDRs is SB>STGB>TB>TGB and for case study B it is TGB>STGB>TB>SB. However, 

the differences in case study A (Figure 6.a) are practically negligible because of the high 

failure rate (θ). Since there are a few easy-to-detect faults in the SUT of case study A, 

regardless of the coverage criterion, both Greedy and GA techniques are able to catch the 

faults. Thus, the differences in terms of FDR are very small. Therefore, taking the average 

FDR from both case studies together, we choose STGB as the best coverage criterion. 

Comparing CovGrd and CovGA, we could not find any practical difference in any of the 

case studies and, considering the high cost of SSGA compared to a Greedy algorithm, we 

suggest STGB_CovGrd as the best representative of coverage-based category.  

Comparing Best_STCS, STGB_CovGrd, and RT, Figure 7 reports their mean FDRs 

over the range of test selection sizes in case study A (Figure 7.a) and case study B (Figure 

7.b). We also reported the A statistic (effect size measure) for comparing Best_STCS vs 

STGB_CovGrd and Best_STCS vs. RT, respectively, in Figure 8.a (for case study A) and 

Figure 8.b (for case study B). The A statistics show the probability that a selected test set 

by Best_STCS (randomly taken from the 100 runs) will have higher FDR than a selected 

test set by STGB_CovGrd and RT(randomly taken from the 100 runs), respectively.  
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(a) Case study A 

 
(b) Case study B 

Figure 6 The FDR comparison of different coverage-based test case selection techniques for different 
test selection sizes 

 

(a) Case study A 

 
(b) Case study B 

Figure 7 The FDR comparison between the best STCS (Best_STCS) and non-STCS techniques 
(STGB_CovGrd and RT) for different test selection sizes 

 

Based on these results, we clearly see the improvement in FDR in case study B. The 

mean FDR of Best_STCS reaches 100% with only 40 ATCs (around 14% of the original 

test suite) while the two alternatives cannot reach 100% even with 140 ATCs (half of the 

original test suite). Using Best_STCS, 50% to 80% fewer test cases are required to achieve 

the same FDR as STGB_CovGrd and RT. Looking at the percentage of mean FDR 

improvement, especially for smaller test selection sizes, Best_STCS provides between 15% 
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to 45% improvement over STGB_CovGrd and 80% to 110% over RT. The maximum 

improvement is obtained around test selection sizes 20 to 30 where Best_STCS has already 

reached a very high FDR though STGB_CovGrd lags far behind. We also have applied a 

Mann-Whitney U-test on the FDRs of different test selection sizes, comparing Best_STCS 

with STGB_CovGrd and RT. All p-values are very low (zero or close to zero). This 

phenomenon is also visible in Figure 8.b, where the effect size around test selection size 20 

is close to 1.0, thus showing that Best_STCS is nearly always a better option in terms of 

effectiveness for case study B.  

However, the improvements are not practically significant in case study A. The 

differences in mean FDRs (from Figure 7.a) are small. In some cases there is not even a 

statistically significant difference between them and the A statistic also does not show very 

high values. The small differences among techniques have been also observed in Figure 6 

when comparing coverage-based techniques. The most plausible explanation is the high 

failure rate (θ) since most selected test sets, even if they are chosen by a simple selection 

technique, are good enough to detect most of the easy-to-detect faults. Therefore, a more 

complex technique such as Best_STCS may not be of practical help in this case.  

Running a deeper analysis of this case study, we plot the FDR distributions as boxplots 

in Figure 9.a (Best_STCS vs. RT) and Figure 9.b (Best_STCS vs. STGB_CovGrd). It is 

easy to see two trends: (1) In the interval from 7 to 9 Best_STCS performs better in terms 

of all the statistics discussed above. For test selection sizes above 10 all techniques 

 
(a) Case study A 

 
(b) Case study B 

Figure 8 The effect size measure (A statistic) when comparing FDR of Best_STCS against 
STGB_CovGrd and RT for different test selection sizes 
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perform the same (almost reaching maximum possible FDR) and for very small test 

selection sizes (3 to 6) none of the techniques can dominate the other. (2) Best_STCS and 

RT have the least and most variance in results, respectively. Note that, in practice, 

selecting a subset of test cases with a high variance technique can, in the worst case, lead 

to a very low FDR. Therefore, even for case study A, we would prefer using Best_STCS 

than STGB_CovGrd or RT.  

Cost is also an important factor in selecting the best technique. The simple algorithms 

used in CovGrd and RT definitely result in very low execution time. RT execution time is 

extremely low (e.g., in case study B, execution time is less than 0.1ms for any test 

selection sizes). STGB_CovGrd’s execution time is around 11ms for any test selection 

size. However, Best_STCS takes, for example, 17ms, 51ms, 108ms, and 189ms for test 

selection sizes 10, 20, 30, and 40 respectively. Though these differences are not practically 

significant (especially for smaller test selection sizes which are more of interest in test case 

selection), they may become so in the case of larger systems. In practice, if considering 

each test case execution time (e.g., in our case studies, it is in the range of minutes), an 

additional 200 milliseconds for test case selection is negligible, as long as the more 

expensive technique can yield the same or higher FDR than alternatives with fewer test 

cases. In other words, given that the total cost of a solution is the selection time plus the 

execution time of the selected test cases, when each test case execution time is in the range 

of minutes and total selection time in the range of hundreds of milliseconds, any reduction 

 

 
(a) Best_STCS vs. RT 

 
(b) Best_STCS vs. STGB_CovGrd 

Figure 9  Distribution of FDRs over 100 runs for different test selection sizes of Best_STCS, 
STGB_CovGrd, and RT as boxplots on case study A 



 

 
203 

 

in the number of test cases is much more effective in reducing the total cost than saving 

milliseconds during selection. We will discuss more about the cost of the techniques for 

larger systems in Section 5.4.   

In summary, the results of Experiment 2 answers RQ3 by showing that, most of the 

time, Best_STCS results in equal or higher FDR with fewer ATCs when compared with 

state of the art alternatives (coverage-based selections and RT). In a few cases, Best_STCS 

is not more effective than these baselines, but because it shows less variance, it is still a 

less risky technique to use. In addition, in most cases the FDR improvement is very 

significant (e.g., for some test selection sizes and case studies, 40% and 110% 

improvement is achieved when compared to STGB_CovGrd and RT, respectively). Even 

for case study A, where the failure rate (θ) was high, the Best_STCS never performed 

worse than the baselines (in terms of A statistics), except for very small test selection sizes 

of three, four, and six ATCs (Figure 8.a), where in those cases Best_STCS shows less 

variance in results (Figure 9). Therefore, we suggest using Best_STCS as a model-based 

test case selection technique, even for small test suites, since there is essentially no harm 

using Best_STCS. The extra cost for small test suites is negligible, Best_STCS has the 

potential to result in much better FDR and a reduced MBT cost. If the test suite execution 

cost is negligible, then there is no need for any kind of selection, since the entire test suite 

can probably be executed within the project time constraints.  

5.3.3 Experiment 3: answering RQ4 

In Experiment 3, we simulate test suites with different θs to study its effect on the 

effectiveness of STCS. We are specifically interested in investigating whether STCS still 

provides higher FDR than coverage-based and random selection when the original test 

suite θ is low. To run such experiment, we need test suites with lower θs than that of our 

current case studies. Therefore, we take case study B, which has the lowest θ (26%) to start 

with, and use it to form 25 types of test suites with equal size (200), but with different θs 

ranging from 25% down to 1%. These test suites are formed by removing a different subset 

of 81 ATCs from the original test suite of 281 ATCs. Because we do not generate artificial 

ATCs or change the fault detection pattern of ATCs (which faults are detected by which 

ATCs), this design preserves most features of the original industrial case study. Notice 

that, regardless of the matrix generation procedure, we cannot build a fault detecting 

matrix with θ lower than 1/(281-73)=0.48% from case study B. There can be many test 

suites with size 200 and a given θ based on case study B. Therefore, we generate 30 
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different test suites per θ and apply Best_STCS, STGB_CovGrd, and RT 100 times for 

different test selection sizes on each test suite.  

Figure 10.a and Figure 10.b show three-dimension graphs to visualize variations in 

effect size measure (A statistic) when comparing the FDR of ATCs selected by Best_STCS 

vs. RT and Best_STCS vs. STGB_CovGrd, respectively. Two parameters are varied to 

explain variations in A statistic values: θ from 1% to 25%, test selection size from 10 (5% 

of the test suite) to 100 (50% of the test suite). Results from the graphs, reporting the A 

statistic of the FDRs for each value of θ and test selection size (there are 3000 data points 

for each A statistic value: 100 runs and 30 test suites), show that Best_STCS is never worse 

than its alternatives (A statistic ≥ 0.5) regardless of test selection size and θ. This answers 

RQ4. If we carefully analyze the A statistic change over different test selection sizes for 

different θs, we can see that the trend is the same as what has been seen in Figure 8.b (the 

original case study B with θ=26%). There is a test selection size value where A is 

maximum (e.g., test selection size 20 in Figure 8.b and Figure 10.b) and from there on, 

increasing the test selection size decreases A since any technique can detect faults with a 

large enough test selection size.  

Another interesting observation is that, for a given moderate test selection size (so that 

not all techniques are effective), A is higher when θ is large. A higher θ provides the better 

(a) Best_STCS vs. RT (b) Best_STCS vs. STGB_CovGrd 

Figure 10 The effect size measure (A statistic) when comparing FDR of Best_STCS against 
STGB_CovGrd and RT for different test selection sizes (10 to 100) and failure rates (1% to 25%) 
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techniques with more opportunity to increase FDR by selecting the right ATCs. However, 

beyond a certain point, the differences between techniques start to reduce and we finally 

reach a point where all ATCs detect faults and technique will result in the same FDR as 

RT. In summary, the results of Experiment 3 suggest that Best_STCS dominates its 

alternatives and that it is not an artifact of the high failure rate (θ) of our case studies. It 

also confirms that Best_STCS may not be significantly better when the original test suite’s 

θ is extremely low or high. This highlights the importance of applying STCS on 

systematically generated test cases resulting from a cost-effective MBT strategy, in order 

to guarantee a high enough θ. On the other side of the range, extremely high θs are 

unlikely on realistic systems. 

5.3.4 Experiment 4: answering RQ5 

Though in practice the test budget may be imposed by external constraints, the tester may 

have some degree of freedom to increase it if it is believed to yield significant benefits in 

terms of fault detection. We are therefore interested in finding a heuristic that helps the 

tester choose an optimal test selection size for STCS. Our heuristic is based on the average 

similarity of ATC pairs in the set (ܵ݅݉ݎݏܯሺݏ௡ሻ), which is the same as the fitness function 

of (1+1)EA in Best_STCS. If there is a linear correlation between ܵ݅݉ݎݏܯሺݏ௡ሻ and the 

FDR of ݏ௡ over different test selection sizes, we can get a fairly good estimate of the FDR 

of the selected ATCs based on their ܵ݅݉ݎݏܯሺݏ௡ሻ. 

In Experiment 4, we re-apply Best_STCS on both case studies and calculate the 

normalized ܵ݅݉ݎݏܯሺݏ௡ሻ per output selected test set. We normalize the values between 

zero and one, so that we can plot them with FDR values in one overlay graph using the 

same scale. To do so, we need to know the maximum and minimum possible ܵ݅݉ݎݏܯሺݏ௡ሻ. 

The minimum similarity measure corresponds to the set of two ATCs with minimum pair-

wise similarity (݉ݑ݉݅݊݅ܯሺܵ݅݉ܿ݊ݑܨ൫݌ݐ௜ ,  ௝൯ሻ). That is because adding any ATC to the݌ݐ

set of two ATCs with minimum similarity will increase (or not change) the average of the 

similarities among ATCs in the set. Therefore, maximum ܵ݅݉ݎݏܯሺݏ௡ሻ is equal to 

 :ሺܶܵሻ, where TS is the entire test suite, and the normalized similarity measure isݎݏܯ݉݅ܵ

 

௡ሻݏሺ݉ݎ݋ܰ ൌ
௡ሻݏሺݎݏܯ݉݅ܵ െ , ௜݌ݐ൫ܿ݊ݑܨሺܵ݅݉݉ݑ݉݅݊݅ܯ  ௝൯ሻ݌ݐ

ሺܶܵሻݎݏܯ݉݅ܵ െ , ௜݌ݐ൫ܿ݊ݑܨሺܵ݅݉݉ݑ݉݅݊݅ܯ ௝൯ሻ݌ݐ
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Figure 11 shows the average FDR(ݏ௡) (y-axis) as a function of ܰ݉ݎ݋ሺݏ௡ሻ (x-axis) for 

case study A (Figure 11.a) and case study B (Figure 11.b), over 100 runs. The test selection 

size n was varied between 2 to 30 (50% of the test suite) by intervals of two and 5 to 140 

(50% of the test suite) by intervals of five for case studies A and B, respectively. It is 

clearly visible in these two case studies that there is a monotonic increase in average FDR 

as test selection size and Norm increase. After a certain Norm threshold, the average FDR 

gets close to the maximum and plateaus. This was expected since increasing Norm results 

from increasing the test selection size and, of course, the average FDR naturally converges 

towards 1.0.  

However, what is more interesting is the near-linear relationship between Norm and FDR, 

before reaching the plateau. In practice, while considering increases in test selection size, 

one can look at the trend of Norm (or ܵ݅݉ݎݏܯሺݏ௡ሻ)) and choose to increase the test 

selection size only when it triggers a significant increase in ܵ݅݉ݎݏܯሺݏ௡ሻ afterwards. 

Because of the observed relationship between Norm and FDR, we know that if the former 

does not significantly increase, we are unlikely to obtain significant increases in FDR. 

However, a significant increase in Norm may not guarantee an increase in FDR if its 

maximum value has already been reached, which we cannot know in practice. The 

relationship between Norm and FDR is expected to vary significantly as, depending on the 

 
(a) Case study A with test selection sizes between 

2 to 30 (50% of the test suite), intervals of two. 

 
(b) Case study B with test selection sizes between 

5 to 140 (50% of the test suite), intervals of five. 

Figure 11 Scattered plot of the averaged FDR (y-axis) and the normalized similarity measure (x-
axis) of selected test cases over 100 runs using Best_STCS 
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failure rate (θ) of the test suite, maximum FDR can be achieved with different test 

selection sizes. This makes it impossible to know beforehand the value of Norm by which 

maximum FDR is reached. This implies that guiding the choice of test selection size based 

on increases in Norm may lead to a conservative choice that will guarantee that an increase 

in FDR is possible but not certain if it has already reached its maximum, thus leading to an 

unnecessarily large test selection size.   

Figure 12 shows the average FDRs along with SimMsr and Norm, for different test 

selection sizes. We can see the same trend in both studies (Figure 12.a for case study A and 

Figure 12.b for case study B): the elbow point (when the last significant decrease in the 

slope of the tangent line appears) in the Norm or SimMsr curve happens in the same 

interval of test selection sizes as when FDR reaches its maximum. We can also match these 

test selection sizes with test selection sizes corresponding to the elbow points in Figure 11 

a and b. Table 7 (case study A) and Table 8 (case study B) reports the average FDR and 

Norm for different test selection sizes close to the elbow points of the curves in Figure11 

and Figure 12. The test selection sizes that correspond to the elbow points in the scattered 

plots are in bold. It is clear that the gain in average FDR and Norm from those test 

selection sizes onward is not significant. Therefore, in practice one can decide about the 

number of test cases to be executed based on the testing budget (maximum affordable) and 

the increase in Norm values (maximum necessary) when increasing test selection size. For 

(a) Case study A (b) Case study B 

Figure 12 Average FDR, similarity measure, and the normalized similarity measure for different 
test selection sizes using Best_STCS 
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example, in case study A, one would determine that beyond a test selection size of 10 

(elbow points), the gain in FDR would likely be much smaller.  

In summary, answering RQ5, we can say that by observing how average similarity 

among test cases increases as test selection size increases, we can identify the point above 

which similarity starts increasing at a much slower pace and FDR is not likely to increase 

significantly. This is made possible by the presence of a near linear relationship between 

similarity and FDR until the latter reaches its maximum.  

5.4 Discussion on scalability of STCS 

The main motivation for STCS is to make MBT scalable, but how scalable are STCS 

techniques themselves? In this section we discuss about how STCS scales up to larger 

inputs. Note that the input of an STCS is a set of ATCs (original test suite). A larger input 

means more ATCs and/or longer ATCs. Therefore, we look at the scalability issue from 

these two points of view. Scalability can be discussed for each step separately. Encoding is 

the cheapest phase, since ATCs are already generated by the MBT tool. The only extra cost 

is eliminating the unnecessary elements from the ATCs to produce the encoded 

sets/sequences. Therefore, encoding linearly scales up with increasing the ATC length and 

test suite size.  

In general, the time complexity of set-based and sequence-based techniques for 

calculating the similarity of two ATCs (tp1 and tp2) is O(|tp1|+|tp2|) and O(|tp1|*|tp2|) 

respectively, where |tpi| is the length of tpi. The matrix generation, in total, needs 

|TS|*(|TS|-1)/2 similarity calculations, where |TS| is the number of ATCs in the test suite 

(e.g., NW takes in average three seconds for a 281*281 similarity matrix—

Table 7 Average FDR and Norm values for test selection sizes close to the elbow points in scattered 
plot of Average FDR vs. Norm for case study A 

 n=4 n=6 n=8 n=10 n=12 
Norm 0.441931 0.590401 0.675518 0.723759 0.752873 
Average 
FDR 

0.851713 0.9176 0.978124 0.986415 0.993835 

 

Table 8 Average FDR and Norm values for test selection sizes close to the elbow points in scattered 
plot of Average FDR vs. Norm case study B 

 n=15 n=20 n=25 n=30 n=35 
Norm 0.598903 0.641039 0.670007 0.688725 0.703399 
Average FDR 0.7304 0.844533 0.924667 0.980867 0.995533 
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(281*280)/2=39,340 similarity value calculations—in case study B, but GOW only 

requires half a second, on a PC with Intel Core2 Duo CPU 2.40 Hz). Therefore, similarity 

matrix generation in Best_STCS also scales up fairly well, linearly with ATC length and 

polynomial (O(|TS|2)) with test suite size. However, the polynomial growth in similarity 

matrix size is a memory scalability problem. One potential solution is on-demand 

similarity calculation instead of storing all paired similarities. We can also use a hash table 

to save the similarity of the most used ATCs in the minimization process. We did not 

investigate these techniques since it was not necessary for our two industrial case studies.  

The most time consuming phase of an STCS is the minimization of similarities, which 

is an iterative search in Best_STCS. Since we always can set up a time limit as stopping 

criterion of (1+1)EA, Best_STCS is always applicable for large test suites. However, 

reducing the search time (compared to the problem size) degrades its effectiveness. Then 

the question is finding the problem size threshold from where Best_STCS, given the same 

fixed time budget, is not more effective than baselines anymore. Precisely answering this 

question requires many more empirical studies on very large industrial SUTs. 

Unfortunately, obtaining these artifacts for research purposes is not always possible. To 

cope with this problem, we applied Best_STCS on simulated similarity matrices with 

different sizes (note that the scalability of this step only depends on the number of ATCs 

and not the ATCs’ length, since in this step we already have a similarity matrix as an input 

for the search). Using similarity matrices with 600, 6000, and 12000 ATCs—generated by 

randomly assigning values1 to each pair and keeping the failure rate (θ) and number of 

faults the same as the test suite in case study B—we realized that keeping the same number 

of fitness evaluations as in this study (10,000), the actual extra time required when we 

increase the number of ATCs is small and very negligible compared to the improvement of 

FDR that we potentially get using Best_STCS instead of non-STCS techniques. For 

example, selecting 20 ATCs out of 281 ATCs of case study B takes 51ms on a PC with 

Intel Core2 Duo CPU 2.40 Hz, whereas it takes 75ms, 130ms, and 139ms when the test 

suite size is 600, 6000, and 12000, respectively. However, if we also increase the test 

selection size with the same proportion of the test suite as before, the selection cost is 

much more. For example, if we select 850 out of 12000 ATCs in the test suite (almost the 

same proportion as selecting 20 out of 281 ATCs in case study B), we need 85 seconds. 

                                                           
1 Note that the exact similarity values do not matter, since we are only interested on the selection cost in larger matrices and not the 

actual FDR of the resulting selected test sets. 
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But in practice, even 85 seconds is a very negligible cost for selecting from a large test 

suite of 12000 ATCs.  

Given the fact that the total cost of test suite execution (்ݐݏ݋ܥௌ) is ்ݐݏ݋ܥௌ ൌ ௦௘௟ݐݏ݋ܥ ൅

݊ ∗  ,௦௘௟ is the selection overhead, n is the number of selected ATCsݐݏ݋ܥ ௧௖, (whereݐݏ݋ܥ

and ݐݏ݋ܥ௧௖ is the cost of each test case execution) then, obviously, not executing the 

unnecessary test cases is worth spending some extra seconds for test case selection, 

especially when each test case execution is costly. Therefore, in summary, we found 

Best_STCS to be a scalable selection technique, which is applicable in very large systems 

with reasonable cost while keeping its high effectiveness.   

5.5 Discussion on validity threats 

In this subsection, we discuss the potential threats to the validity of the study using the 

framework introduced in [57] for empirical studies in software engineering.  

Construct validity: In this study any comparison is based on the cost or effectiveness of 

selection techniques. To evaluate the effectiveness of a selection technique, we need a 

measure to assess how effective at detecting faults a selected test set is. We use the fault 

detection rate (FDR), which is based on real faults, as explained in Section 5.1. There are 

three cost measures considered in the experiments: (a) selection time (actual time spent by 

the selection technique), (2) number of similarity calculations (which is used in comparing 

search-based minimization algorithms), and (3) test case execution time. Each test case 

execution time is taken from the industrial case studies and does not depend on the 

experiment settings. The number of similarity calculations is also a platform independent 

measure, but using actual selection time comes with known problems [39] such as platform 

dependency. However, in this study, this measure is used only to compare different 

techniques with the same execution settings. Therefore, the relative differences are used, 

not the exact platform dependant values. The differences between test case selection 

overhead and test suite execution time is so large that our results would hold even by 

running test case selection on slower machines. We do not have a discussion on memory 

consumption of the selection techniques, since we do not use it as a cost measure when 

comparing different techniques in our case studies. However, it is briefly discussed when 

discussing about the scalability of STCS in Section 5.4. 

Internal validity: All encoding techniques, similarity functions (except alignment 

algorithms), and minimization algorithms are implemented by the authors. Any potential 

defect in the implementation may be a threat to internal validity. In addition, parameter 
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settings of similarity functions and search techniques may have an effect on their 

effectiveness. Regarding similarity functions, there exist techniques that are known to have 

influential parameters (e.g., NW). This means that they could possibly work better with 

some fine tuning. However, that would compromise the applicability of the approach as 

tuning can be time consuming and difficult in practice. Regarding minimization 

algorithms, Greedy and clustering-based techniques do not have parameters to be set. 

While comparing the remaining techniques (ART and search-based techniques), to 

alleviate possible threats to internal validity, we used (wherever applicable) equal values 

for the techniques’ parameters such as stopping criterion and mutation rate. However, it is 

again possible that one of the algorithms from the search-based category, with a specific 

tuning, would work better than (1+1)EA with any parameter settings. But again, that would 

affect the applicability of the technique, since the current parameters are taken from the 

literature and using any other parameter values would require careful and time-consuming 

tuning.  

When we generated the simulated similarity matrices with different θs in Experiment 3 

and different sizes in experiments on scalability, we minimized threats to internal validity 

by keeping most features of the original industrial case study untouched to avoid 

introducing confounding factors. The goal was also to reduce external validity threats by 

making the SUT as similar as possible to real systems. However, the fault detection pattern 

among ATCs might not be the same if we had an industrial case study with the same θ or 

size. 

Conclusion validity: Because randomized algorithms are affected by chance, to reduce 

the threats to conclusion validity we followed a rigorous statistical procedure to analyze 

the collected data. One hundred independent runs of each algorithm were performed to 

account for random variation and to collect a sufficient number of observations on the FDR 

and cost of each selected test set generated by a selection technique. In Experiment 3, 

where we also had randomness in the similarity matrices, 30 matrices were generated per 

θ. All conclusions are supported by non-parametric statistical tests (Mann-Whitney U-test 

and Kruskal-Wallis test). In Experiment 1, the number of observations was different in the 

two case studies and, as a result, we did not apply statistical tests on the combined data. 

Rather, the conclusions are based on the average of the results from the two case studies. 

To compare selection techniques and assess the magnitude of the differences in cost and 

FDR, we used an effect size measure (A statistic) in addition to showing boxplots.  
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External validity: Our results rely on two industrial case studies using real faults, 

complemented by a set of simulated test suites. The SUTs are from different domains with 

different characteristics (e.g., different sizes and number of faults) and the simulated 

matrices try to generalize the results in two dimensions (different θs and different sizes). 

However, replicating our studies in various domains as many times as possible is of course 

required to gain confidence in our results and better understand their limitations. Despite 

the fact that one can never be sure whether case study results generalize to other systems, 

we have carefully tried to qualitatively explain our results, thus contributing to understand 

how they might generalize.  

6 Related Works 

Though STCS is a new topic in MBT, similar ideas have already been applied in the 

context of regression testing. Similarity in that domain is mostly defined using some type 

of code-level coverage of the test cases. For example, in [13] the similarity function is 

based on all def-use pairs coverage and they use a classification algorithm as a 

minimization technique, where they classify similar test cases in one class and distribute 

their selection over different classes. Basic block coverage in the code (e.g., statement 

coverage) is a basis for defining similarity functions in [18, 34, 35, 58]. Greedy search, 

adaptive random selection, and clustering are used in these studies for 

selection/prioritization. In [59] different heuristics are used based on execution information 

from the original test suite to support regression testing (e.g., memory operations with 

values from dynamic execution of a test case is used in a similarity function). Feldt et al. 

[60] has taken a different approach by proposing a diversification technique which is 

driven by execution related information of the test cases such as the test setup, arguments, 

control flow, outcome of evaluation, etc. They have applied an information distance 

function on the description of the test cases. The problem with all these approaches is that 

they need source code coverage and/or previous execution information which are not 

available in our context when we do system level, black-box testing and select test cases to 

minimize test execution.  

Ledru et al. [22] have introduced a similarity-based prioritization technique which can 

be applied on both code-based and model-based techniques, since it is based on the test 

scripts and not the source code or a specification model. The basic idea is to analyze the 

test script as a string and compare each pair of test cases as two strings using an edit-
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distance function. This approach is missing the encoding phase and results in using noisy 

data (platform dependant information in the test scripts) when applying a 

similarity/distance function.  

There is also a category of test case diversification techniques which are based on data 

diversity. ART, as introduced in Section 4.3.3, for example, is one of the most well-known 

techniques in this group. Vega et al. [61] also applied test data variance as a test quality 

measure. In MBT, ATCs do not contain test data and concrete test cases are generated by 

adding specific test data to each ATC. Test data variance techniques may be useful when 

generating the concrete test suite from ATCs. However, we are interested in reducing the 

set of ATCs as much as possible before concretizing them. This means that these 

techniques can be complementary to STCS, if we employ a diversity-based test data 

generation technique to select input data for the selected ATCs.   

To the best of our knowledge, the only STCS technique applied on the model level was 

recently introduced in [21], where sequences of transitions in a Labeled Transition System 

model of the SUT are used to represent test paths. The similarity function is our CNT, as 

defined as Counting Function in Section 4.2.1, and the selection technique is a Greedy 

search, that is SimGrd in Section 4.3.1. If we tailor their approach for USBT, the encoding 

is similar to our TB described in Section 4.1. Therefore, their technique can actually be 

considered as one of our 320 variants. If we consider their technique as an STCS baseline 

of comparison, Best_STCS is on average the best variant (18th best variant for case study A 

and 6th best for the case study B) and is a much better choice than their variant, which is 

ranked 127th for case study A, 111th for case study B, and 66th on average.  

This study is an extension of the work we reported in [2, 3, 24]. The general idea of 

STCS is introduced in [3] and SB, TB, and TGB encodings are compared while using a 

CNT similarity function and a SSGA/SimGrd algorithm on case study B. We also 

compared the variant identified by TGB, CNT, and SSGA with coverage-based selection 

and random testing. In [24] we have focused on comparison between six similarity 

functions (all similarity functions introduced in this paper except GOW and SOK) on the 

same case study. In [2], we further evaluated the approach proposed in [3] when replacing 

SSGA with AHC and ART. Also, we conducted an experiment to investigate why 

diversifying test cases improves FDR by showing that, given our similarity function, test 

cases which detect distinct faults are dissimilar and test cases that detect a common fault 

are similar. In [7], we conducted a series of experiments investigating the properties of test 

suites with respect to similarities among fault revealing test cases and identified the ideal 
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situation for STCS. We also proposed a rank scaling technique for modifying similarity 

values to address outliers problem in STCS (i.e., a small group of very different test cases). 

7 Conclusion and Future Work 

In practice, system level testing on real hardware platforms or test networks may be a 

highly expensive task and very constrained. Therefore, an ideal automated testing approach 

should be adjustable to the time and resource constraints of the project. This is especially 

essential for large systems where automated systematic testing, such as model-based 

testing, typically results in very large test suites. In this paper, we introduced a family of 

model-based test case selection techniques, called similarity-based test case selections 

(STCS), which, given a test selection size, minimize the similarity among selected test 

cases to increase the chance of detecting more faults. We first investigated the different 

STCS parameters (namely encoding, similarity function, and minimization algorithm) and 

showed that all parameters are potentially influential on fault detection. Among 320 

identified STCS variants, we found the technique (Best_STCS) with state-trigger-guard-

based encoding, Gower-Legendre similarity function, and (1+1) Evolutionary Algorithm to 

be the most cost-effective technique on average on two industrial case studies. Using 

Best_STCS, much higher FDR is achieved for the same number of test cases compared to 

the baselines (e.g., for some test selection sizes and case studies, 40% and 110% 

improvement is achieved compared to the best coverage-based selection and random 

testing, respectively). This leads to very large savings in terms of number of test cases that 

do not need to be executed (up to 80% reduction in the number of test cases required for 

detecting the same number of faults). We also found Best_STCS more effective than other 

baseline selection techniques regardless of test selection size and failure rate. The 

scalability of different Best_STCS steps was investigated for larger test suites and test 

cases. In addition, we proposed a method, based on monitoring change in average 

similarity when test selection size increases, to help test manager in deciding about the best 

test selection size within their constraints. 

A possible future work can be combining similarity-based and coverage-based selection 

techniques by applying a multi-objective search technique [62] that minimizes similarities 

while it maximizes coverage of the selected test cases. Another extension of this work is to 

assign weights to test cases based on estimates of their execution cost and modify the 
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selection technique to minimize the total execution cost. Analysis of the search space 

properties in this field of application is also an interesting further investigation.  
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