

Similarity-Based Test Case Selection:

Toward Scalable and Practical Model-Based Testing

Hadi Hemmati

Thesis submitted for the degree of Ph.D.

Department of Informatics

Faculty of Mathematics and Natural Sciences

University of Oslo

February 2011

i

Abstract
The growing complexity and size of software systems, along with the increasing role of

software in everyday life, makes verification and validation, and testing in particular,

essential in software engineering. High fault revealing power, with minimum cost, is the

ultimate goal in software testing. Model-based testing (MBT) targets this goal by

automating test generation in a systematic way from abstract models of the software under

test. Automation reduces the test generation cost dramatically, but the total testing cost

includes the cost of test execution and evaluation as well. In practice, there are limitations

in testing budget both in terms of time and testing resources. A testing approach cannot be

scalable and practical in large industrial systems, unless it addresses all dimensions of the

testing cost. But the systematic test generation nature of MBT potentially results in large

test suites with execution costs that far exceed the testing budget. Therefore, a mechanism

for adjusting the size of the output test suite in MBT is an absolute necessity to ensure

success in industry.

This thesis proposes techniques that minimize the test suite size while preserving (to the

maximum extent) its fault detection rate. The proposed family of techniques, called

similarity-based test case selection, hypothesizes that the more diverse the test cases, the

higher the fault detection rate. The thesis initiates with a systematic review on search-based

techniques for test case generation, which is a starting point for identifying the potential

approaches for search-based test case selection being used in similarity-based test case

selection. Finding the most effective ways of defining similarity measures and selection

algorithms constitutes the core of the thesis. The best selection techniques among different

variants of the proposed similarity-based techniques are identified through rigorous

empirical analyses on two industrial case studies. The cost-effectiveness of the approach is

also compared to the existing selection techniques in the literature. Then, different

influential factors on the effectiveness of the technique are examined through controlled

experiments in order to gain insight on the analyzed problem, and to gain confidence in the

reliability of the results.

The main contribution of this thesis includes the proposal and evaluation of highly

effective similarity-based test case selection techniques, which turns out to be extremely

beneficial in two industrial contexts (up to 50% reduction in the number of test cases

required for detecting the same number of faults as to the current, best alternatives).

ii

Furthermore, the technique showed to be scalable with test suite size and also robust to

variations in the fault detection rate of the test suite.

Another contribution is a complementary study on estimating the best size for a test

suite based on similarity comparisons among test cases. From a practical standpoint, this is

a significant contribution to increase the usability of the proposed techniques, since testers

are no longer required to select an arbitrary test suite size.

In conclusion, similarity-based test case selection showed promising results on two

industrial case studies with respect to minimizing the testing cost in MBT. The proposed

technique is far more effective than existing techniques. It helps make MBT applicable on

larger systems by adjusting the output test suite according to test budget. This research has

therefore the potential to significantly impact how MBT is performed today.

iii

Acknowledgement
First and foremost I would like to thank my supervisors Lionel Briand and Andrea Arcuri.

Lionel, with his invaluable knowledge and expertise in software engineering research, not

only helped me in all steps of my PhD but also taught me how to be a good researcher. He

was an excellent supervisor, supportive boss, and at the same time a good friend. I learned

a lot from him and I owe him. Though Andrea became my supervisor only in the last

stages of my PhD, but if it was not his expertise in search-based software testing, I could

not finish my thesis by now. I learned a lot about randomized algorithms and statistics

from him. There was not any detail that I could discuss with him and he could not

constructively comment on it. I wish to thank Erik Arisholm who supervised me in the first

stages of PhD. Apart from priceless empirical software engineering knowledge that I learnt

from him, I especially enjoyed his patience during discussions.

I would like to thank my officemate for nearly four years, Rajwinder Panesar-

Walawege, for both interesting everyday academic or non-academic discussions and for

helping me adjust myself to the new culture and living style by her great multi-cultural

background. I also wish to thank a lot my other best friends in Simula, Shaukat Ali and

Aiko Fallas Yamashita. We spent a great time together at work and out. I should also thank

Razieh Behjati, Mehrdad Sabetzadeh, and Shiva Nejati from Approve group at Simula who

helped me by smart comments on different steps of my work.

Special thanks to Marius Liaaen from Tandberg AS (now part of Cisco) for his helps on

conducting studies at Tandberg. I truly appreciate the time and resources that he and others

in his team spent on providing the domain knowledge and helping me on experimenting

with their systems. I am thankful to Simula Research Laboratory and the Simula School of

Research and Innovation for accepting me as a PhD-student, and for the excellent

environment they offered for research. I thank all the people in the Approve and Prepare

groups for making such an inspiring and enjoyable environment.

Last but not least, I am grateful to my family and friends for their supports. My dear

wife, Leili, and my parents who are the most motivating and supportive family in world

deserve my special thank.

v

List of papers
The following papers are included in this thesis:

Paper 1. A Systematic Review of the Application and Empirical Investigation of Search-

based Test-Case Generation

S. Ali, L. Briand, H. Hemmati, and R. K. Panesar-Walawege

Published in the IEEE Transactions on Software Engineering (TSE), vol 36, no 6, pp.

742-762, 2010

Paper 2. An Enhanced Test Case Selection Approach for Model-Based Testing: An Industrial

Case Study

H. Hemmati, L. Briand, A. Arcuri, and S. Ali

Published in the proceedings of the 18th ACM International Symposium on Foundations

of Software Engineering (FSE), pp. 267-276, 2010

Paper 3. An Industrial Investigation of Similarity Measures for Model-Based Test Case

Selection

H. Hemmati and L. Briand

Published in the proceedings of the 21st IEEE International Symposium on Software

Reliability Engineering (ISSRE), pp. 141-150, 2010

Paper 4. Reducing the Cost of Model-Based Testing through Test Case Diversity

H. Hemmati, A. Arcuri, and L. Briand

Published in the proceedings of the 22nd IFIP International Conference on Testing

Software and Systems (ICTSS), formerly TestCom/FATES, pp. 63‐78, 2010

Paper 5. Empirical Investigation of the Effects of Test Suite Properties on Similarity-Based

Test Case Selection

H. Hemmati, A. Arcuri, and L. Briand

To appear in the proceedings of the 4th IEEE International Conference on Software

Testing, Verification and Validation (ICST), 2011

Paper 6. Achieving Scalable Model-Based Testing Through Test Case Diversity

H. Hemmati, A. Arcuri, and L. Briand

Submitted to ACM Transactions on Software Engineering and Methodology (TOSEM),

2010

The six papers are self-contained. Therefore, some information is repeated. There are also

some differences in the abbreviations used in the papers.

vi

My contributions

For all papers except the first paper, I was responsible for the idea, the study design,

implementation, data collection, analysis, and writing. My supervisors contributed in all

phases of the work. In paper 1, all authors equally contributed in the study. However, I was

the responsible person for the paper.

During my PhD study, I also contributed in two other articles which are not included in

this thesis.

A. Model Transformations as a Strategy to Automate Model-Based Testing - A Tool and

Industrial Case Studies.

S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. Briand

Technical Report 2010-01, Simula Research Laboratory

During my PhD, I contributed in developing a model-based software testing tool and

writing its technical report. The tool employs model transformation to automate test case

generation. The first three authors were responsible for the work and equally contributed

on the development of the tool and writing the report.

B. Modeling Robustness Behavior Using Aspect-Oriented Modeling to Support Robustness

Testing of Industrial Systems, Submitted to Software and Systems Modeling,

S. Ali, L. Briand, and H. Hemmati.

Submitted to Journal of Software and Systems Modeling (SOSYM), 2010.

I also have contributed in a work on modeling non-functional requirements using aspect

modeling, which is not included in this thesis. The study introduces a UML profile for

aspect state machine, a weaver tool, and a methodology for non-functional requirement

modeling using aspect state machines. I was the last contributor in this work and my

contribution is on developing the idea and modeling the case study.

vii

Contents

ABSTRACT ... i

ACKNOWLEDGEMENT ... iii

LIST OF PAPERS .. v

SUMMARY .. 1

1 Introduction ... 1

2 Background ... 3

2.1 Model-based testing ... 3
2.2 Search-based software testing .. 7

2.2.1 Formulating test objectives and encoding of chromosomes .. 8
2.2.2 Fitness (cost) function formulation .. 8
2.2.3 Initial population and selection strategies .. 8
2.2.4 Search operators .. 8
2.2.5 Elitism ... 9
2.2.6 Stopping criteria .. 9

2.3 Test case selection ... 10

3 Similarity-based Test Case Selection in Nutshell .. 12

4 Research Methodology .. 14

5 Summary of Results .. 15

5.1 Paper 1 ... 15
5.2 Paper 2 ... 16
5.3 Paper 3 ... 17
5.4 Paper 4 ... 18
5.5 Paper 5 ... 19
5.6 Paper 6 ... 20

6 Suggestions for Future Research and Extensions .. 21

7 Conclusion ... 23

References for the summary ... 25

PAPER 1: A Systematic Review of the Application and Empirical Investigation of
Search-based Test-Case Generation .. 29

1 Introduction ... 29

2 Background ... 30

2.1 Search-based software testing .. 31
2.2 Systematic reviews .. 32
2.3 Empirical studies for search-based software testing .. 33

3 Framework ... 34

3.1 Test problem specification ... 34
3.2 Metaheuristic search algorithm specification .. 35
3.3 Empirical study design .. 36

3.3.1 Objectives and experimental hypotheses ... 36
3.3.2 Target application domain ... 37
3.3.3 Subject systems (Software Under Test or SUT) specification ... 37
3.3.4 Measures of cost and effectiveness for SBST techniques .. 38
3.3.5 Measures for scalability assessment .. 40
3.3.6 Baselines for comparison ... 40

viii

3.3.7 Parameter settings .. 41
3.3.8 Accounting for random variation in SBST results ... 41
3.3.9 Data analysis .. 42
3.3.10 Discussion on validity threats ... 45

4 Research Method .. 46

4.1 Research questions ... 47
4.2 Study selection strategy .. 48

4.2.1 Source selection and search keywords ... 48
4.2.2 Study selection based on inclusion and exclusion criteria .. 50
4.2.3 Data extraction ... 52

5 Results .. 53

5.1 RQ1: What is the research space of search-based software testing? .. 53
5.2 RQ2: How are the empirical studies in search-based software testing designed

and reported? .. 53
5.2.1 RQ2.1: How well is the random variation inherent in search-based

software testing, accounted for in the design of empirical studies? 54
5.2.2 RQ2.2: What are the most common alternatives to which SBST

techniques are compared? .. 56
5.2.3 RQ2.3: What are the measures used for assessing cost and effectiveness

of search-based software testing? ... 57
5.2.4 RQ2.4: What are the main threats to the validity of empirical studies in

the domain of search-based software testing? .. 60
5.2.5 RQ2.5: What are the most frequently omitted aspects in the reporting of

empirical studies in search-based software testing? ... 61
5.2.6 Conclusion.. 62

5.3 How convincing are the reported results regarding the cost, effectiveness, and
scalability of search-based software testing techniques? .. 63

5.3.1 RQ3.1: For which metaheuristic search algorithms, test levels, and fault
types is there credible evidence for the study of cost-effectiveness? 63

5.3.2 RQ3.2: How convincing is the evidence of cost and effectiveness of
search-based software testing techniques, based on empirical studies that
report credible results? ... 64

5.3.3 RQ3.3: Is there any evidence regarding the scalability of metaheuristic
search algorithms for test case generation? .. 66

5.3.4 Conclusion.. 68

6 Threats to the Validity of This Review .. 68

6.1 Incomplete selection of publications .. 68
6.2 Inaccuracy in data extraction .. 69
6.3 Unbiased quality assessment .. 69

7 Conclusion ... 69

Acknowledgment ... 71

References ... 71

PAPER 2: An Enhanced Test Case Selection Approach for Model-Based Testing: An
Industrial Case Study ... 75

1 Introduction .. 75

2 Test Case Selection .. 77

3 Genetic Algorithms .. 79

4 Related Work ... 80

5 Test Case Selection Based on Similarities between Test Paths using Triggers and
Guards ... 81

6 Empirical Evaluation .. 84

ix

6.1 Case study description ... 85
6.2 Experiment design ... 86
6.3 Experiment results ... 88

6.3.1 Which similarity measure is more effective for UML State Machine-
based test case selection, in terms of FDR? ... 88

6.3.2 To which extent is using a GA for test case selection more cost-effective
(in terms of time spent to find a solution) compared to a Greedy search? 92

6.3.3 To which extent are similarity-based selection techniques more effective
than coverage-based and random selection techniques? .. 93

6.3.4 In the context of MBT, what is the practical benefit of test case selection,
on a representative industrial case study, when applying TbGa? .. 94

6.3.5 Discussion on validity threats .. 95

7 Conclusions and Future Work ... 96

References ... 97

PAPER 3: An Industrial Investigation of Similarity Measures for Model-Based Test
Case Selection ... 99

1 Introduction ... 99

2 Test Case Selection .. 101

2.1 Coverage-based test case selection .. 102
2.2 Similarity-based test case selection ... 102

3 Similarity Function .. 105

3.1 Set-based similarity functions .. 105
3.1.1 Counting function .. 105
3.1.2 Hamming Distance .. 105
3.1.3 Jaccard Index ... 106

3.2 Sequence-based similarity functions .. 106
3.2.1 Levenshtein .. 106
3.2.2 Global and local sequence alignments ... 106

4 Related Work ... 108

5 Empirical Study ... 109

5.1 Case study description ... 109
5.2 Experiment design ... 110
5.3 Experiment results ... 112

5.3.1 Experiment results for RQ1 ... 112
5.3.2 Experiment results for RQ2 ... 115

5.4 Discussion on validity threats .. 117

6 Conclusion and Future Work ... 119

References ... 119

PAPER 4: Reducing the Cost of Model-Based Testing through Test Case Diversity 121

1 Introduction ... 121

2 Similarity-based Test Case Selection .. 122

3 Strategies for Maximizing Diversity ... 124

3.1 Clustering-based techniques .. 124
3.2 Test case selection using Adaptive Random Testing ... 125
3.3 GA-based test case selection .. 125

4 Related Work ... 126

5 Empirical Evaluation ... 127

5.1 Case study description ... 127
5.2 Experiment design ... 128

x

5.3 Experiment results .. 131
5.3.1 Why does diversifying test cases improve fault detection? .. 131
5.3.2 What is the most cost-effective way to diversify a set of test cases? 133
5.3.3 How cost-effective is diversifying test cases compared to state of practice

techniques for test case selection? .. 136

6 Discussion on Validity Threats .. 137

7 Conclusion and Future Work ... 138

References ... 139

PAPER 5: Empirical Investigation of the Effects of Test Suite Properties on Similarity-
Based Test Case Selection ... 141

1 Introduction .. 141

2 Similarity-based Test Case Selection ... 143

2.1 Encoding and similarity functions .. 143
2.2 Adaptive Random Testing .. 145
2.3 Genetic Algorithms .. 145

3 Impact of Outliers and Rank Scaling Solution ... 146

4 Empirical Study .. 148

4.1 Test suites description .. 148
4.2 Research questions ... 149
4.3 General settings of the experiments.. 149
4.4 Design and results of Exp1 ... 150
4.5 Design and results of Exp2 ... 154
4.6 Discussion on threats to validity of the results ... 158

5 Related Work ... 159

6 Conclusion and Future Work ... 160

Acknowledgment ... 161

References ... 161

PAPER 6: Achieving Scalable Model-Based Testing Through Test Case Diversity 163

1 Introduction .. 164

2 Test Suite Scalability in Model-based Testing ... 166

3 Model-based Test Case Selection .. 167

4 Similarity-based Test Case Selection ... 169

4.1 Encoding of abstract test cases ... 169
4.2 Similarity matrix generation ... 170

4.2.1 Set-based similarity functions .. 172
4.2.2 Sequence-based similarity functions .. 173

4.3 Minimizing similarities .. 176
4.3.1 Greedy-based minimization ... 176
4.3.2 Clustering-based minimization ... 177
4.3.3 Adaptive Random Testing .. 179
4.3.4 Search-based minimization techniques .. 179

5 Empirical Study .. 184

5.1 Test suites description .. 184
5.1.1 Case study A .. 184
5.1.2 Case study B ... 185

5.2 Research questions ... 187
5.3 Experiment design and results .. 189

5.3.1 Experiment 1: answering RQ1 and RQ2 .. 189
5.3.2 Experiment 2: answering RQ3 ... 198

xi

5.3.3 Experiment 3: answering RQ4 ... 203
5.3.4 Experiment 4: answering RQ5 ... 205

5.4 Discussion on scalability of STCS ... 208
5.5 Discussion on validity threats .. 210

6 Related Works ... 212

7 Conclusion and Future Work ... 213

Acknowledgment .. 215

References ... 215

1

Summary

1 Introduction

Software is being incorporated into an ever-increasing number of systems including

embedded and safety critical systems, and hence it is becoming increasingly important to

thoroughly test these systems. One challenge in software testing is the effort involved in

creating a test suite that will systematically test the system and reveal latent faults in an

effective manner [1]. In recent years, systematically deriving test cases from a behavioral

model of a system, Model-Based Testing (MBT), has attracted an increasingly wide

interest from industry and academia. This interest can be seen from the many academic

studies [2-8] and industrial projects [9-12] on MBT. This suggests that there is an

increasing awareness of the benefits offered by MBT compared to other testing

methodologies. However to make MBT a practical solution, it should be scalable to large

industrial systems and assume realistic test budgets.

One of the important problems regarding scalability is the relationship between the cost

of the test technique and the complexity of realistic systems. The MBT cost can be divided

into two categories: (1) test case generation and (2) test case execution. Test case

generation cost is referred to the modeling cost plus the time and resources required by an

MBT tool for generating executable test cases from the model. On the other hand, the test

case execution cost is the time and resources required for execution and evaluation of the

generated test cases. This thesis concentrates only on the latter category since test suite

execution is an important factor for the applicability of any test case generation technique,

though it is far less investigated in the literature than test case generation cost [13-15].

2

Although test case execution cost is directly related to the test suite size (the number of

generated test cases which are going to be executed), MBT does not provide any special

support for managing the size of its output test suites. However, such support seems

necessary because test suites generated by MBT approaches tend to be very large and they

get exponentially larger with increasing model size (due to large software under test, or

SUT). Furthermore, the matter gets even worse when testing is semi-automated (e.g.,

automatically generating oracles may be very difficult or impossible, such as in a

subjective quality assessment of a video stream) and human effort is necessary for the

evaluation of the test results. In addition, what usually happens at system level testing of

industrial SUTs is that test cases are executed on real hardware platform and network. This

has a huge effect on the total testing cost because (a) test case execution time is much

longer than for desktop software, and (b) test case execution often requires physical testing

resources (e.g., specific assigned machines and restricted-access network) whose

availability is limited.

During this project, applying MBT on two SUTs of different sizes and from different

application domains showed that the cost of executing test suites generated using MBT

(given standard coverage criteria) can be by far higher than the resources (i.e., the so called

testing budget) available for testing the SUT. In some cases, it is not even feasible to run

all test cases by the project deadlines. Therefore, lowering the cost of test suite execution,

both in terms of time and resource, is a crucial success factor for MBT.

Solving this problem, in this thesis, a novel approach for test case selection in MBT is

investigated. The approach, referred to as similarity-based test case selection (STCS),

selects the least similar test cases from the test suite for a given test selection size. The

underling idea is that diversifying selected test cases will help to detect more distinct

faults. In addition, the thesis explores how to define similarity measures and how to

minimize the overall similarity among selected test cases. STCS is also empirically

evaluated on two industrial cases studies coming from two different companies located in

Norway. The results show that it reduces the size of the test suite while nearly preserving

the original test suite’s fault detection rate (FDR). This results in test suites with almost the

same quality (in terms of FDR) but much less overall execution cost (because less test

cases need to be executed), which consequently results in a more scalable MBT approach

in practice.

The thesis is structured in two parts:

3

Summary: This part of the thesis consists of seven sections. After this Introduction, in

Section 2, a short background (required for understanding the included papers) on model-

based and search-based testing, plus test case selection techniques, is provided. In Section

3, the core idea of the thesis, STCS, is introduced. Section 4 explains the research

methodology and Section 5 provides an overview of the included papers. In Section 6,

suggestions for future work are presented. Finally, Section 7 concludes the thesis.

Papers: The rest of the thesis consists of six published, accepted for publication, and

submitted papers in international journals and peer-reviewed conferences.

2 Background

In this section, background information is provided as a context of the papers that are

included in the thesis. Section 2.1 introduces MBT, the approach that is used in this thesis

for generating test cases from UML state machines, and the MBT tool that has been

developed during this project. Section 2.2 presents a brief introduction to search-based

software testing (SBST), which is used for test case selection in STCS. A more

comprehensive review of SBST techniques is reported in Paper1. Finally, in Section 2.3,

an overview of different test case selection techniques is presented.

2.1 Model-based testing

Model-based testing (MBT) is defined as “the generation of executable test cases from

behavior model of the system under test” [2]. A test case specifies the present state of the

SUT and its environment, the test inputs and conditions, and oracle information [16]. An

example of a test input is a sequence of functions or method calls and their input

parameters. Oracle information identifies properties that should be true after the execution

of the test case. Several strategies can be considered to implement efficient oracles [16].

Since many systems, such as embedded real-time systems [17], telecommunication

systems [18, 19], and multimedia systems [20], exhibit state-driven behavior, traditional

Finite State Machine and its extensions are commonly used to model such behavior. Finite

State Machine is a graph-based representation of the SUT’s behavior, where a finite

number of graph nodes represent the states of the system and a finite number of graph arcs

represent transitions of the system from one state to another [2]. Traditional Finite State

Machines have some limitations. For example, they cannot model software systems with

concurrent behavior. Therefore, the Unified Modeling Language (UML) standard

introduced concurrency in UML state machines by defining composite states with two or

4

more regions [21]. When modeling complex software systems with Finite State Machines,

the number of states and transitions can grow exponentially with system size. This can be

handled by UML state machine features for modeling sub-machines. Many commercial

and academic tools (e.g., [20, 22]) support the modeling of UML state machines.

Several well-known MBT tools have been developed in recent years, such as TDE/UML

(Siemens) [11], SpecExplorer (Microsoft) [12], IBM Rational Functional Tester [10], and

Qtronic [23]. In this thesis, an MBT tool called TRansformation-based tool for Uml-baSed

Testing (TRUST) is used, which has been developed (by the author and some other

students) as a part of the Automated Model-based Testing of State-driven Systems (AMOS)

project [24]. The main motivation for developing TRUST was having an easily extensible

tool on which to base our research. Basically, TRUST is used in this thesis as an

infrastructure that the proposed similarity-based test case selector component is deployed

on. However, the test case selector component can be potentially integrated with any UML

state machine-based MBT tool. TRUST accepts UML state machines containing

concurrency and hierarchy as the input model and generates executable test cases along

with oracles. It is integrated with IBM Rationale Software Architect (RSA) [22] as

modeling tool and applies a series of model-to-model (in Kermeta [25]) and model-to-text

(in MOFScript [26]) transformation rules on the input model to generate the final test

scripts. Figure 1 illustrates this transformation-based approach for MBT.

The general process of MBT that is used in this thesis starts with modeling the SUT and

making it ready for test generation, e.g., by enriching a UML state machine with state

invariants, which are used for test oracle generation. TRUST, specifically dedicates one

step of model-transformation for preparing test ready models. Since in this project, the

input models (UML 2.0 state machines) had hierarchy and concurrency, they were first

flattened, to be able to apply classic, graph-based coverage criteria [27]. The flattening is

automatically done by TRUST. The next step is deriving abstract test cases (ATCs) from

the test ready model (flattened state machines in TRUST) according to a test strategy,

which is typically defined based on a test model and coverage criteria (e.g., all states) to

guide its traversal [1]. ATCs, like concrete test cases, contain the present state of the SUT

and its environment, the test inputs and conditions, and the expected results, but expressed

at a higher level of abstraction. Finally, executable test cases are generated by adding all

platform dependent information to ATCs and mapping abstract information (e.g., triggers

and state variables) of the ATC to the actual executable information (e.g. method names

and system variables) in the test script.

5

Figure 1 Model transformation-based approach for test case generation

Each component of TRUST implements one set of transformation rules (e.g.,

transformation from the test tree to the test cases is done by testScriptGenerator in Figure

2). Each component has well-defined interfaces with other components. More specifically,

each interface provides output to, or requires inputs from, other components by means of

intermediate models. Separation of concerns among components has made each

transformation responsible for providing one artifact such as the test model, test data, and

test scripts. Therefore, adding a new feature (for example, outputting test scripts in a new

language) can be achieved by writing a new set of transformation rules in the component

that provides the corresponding artifact, without affecting the other components. Model

transformation languages provide the developer direct support for navigating, creating, and

manipulating a model, based on its metamodel. Generally, the transformation rules are

relatively compact and easy to read, write, and change.

Figure 2 depicts the architecture of TRUST, which consists of five components. The

first component, stateMachineFlattener, takes the UML 2.0 state machine metamodel and

one instance of it, which may contain hierarchy and concurrency, as inputs. Using a set of

model-to-model Kermeta transformations, it provides the flattenedStateMachine only

containing simple states and transitions. The stateMachine2TransitionTreeTransformer

component takes metamodel of transition tree and a coverage criterion and generates a

transition tree conforming to the metamodel by applying the criterion on the

flattenedStateMachine using another set of Kermeta transformations. Finally, the

Kermeta transformation
rules

UML 2.0 metamodel

UML 2.0 hierarchical
state machines

UML 2.0 flattened
state machines

UML 2.0 metamodel

Test model metamodel
Transition tree

Test scripts

MOF script rules

Kermeta transformation
rules

Uses:

Instance

6

testScript, which is a test suite of executable test cases (currently supporting Python and

C++), is generated by the testScriptGenerator component by traversing the tree in

MOFScript according to the given coverage criterion. The test paths, which are generated

by traversing the tree, are concretized using the input data for the parameters of the

transitions operations, generated by the testDataGenerator component. Input data are

randomly generated based on the parameters type, unless there is a guard on the transition

to be covered. In such cases, the constraint is solved by a search-based OCL solver

implemented in the testDataGenerator (developed by Ali et al [28]). EyeOCL [29] is the

embedded OCL evaluator in TRUST which is used for search-based data generation and

oracle evaluation at run-time.

In TRUST, oracles are automatically generated as part of the testScript. Executing test

cases, OCL expressions in the state invariants associated with the states must be evaluated.

EyeOCL is called during the execution of a test case to evaluate the state invariant. The

object model of the SUT at runtime, representing the current state of the system along with

Figure 2 Architecture diagram of TRUST

7

the constraint to be evaluated is passed to the OCL evaluator, which in turn returns the

Boolean result of the evaluation. Querying the current state of the system depends on the

implementation of the SUT and the test script language’s facility to access the state of the

SUT. More detail on the implementation of TRUST can be found in [30].

2.2 Search-based software testing

The application of search and optimization techniques in software engineering, i.e., search

based software engineering (SBSE), is a research area that has attracted a lot of attention

from academia in the last few years [31]. In fact, search techniques have been very

effective in solving many types of engineering problems, and they can be applied in

software engineering as well. Many reviews and surveys recently published in this domain

[1, 31-33] show many successful results. Based on [34], 763 articles were published from

1976 to November 30th 2010 on SBSE and 52% of the papers (Figure 3) are concerned

with the application of optimization techniques to software testing, i.e., search based

software testing (SBST). Though SBST targets various problems in verification, and

validation, most of the SBST activities till now are focused on test case generation [1, 33].

The main idea of search-based test case generation is that “the set of test cases forms a

search space and the test adequacy criterion is formulated as a fitness function for the

search technique” [33].

 Search techniques are general strategies that need to be adapted to the problem at

hand. In the rest of this section, a typical SBST process is explained with an example of

Figure 3 Spread of 763 SBSE papers from 1976 to Nov 30th 2010 based on their

application areas activities [34]

8

test case generation using Genetic Algorithm (GA) [35], which is the most used search

technique in SBST [1]. Figure 4 depicts the process.

2.2.1 Formulating test objectives and encoding of chromosomes

Representation of a testing problem as a search problem includes the definition of a

mapping from the solution space into the search space. This in GA involves defining an

encoding for the genes and the chromosomes. The genes are a constituent part of

chromosomes. The chromosome encoding is dependent on the kind of problem being

addressed and for test case generation it can be, for example, the data for a specific test

case.

2.2.2 Fitness (cost) function formulation

Fitness functions are one of the main parts of a search algorithm because they are

responsible for guiding it in the search for (near-)optimal solutions. A fitness function is

used to evaluate how “good” a candidate solution is. GAs tend to select and reproduce

“fitter” solutions, and so discard solutions that are not particularly fit.

2.2.3 Initial population and selection strategies

GA settings can have a huge impact on the efficiency of a GA. The first two choices are on

the strategy for making the initial population (e.g. random or a specific strategy [35, 36])

and selecting parents for recombination (e.g. random pairing [36], roulette wheel [37],

tournament selection [37], rank selection [38]). The following items explain other

operators and settings.

2.2.4 Search operators

Search operators (or recombination operators) are the means by which a search algorithm

explores the search space. Though there are guidelines for choosing the operators, but there

is not a single best solution for all problems (No Free Lunch Theorem [39]). Usually these

Figure 4 Test case generation using Genetic Algorithm

9

operators require tuning to adjust their parameters with respect to a specific problem. The

choice of the operators and their tuning make the exploration of the search space in balance

with the exploitation of the solution towards the target. Sometimes, based on the encoding

of the individuals and the problem, the operators also have to be chosen carefully so that

invalid chromosomes are impossible to generate or a rare occurrence [40]. The most

commonly used search operators are crossover (for exploration) and mutation (for

exploitation) operators. Mutation operators (e.g., bit-flip operator [40]) randomly change

genes in chromosomes. Crossover allows individuals (chromosomes) to exchange

information (genes). Different types of crossover operators (e.g., single point and two-

point crossover operators [41]) are defined based on the number, the locus, and the

probability (i.e., rate) of choosing the chromosome for crossover.

After applying operators such as crossover and mutation, the next generation of

chromosomes is generated by replacing some of the parents with the generated offspring.

Two points should be considered while defining a replacement strategy (e.g., steady-state

[41]): How many individuals are retained from the previous population (i.e., not replaced

by offspring) and what is the selection strategy for deciding which individuals should be

retained.

2.2.5 Elitism

Elitism is a mechanism to ensure that the traits of the fittest individuals are transferred to

the next generation. This is achieved by selecting some of the fittest individuals and

keeping them as part of the next generation. Note that, elitism is different than a selection

strategy since without elitism even the fittest chromosome may be replaced by some

probabilities.

2.2.6 Stopping criteria

Selecting stopping criteria for GAs is one of the challenging issues. In practice, if the

search target (optimal solution) is known, then one stopping criterion is “stopping after

finding the solution”. However, in many problems, the optimum solution is unknown. In

addition, the searching resource is limited. Therefore, a maximum searching time is usually

set for stopping the search. When comparing different algorithms, other stopping criteria

such as “a maximum number of generations” and “stopping when there is no improvement

in fitness values” are more preferred, since they help providing more fair and valid

comparisons.

10

In Paper 1, the systematic review on search-based test case generation with a focus on

its application and empirical investigation is reported. Since the body of knowledge and

empirical results are limited regarding search-based test case selection, this review helped

us identify candidate STCS techniques based on a careful analysis of results from search-

based test case generation.

2.3 Test case selection

There are two main solutions to overcome the problem of large test suites in MBT. The

first approach is using a less demanding coverage criterion to generate fewer test cases. For

example, using all-transitions [16] instead of all-transitions pairs [16] can significantly

decrease the number of generated test cases. However, this is often not a practical solution

as it is difficult to control the number of test cases that way and one cannot ensure that the

number of test cases will be below a required threshold [42]. The second solution is to

execute only a portion of the test suite. There are three types of techniques introduced in

the literature in this regard [43]:

 Test suite minimization that tries to minimize the test suite by removing redundant

test cases with respect to a criterion (e.g., code coverage).

 Test case selection that, given a test selection size, tries to select a subset of the

entire test suite that maximizes its FDR.

 Prioritization techniques that do not remove any test case but order their execution.

By this definition, the context of the problem falls into the second category (test case

selection). However, most of the ideas used in minimization and prioritization can also be

applied in selection. Therefore, this thesis focuses on the test case selection problem, but

all applicable ideas including also minimization and prioritization are reviewed.

All the above three categories are mostly studied in the context of regression testing,

where the goal is to find an optimal subset of the original test suite that guarantees the

execution of fault revealing test cases [43]. Most of the regression-based minimization,

selection, and prioritization techniques are based on identifying what parts of the system

are affected by changes and use information from previous execution of the test cases [43].

In the context of this thesis (i.e., reducing MBT execution cost), there is not any execution

information available and, therefore, most regression-based selection techniques cannot be

applied.

11

From another point of view, test case selection techniques use either code-level (e.g.,

code-based dependency analysis [44] and statement coverage [45-47]) or model-level

information [48-50]. However, some of the code-based selection heuristics can also be

adapted to MBT, usually by replacing the code-level inputs to analogous model-level

information. For example, additional statement coverage [47] can be converted easily to

additional transition coverage for state machine-based testing [50].

Regardless of the level of abstraction (code or model based) and the purpose of

selection (regression testing or general minimization of the test suite), the existing

techniques (minimization, selection, and prioritization) can be categorized into three main

classes:

1) Random [51] or semi-random [16] selection and prioritization, where there is no

guidance to select/prioritize test cases. Usually it is used as a baseline of

comparison, since it is simple approach that can be applied on any test suite, no

matter how it has been generated and what information is available.

2) Coverage-based techniques, where we hypothesize that “the test cases which have

more coverage (such as code or model based coverage) are more likely to detect

faults” [43]. Maximizing coverage has been a common practice over the years in

minimization, selection, and prioritization [43, 47, 52]. In MBT, coverage is

defined at the model level, which can be extracted from ATCs without execution.

For example, transition coverage in a state machine [50] can be determined if

traceability has been preserved between an ATC and its source state machine. Most

coverage-based techniques are re-expressed into optimization problems where the

goal is to select the best subset/permutation of test cases to achieve maximum

coverage with minimum cost [43].

For example, a technique presented in [47] uses a Greedy search to select, at every

step, the test case that covers the most uncovered statements (additional coverage

technique). Similarly, in [53-56] a GA is used to achieve maximum coverage. A

more complete survey of coverage-based minimization, selection, and prioritization

techniques can be found in [33] and [55].

3) Similarity-based techniques, where we hypothesize that “the more diverse the test

cases the higher their fault revealing capacity” [52]. This technique is a relatively

recent category [48, 57] of selection/prioritization techniques which can be applied

in both code and model-based testing. A similarity-based technique maximizes

12

diversity among test cases with respect to a similarity measure, which requires

assigning a similarity value to each pair of test cases and minimizing the average

pair-wise similarities between the selected test cases. The next section summarizes

the approach of this thesis to STCS as one contribution of the thesis.

3 Similarity-based Test Case Selection in Nutshell

The main contribution of this thesis is to address the problem of scalability in test suite

execution in MBT. This thesis proposes and investigates a model-based test case selection

technique that makes MBT more practical by allowing testers to adjust the size of output

test suites based on time and resource constraints, while preserving the FDR of the original

test suite to the maximum extent. The technique, similarity-based test case selection

(STCS), is based on selecting the most diverse ATCs generated by applying a coverage

criterion on a test model. In other words, the choice of the final concrete test cases to

execute is optimized with respect to their pair-wise similarity, given an affordable testing

budget. The underlying assumption here is the existence of a correlation between the

similarity of test cases (measured by similarity of corresponding ATCs) and their fault

detection, which is also studied in the thesis (Paper 4 and Paper 5). An STCS technique is

composed of three phases:

 Encoding of ATCs: In this phase, the ATCs are encoded using a sequence of model

elements (e.g., states and/or transitions). The choice of elements determines the

expected level of precision of the encoding. For example, an ATC represented by a

sequence of triggers and guards is encoded at a more precise level than the ATC

represented by a sequence of transitions. Recall that ATCs, like concrete test cases,

contain information about test input sequences and test oracles. For example, states

invariants in ATCs derived from UML state machine can be used to derive test

oracles.

 Similarity matrix generation: In this phase, all pair-wise ATC similarities are

calculated and saved into a similarity matrix. The similarity between two ATCs is

defined based on a similarity function. Eight similarity functions (e.g. Hamming

distance [58], Jaccard Index [59], Gower-Legendre [59], Levenshtein [58], and

Smith-Waterman [60]) were implemented and are available to use. In addition, the

13

effectiveness of different similarity functions has been studied and reported in

Paper 3 and Paper 6.

 Minimizing similarities: The last phase of STCS is minimizing the sum of all ATC

pair-wise similarities in the selected subset. There are many applicable alternatives,

entailing different cost and effectiveness, that were implemented such as Greedy

search [61], Agglomerative Hierarchical Clustering [59], Adaptive Random Search

[62], and GAs, etc (Paper 5 and Paper 6).

Since there are many possible techniques applicable for each phase, STCS can be seen

as a family of selection techniques. Therefore, an STCS variant is made by defining a

specific combination of techniques for the three phases. This family of selection techniques

have been implemented and integrated with TRUST. The similarity-based test case selector

sub-system of TRUST consists of three components corresponding to the three phases of

STCS (Figure 5). The Encoder component takes the test model (test tree), its metamodel

(test tree metamodel), the coverage criterion, and the encoding type as inputs and applies

the coverage criterion to the test tree and generates the ATCs corresponding to the

encoding type. The ATCs are given to the SimilarityMatrixGenerator component which

Figure 5 Architecture diagram for the test case selector component in TRUST

14

also takes the similarity function as input. Using the function, a similarity matrix is

generated for the ATCs and is given to the Optimizer component. Applying a minimization

algorithm for a selected size (test selection size), where both the algorithm and size are

specified as inputs of this component, the selected ATCs are identified and the

corresponding concrete test cases, taken from the test suite, are provided as output.

4 Research Methodology

This thesis relies on the combination of a systematic review, industrial case studies, and

simulation-based controlled experiments, which were applied at different stages of the

thesis.

Systematic reviews are a means of synthesizing existing research results, in a systematic

and unbiased way, regarding a specific research question [63]. They are usually performed

to summarize the existing evidence for a particular topic and aid in the identification of

gaps in the current research, and thus can form the basis of new research activity [1]. Since

a main portion of this study is on the use of search-based techniques on testing

(specifically on test case selection), a comprehensive systematic review of the current

literature was conducted to collect, classify, and assess existing SBST empirical studies in

order to assess the current body of evidence regarding the cost and effectiveness of SBST.

Test case selection is not the focus of this review, since there were not enough publications

on the use of search techniques for test case selection at the time the systematic review was

initiated. Therefore, the focus of the review is on test case generation, since it is the most

studied and well-established sub-domain in SBST [31]. Analysis of

successful/unsuccessful search techniques in this sub-domain helped us to design better

STCSs. In addition, existing surveys and reviews [33, 43] were studied to cover existing

works related to test case selection.

Industrial case studies are one of the main means of investigation in this thesis. A case

study is “an empirical investigation of a phenomenon in a real-life context, particularly

suited when the phenomenon and the context are difficult to separate” [64]. Case studies

are necessary for the industrial evaluation of software engineering methods and tools as

they provide results obtained in realistic conditions and address scaling problems [65]. In

this study, since the cost-effectiveness, scalability, and practicality of the proposed

techniques in industry were going to be investigated, the phenomenon under study (STCS)

15

could not be separated from the context (real faults, realistic models), as the context had a

direct impact on the results.

A controlled experiment was also conducted using simulation in Paper 5 to investigate

some hypotheses on the effect of different test suite properties on the effectiveness of the

selection techniques. Controlled experiments allow us to determine in precise terms how

the variables are related and whether cause-effect relationship exists between them. The

choice of simulation was due to the fact that conducting industrial case studies is expensive

and it was therefore not practical for us to find real software systems satisfying the various

combinations of conditions under investigation.

In summary, the thesis started with a systematic review of related works (using search

techniques for testing) in Paper 1. Then STCS was introduced and implemented. The next

step was conducting case studies on two industrial software systems from two different

domains (Papers 2 to 4 and Paper 6). The main research goals were finding whether the

proposed technique performed better than other existing selection techniques and if so,

how much can be gained in practice in terms of time and other testing resources. In

addition, different test suite properties were analyzed using a simulation study in order to

analyze how the proposed STCS technique performs under various conditions (Paper 5).

5 Summary of Results

In this section, the included papers are summarized and the key results are presented.

5.1 Paper 1

“A Systematic Review of the Application and Empirical Investigation of Search-based

Test-Case Generation”, S. Ali, L. Briand, H. Hemmati, and R. K. Panesar-Walawege, in

the IEEE Transactions on Software Engineering (TSE), vol 36, no 6, pp. 742-762, 2010.

Through the systematic review we answered the following research questions:

RQ1: What is the research space of search-based software testing?

RQ2: How are the empirical studies in search-based software testing designed and

reported?

RQ3: How convincing are the reported results regarding the cost, effectiveness, and

scalability of search-based software testing techniques?

Among 450 papers published by the end of 2007 in SBST, 68 papers were included as

relevant for the review. The results showed that in 75% of the papers, SBST techniques

16

have been applied on unit testing. Most papers (78%) focus on structural coverage and the

most commonly used algorithm is the GAs and their extensions (73%).

We found out that there is a general lack of rigor in the statistical analysis and reporting

of results in most empirical studies reported in the included papers (77% of the studies lack

accounting for random variation of the search algorithms or they report incomplete

descriptive statistics without any statistical test). Furthermore, most of the papers did not

demonstrate the benefits of SBST by comparing it with simpler techniques such as random

search. So we concluded that most empirical studies in the context of test case generation

using SBST techniques are still not properly conducted and reported for the reader to be

able to draw reliable conclusions.

The review also reports that there is a limited body of credible evidence that

demonstrates the usefulness of SBST techniques for test case generation. However, the

evidence consistently shows that GAs outperform random search in terms for structural

coverage. Since the evidence was based on only a few papers and could not be easily

generalized, we concluded that more empirical studies must be conducted in the area of

SBST, to gain a minimum level of confidence about whether it is a promising option.

To help researchers conduct and report better empirical studies in this domain the paper

also provided guidelines in the form of a framework on how to conduct empirical studies

in SBST.

5.2 Paper 2

“An Enhanced Test Case Selection Approach for Model-Based Testing: An Industrial Case

Study”, H. Hemmati, L. Briand, A. Arcuri, and S. Ali, in the proceedings of the 18th ACM

International Symposium on Foundations of Software Engineering (FSE), pp. 267-276,

2010.

Our approach to STCS is first introduced by this paper, where three similarity measures

and two minimization algorithms are investigated. However, the concept of similarity

measure had not yet been divided into encoding and similarity function. The measures

were using the same similarity function but with three different encodings. The similarity

function used in this paper was adapted from the only existing work on applying STCS in

MBT [48] and the minimization algorithms were Greedy search and GA. We had the

following research questions in this paper:

17

RQ1. Which similarity measure is more effective for UML state machine-based test case

selection, in terms of FDR?

RQ2. To which extent is using a GA for test case selection more cost-effective (in terms of

time spent to find a solution) compared to a Greedy search?

RQ3. To which extent are similarity-based selection techniques more effective than

coverage-based and random selection techniques?

RQ4. In the context of MBT, what is the practical benefit of STCS, on a representative

industrial case study?

The paper reports that the measure that encodes test cases by their triggers and guards

and uses a simple counting function (defined in the paper) has the best performance among

all variants of STCS investigated in the paper. The performance is measured by the FDR of

the selected test cases for a given test selection size. We also found GA by far more

effective than Greedy search. Comparing random and traditional coverage-based selection

techniques with STCS, we showed great improvement in terms of FDR. We also reported

the practical benefit of our approach by showing the savings that one could get in terms of

number of test cases to execute for detecting a certain percentage of faults. Results from

our industrial case study showed that the best STCS technique can select only 27% of the

test cases generated by MBT while retaining a 100% FDR.

5.3 Paper 3

“An Industrial Investigation of Similarity Measures for Model-Based Test Case Selection”,

H. Hemmati and L. Briand, in the proceedings of the 21st IEEE International Symposium

on Software Reliability Engineering (ISSRE), pp. 141-150, 2010.

In this paper, we differentiated between encoding and similarity function and focused on

the effect of similarity function on the performance of STCS. We introduced six similarity

functions (three set-based and three sequence-based) and used trigger-guard and GA as

encoding and minimization algorithm respectively, based on the results from the previous

work (Paper 2). The research questions of this paper were:

RQ1. What is the most cost-effective similarity function for STCS?

RQ2. In practice, how much test case execution resources do we save by using the best

STCS compared to random selection and coverage-based selections?

18

The results based on an industrial case study (on the same SUT as Paper 2) showed that

Jaccard Index among set-based functions and Needleman-Wunsch [60] algorithm among

sequence-based similarity functions are comparable and the most effective functions in

terms of FDR of the selected test cases. However Jaccard was a priori more interesting

since it was simpler to use (no tuning needed) and faster.

We later compared this improved STCS version (using trigger-guard encoding, Jaccard

similarity function, and GA as minimization algorithm) with our baselines (random and

coverage-based selection) and showed up to 77% reduction in cost (number of test cases

required for achieving 90% FDR in the selected test suite).

5.4 Paper 4

“Reducing the Cost of Model-Based Testing through Test Case Diversity”, H. Hemmati,

A. Arcuri, and L. Briand, in the proceedings of the 22nd IFIP International Conference on

Testing Software and Systems (ICTSS), formerly TestCom/FATES, pp. 63‐78, 2010.

After the promising results obtained in the previous studies (Paper 2 and Paper 3), the next

step was to look deeper into the basic ideas and assumptions underlying STCS. Therefore,

in this paper, we first investigated the fundamental idea of diversifying test cases.

Furthermore, we went beyond search algorithms to find the best technique for

minimization. The two main research questions of this paper were:

RQ1. Why does diversifying test cases improve fault detection?

RQ2. What is the most cost-effective way to diversify (given our similarity measure) a set

of test cases?

To answer RQ1, we needed to investigate whether test cases are distinctly clustered

with respect to different faults or not. If they are, then we can conclude that diversifying

test cases with respect to their pair-wise similarity increases chances of finding more faults.

We have carried out an exhaustive analysis based on our industrial case study and the

results showed that test cases which detect distinct faults are dissimilar and test cases that

detect a common fault are similar with respect to our similarity measure. This finding

suggests that rewarding diversity leads to finding more faults.

In the second half of the paper, we focused on the last step of STCS techniques, the

minimization algorithm. In the previous papers (Paper 2 and 3) we used GA and Greedy

algorithms, which are both search techniques. In this paper, we compared the best search

technique among those two, which was GA, with two different approaches for our

19

minimization problem. The first technique was clustering and the rationale for choosing it

was that test cases detecting distinct faults were distinctly clustered (based on RQ1). The

second alternative was Adaptive Random Search, which is a common approach in test case

generation for diversifying input data (Adaptive Random Testing). The results of the

industrial case study (the same SUT as Paper 2 and Paper 3) showed that the GA is more

effective and less expensive than both clustering and Adaptive Random Testing.

5.5 Paper 5

“Empirical Investigation of the Effects of Test Suite Properties on Similarity-Based Test

Case Selection”, H. Hemmati, A. Arcuri, and L. Briand, to appear in the proceedings of the

4th IEEE International Conference on Software Testing, Verification and Validation

(ICST), 2011.

The three previous papers (Paper 2 to Paper 4), proposed STCS techniques, investigated

the best approaches for encoding, similarity function, and minimization algorithm, by

conducting case studies on one industrial software system, and compared the proposed

technique with existing techniques. In addition, Paper 4 studied the fundamental idea and

assumption behind the approach by an exhaustive analysis of the impact of test cases pair-

wise similarities on the test suite FDR. In Paper 5, we conducted a controlled experiment

based on two case studies (one new) to find out in which situations, with respect to test

suite properties, STCS performs best. Therefore, the first research question of the paper

was:

RQ1. Under which conditions, with respect to the similarity of fault revealing test cases in

a test suite, STCS performs best?

The results showed that the most ideal situation for an STCS technique is when, in a test

suite, (1) test cases that detect a common fault are similar and (2) test cases which detect

distinct faults are dissimilar. More importantly, our empirical study shows that property (2)

is much more important than property (1). This result will help researchers devise

improved similarity functions in the future, which in turn will result into more effective

selection techniques.

The paper also investigated (in RQ2 and RQ3) the problem of outliers (a small clustered

set of test cases that is far away from all the others) in a test suite—which are not unlikely

to happen in MBT—that could compromise the performance of STCS techniques. Results

confirmed the significant impact of outliers and an approach, based on using rank scaling

20

measurement instead of raw similarity values, was proposed and was shown to partially

address the problem. More investigation in this area is required.

5.6 Paper 6

“Achieving Scalable Model-Based Testing Through Test Case Diversity”, H. Hemmati, A.

Arcuri, and L. Briand, submitted to ACM Transactions on Software Engineering and

Methodology (TOSEM), 2010.

Paper 6 is an extension of Papers 2 to 4 according to two dimensions:

A. New research questions are studied and reported.

B. New findings are presented for previous research questions, by conducting

larger experiments.

(A) Three new research questions:

We investigated five research questions (RQ1 to RQ5) in this paper among which only

RQ2 and RQ3 were similar to what was studied in Papers 2 to 4. The investigation of

“How influential are STCS parameters on its effectiveness?” (RQ1), “What is the effect of

the failure rate on the effectiveness of STCS?” (RQ4), and “How can one estimate the

minimum number of test cases required for achieving (near) maximum FDR?” (RQ5) were

completely new.

(B) Larger experiments:

This paper extends previous experiments by investigating a much larger number of STCS

variants and an additional industrial case study. Regarding RQ2 (“What is the most cost-

effective STCS variant?”), in Paper 2 we focused on the encodings and compared four

STCS variants. In Paper 3, we focused on similarity functions and investigated six STCS

variants. Minimization algorithms were the focus in Paper 5, where three STCS variants

were compared. In total, in Papers 2 to 4, we introduced and evaluated 11 STCS variants

on one case study.

In this paper, we introduced one new encoding, two new similarity functions, and six

new minimization algorithms. This time we applied new analyses (including rank analysis

and effect size comparisons) and investigated all possible combinations of the algorithms,

which resulted in 4*8*10=320 STCS variants. We employed another extra case study

compared to Papers 2 to 4 and evaluated the 320 variants on both case studies and

identified the best technique on average on the two industrial case studies.

21

The results for RQ1 showed that all STCS parameters (encodings, similarity function,

and minimization algorithm) are potentially influential on its FDR. The most cost-effective

technique, on average across the two industrial case studies, is identified in RQ2 as the

selection technique with state-trigger-guard-based encoding, Gower-Legendre similarity

function, and (1+1) Evolutionary Algorithm [66].

 Regarding RQ3 (“What is the practical benefit of using STCS?”) we evaluated the best

STCS technique (identified in RQ2) by comparing it with nine baselines on both case

studies. In addition, more statistical analyses such as effect size analysis were applied. The

results of the comparisons showed that nearly always (with a few exceptions that are

discussed in the paper), the best STCS technique results in equal or higher FDR with fewer

test cases. In addition, in most cases the FDR improvement is very significant (e.g., for

some test selection sizes and case studies, 40% and 110% improvements are achieved

when compared to the best coverage-based and random testing techniques, respectively).

To investigate RQ4 we conducted a controlled experiment and simulated test suites with

different failure rates. Results showed that the proposed STCS technique is more effective

than other baseline selection techniques, regardless of the test selection size and the failure

rate. In RQ5, we introduced and successfully evaluated a method that monitors the trend of

test cases average similarity increments when increasing the test selection size. The

method helps test managers in deciding about the best tradeoff regarding the test suite size.

In addition, the scalability of the three steps of the STCS was assessed, by investigating the

effect of larger test suites and test cases on the performance of the selection technique.

6 Suggestions for Future Research and Extensions

Future research in this domain can be performed in at least four directions: First there is a

need to conduct more and larger scale case studies on STCS, along with more theoretical

and empirical analysis in order to assess the promising results in other contexts, with other

SUTs and application domains. All this work should then converge towards a more

comprehensive theory for STCS. For example, the analysis of the search space properties

in this field of application can be helpful for gaining a more detailed understanding of how

the approach works and may be improved.

A second direction is to improve the technique. A possible approach, for instance, can

be combining STCS and coverage-based selection techniques by applying multi-objective

search techniques [55, 67] that minimizes similarities while maximizing coverage of the

22

selected test cases. Another possibility is assigning weights to test cases based on estimates

of their execution cost and modifying the selection technique to minimize the total

execution cost. In addition, an improvement to STCS can be obtained by improving the

current solution for the outlier problem.

The third direction is about trying to generalize the STCS approach for unsystematically

generated test suites, which may have very low FDR. An interesting research question is

whether the fundamental idea of STCS is only applicable and effective when the test suite

is systematically generated or if it can be effective even on a randomly generated test suite.

If the results show the effectiveness of the technique on a randomly generated test suite

then its applicability widely increases.

The last direction is applying STCS on other domains in software testing than test case

selection. For example, detecting infeasible test cases might be possible by identifying test

cases which are similar to the already identified infeasible test cases in the test suite.

Therefore, the idea of similarity-based infeasible test case detection is also worth

investigating.

23

7 Conclusion

Transferring ideas from academic prototypes and projects to complex industrial software

systems requires investigating their feasibility in practice. Addressing issues regarding

problem size and solution cost dramatically increases the chance of a successful

technology transfer. Model-based testing (MBT) is a good example of a field that has

generated excellent ideas that, however, still need to be improved to be fully functional on

real world systems.

This thesis targets one of the drawbacks of applying MBT, as a systematic and

automatic technique, for the system level testing of embedded systems. The problem is that

system testing in real hardware platforms or test networks may be a highly expensive task

and is usually very constrained. Therefore, an ideal automated testing approach should be

adjustable to the time and resource constraints of the project. However, MBT, which

typically results in very large test suites, does not provide such flexibility.

The proposed solution in this thesis, similarity-based test case selection, allows MBT

users to select a small enough portion of the original test suite that fits to their testing

budget while preserving to the maximum extent the original fault detection rate of the test

suite. The idea behind the proposed similarity-based test case selection technique is

diversifying the selected test cases. The process contains three steps: (1) encoding of test

cases into abstract test paths, (2) assigning similarity values to each test path pair, and (3)

minimizing the sum of similarity values among all the test path pairs corresponding to the

selected test cases.

First 320 variants of the technique were identified using different combinations of

possible algorithms for each step, and then several case studies (in industrial contexts) and

controlled experiments (in the form of simulations) were conducted in this thesis. The

results showed that the combination with state-trigger-guard-based encoding, Gower-

Legendre similarity function, and (1+1) Evolutionary Algorithm to be the most cost-

effective technique on average across two industrial case studies. Using the proposed

technique, a much higher fault detection rate was achieved for the same number of test

cases compared to the baselines (coverage-based and random selection). This led to very

large savings in terms of the number of test cases that do not need to be executed (up to

80% reduction in number of test cases required for detecting the same number of faults).

The proposed technique is also more effective than other baseline selection techniques

regardless of test selection size and failure rate. The technique showed a high degree of

24

scalability to larger test suites and longer test cases. In addition, a method was proposed

that monitors the trend of test cases’ average similarity increments when increasing the test

selection size, to help test managers in deciding about the best test selection size within

their constraints. In summary, the similarity-based test case selection technique helps

practitioners to reduce the cost of test case execution to fit their needs and consequently

make it possible to apply MBT to larger systems.

25

References for the summary

[1] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic Review of the
Application and Empirical Investigation of Search-based Test-Case Generation," IEEE Transactions
on Software Engineering, vol. 36, pp. 742-762, 2010.

[2] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach: Morgan-Kaufmann,
2006.

[3] L. C. Briand and Y. Labiche, "A UML-Based Approach to System Testing," in Proceedings of the
4th International Conference on The Unified Modeling Language, Modeling Languages, Concepts,
and Tools, 2001.

[4] I. K. El-Far and J. A. Whittaker, "Model-Based Software Testing," Encyclopedia of Software
Engineering (edited by J. J. Marciniak), Wiley, 2001.

[5] S. Ali, L. C. Briand, M. J. Rehman, H. Asghar, M. Z. Z. Iqbal, and A. Nadeem, "A State-Based
Approach to Integration Testing Based on UML Models," Information and Software Technology,
vol. 49, pp. 1087-1106, 2007.

[6] A. C. D. Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, "A Survey on Model-based
Testing Approaches: A Systematic Review," in Proceedings of the 1st ACM International Workshop
on Empirical Assessment of Software Engineering Languages and Technologies, Atlanta, Georgia,
2007.

[7] D. Drusinsky, Modeling and Verification using UML Statecharts: A Working Guide to Reactive
System Design, Runtime Monitoring and Execution-based Model Checking, 1st ed.: Newnes, 2006.

[8] M. Shafique and Y. Labiche, "A Systematic Review of Model Based Testing Tool Support,"
Carleton University, Technical Report (SCE-10-04), 2010.

[9] "D-MINT, Deployment of Model-Based Technologies to Industrial Testing," http://www.d-
mint.org/ (Visited in Januray 2011).

[10] J. Feldstein, "Model-based Testing using IBM Rational Functional Tester," developerWorks, IBM,
2005.

[11] M. Vieira, X. Song, G. Matos, S. Storck, R. Tanikella, and B. Hasling, "Applying Model-Based
Testing to Healthcare Products: Preliminary Experiences," in Proceedings of the 30th International
Conference on Software Engineering, Leipzig, Germany, 2008.

[12] Y. Gurevich, W. Schulte, N. Tillmann, and M. Veanes, "Model-based Testing with SpecExplorer,"
Microsoft research, 2009.

[13] S. Dalal, A. Jain, and J. Poore, "Workshop on Advances in Model-Based Software Testing," in
Proceedings of the 27th International Conference on Software Engineering (ICSE), 2005, p. 680.

[14] F. W. Vaandrager, "Does it Pay Off? Model-Based Verification and Validation of Embedded
Systems!," Radboud University Nijmegen2006.

[15] W. Grieskamp, R. M. Hierons, and A. Pretschner, "10421 Summary -- Model-Based Testing in
Practice," D. S. Proceedings, Ed.: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany,
2011.

[16] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools: Addison-Wesley
Professional, 1999.

[17] T. Weigert and R. Reed, "Specifying Telecommunications Systems with UML," in UML for Real:
Design of Embedded Real-time Systems: Kluwer Academic Publishers, 2003, pp. 301-322.

[18] T. S. Chow, "Testing Software Design Modeled by Finite-State Machines," IEEE Transactions on
Software Engineering, vol. 4, pp. 178-187, 1978.

[19] S. Sauer and G. Engels, "UML-based Behavior Specification of Interactive Multimedia
Applications," in Proceedings of the IEEE 2001 Symposia on Human Centric Computing Languages
and Environments (HCC'01), 2001.

[20] "Papyrus, www.papyrusuml.org (Visited in January 2011)."
[21] T. Pender, UML Bible: Wiley, 2003.
[22] "IBM Rational Software Architect, http://www-01.ibm.com/software (Visited in Januray 2011)."
[23] "QTRONIC," Conformiq, http://www.conformiq.com/qtronic.php (Visited in January 2011).
[24] "AMOS Project home page," http://simula.no/research/approve/projects/amos, (Visited in January

2011).
[25] "Kermeta - Breathe Life into Your Metamodels," Rennes and Britanny IRISA and INRIA.
[26] "MOFScript Home page," http://www.eclipse.org/gmt/mofscript/ (Visited in January 2011).
[27] P. Ammann and J. Offutt, Introduction to Software Testing: Cambridge University Press, 2008.
[28] S. Ali, M. Z. Iqbal, A. Arcuri, and L. Briand, "A Search-based OCL Constraint Solver for Model-

based Test Data Generation," Simula Research Laboratory, Technical Report(2010-16), 2010.
[29] M. Egea, "EyeOCL Software," http://www.bm1software.com/eos/ (Visited in January 2011).

26

[30] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. Briand, "Model Transformations as a Strategy
to Automate Model-Based Testing - A Tool and Industrial Case Studies," Simula Research
Laboratory, Technical Report(2010-01), 2010.

[31] M. Harman, "The Current State and Future of Search Based Software Engineering," in Future of
Software Engineering: IEEE Computer Society, 2007, pp. 342-357.

[32] W. Afzal, R. Torkar, and R. Feldt, "A systematic review of search-based testing for non-functional
system properties," Information and Software Technology, vol. 51, pp. 957-976, 2009.

[33] M. Harman, A. Mansouri, and Y. Zhang., "Search based software engineering: A comprehensive
analysis and review of trends techniques and applications," Technical Report TR-09-03, Department
of Computer Science, King’s College London, 2009.

[34] "Software Engineering by Automated Search Home Page," http://www.sebase.org/sbse/publications/
Visited at 20th Jan2011.

[35] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning: Addison-
Wesley Professional, 2001.

[36] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms: Wiley-Interscience, 1998.
[37] D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers: World Scientific

Publishing Company, 1997.
[38] D. Whitley, "The GENITOR algorithm and selection pressure: why rank-based allocation of

reproductive trials is best," in the third International Conference on Genetic Algorithms 1989, pp.
116-121.

[39] D. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE Transactions
Evolutionary Computation vol. 1, pp. 67-82, 1997.

[40] R. Nilsson and D. Henriksson, "Test case generation for flexible real-time control systems," in
Emerging Technologies and Factory Automation, 2005. ETFA 2005. 10th IEEE Conference on,
2005, p. 8 pp.

[41] E. K. Burke and G. Kendall, Search Methodologies: Introductory Tutorials in Optimization and
Decision Support Techniques: Springer 2006.

[42] H. Hemmati, L. Briand, A. Arcuri, and S. Ali, "An Enhanced Test Case Selection Approach for
Model-Based Testing: An Industrial Case Study," in 18th ACM International Symposium on
Foundations of Software Engineering (FSE), 2010, pp. 267-276.

[43] S. Yoo and M. Harman, "Regression testing minimization, selection and prioritization: a survey,"
Software Testing, Verification, and Reliability, Published online in Wiley InterScience 2010.

[44] Y. Chen, R. L. Probert, and H. Ural, "Regression test suite reduction based on SDL models of
system requirements," Journal of Software Maintenance and Evolution: Research and Practice, vol.
21, pp. 379-405, 2009.

[45] G. Rothermel, M. J. Harrold, J. v. Ronne, and C. Hong, "Empirical studies of test-suite reduction,"
Software Testing, Verification and Reliability, vol. 12, pp. 219-249, 2002.

[46] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, "Test Case Prioritization: A Family of
Empirical Studies," IEEE Transactions on Software Engineering, vol. 28, pp. 159-182, 2002.

[47] J. A. Jones and M. J. Harrold, "Test-Suite Reduction and Prioritization for Modified
Condition/Decision Coverage," IEEE Transactions on Software Engineering, vol. 29, pp. 195-209,
2003.

[48] E. G. Cartaxo, P. D. L. Machado, and F. G. O. Neto, "On the use of a similarity function for test
case selection in the context of model-based testing," Software Testing, Verification and Reliability,
in press, 2009.

[49] L. Briand, Y. Labiche, and S. He, "Automating regression test selection based on UML designs,"
Journal of Information and Software Technology, vol. 51, pp. 16-30, 2009.

[50] B. Korel, G. Koutsogiannakis, and L. H. Tahat, "Model-Based Test Prioritization Heuristic Methods
and Their Evaluation," in 3rd Workshop on Advances in Model Based Testing, A-MOST, 2007, pp.
34-43.

[51] A. P. Mathur, Foundations of Software Testing, 1 ed.: Addison-Wesley Professional, 2008.
[52] D. Leon and A. Podgurski, "A Comparison of Coverage-Based and Distribution-Based Techniques

for Filtering and Prioritizing Test Cases," in 14th IEEE International Symposium on Software
Reliability Engineering (ISSRE), 2003, pp. 442-456.

[53] X. Y. Ma, B. K. Sheng, and C. Q. Ye, "Test-Suite Reduction Using Genetic Algorithm," in
Advanced Parallel Processing Technologies. vol. 3756: Springer Berlin / Heidelberg, 2005, pp. 253-
262.

[54] Z. Li, M. Harman, and R. M. Hierons, "Search Algorithms for Regression Test Case Prioritization,"
IEEE Transactions on Software Engineering, vol. 33, pp. 225-237, 2007.

27

[55] S. Yoo and M. Harman, "Pareto Efficient Multi-Objective Test Case Selection," in International
Symposium on Software Testing and Analysis (ISSTA ’07), ACM, Ed., 2007, pp. 140-150.

[56] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.Roos, "Time-Aware Test Suite
Prioritization," in International Symposium on Software Testing and Analysis (ISSTA ’06), ACM,
Ed., 2006, pp. 1-12.

[57] Y. Ledru, A. Petrenko, and S. Boroday, "Using String Distances for Test Case Prioritisation," in
24th IEEE/ACM International Conference on Automated Software Engineering (ASE), 2009, pp.
510-514.

[58] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and Computational
Biology: Cambridge University Press, 1997.

[59] R. Xu and D. Wunsch, "Survey of Clustering Algorithms," IEEE Transactions on Neural Netwoks,
vol. 16, pp. 645-678, 2005.

[60] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids: Cambridge University Press, 1999.

[61] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2 ed.: The
MIT Press, 2001.

[62] T. Y. Chen, F.-C. Kuoa, R. G. Merkela, and T. H. Tseb, "Adaptive Random Testing: The ART of
test case diversity," Journal of Systems and Software, vol. 83, pp. 60-66, 2010.

[63] K. S. Khan, R. Kunz, J. Kleijnen, and G. Antes, Systematic Review to Support Evidence-Based
Medicine: How to Review and Apply Findings of Healthcare Research, 2003.

[64] R. K. Yin, Case Study Research: Design and Methods: Sage Publications Inc, 2003.
[65] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen, Experimentation in

Software Engineering: An Introduction: Kluwer Academic Publishers, 2000.
[66] S. Droste, T. Jansen, and I. Wegener, "On the analysis of the (1+1) evolutionary algorithm,"

Theoretical Computer Science, vol. 276, pp. 51-81, 2002.
[67] K. Lakhotia, M. Harman, and P. McMinn, "A multi-objective approach to search-based test data

generation," in The Genetic and Evolutionary Computation Conference (GECCO), 2007, pp. 1098-
1105.

28

29

A Systematic Review of the Application and

Empirical Investigation of Search-based Test-

Case Generation
Shaukat Ali, Lionel Briand, Hadi Hemmati, and Rajwinder K. Panesar-Walawege

Published in the IEEE Transactions on Software Engineering (TSE), vol 36, no 6, pp. 742-

762, 2010

Abstract— Metaheuristic search techniques have been extensively used to automate the

process of generating test cases and thus providing solutions for a more cost-effective

testing process. This approach to test automation, often coined as “Search-based Software

Testing” (SBST), has been used for a wide variety of test case generation purposes. Since

SBST techniques are heuristic by nature, they must be empirically investigated in terms of

how costly and effective they are at reaching their test objectives and whether they scale up

to realistic development artifacts. However, approaches to empirically study SBST

techniques have shown wide variation in the literature. This paper presents the results of a

systematic, comprehensive review that aims at characterizing how empirical studies have

been designed to investigate SBST cost-effectiveness and what empirical evidence is

available in the literature regarding SBST cost-effectiveness and scalability. We also

provide a framework that drives the data collection process of this systematic review and

can be the starting point of guidelines on how SBST techniques can be empirically

assessed. The intent is to aid future researchers doing empirical studies in SBST by

providing an unbiased view of the body of empirical evidence and by guiding them in

performing well designed and executed empirical studies references.

1 Introduction

Software is being incorporated into an ever increasing number of systems and hence it is

becoming increasingly important to thoroughly test these systems. One challenge to testing

software systems is the effort involved in creating test cases that will systematically test the

system and reveal faults in an effective manner. The overall testing cost has been estimated

at being almost fifty percent of the entire development cost [6], if not more. Thus, a logical

response is to automate the testing process as much as possible, and test case generation is

naturally a key part of this automation. A possible strategy which has drawn great interest

30

in the automation of test case generation is the application and tailoring of metaheuristic

search (MHS) algorithms [41]. The main reason for such an interest is that test case

generation problems can often be re-expressed as optimization or search problems.

There has been a tremendous amount of research in applying MHS algorithms to test

case generation and a large body of research exists: a search of the most relevant databases

(as detailed in Section 4.2.1) found 450 articles which after reading abstracts resulted in

122 relevant articles published over the years 1996-2007 on this specific topic, often

referred to as search-based software testing (SBST) [4].

Seeing the amount of research activity in this field, it is at this point in time, highly

important to characterize what type of research has been performed and how it has been

conducted. Among other things, it is crucial to appraise how much empirical evidence

there is regarding the cost-effectiveness of SBST and to determine whether there is room

for improvement in the way studies are performed and reported. The ultimate goal is to

improve the quality of future research in this important, emerging field of research. In

order to assess the current state of the art in SBST, we decided to conduct a comprehensive

systematic review of the current literature, as this is commonly done in other scientific

fields of research such as medicine [25] and social science [29]. The purpose of this

systematic review is to collect, classify, and assess the empirical studies on SBST in order

to assess the current body of evidence regarding the cost and effectiveness of SBST. By

identifying the strengths and weaknesses of the current literature we hope to suggest

improved research practices and relevant future research directions.

This paper is organized as follows: In Section 2, we provide the background relevant to

the material presented in this paper. Section 3 suggests a framework used to assess the

empirical studies in SBST and Section 4 presents the method used to conduct this

systematic review. In Section 5, we present the results of our review whilst Section 6

outlines its validity threats. The final conclusions that we can draw from this systematic

review are presented in Section 7.

2 Background

Detailed In this systematic review, we are analyzing which MHS algorithms have been

used to address test case generation and what body of evidence exists regarding their cost-

effectiveness. As a preliminary to the review itself, we introduce here the three main

31

components involved in this paper: search-based software testing, systematic reviews, and

empirical studies.

2.1 Search-based software testing

The main aim of software testing is to detect as many faults as possible, especially the

most critical ones, in the system under test (SUT). To gain sufficient confidence that most

faults are detected, testing should ideally be exhaustive. Since in practice this is not

possible, testers resort to test models and coverage/adequacy criteria to define systematic

and effective test strategies that are fault revealing. A test case normally consists of test

data and the expected output [36]. The test data can take various forms such as values for

input parameters of a function, values of input parameters for a sequence of method calls,

or seeding times to trigger task executions. In the context of this review, we are not dealing

with the expected outputs, but focus exclusively on the generation of test data as this has

been the objective of papers making use of SBST. In order to perform test case generation,

systematically and efficiently, automated test case generation strategies are employed.

Bertolino [7] addresses the need for 100% automatic testing as a means to improve the

quality of complex software systems that are becoming the norm of modern society. A

comprehensive testing strategy must address many activities that should ideally be

automated: the generation of test requirements, test case generation, test oracle generation,

test case selection, or test case prioritization. In our current review, we are only dealing

with test case generation. A promising strategy for tackling this challenge comes from the

field of search-based software engineering [23].

Search-based software engineering attempts to solve a variety of software engineering

problems by reformulating them as search problems [15]. A major research area in this

domain is the application of MHS algorithms to test case generation. MHS algorithms are

a set of generic algorithms that are used to find optimal or near optimal solutions to

problems that have large complex search spaces [15]. There is a natural match between

MHS algorithms and software test case generation. The process of generating test cases

can be seen as a search or optimization process: there are possibly hundreds of thousands

of test cases that could be generated for a particular SUT and from this pool we need to

select, systematically and at a reasonable cost, those that comply to certain coverage

criteria and are expected to be fault revealing, at least for certain types of faults. Hence, we

can reformulate the generation of test cases as a search that aims at finding the required or

optimal set of test cases from the space of all possible test cases. When software testing

32

problems are reformulated into search problems, the resulting search spaces are usually

very complex, especially for realistic or real-world SUTs. For example, in the case of

white-box testing, this is due to the non-linear nature of software resulting from control

structures such as if-statements and loops [17]. In such cases, simple search strategies may

not be sufficient and global MHS algorithms1 may, as a result, become a necessity as they

implement global search and are less likely to be trapped into local optima [16]. The use of

MHS algorithms for test case generation is referred to as search-based software testing [4].

Mantere and Alander [35] discuss the use of MHS algorithms for software testing in

general and McMinn [37] provides a survey of some of the MHS algorithms that have been

used for test data generation. The most common MHS algorithms that have been employed

for search-based software testing are evolutionary algorithms, simulated annealing, hill

climbing, ant colony optimization, and particle swarm optimization [12]. Among these

algorithms, hill climbing (HC) [12] is a simpler, local search algorithm. The SBST

techniques using more complex, global MHS algorithms are often compared with test case

generation based on HC and random search to determine whether their complexity is

warranted to address a specific test case generation problem. The use of the more complex

MHS algorithm may only be justified if it performs significantly better than HC.

2.2 Systematic reviews

Systematic reviews are a means of synthesizing existing research regarding a specific

research question [29]. They are usually performed to summarize the existing evidence for

a particular topic and aid in the identification of gaps in the current research and thus can

form the basis of new research activity. A review protocol is created at the beginning of the

review, which lays out the research questions being answered and the methodology that

will be used to answer these questions. The protocol specifies a specific search strategy

that is used to select as much of the relevant literature as possible and provides justification

for why studies are included or excluded from the systematic review. The data to be

collected to answer the research questions is also presented in the protocol. All this

information is published so that readers can judge the completeness of the systematic

review, and if necessary replicate it. These features distinguish the systematic review from

the usual literature review or survey that is usually conducted at the beginning of a

1 Global MHS algorithms are often contrasted with local MHS algorithms. The former are based on

strategies for the search to avoid being stuck in local minima, thus being more effective in situations with
complex search landscapes [12].

33

research activity. A systematic review synthesizes the existing work in a systematic,

comprehensive, and unbiased manner.

2.3 Empirical studies for search-based software testing

Kitchenham et al. [19, 31] make the case for evidence-based software engineering that

seeks to help practitioners make informed decisions related to software development and

maintenance by integrating current best evidence from research with practical experience.

Thus, to determine if SBST techniques can be applied in practice, we need to conduct

empirical studies to assess their cost-effectiveness and scalability. The cost-effectiveness

of a SBST technique is normally measured in terms of the ability of the technique to

generate test cases that achieve a certain testing objective at a reasonable cost. The testing

objective, as is the case with any test case generation technique, is to detect faults of a type

that is explicitly defined or implicitly determined by the test model (e.g., state transition

faults for a state machine model). In this review, we have focused on empirical studies of

SBST techniques in order to assess whether convincing evidence exists to show their cost-

effectiveness and scalability. For this purpose, it was necessary to define what we mean by

an empirical study in this context and what constitutes a well designed and reported

empirical study. Empirical studies are usually divided into three different types: surveys,

case studies or experiments [52]. For this review, we have used a broad definition of

empirical study, to include any kind of empirical evaluation that has been done in the field

of SBST in order to be comprehensive in our investigation.

In order to determine what constitutes a proper empirical study in SBST, we looked at

existing guidelines [27, 32, 52] for conducting empirical studies in software engineering,

and those for evaluating SBST techniques in other fields. Wohlin et al. [52] and

Kitchenham [32] present guidelines on how to conduct experimentation and empirical

research in the specific context of software engineering whereas Johnson [27] presents a

general guide for experimental analysis of algorithms. We have tailored and augmented

some of these guidelines to create a specific framework for conducting and reporting

empirical studies in the domain of SBST. This was necessary as SBST studies involve the

analysis of automation techniques in which no human subjects are involved and presents

many specific challenges. In addition, the fact that SBST techniques are based on MHS

algorithms makes it important to account for the inherent random variation that exists in

their results. Furthermore, there should also be some means to show that a SBST technique

is really necessary for the context that it is being applied in. This can be done, for example,

34

by showing that other simpler search techniques do not perform as well. The reason for

doing this is that we want to ensure that the problems being tackled by the SBST

techniques do warrant their use.

The framework was created for a dual purpose. First, it was used in this systematic

review to direct the collection of data that was used to assess the current state of empirical

research in SBST. Second, it can also be used as a set of guidelines for conducting and

reporting future research in the field or at least as a starting point in the development of

such guidelines. The next section will present the framework.

3 Framework

As presented here, this framework is not intended to provide complete operational

guidelines, but rather to justify the data collection that took place to perform the systematic

review presented in the next sections and to highlight some of the most important concepts

and issues.

The framework is divided into four parts. First, the test problem addressed must be

clearly specified. Second, the MHS algorithms adopted must be clearly defined. Third,

since any SBST research should always include empirical studies aiming at assessing the

cost and effectiveness of the proposed approaches, the design of such studies must be

carefully described so that its validity can be assessed. Last, results must be carefully

reported so as to be clearly interpretable and reproducible. Whenever relevant, we will

refer to Johnson’s general guidelines on the experimental analysis of algorithms [27],

either to point the reader to further, more general considerations, or to show that our more

specific guidelines are a specialization of these more general ones.

3.1 Test problem specification

The test problem specification includes two main parts, the purpose of testing and the test

strategy that will be employed. Each of these parts directly affects the form that the search-

based software testing strategy will take. Figure 1 outlines the constituent parts of a test

problem specification. The general purpose of software testing is to gain sufficient

confidence in the dependability of a software artifact. Explicitly, this is usually done by

targeting specific types of faults at different levels (such as unit, integration, and system

testing). The targeted faults can be categorized in many ways depending on the view one

takes of a system. At the highest level, one differentiates functional from non-functional

faults, e.g., faults related to performance, security, robustness, and safety requirements.

35

Figure 1 Concept diagram of test problem specification

A testing strategy is defined by a model of the SUT and some specific coverage criteria

defined on that model. Such a model is typically referred to as a test model and the

coverage criteria aim at systematically exercising the SUT based on the test model. This

test model may be characterized by its source and representation (i.e., notation and

semantics). Coverage criteria definitions depend on the test model representation. The

source of the model implies constraints on the application of the test strategy as it depends

on the availability and reliability of precise information in a specific form. As discussed in

[5], possible sources for a test model can be the SUT specification, design artifacts or the

source code itself. Based on the model source (specification, design or source code),

different types of test models can be constructed. Typical examples of models derived from

source code include control and data flow graphs, whereas test models based on SUT

design include state machines or Markov usage models. To be systematic, a test strategy

generates test cases to cover certain features of the test model. For instance, in the case of

state machines, typical coverage criteria include the coverage of all states or all transitions,

the latter being a stronger requirement, while, in the case of control flow graphs, a typical

coverage criterion is branch coverage. It is important to clearly specify the coverage

criteria as it is often used to measure the effectiveness of SBST techniques regarding test

case generation.

3.2 Metaheuristic search algorithm specification

MHS algorithms are general strategies that need to be adapted to the problem at hand.

When reporting a study, this implies describing and justifying the customizations and

36

parameter settings for each specific algorithm. This will be required for replicating the

study and also for comparisons with other SBST techniques and future studies. Each type

of MHS algorithm has specific parameter settings to be reported, but the general idea is to

report all settings and adjustments that may have an effect on the performance of the

algorithm or are needed for replicating the study. In Figure 2 we show how a typical

genetic algorithm can be used for test case generation. The important parameters to report

for a genetic algorithm would be the encoding of the chromosomes, the fitness function

created to guide the search, the strategy for creating the initial population, the selection

strategy for selecting parents for the next generation, the various recombination operators

such as crossover and mutation operators and their values, the reinsertion strategy and the

stopping criteria. We discuss in [5] how these parameters affect the results of empirical

studies involving the use of genetic algorithms for test case generation.

3.3 Empirical study design

This section will define the most important items that should be reported about the study

definition (through its objectives and hypotheses), design, and results.

3.3.1 Objectives and experimental hypotheses

One must define what is going to be empirically assessed and compared. The objective is

usually to compare various SBST techniques and alternatives in terms of code coverage,

fault detection, test suite size, or test case generation time. The empirical study can be an

assessment of a single SBST technique, a comparison of two or more SBST techniques, or

a comparison of SBST techniques versus non-SBST techniques (i.e., not relying on meta-

heuristic search algorithms). The latter includes, for example, random search, static

analysis, greedy algorithms or some other specific technique for the test problem under

consideration, e.g., schedulability analysis in the case of real-time systems. In any case,

what is going to be compared should be precisely specified through formal test hypotheses,

thus leading to appropriate statistical significance testing. One notion important here is to

Figure 2 Test case generation using genetic algorithms

37

state the kind of hypothesis that will be used: either a one-tailed hypothesis or a two-tailed

hypothesis [14]. This has an impact on how we interpret the results in terms of p-values

(probability of type I errors). In the context of SBST, a one-tailed hypothesis would be

used in the case when, based on the properties of the fitness function, we have a theoretical

basis to assert the direction of the expected outcome. For example, when comparing a

guided search algorithm such as genetic algorithm with random search, we may, based on

an analysis of the fitness function, expect the genetic algorithm to be equally or more

effective at hitting the search target – but not worse – and as such we would use a one-

tailed hypothesis. However, as an example, when comparing two genetic algorithms with

different fitness functions, where we cannot state upfront which one would fare better in

terms of cost or effectiveness, we would use a two-tailed hypothesis. In other words, when

the theory regarding the search algorithms under study allows us to be a priori confident

regarding the possible direction of differences in cost or effectiveness, then we should use

a one-tailed test as this will increase our chances to uncover a statistically significant

difference.

3.3.2 Target application domain

Empirical studies should specify a target application domain in which their results are

intended to be generalized. Example application domains are: real-time, concurrent,

distributed, embedded, and safety-critical. Testing techniques typically target specific

faults that are more relevant in certain application domains, e.g., slow response time in

real-time systems. Moreover, assumptions are typically made regarding the availability of

information required to build the test model. Such assumptions tend to be more or less

realistic depending on the application domain. For example, if one assumes the use of the

MARTE UML profile [3] to design a system and then derive a test model, this is of course

more realistic in the context of embedded, real-time applications. Further, the selection of

subject systems for empirical studies will then be partly determined by the target

application domain.

3.3.3 Subject systems (Software Under Test or SUT) specification

After identifying the target application domain, specific SUTs fitting that domain are

selected. It is important to carefully select SUTs and precisely justify why the selected

SUTs are adequate matches for the target application domain as this will help the reader

determine the extent to which the experimental results will generalize to this domain. This

discussion should be in terms of the inherent properties of the SUT such as its size,

38

complexity, or structure. This is particularly important when one is creating artificial SUTs

specifically for the experiment, a common situation when one is trying to account for

SUTs of varying size and complexity. For each SUT in the empirical study, the function of

the SUT together with relevant properties affecting its representativeness of the domain

should be carefully reported in order to ensure the reproducibility of the experiment and

help future comparisons of cost-effectiveness results. Johnson [27] discusses the general

problem of instance selection (i.e., SUTs here) in experiments (Principle 3: Use instance

testbeds that can support general conclusions) and defines reproducibility (Principle 6:

Ensure Reproducibility) when experimenting with algorithms as the capacity to “perform

similar experiments that would lead to the same basic conclusions”. The goal is to make it

possible to confirm the results of an original experiment independently from the precise

settings and details of the experiment. In addition to SUT properties, the hardware platform

that the SUT executes on is also important to specify. Johnson [27] provides an in-depth

discussion of the latter issue (Principle 7: Ensuring Comparability), which is not specific to

SBST, and suggestions to address it. In its Principle 9, about well-justified conclusions,

Johnson [27] also discusses the danger of drawing conclusions from small instances that

are then generalized to much larger instances, as the former do not always predict well the

latter, and recommends to use instances that are as large as possible.

3.3.4 Measures of cost and effectiveness for SBST techniques

Measuring effectiveness and more particularly cost in our context is inherently difficult

and the validity of measures is very often context-dependent. As discussed by Johnson in

[27] (Principle 6: Ensure Reproducibility), just reporting effectiveness and cost values is

not very informative as it does not provide direct insights into what these values actually

imply. It is nevertheless crucial, in order to draw useful conclusions from studies involving

SBST techniques, to be able to use appropriate comparison baselines. In our context, one

usually resorts to comparing the investigated technique to simpler, existing techniques (see

Section 5 on baselines of comparisons) in order to assess the relative goodness of a search.

The measures should be relevant for the particular study and comparable across the

different techniques being investigated. Studies may use slight variations of an existing

measure or introduce new ones, hence, it is important to explain the reasoning behind the

effectiveness and cost measures and justify why they are applicable in the context they are

being used. Along with the measure, the method used to collect the data related to the

measures should be thoroughly explained. In the context of SBST, the effectiveness of a

39

test case generation technique is closely related to the “quality” of the test suite generated

by the technique. A good test suite can be characterized by its ability to uncover faults or to

give confidence in the SUT by fulfilling a certain coverage criterion. Thus we can say that,

in practice, there are two main categories of measures of effectiveness, which can be

referred to as coverage-based measures and fault-based measures. In the former category,

there may be many different types of measures depending on the adequacy criteria being

used, for example, control-flow coverage criteria such as branch or path coverage may be

used. The fault-based measures are typically fault detection scores. They can be computed

based on real, known faults or are estimated through mutation analysis [48]. In the latter

case, the program is seeded with faults based on mutation operators and depending on the

number of faults caught, a so-called mutation score is calculated. The techniques are

assessed upon how successful they are at detecting the seeded faults.

Cost measures are generally related to the speed of the technique to converge towards

the test objective (in some cases it is referred to as the search technique’s “efficiency”).

Some common cost measures used in the SBST domain are: (a) the number of iterations,

which shows how many times a SBST technique needed to iterate in order to find its best

solution, e.g., the number of generations in genetic algorithms, or cycles in ant colony

optimization algorithms, (b) the cumulative number of individuals in all iterations (usually

each individual represents a test case in SBST), (c) the number of fitness evaluations an

algorithm needs, to find the final solution, which depends on the number of newly

generated individuals (usually each new population is made up of some individuals from

the previous iteration and some newly generated ones), (d) the time spent by a MHS

algorithm to find test cases meeting the targeted test objective, which is sometimes referred

to as “test case generation time”. This time can be either measured using clock time or

CPU cycles. Clock time is the time from the “wall” clock and not easily comparable across

different hardware architectures. However it is a practical measure that can be used to

assess if a technique can be used in practice. CPU cycles on the other hand is a measure

that can be used across techniques for comparison on other hardware architectures as well,

and (e) the size of the resulting test suite, which is a surrogate measure for the cost of the

time it would take to execute the resulting test suite since a larger test suite would require

more resources to execute.

Among the first three cost measures, the number of iterations is a very coarse grained

measure and is not as precise as the number of individuals, which in turn is not as precise

as the number of fitness evaluations. The number of fitness evaluations is more precise

40

than the number of individuals because in each iteration there are some individuals that are

kept from the previous population and there is no cost for generating them. Therefore, the

number of evaluations can more precisely estimate the real cost of a SBST technique. All

these three measures are surrogate measures for the time used to generate the final test

suite but none is perfect, because different search techniques may require a different

amount of time per iteration, per creation of an individual (test case), or per fitness

evaluation. For instance, it would not be a good idea to compare simulated annealing (SA)

and genetic algorithms (GA) based on the number of iterations because the amount of time

required for each iteration in GA and SA is likely to differ significantly.

The cost of a technique is generally measured for one of two purposes: either to

compare two techniques to assess which one will cost less for the same effectiveness or to

assess whether a technique can be used in practice given expected time constraints. From

the measures discussed above, “test case generation time”, if it has been measured under

similar conditions, is the only measure that can give users an intuitive idea of whether they

can apply a particular technique to their situation within the time constraints that they have.

When comparing the cost of different techniques, it is also necessary to make sure that any

other required resources are kept equal amongst the techniques. The fact that two

techniques require the same amount of time does not mean that they have the same cost if

one technique consumes much more memory than the other. Therefore all relevant types of

resources must be accounted for when comparing the cost of SBST techniques.

3.3.5 Measures for scalability assessment

Scalability assessment is the process of assessing how the cost-effectiveness of a SBST

technique evolves as a function of the size of the test case generation problem to be

addressed. This involves one or more measures of SUT size and the analysis of their

relationships with the cost or effectiveness of the SBST techniques under investigation.

Some examples of measures that can be scaled up include the size of the SUT in terms of

lines of code or the size of search space in terms of number and range of input data

parameters. The effect of this scaling is then observed on different cost and effectiveness

measures to see if the SBST technique is still cost-effective as the SUT gets larger and

more complex.

3.3.6 Baselines for comparison

A SBST technique can only be assessed if it is compared with a carefully selected,

meaningful baseline since the optimal solution is normally not known. Since it is difficult

41

to assess SBST techniques in absolute terms, it is therefore important to show, as a

minimum, that the problem at hand could not be addressed by some simpler means. In

other words, every study should have one or more baselines of comparison when assessing

SBST techniques and the minimum to be expected is a comparison with random search.

The SUT investigated may, for example, be small and simple, and the fact that a SBST

technique performs well may not mean much. Random search can then serve as a basic

verification that the search problem cannot be addressed by a simple random search and

warrants the use of a SBST technique. It is also preferable to use other simple SBST

techniques, such as HC, as a comparison baseline for other more expensive SBST

techniques. This further demonstrates that the use of a SBST technique is justified given

the test case generation problem at hand. In addition—but this is context dependent—other

SBST techniques, previously published or considered plausible alternatives, can also be

used as baselines of comparisons for the proposed SBST techniques.

As discussed in [27], once baseline techniques are selected, one must ensure that

reasonably efficient implementations are used for all techniques in order for cost and

effectiveness to be comparable. Documentation, source code, URLs for downloadable

tools, or at the very least a careful description of the implementation, should be provided.

3.3.7 Parameter settings

Most SBST techniques require parameter settings which tend to have a significant impact

on their performance. In many studies, alternative parameter settings are investigated and

compared. It is therefore highly important, to make any study reproducible, to specify

these parameters in a precise manner. It is also interesting to justify their values based on

existing studies, when possible, as this provides insights into how cost and effectiveness

could be affected if they were changed or if a different SUT with different properties was

used. One particularly important parameter in our context is the stopping criterion of the

search (Principle 6: Ensure Reproducibility). It can be based on whether the search

objective has been reached (or one is sufficiently close), execution time or a surrogate

measure (due to practical constraints), or any significant progress is observed over a period

of time.

3.3.8 Accounting for random variation in SBST results

Since SBST techniques use MHS algorithms; their results can vary from one execution to

another. So, it is important to ensure that we run the algorithms a sufficient number of

times to capture the random variation of results and be able to perform statistical

42

comparisons with other search techniques. It is difficult to precisely specify the number of

runs required in general but, as a ballpark number, it should probably be above ten, so as to

allow the use of basic statistical hypothesis testing and obtain a reasonable statistical power

to detect large differences [52]. Based on the expected (minimum) difference between

techniques (if this can be estimated) and the statistical tests used to compare cost and

effectiveness across techniques, the minimum required number of runs can be estimated

using power analysis [18].

When dealing with multiple runs, in our context, we are often interested in the best run,

yielding the best test suite or test case according to some fitness function (e.g., bringing the

execution time of a task as close as possible to its deadline). Another frequent case is when

we are interested in the frequency with which a certain target was reached across runs (e.g.,

test input data satisfying certain constraints). In both cases, it is important to report the

execution time and other cost measures of all runs and, when relevant, information about

their fitness distribution. The basic principle is that it should be possible to estimate the

total cost of achieving the best solution or, depending on what is relevant, the expected

cost to achieve the search target. From a more general standpoint, Johnson (Principle 6:

Ensure Reproducibility) [27] warns against reporting only effectiveness and cost data for

the best run.

3.3.9 Data analysis

During the design of an empirical study, it is important to decide about the data analysis

methods that will be applied to cost-effectiveness and scalability results.

Data analysis methods for comparing cost-effectiveness. Performance in the case of

SBST usually relates to measuring the cost-effectiveness of the various search techniques.

The cost and effectiveness of a SBST technique are used together for assessing its

performance. For example, a technique that has higher coverage than another technique

may not be considered to have better performance, because it uses significantly more

fitness evaluations (higher cost) to achieve that effectiveness, thus making it impractical

for larger SUTs. Any claims of better performance should be backed by empirical evidence

demonstrating lower cost or higher effectiveness when compared to the baseline and

alternative techniques. In the ideal case, a study that is concentrating on measuring cost,

should keep the effectiveness measures constant. For example, the study may measure the

number of fitness evaluations needed to achieve 100% branch coverage. If, however, the

aim is to measure effectiveness, then this can be done by keeping the cost constant, for

43

example, by measuring how much branch coverage is achieved in some constant amount of

time or number of fitness evaluations. The reported performance results should include the

results of the comparison baselines. At a high level, reported results should follow the

structure below:

Reporting descriptive statistics. Both cost and effectiveness distributions should be

reported (e.g., as a table with descriptive statistics) and analyzed. Looking at their standard

deviation may indicate the level of uncertainty in terms of cost and effectiveness associated

with a SBST technique. This in turn may help determine how many runs would in practice

be necessary to guarantee that we obtain a satisfactory result, i.e., achieve the objective.

Results of hypothesis testing. The purpose of statistical testing is to determine whether

differences across SBST techniques in terms of central tendencies for cost and

effectiveness can be attributed to chance or whether they really capture a trend. Statistical

hypothesis testing is necessary as SBST techniques are always associated with a certain

level of random variation in terms of cost or effectiveness. Because statistical testing is a

standard practice, we will not detail it further here and interested readers may consult

reference [40] for more details.

Statistical hypothesis testing should be used to accept/reject research hypotheses related

to the cost-effectiveness analysis of SBST techniques and comparison baselines. The

choice of a specific statistical test depends on the specific objective of SBST. In our

context, hypothesis testing falls into three broad categories: (1) Comparing samples of runs

in terms of effectiveness and cost. For example, comparing average or maximum branch

coverage achieved across runs of alternative SBST techniques and baselines of

comparison. (2) Comparing samples of runs in terms of “successful” runs. For example,

comparing the proportion of runs that find a deadlock across alternative SBST techniques

and baselines of comparison. (3) Comparing samples of targets (e.g., control flow

branches) in terms of cost (e.g., iterations) or effectiveness (e.g., percentage of runs

reaching that branch). In this last case, the samples are not independent, because

observations in each sample are paired (identical targets). This leads to the application of

specific statistical tests for paired samples. Moreover, though this is a standard issue, there

can be two or more samples, and this will also affect the specific statistical test to be used.

Moreover, as usual in other contexts, specific statistical tests have to be selected and

justified based on the data distributions of the samples being compared to avoid drawing

incorrect conclusions from the analysis. Statistical tests are usually classified as parametric

and non-parametric [52]. When the sample follows a specific distribution (e.g., normal),

44

certain parametric tests are applicable (e.g., t-test). Alternatively, non-parametric statistical

tests are used when no appropriate assumptions can be made about the sample

distributions. The issues related to selecting appropriate tests are however discussed in

standard textbooks and will not be further addressed here. In Table 1, as a guideline, we

provide a mapping between the analysis situations we have encountered in SBST studies

and the type of statistical tests that are suitable (for the sake of simplicity, we are assuming

two samples, that is, the comparison of two techniques). This mapping is illustrated with

examples.

 Data analysis should both address statistical and practical significance of differences

among alternative search techniques. The former assesses whether differences among

search techniques can be due to chance. The latter assesses whether the difference can be

considered of practical significance, that is, whether they would make any difference in the

day-to-day practice of test case generation given the specific test objectives being

considered. For example, if statistical testing based on a large number of runs show that

there is a significant difference between the cost of two search techniques in terms of time

required for finding the best test suite, the actual difference may not be of practical

importance if it is in the range of a few minutes. On the other hand, a lack of statistical

significance despite a visible difference may be due to small samples, and therefore a lack

of statistical power, which in our context means that the number of runs for each compared

Table 1 Mapping of SBST problems to statistical tests

SBST Analysis
Type

Type of Statistical
Comparison

Example in the Context
of SBST

Type of Statistical Test
(assuming two samples)

Comparing
samples of runs in
terms of
effectiveness and
cost

Comparing central
tendencies of two or more
independent samples,
each corresponding to a
SBST technique

Comparing maximum
branch coverage achieved
across all runs between
two SBST techniques

Parametric t-tests or
Non-Parametric Mann-
Whitney U test

Comparing
samples of runs in
terms of
“successful” runs

Comparing proportions in
independent samples,
each corresponding to a
SBST technique

Comparing the proportion
of runs finding deadlocks
across different SBST
techniques

z-score test for
proportions

Comparing
samples of target
in terms of cost to
reach them or
frequency at which
runs reach them

Comparing central
tendencies of matched
pairs across samples

Comparing the frequency,
across samples of runs
matching each SBST
technique, according to
which a branch (target) is
covered. Note that the
observations across
samples are paired as they
correspond to identical
branches.

Parametric Paired t-tests
or Non-Parametric
Wilcoxon or Sign test

45

search technique may be too small. The larger the number of runs, the more likely one is to

obtain statistical significance when observing differences.

Data analysis methods for scalability. Scalability is used to assess whether a SBST

technique can be applied to either larger or more complex SUTs and still have satisfactory

effectiveness and cost. If the aim of the empirical study is to show the scalability of a

SBST technique then appropriate measures of size and complexity should be clearly

defined. There will be at least two measures involved – one size measure that will be

scaled up through successive SUTs and the other that will measure the corresponding

performance (cost and effectiveness). Then the effect of scaling up a particular measure

can be reported in terms of a statistical relationship (recall the unavoidable random

variation). For example, we may investigate several SUTs of variable sizes in terms of

lines of code and then assess whether a SBST technique can still reach a certain level of

coverage at acceptable cost (e.g., measured as the number of generations) for larger SUTs

and analyze how this cost evolves with the size of the SUT. A positive, exponential

relationship between size and cost might then be problematic, for example, as it would

undermine the applicability of the technique for large scale test models and systems.

Similarly, if effectiveness (e.g., in terms of achieved coverage) is strongly decreasing as a

function of SUT size, we also have a scalability problem.

As for scalability analysis, we need to characterize relationships between SUT size

variables and measures of the SBST technique’s cost and effectiveness. Such techniques

are typically analyzed through regression analysis, though in practice, because the number

of SUTs under study is likely to be small, such analysis is more likely to be qualitative,

that is simply based on observing scatter plots in the cost-effectiveness and size space.

3.3.10 Discussion on validity threats

Validity threats should be considered throughout any empirical study, right from the

study definition and design up to the analysis and interpretation of results [52]. The

following types of threats can be discussed:

Construct validity threats. Measures of cost, effectiveness, and SUT size should be

appropriate and justified given the context and objectives of investigation. No measure is

expected to be perfect as the above concepts are usually not readily measurable. But in

practice, by using several, complementary measures of cost, effectiveness, and SUT size,

one is in a position to compare the cost-effectiveness and scalability of alternative search

techniques.

46

Internal validity threats. If a SBST technique performs better than another one,

whether regarding effectiveness or cost, can it be due to something other than the SBST

technique? This could possibly be due to the following: 1) poor parameter settings of one

or more of the SBST techniques, 2) the biased selection of SUTs that have certain

characteristics that can favor a certain SBST technique.

Conclusion validity threats

 Has random variation been properly accounted for? Since SBST techniques use

MHS algorithms, randomness in results (inherent to metaheuristic approaches)

should be accounted for, as discussed above. Has it been done in such a way as

to enable statistical comparisons? It implies that a sufficient number of

independent runs be performed to obtain a sufficient number of observations.

 Was the right statistical test employed? Statistical test procedures should be

carefully selected given the hypothesis method (e.g. one-tailed vs. two tailed

hypothesis) and the data collected (distributions of cost and effectiveness).

Otherwise, certain required properties of a particular statistical test could be

inadvertently violated leading to incorrect conclusions. For example, many

statistical tests assume that data distributions be normal [52].

 Is there any practically significant difference? To answer this question, the

magnitude of the differences must be reported– this is known as the effect size

and determines the practical significance of the results.

External validity threats. This is a difficult issue, as whether results can be generalized

depends on whether the SUTs under investigation are representative of the targeted

application domain and whether the faults considered (if used to assess test effectiveness)

are representative of real faults. Ideally, SBST empirical studies should also be run on

many different SUTs of the target type, but every research endeavor faces limitations in

terms of time and resources. At the very least, the issue should be carefully discussed and a

good case should be made as to why one should be able to trust that the observed results

can be generalized.

4 Research Method

In this section, we will explain our review protocol. We define the research questions that

this review attempts to answer, along with how we selected papers for inclusion and the

data that we extracted.

47

4.1 Research questions

The most important stage of any systematic review is to precisely define the research

questions. Once the research questions have been specified, the systematic review can then

proceed with the search strategy to identify relevant studies and extract the data required to

answer the questions [13]. In this paper, we are interested in investigating empirical studies

in the domain of SBST. To proceed with our investigation, we defined the following three

research questions:

RQ1: What is the research space of search-based software testing?

The objective of this question is to characterize the research that has been undertaken so

far. Though the research space can be identified from different angles, because our

systematic review is about SBST, basic features of software testing (such as test level,

targeted faults, test model, type of test cases, and application domain) and the type of MHS

algorithms seem relevant characteristics to define the research space. Because of size

constraints, RQ1 will not be addressed in detail in this paper and the results will be simply

summarized to provide context information to the reader and facilitate the interpretation of

subsequent research results. Interested readers may consult the technical report [5]

corresponding to this paper for a detailed discussion of the results.

RQ2: How are the empirical studies in search-based software testing designed and

reported?

A study that has been properly designed and reported (as discussed in Section 3) is easy to

assess and replicate. The following sub-questions aim at characterizing some of the most

important aspects of the study design and how well studies are designed and reported:

 RQ2.1: How well is the random variation inherent in search-based software testing,

accounted for in the design of empirical studies?

 RQ2.2: What are the most common alternatives to which SBST techniques are

compared?

 RQ2.3: What are the measures used for assessing cost and effectiveness of search-

based software testing?

 RQ2.4: What are the main threats to the validity of empirical studies in the domain

of search-based software testing?

 RQ2.5: What are the most frequently omitted aspects in the reporting of empirical

studies in search-based software testing?

48

RQ3: How convincing are the reported results regarding the cost, effectiveness, and

scalability of search-based software testing techniques?

This research question attempts to synthesize the actual results reported in the studies in

order to assess how much empirical evidence we currently have. To answer this question,

we address the following sub-questions:

 RQ3.1: For which metaheuristic search algorithms, test levels, and fault types, is

there credible evidence for the study of cost-effectiveness?

 RQ3.2: How convincing is the evidence of cost and effectiveness of search-based

software testing techniques, based on empirical studies that report credible results?

 RQ3.3: Is there any evidence regarding the scalability of the metaheuristic search

algorithms for test case generation?

4.2 Study selection strategy

This is the step of a systematic review that aims at ensuring the completeness of the

selection of papers on which the review is based. Study selection involves two main steps:

(1) selection of the source repositories and identification of the search keywords (2)

inclusion or exclusion of studies based on certain inclusion and exclusion criteria.

4.2.1 Source selection and search keywords

The process of selecting papers is started by executing a search query on the source

repositories, which provides a set of papers. Since this set of papers is then subsequently

used for all manual inclusions and exclusions, the selection of appropriate repositories and

search strings is of utmost importance as it directly affects the completeness of the

systematic review. The repositories that we used are: IEEE Xplore, The ACM Digital

Library, Science Direct (including Elsevier Science), Wiley Interscience, Springer, and

MIT Press. The first two repositories covered almost all important conferences, workshops,

and journal papers, which are published either by IEEE or ACM. The next four repositories

were mostly used for finding papers that are published in leading software engineering

journals.

We selected the following journals based on [13]: IEEE Transactions on Software

Engineering (TSE), ACM Transactions on Software Engineering and Methodologies

(TOSEM), IEEE Software (SW), Springer: Software Testing Verification and Reliability

(STVR), Springer: Empirical Software Engineering, Elsevier Science: Information and

Software Technology (IST), and Elsevier Science: Journal of Systems and Software (JSS).

49

Since our review is about SBST, we also included journals relating to software quality

assurance and evolutionary computing: Springer: Software Quality Journal, Springer:

Genetic Programming and Evolvable Machines, IEEE: Transactions on Evolutionary

Computation, and MIT Press: Evolutionary Computation. Another important source of

publications that we included was the Genetic and Evolutionary Computation Conference

(GECCO). Based on the impact factor, GECCO is one of the top conferences in the fields

of artificial intelligence, machine learning, robotics, and human-computer interaction [1]

and is directly related to the field of genetic and evolutionary computation. GECCO’s

proceedings were published by Springer in 2003 and 2004 and afterwards by ACM.

A systematic way of formulating the search string includes (1) identifying the major

search keywords based on the research questions (2) finding alternative words and

synonyms for the major keywords and (3) creating a search string by joining major

keywords with Boolean AND operators, and the alternative words and synonyms with

Boolean OR operators.

Based on our main research focus, which is investigating empirical studies in the domain

of SBST, the following major search keywords are used in this paper: software testing and

metaheuristic search algorithm.

We did not use empirical study as a keyword because we realized that not all papers that

perform an empirical study, in the broad sense that we have defined it, use this keyword.

To formulate our search query we tried a number of search strings and came to the

conclusion that ‘software testing’ as an expression is not a good keyword because there are

many papers which don’t use these two words together but are nevertheless related to

software testing. These papers may use terms such as testing, test case, test data and so on.

On the other hand if we used the term testing alone, we would find too many unrelated

papers. So we decided to use the terms software and test linked together with a Boolean

AND instead of using ‘software testing’ as an expression. Using ‘software’ and ‘test’ will

find almost all related papers to software testing, but to make sure that we do not miss any

interesting papers in test case generation we used the expression of ‘test case generation’

as an alternative for software testing.

Metaheuristic search algorithm is the second major term and also has many alternatives.

We used general terms such as ‘evolutionary algorithm’, ‘meta-heuristic’, and ‘search

based’ to explore the domain. Also, names of different MHS algorithms were used to make

sure that no related papers were missed.

We also wanted to make sure that we do not miss any papers that have explicitly used

50

the widely used term ‘evolutionary testing’, and thus included the expression of

‘evolutionary testing’ as a separate search string joined with the main string by an OR

Boolean operator. The above decisions lead to the following search string shown in

Figure 3.

 The whole string is searched in each repository in all titles, keywords, and abstracts.

The expression ‘evolutionary testing’ is searched in the entire contents of all papers in the

repositories as well.

One problem that we realized after some manual checking of the results of the search

query was the fact that some search engines, such as IEEE Xplore, differentiate between

the singular and plural form of words. To deal with this, we had to add some more

alternative words and expressions to the search string by adding a ‘s’ to the end of all the

words we already had. For example, we added ‘evolutionary algorithms’, ‘meta-

heuristics’, ‘genetic algorithms’ and so on.

After finalizing the search string, the search query was run on the search engines of

different repositories.

4.2.2 Study selection based on inclusion and exclusion criteria

Metaheuristic search algorithms have been used to automate a variety of software testing

activities such as test case generation, test case selection, test case prioritization, and

optimum allocation of testing resources. Since the focus of this systematic review is on test

case generation, it is therefore necessary to define suitable inclusion and exclusion criteria

for selecting relevant papers. In this section, we will discuss and justify the inclusion and

exclusion criteria that were used.

We executed our search query on all selected databases and found 450 (after removing

duplicates from different repositories) research papers in total. We only included papers up

to the year 2007. In order to select the relevant papers to answer our research questions, we

applied a two-stage selection process. At the first stage, we excluded papers based on

abstracts and titles. All the papers were divided into three sets and each set was read by a

researcher. We applied the following exclusion criteria:

 Abstracts or titles that do not discuss test case generation or any of the alternate

terms that we used were excluded.

 Abstracts or titles that do not discuss the application of any MHS algorithm to

automate test case generation were excluded.

51

If a researcher was unsure about a paper after reading its title and abstract, then the paper

was included for the second phase of selection. After applying the inclusion criteria for the

first phase, we were left with 122 papers.

At the second stage, we again divided the papers into three equal sets and divided them

among three researchers to check the contents of each paper. We excluded papers based on

the following exclusion criteria:

 Posters, extended abstracts, technical reports, PhD dissertations, and papers with

less than three pages were excluded. Our goal was to account only for peer-

reviewed, published papers that presented sufficient technical details.

 The papers that do not automate test case generation were excluded because this is

the scope of our review.

 The papers that do not report any empirical study (see Section 2.3 for details on

what we mean by empirical studies) were excluded.

In the cases where a researcher could not decide whether to keep or exclude a paper,

then the paper was discussed with other researchers and a decision was made, by

consensus. It is important to mention that we didn’t exclude papers based on the realism of

SUTs used in their case studies. The reason is that exclusion would then be subjective as no

precise criterion can be defined and would probably lead to a very small number of

selected papers. After applying the second phase of selection, we remained with 68 papers

that contained empirical studies about test case generation using MHS algorithms.

However, four of these 68 papers, presented empirical studies that had already been

reported in some other paper. This occurred, for example, when the journal version of a

conference paper was found. In these cases we extracted data about the study from both the

conference and journal versions of the paper and reported them as one study. Thus in the

rest of the review we mention only 64 papers in total, even though we did analyze 68

papers. Details on the number of papers found in each database and number of papers

included after applying inclusion and exclusion criteria are listed in Table 2.

Figure 3 The search string used for selecting the papers from repositories

{(((software AND test) OR ‘test case generation’) AND (‘evolutionary algorithm’ OR

‘hill climbing’ OR ‘metaheuristic’ OR ‘meta-heuristic’ OR ‘genetic algorithm’ OR

‘optimization algorithm’ OR ‘search-based’ OR ‘search based’ OR ‘simulated

annealing’ OR ‘ant colony’)) <in abstract, keywords, and title>} OR ‘evolutionary

testing’ <in abstract, keywords, title, and whole content>

52

Table 2 Distribution of papers after applying inclusion and exclusion criteria

Repository
Number of Included

Papers After Applying
Search Query

Number of Papers
After Stage 1 Exclusion

Criteria

Number of Papers
After Stage 2 Exclusion

Criteria
IEEE Xplore 297 77 33
ACM Digital Library 117 27 22
Wiley Interscience 8 2 2
Science Direct 8 3 2
Springer 19 12 8
MIT Press 1 1 1
Total 450 122 68

4.2.3 Data extraction

We designed a data extraction form in Microsoft Excel to gather data from the research

papers. We collected two sets of information from each paper. The first set included

standard information [30] such as name of the paper, authors’ names, a brief summary,

researcher’s name, and additional comments by the researcher. The second set included the

information directly related to answering the research questions (see Table 3 for a summary

list and [5] and Section 3 for details on each data item). To assess and improve consistency

of data extraction among the researchers, a sample of papers were selected and read by all

researchers and the relevant data extracted. The extracted data was then discussed by the

researchers to ensure a common understanding of all data items being extracted and where

necessary, the data collection procedure was refined. The final set of selected papers from

each repository was then divided amongst three researchers. Each researcher read the

allocated papers and extracted the data from the papers. In order to mitigate data collection

errors, the data extraction forms of each researcher were read and discussed by two others.

All ambiguities were clarified by discussion among the researchers.

Table 3 Research questions and type of data collected

Research Questions Type of Data Collected

RQ 1
Type of MHS algorithms, test levels, targeted faults, test model, type of test
cases, and application domain

RQ 2

RQ 2.1 Number of runs, analysis method
RQ 2.2 Comparison baseline
RQ 2.3 Measures of cost, measures of effectiveness
RQ 2.4 Conclusion, external, internal, and construct validity threats

RQ 2.5
All of the information from RQ2.1 to RQ2.4 is used, formal hypothesis, object
selection strategy, data collection method

RQ 3

RQ 3.1 Test level, fault type, MHS algorithm
RQ 3.2 Test purpose, comparison baseline, cost and effectiveness results
RQ 3.3 Scalability results

53

5 Results

The following section outlines the results related to the research questions. No formal

meta-analysis of the results of the empirical studies could be performed because of the

variations in the way empirical studies are conducted and reported, and as such, results are

compiled in structured, tabular form.

5.1 RQ1: What is the research space of search-based software testing?

As previously mentioned, we provide here only the most salient results to the research

question. The reader is invited to read the technical report [5] corresponding to this paper

to obtain detailed results. The results show that in the majority of the papers, SBST

techniques have been applied at the unit testing level (75%). Moreover, most papers (78%)

do not target any specific faults but rather focus on structural coverage of different test

models. The most commonly used algorithm is the GA and its extensions (73%), followed

by a more limited use of simulated annealing and its extensions (14%). There could be

several reasons for this frequent use of genetic algorithms. First, there are numerous

publications on the application of GA to various problems [21]. Furthermore, substantial

empirical data is available for the different parameter settings required by GAs and this

greatly helps the choice of appropriate parameters for a specific problem to be solved [46].

This, together with the many books [16, 26] that exist on genetic algorithms, makes it

easier for researchers to learn how to adapt genetic algorithms to their context. Second,

being a global search algorithm, GAs have been shown to usually perform better than local

search algorithms [53], though there is no evidence showing that GA is better than other

global search algorithm [21]. Last, GAs have many well known implementations in the

form of commercial tools [42] and frameworks [2, 34], which greatly facilitate their

practical application.

5.2 RQ2: How are the empirical studies in search-based software testing designed
and reported?

The purpose of this research question is to investigate and assess the design and reporting

of empirical studies in the domain of search-based software testing. To answer this

question, we further divided this question into five sub-questions. By answering each sub-

question individually, we will answer the main research question. Though the results are

presented in tables that summarize the main findings, the reader can obtain a break-down

of which papers led to these findings in the technical report [5] corresponding to this paper.

54

5.2.1 RQ2.1: How well is the random variation inherent in search-based software
testing, accounted for in the design of empirical studies?

We discussed the necessity and importance of accounting for random variation and using

appropriate data analysis methods in Section 3.3. To assess whether random variation has

been accounted for, we classified the papers into two main categories: (1) papers which

accounted for random variation in their design and reported this information and (2) papers

which either did not account for random variation or did not report it well. To be classified

in the first category, the study in the paper had to report the number of times the MHS

algorithm was executed, sufficient information to determine whether the runs were

independent, and report the data analysis methods used to compare alternative algorithms

and baseline solutions. The independence of different runs can be determined in different

ways in different MHS algorithms. For instance, in the case of the HC algorithm, if it is

started from the same starting point in each run using the same strategy to select neighbors,

then all the runs will not be independent and hence every time the algorithm will find the

same solution. Different runs in HC are normally made independent by choosing different

starting points in each run or by using a random strategy to select neighbors. Additionally,

the number of runs for each MHS algorithm had to be at least ten, a ballpark figure to

enable the application of statistical hypothesis testing with minimal statistical power.

Papers that did not report the number of runs or were executed less than ten times were

placed in the second category (Random Variation Not Accounted).

Within the first category, we further divided the papers according to the type of data

analysis that had been performed. If only the average of the results or the percentage of

successful runs over all runs was reported, then these papers were classified as having

“poor” descriptive statistics (the definition of successful run varies across papers, but

generally speaking, if the test target to be covered is found, then the run is considered

successful. A test target, for example, could be a branch to cover). This is because the

average does not convey any information about the dispersion of the results being

examined. Papers which report the level of variation as well as the measures of central

tendency are counted in the sub-category “good” descriptive statistics. The final category is

the set of papers that in addition to reporting “good” descriptive statistics also reported the

results of statistical hypothesis tests comparing MHS algorithms and baselines and

establishing the statistical significance of differences. However, most of the papers did not

have detailed information on sample distributions and the validity of statistical test

assumptions. It was therefore usually not possible to determine if a paper used the correct

55

statistical procedure for a particular problem and data set.

The results in Table 4 show that 25 papers did not account for random variation. Most of

these, 20 papers, either did not provide any information about the number of runs or just

reported the result of one unknown run (the best or the only run). In five papers, the study

was repeated less than ten times.

Amongst 39 papers which accounted for random variation, 24 papers reported only the

average of the cost or effectiveness results across all runs, for example, the average number

of killed mutants as an effectiveness result or the average number of iterations as a cost

result. In some cases, the percentage of successful runs amongst all runs is reported instead

of, or along with the average of the effectiveness results (e.g., average coverage or average

mutation score). At least one measure of dispersion like standard deviation, variance, or the

variation interval ([Min, Max]) was reported for eight papers. These papers are categorized

as having “good” descriptive statistics. There were seven papers that reported statistical

tests as well as good descriptive statistics. One or more of the following statistical tests

were used: t-test, paired t-test, Mann-Whitney test, F-test, ANOVA, and Tukey test [40,

44]. There was one paper in this sub-category, which reported the use of statistical tests,

but did not specify the specific test being used and did not provide any descriptive

statistics. From the results, we can see that 39% of the papers did not account for random

variation at all, and 38% of the papers only had “poor” descriptive statistics, so in total

77% of papers either did not account for random variation or reported it poorly. The

remaining 23% of papers are divided between 12% providing only good descriptive

statistics and just 11% performing some kind of statistical hypothesis testing to assess the

statistical significance of differences that is whether they can be due to chance. To answer

RQ2.1, this review suggests that SBST would greatly benefit from paying more attention

to accounting for random variation in search heuristics and applying more rigor in

analyzing and reporting cost and effectiveness results.

Table 4 Results of how random variation is accounted for in empirical studies

Random Variation Accounted Random Variation Not Accounted
Poor

Descriptive
Statistics

Good
Descriptive

Statistics

Statistical Data
Analysis

Random
variation not discussed

or accounted for

Insufficient
number of runs

24 8 7 20 5
38% 12% 11% 31% 8%

56

5.2.2 RQ2.2: What are the most common alternatives to which SBST techniques are
compared?

In assessing the cost-effectiveness of any technique, the comparison baseline is an

important factor. In order to classify the papers we defined four categories of comparison

baselines: (1) ‘Global SBST’, where the baseline of comparison is a SBST technique using

a global MHS algorithm, (2) ‘Local SBST’ includes the techniques that use a local MHS

algorithm such as HC, (3) ‘Non-SBST’ baselines do not use a SBST technique and feature

baselines such as random search, and (4) ‘Not discussed’ addresses papers that do not

report any comparison baseline.

The comparison to non-SBST techniques or local SBST techniques serves a dual

purpose: it helps determine if the problem at hand is simple enough to be satisfactorily

solved by a simple search algorithm; otherwise it provides justification for why a more

complex SBST technique is necessary. In addition, a simple baseline of comparison is

necessary to assess the benefits of using complex SBST techniques.

As shown in Table 5, 16 studies did not discuss the comparison baseline at all. These

studies did not include any kind of comparison; they usually introduced the use of a MHS

algorithm for test case generation and performed an empirical study to show that the

technique does indeed generate satisfactory test cases. These papers are missing the

justification for why the SBST technique was necessary to address the test case generation

problem at hand and how much better it actually is compared to other existing, simpler

techniques that are available to solve the problem at hand.

There were 34 studies that reported ‘Non-SBST’ baselines within which random search

is used in 24 studies, static analysis in three, greedy algorithm in three, constraint solving

in one study and three studies used some other technique specific to their context. We see

that random search is the most commonly used comparison baseline amongst Non-SBST

techniques. There is limited use of ‘Local SBST’ baselines with only three studies using

HC. There are many studies (33) that used Global SBST techniques as comparison

Table 5 Comparison baselines used in SBST in terms of number of papers

Global SBST
baselines

Local
SBST

baselines
Non-SBST baselines

Not
Discussed GA

and
Ext.

SA
and
Ext.

Others
Hill

Climbing
Random
Search

Static
Analysis

Greedy
Algorithm

Constraint
Solving

Others

22 6 5 3 24 3 3 1 3 16

57

baselines. This is usually done when investigating the effects of different parameter

settings of MHS algorithms. This is most evident within GA and SA where 22 studies used

either GA or its extensions as baselines and six studies used SA and its extensions.

5.2.3 RQ2.3: What are the measures used for assessing cost and effectiveness of search-
based software testing?

Assessing the cost-effectiveness of SBST techniques for test case generation is the main

objective of empirical studies in our context. Therefore, measuring cost and effectiveness

in a valid manner is a basic requirement for all empirical studies.

Effectiveness measures. As it is discussed in Section 3, effectiveness measures are

categorized into two main classes: coverage-based and fault-based measures. Under the

coverage-based category, we found three main sub-categories: (1) control flow based

coverage criteria such as branch, statement, path, condition, and condition-decision

coverage (2) data flow based coverage criteria such as all-DU coverage, and (3) N-wise

coverage criteria, when SBST techniques are used for testing combinatorial designs [36].

In the category of fault-based measures, mutation analysis is the core strategy and mutation

score and the number of mutants killed are measures that were found in this review.

We found some other measures for effectiveness, which are still related to the quality of

the generated test cases, but do not fit into any of the above categories. In this review, these

measures are labeled “Others”. Based on the papers included in this review, we identified

two sub-classes among them and labeled the rest as miscellaneous. Papers in the first sub-

category use different kinds of measures related to the execution time of test cases and we

called these time-based measures. The second sub-category addresses the distribution of

fitness values of individuals (solutions) as the measure of effectiveness (e.g., average,

maximum fitness). Such a measure is usually used when the goal of a search algorithm is

not finding a targeted solution, but the goal is to be as close as possible to the targeted

solution. An example of such papers is in [8, 9], where the goal was stressing the real-time

systems by scheduling input sequences to maximize delays in the execution of targeted

aperiodic tasks. In this study, the cost is measured by fitness values, which shows how

close the completion time of a specific task is to its deadline. Table 6 presents the number

of papers in our review per the category of effectiveness measures.

58

The data we collected revealed 61 papers using one or more effectiveness measures in a

total of 72 different effectiveness measurements across reported studies. There were three

papers that did not discuss the effectiveness of the SBST technique at all. There were 47

instances (65%) that used some type of coverage criterion as the measure of effectiveness.

The most often used criteria were control flow based criteria with 43 instances (60%).

Among them, 23 instances (32%) used branch coverage, which is the most frequently used

effectiveness measure. All-DU coverage, which is based on data flow analysis, was used in

two instances and two instances used N-wise coverage as the coverage criterion.

There were 11 instances (15%) that used fault detection rate as the measure of

effectiveness, where mutation analysis is used so as to report the mutation score or the

number of killed mutants. In some cases, the fault-based measures are reported along with

other effectiveness measures. Among the 14 instances (19%), which used the other

measures for the quality of test cases, five papers used the fitness value of individuals and

six papers used different kinds of execution-time based measures. Most of the time-based

measures were related to CPU cycles spent for test case execution. They are used in studies

which try to use SBST techniques to generate test cases that will find the best/worst case

execution time of a program.

Looking at the results in Table 6, we can see that control flow based coverage criteria

targeted at white-box testing are the most often used effectiveness measures and as we

mentioned in the above discussion, branch coverage is the criterion that has received the

most attention. As a result, this problem is now pretty well understood and there is a widely

accepted, standard way of calculating fitness values based on approximation level and

branch distance [37] on control flow graphs. Fault-based effectiveness measures received

relatively little attention in the literature reporting SBST studies as compared to coverage-

based measures. Similarly, the applications of SBST techniques to artifacts other than code

are rare as white-box testing seems to have been by far the main focus.

Cost Measures. Based on the definition of cost measures in Section 3 and what we

found in this review, we categorized cost measures into two main classes (1) ‘cost of

finding the target’, which is related to the cost of automating test case generation and (2)

Table 6 Distribution of effectiveness measures across empirical studies

Coverage-based measures
Fault -
based

measures

Others
No

effectiveness
measure

Control
flow

Data
flow

N-
wise

Time-
based

measures

Fitness
value of

individuals
Miscellaneous

43 2 2 11 6 5 3 3

59

‘cost of executing the generated test suite’, which is related to the cost of test case

execution. These are both relevant and complementary. Based on the measures found in the

studies, the first category is classified into four sub-categories:

(a) the number of iterations

(b) the cumulative number of individuals in all iterations

(c) the number of fitness evaluations an algorithm needs to find the final solution

(d) test case generation time.

The only measure for the category of ‘the cost of executing generated test suite’ that we

found in the papers was the size of the test suite, which is a surrogate measure for test

execution time.

Table 7 shows that among 64 papers, seven papers did not perform any cost analysis and

in the remaining 57 papers most empirical studies reported at least one cost measure in 70

different cost measurements reported across studies.

Based on the abovementioned classification, 62 instances (86%) used measures in the

category “Cost of finding the target”. The most often used measure among them was the

number of iterations, which is used in 27 instances (39%). A total of six instances (4%)

used the number of individuals (test cases) and the number of fitness evaluations is used by

14 instances (20%) as the measure of cost. Finally, there were 15 instances (21%) that used

the ‘test case generation time’ measure.

In the second main category, ‘cost of executing the final test suite’, the size of test suite

was the only measure that we found and it was used in eight instances. Some of these

instances, which report the number of test cases in the final solution, reported the cost of

finding the target as well. In some of these instances, the target of the SBST technique was

actually creating test suites with minimum size for covering a specific criterion such as a

minimal test suite that exhibits pair-wise coverage [20].

Summarizing the results of cost measures, we can see that the most commonly used

measure is the number of iterations. This measure is, however, the least precise measure

based on the discussion in the framework in Section 3. Another conclusion is that most

studies use cost measures only for comparison purposes with other alternative techniques.

There are just 15 instances (21%) that used measures such as test case generation time,

which conveys whether a particular technique is likely to be practical and scale up.

60

Table 7 Distribution of cost measures across empirical studies

Cost of finding the target
Cost of executing

the final test suite
No cost

Measure
Number of
iterations

Number of
individuals

Number
of fitness

evaluations

Test case
generation time Size of test suite

27 6 14 15 8 7

5.2.4 RQ2.4: What are the main threats to the validity of empirical studies in the domain
of search-based software testing?

In order to answer this question, we carefully assessed the studies using the proposed

framework in Section 3. For the construct validity threats, we looked at the validity of the

cost and effectiveness measures. The most frequently observed threat was using some

measures of cost that have severe limitations as they are not precise. As discussed in the

framework, the imprecision of cost measures such as ‘the number of iterations’ makes the

comparison between different SBST techniques very coarse grained. In addition, measures

such as the number of iterations, the number of individuals, and the number of fitness

evaluations can only be used for comparison across SBST techniques and cannot

demonstrate the practicality of SBST techniques. On the other hand, cost measures such as

‘test case generation time’, if measured as clock time, are suitable for showing the

practicality of a technique under time constraints. Such measures are, however, platform

dependent and therefore not easy to use for comparisons across techniques and studies.

The most frequently encountered conclusion validity threat is related to accounting for

the random variation that exists in the results obtained from SBST techniques. As

discussed in RQ2.1, 39% of the papers did not take the random variation of results into

account and 38% did not analyze or report it properly. This leads to a frequent threat

regarding the statistical significance of the results. Therefore, not accounting for

randomness and not applying proper data analysis (Section 3.3 and RQ 2.1) makes it very

difficult to confidently draw practical conclusions from the results reported in most studies.

Moreover, among the 11% of papers that discussed statistical hypothesis tests, just one

paper has discussed the practical significance of differences that is whether differences

among techniques justify the use of more complex techniques.

Regarding internal validity threats, the most important concern is the instrumentation of

code and the use of different tools for data collection without reporting sufficient

information about them. If the data collection and code instrumentation is not done through

61

a well-identified and available tool, then detailed information about the process of data

collection should be reported. An example of this would be the use of a tool that

instruments the code to collect, for instance, branch coverage information. If the tool is

developed for experimentation purposes only and has not been thoroughly tested, then the

coverage information generated by the tool might not be reliable and hence lead to an

internal validity threat. A possible way to deal with this validity threat is to use readily

available (open source, downloadable, or commercial) tools for this purpose.

The lack of clearly defining the target SUTs and having a clear object selection strategy

are the most common threats to external validity. Usually the algorithms are executed on

very small programs and no clear justification is provided for their choice and why they

may be representative of the target domain, if specified. This can result in invalid

generalization of the results.

5.2.5 RQ2.5: What are the most frequently omitted aspects in the reporting of empirical
studies in search-based software testing?

In the previous sections, we have discussed the lack of properly reported descriptive

statistics and statistical hypothesis testing (statistical significance) as the most commonly

missing aspects in many empirical studies. Only 23% of the reviewed papers reported

proper descriptive statistics or statistical significance results. In addition to this aspect, as

discussed in the framework, there are other aspects that are also important and should be

reported. These aspects are: discussion of validity threats, specification of formal test

hypotheses, object selection strategy, parameter settings, and data collection method. For

validity threats, 10% discussed conclusion validity, 6% discussed external validity, 3%

discussed construct validity, and only 3% of the papers discussed internal validity threats.

We found that only two papers out of 64 specified formal hypotheses, 44% of the papers

discussed object selection strategies, and 39% of the papers described their data collection

methods. Parameter settings (see [5]) were discussed by most, but not all of the papers

(88%). However, all papers did not discuss all parameters required for their study; usually

there is only a partial discussion. In some cases the authors provide justification of why

they chose particular values for the parameters but this was rare.

Summarizing the above information, Table 8 depicts the most frequently omitted aspects

in the reporting of empirical studies. Not reporting this information makes the full

interpretation of the results very difficult. For example, poor reporting may make it

difficult to determine whether differences are statistically significant, and whether

62

differences are expected to matter in practice. It is also usually difficult to determine if

results can be generalized and to what domain.

5.2.6 Conclusion

In our context, defining good and relevant cost and effectiveness measures is a prerequisite

for a useful empirical study. Almost all of the papers use appropriate (though not perfect)

cost and effectiveness measures to perform empirical studies. However, there were two

major problems in the majority of the papers. First, most of the papers do not account for

the random variation in cost and effectiveness of SBST techniques. Even the majority of

the papers that did account for the random variation didn’t use proper data analysis and

reporting methods (descriptive statistics and statistical hypothesis testing). Thus, there is a

general lack of rigor in the statistical analysis and reporting of results in most empirical

studies assessing the use of MHS algorithms for test case generation. Second, most of the

papers didn’t demonstrate the benefits of SBST by comparing it with simpler, techniques

such as random search or HC. These two factors are highly important for yielding

interpretable empirical studies in the context of test case generation using SBST

techniques. Furthermore, many other relevant aspects of empirical studies such as the

reporting of validity threats, the definition of formal hypotheses, the object selection

strategy, and data collection methods are not reported by most of the papers. We can

therefore conclude that most empirical studies in the context of test case generation using

SBST techniques are still not properly conducted and reported and that improving this

situation should be an important objective of the research community for future studies.

Table 8 The most omitted aspects of empirical studies

The most omitted aspects in the reporting of
empirical studies

Number of papers Percentage

Good Descriptive statistics and statistical test 15 23%

Validity threats

Construct 2 3%

Internal 2 3%

Conclusion 7 10%

External 4 6%

Formal Hypothesis 2 3%

Object selection strategy 28 44%

Data collection method 25 39%

63

5.3 How convincing are the reported results regarding the cost, effectiveness, and
scalability of search-based software testing techniques?

There is a lot of research being conducted on test case generation based on MHS

algorithms. In order to draw general conclusions from the current body of work, we need

to assess how convincing is the evidence regarding the cost, effectiveness, and scalability

of SBST techniques. The first step is to clearly identify studies that provide complete and

credible evidence from an empirical standpoint. Credible results are the consequence of a

well designed and conducted empirical study. Based on the discussions in Section 3, a well

designed study in the context of SBST should account for the random variation present in

the results and have a meaningful comparison baseline to show that the targeted test

problem benefits from a MHS approach. Therefore, in order to answer this research

question, we first selected papers that at a minimum account for the random variation of

results and compare their technique with the results of a simpler, non-SBST technique

(such as random search, static source code analysis, or some other technique applicable to

the test problem under consideration) or with HC. The first sub question, RQ3.1, will

provide an overview of these papers. The second step to answer RQ3 is to select those

papers that performed and reported proper data analysis. To satisfy this criterion, we expect

papers to report descriptive statistics on the variation in the results (cost, effectiveness),

where relevant or results of statistical hypothesis testing comparing alternative test case

generation algorithms, and in particular MHS algorithms with simpler baseline

alternatives. We deemed this set of papers as having credible evidence regarding the cost,

effectiveness, and scalability of SBST. In sub question RQ3.2, we provide detailed

information about the cost and effectiveness results presented in these papers along with a

short description of the test problem that they tackled.

5.3.1 RQ3.1: For which metaheuristic search algorithms, test levels, and fault types is
there credible evidence for the study of cost-effectiveness?

This sub-question provides a summary of the research papers that met the minimum

criteria of accounting for random variation in results and performing comparisons with a

simpler non-SBST or local SBST techniques. Out of the 64 papers that we analyzed, we

found 39 that accounted for random variation of results. This number was reduced to 18,

after selection of only those papers that also had either a non-SBST or a simple, local MHS

comparison baseline. Thus, based on the criteria that we used, we had to exclude 46 papers

as not being applicable for answering our research question. It is worth mentioning that

there were 14 papers among those 46 discounted papers that had the minimum requirement

64

of accounting for random variation, but did not have a non-SBST or local MHS

comparison baseline. For example, they may have proposed an extension to a genetic

algorithm that would possibly enhance its capacity for test case generation and compared

their results to a genetic algorithm not having this extension. In this review, those studies

are not considered as credible evidence, since they do not show, in any way, that a simple

non-SBST technique such as random search or a local MHS such as HC could not, in this

particular context, equal or outperform their technique. This is an important consideration,

since there is no a priori reason to believe that a MHS algorithm is more cost-effective and

efficient than simpler algorithms in all test case generation contexts. The size of the search

space is only a weak indicator of the extent of the search challenge as the search difficulty

also depends on the search space landscape and distribution of satisfactory solutions across

this space. Table 9 summarizes this set of 18 papers in terms of the MHS algorithms used,

the testing levels, and the fault types targeted in the empirical studies. These papers are

referred to as ‘Minimum Criteria papers’ in Table 9.

As can be seen in Table 9, amongst the 18 papers that report credible evidence, most

papers (13 out of 18) applied a SBST technique at the unit testing level. The most

commonly investigated MHS algorithm is the genetic algorithm with 12 papers out of 18,

followed by simulated annealing with just four papers. This trend is the same as that

observed in the full set of 64 papers in Section 5.1 There are also only two papers that

target specific faults, one targeting functional faults and the other non-functional faults.

5.3.2 RQ3.2: How convincing is the evidence of cost and effectiveness of search-based
software testing techniques, based on empirical studies that report credible results?

Along with accounting for random variation in the results and having a non-SBST or local

MHS comparison baseline, studies must also report proper descriptive statistics or

statistical hypothesis testing results in order to present credible and interpretable evidence.

After the application of these criteria, there were just eight papers left and the results of

these papers, referred to as ‘Sufficient Criteria Papers’, are summarized in Table 10.

Based on the information presented in Table 10, it is apparent that there is a scarcity of

convincing evidence regarding the cost-effectiveness of SBST techniques. Nevertheless,

these papers are a representative sample from the different types of investigations that are

performed with MHS algorithms for test case generation. MHS algorithms have been

recently applied to increasingly diverse types of problems and this is seen in this sample of

papers by comparing the content of the “test purpose” column across papers. This ranges

65

from specialized purposes such as testing the performance of real time systems to more

general purposes such as testing non-public methods in object-oriented programs. Despite

the diversity of objectives, we can see that in most of these papers, MHS algorithms,

mostly GA, were compared with random search and the results show that GA

outperformed random search for the test case generation problems at hand. This suggests

that this type of problems indeed requires guided search algorithms. It would also be

interesting to see how the quality of the empirical studies that have been performed in this

field have improved over the years. In order to investigate this, we compare three series as

shown in Figure 4.

The ‘All papers’ series shows the number of papers per year expressed as a percentage

of the total number of papers (64 papers). The ‘Minimum Criteria papers’ series shows the

percentage per year of the papers satisfying our minimum criterion of accounting for

Table 9 Test levels, fault types, and the type of metaheuristic algorithms used by ‘minimum criteria
papers’

 Test Level Fault Type Type of Metaheuristic Search Algorithm

Paper Unit
Integrati

on
System

Non-
Functio

nal
Functional GA EGA SA ESA ACO GP PSO

Jones et. al. [28] √ – – – – √ – – – – – –
Puschnerand
Nossal [43] √ – – – – √ – – – – – –
Tracey et. al.
[47] √ – – – – - – √ – – – –
Bueno and Jino
[10] √ – – – – √ – – – – – –
Michael et. al.
[38] √ – – – – √ – – – – –
Wegener et. al.
[51] √ – – – – √ – – – – – –
Shiba et. al. [45] – – √ – – √ – – – √ – –
Briand et. al. [8,
9] – – √ √ – √ – – – – – –
Miller et. al.
[39] √ – – – – √ – – – – – –
Watkins and.
Hufnagel [50] √ – – – – √ – – – – –
Zhan and Clark
[54] – – √ – √ – – √ – – – –
Zhan and Clark
[55] – – √ – – – – √ √ – – –
Bueno et. al.
[11] – – √ – – – – – – – – √
Harman et. al.
[33] √ – – – – – √ – – – – –
Harman and
McMinn [24] √ – – – – √ – – – – – –
Harman et. al.
[22] √ – – – – √ – – – – – –
Wappler and
Schieferdecker
[49] √ – – – – √ – – – – – –
Xiao et. al. [53] √ – – – – √ – √ √ – – –

66

random variation (as reported in Table 9 and the ‘Sufficient Criteria papers’ series shows

the percentage per year of papers satisfying our secondary criteria of having an appropriate

baseline and proper descriptive statistics or results of statistical hypothesis testing (as

reported in Table 10). From Figure 4 we can see that 40% of all papers, 55% of all

minimum criteria papers and 88% of all sufficient criteria papers were published in recent

years (2006 and 2007). The trends that become apparent are that firstly, the number of

SBST publications has been steadily growing over the years, and secondly, that the quality

of empirical studies has increased dramatically in recent years.

5.3.3 RQ3.3: Is there any evidence regarding the scalability of metaheuristic search
algorithms for test case generation?

During our systematic review, we did not find any paper specifically targeting the

scalability of the MHS algorithm in the context of SBST. However, there was one paper

where the authors performed a small scale scalability analysis [53]. The study was

conducted on five small test objects written in C/C++. There were 36 to 87 test

requirements to achieve full condition-decision coverage for all test objects and the size of

the search space ranged from 26 to 232. The study was performed using different

algorithms including GA, SA, Genetic Simulating Annealing (GSA), SA with Advanced

Adaptive Neighbors (SA/AAN), and random search. In two of the SUTs used for the study,

two different search spaces (one small and one large) were used to measure the

performance (condition-decision coverage vs. the number of SUT iterations) of different

MHS algorithms and random search. Based on the empirical evaluation, it was concluded

Figure 4 Quality trends of SBST empirical studies based on the publication year

67

Table 10 Test purposes, comparison baselines, and result highlights for the ‘sufficient criteria papers’

Paper Test purpose
Comparison

baseline
Result highlights

Puschner
and Nossal,
1998

Creating an input data set
with the worst-case
program execution time

RS
BEDG

StA

In most cases, GA performed equal to or better than
RS in terms of effectiveness measured as execution
time of the SUT. For smaller size SUTs, GA had
results as good as BEDG and StA

Briand et.
al., 2005
and 2006

Stressing a real-time
system by creating input
sequences that maximize
delays in the execution of
target tasks and increase
chances of missing
deadlines.

ScA

The technique can schedule tasks to miss the
deadline(s) even though schedulability analysis
identified them as schedulable. The GA is successful in
bringing task completion times closer to their
deadlines, thus leading to stressing the system in that
respect.

Miller et.
al., 2006

Test case generation
using genetic algorithms
and program dependence
graphs.

RS, GA

1) The results showed that, for simple programs there
is little difference in the results (branch coverage)
between RS and their proposed GA approach
(TDGen).
2) The difference is seen in larger programs, where a
much smaller number of generations are required to
achieve 100% branch coverage.
3) It is also observed that for some SUTs, TDGen can
achieve 100% branch coverage, where RS and
GADGET cannot.

Watkins et.
al., 2005

Comparison of different
fitness functions for path
coverage

RS

Based on the study, it was concluded that there is no
single fitness function that works well in all cases. A
two-step method using two best fitness functions is
therefore suggested in the paper.

Harman
and
McMinn,
2007

Test data generation to
answer three research
questions formulated
based on royal road
theory (see [24]) for GA

RS, HC

1) GA was able to find inputs to exercise the branches
that have royal road features and HC and RT were not
successful at all.
2) GA was unable to find the inputs to exercise the
branches that have royal road features if crossover
operators were removed.
3) HC performed better or no worse than GA for the
branches that do not have royal road features.

Harman et.
al., 2007

Investigation of the
relationship between the
size of the search space
(consisting of test inputs)
and the performance of
search algorithms
measured as the number
of fitness evaluations to
cover a branch

RS, HC

1) There is no relationship between search space
reduction and reduction in cost for random search.
2) There is significant improvement in cost reduction
for both hill climbing and the genetic algorithm.
3) The reduction in cost is more for the genetic
algorithm than for hill climbing.
4) There is no relationship between search space
reduction and search effectiveness in terms of coverage
for any of the search algorithms.

Wappler
and
Schieferde
cker, 2007

An approach for testing
non-public methods
without breaking the
encapsulation of the
class, using an objective
function specifically
designed to cover non-
public methods via public
methods.

RS, GP
The new GP technique achieved higher overall branch
coverage than RS and higher coverage of non-public
methods than their existing GP based approach.

Xiao et. al.,
2007

Empirical evaluation of
different MHS algorithms
and RS for test data
generation.

GA, SA, two
extensions of

SA (SA/AAN,
GSA), RS

GA performed better than all other algorithms
including random search. After GA, SA/AAN
performed better in terms of both cost (number of SUT
executions) and effectiveness (condition decision
coverage).

HC: Hill Climbing, RS: Random Search, GA: Genetic Algorithm, SA: Simulated Annealing, GP: Genetic Programming,
SA/AAN: SA with Advanced Adaptive Neighbors, GSA: Genetic SA, ScA: Schedulability Analysis, BEDG: Best Effort
Data Generation, StA: Static Analysis

68

that GA performed well for both the small and the large search space. SA/ANN was the

second best. SA and GSA performed well only for the small search space. All MHS

algorithms performed better than random search. As a result, we can say that scalability

analyses of SBST techniques in the domain of test case generation are very rare and there

is a need to focus more on scalability analysis in future studies.

5.3.4 Conclusion

Based on the discussions in the three sub-questions above, the number of papers which

contain well-designed and reported empirical studies in the domain of test case generation

using SBST is very small. As a result, there is a limited body of credible evidence that

demonstrates the usefulness of SBST techniques for test case generation. This evidence is,

in addition, very partial as it mostly focuses on the use of genetic algorithms at the unit

testing level. This evidence, however, consistently shows that the genetic algorithms

outperform random search in terms of structural coverage. However, this evidence is just

based on eight papers and cannot be generalized to state that genetic algorithms at the unit

testing level will always outperform random search regardless of the test objectives. More

empirical studies must be conducted to provide strong and generalizable evidence about

the suitability and applicability of different MHS algorithms for test case generation at

different testing levels and for test objectives other than structural coverage.

6 Threats to the Validity of this Review

The main validity threats to our review are related to the possible incomplete selection of

publications, inaccuracy of data extraction, and bias in quality assessment of studies.

6.1 Incomplete selection of publications

In Section 4.2, we have discussed and justified the systematic and unbiased selection

strategy of publications. However, it is still possible to miss some relevant literature. One

such instance is the existence of grey literature such as technical reports and PhD theses. In

our case, this literature can be important if the authors report the complete study which is

briefly reported in the corresponding published paper. In this review, we did not include

such information.

Another instance that may lead to an incomplete selection of publications is the

difficulty of finding an appropriate search string. In Section 4.2 we provide justification for

the repositories that we selected and the search string that we used. However, there may

69

still be some papers, which have used some other related terms other than our keywords.

We refined our search string several times because we found a paper missing from our

selected papers, which was in the reference list of another paper. In order to deal with this

problem, we refined our search string until it included all such papers and we were sure

that our set of selected papers did not miss any paper that is referred to and relevant for this

review.

6.2 Inaccuracy in data extraction

Inaccurate data can be the result of subjective and unsystematic data extraction or invalid

classification of data items. In our review, we tried to deal with this problem by two means.

First, we defined a framework, which clearly identified the data items that should be

extracted. Second, all the data extracted was reviewed by three researchers and all

discrepancies were settled by discussion to make sure that the extraction was as objective

as possible. Therefore, the remaining problem is the validity of the framework itself. We

have defined the framework based on the current guidelines for empirical studies in

software engineering and adapted them to our domain of interest based on experience.

Hence, we believe that it is a good starting point, but it can be further improved by

feedback and discussion from other researchers in the domain.

6.3 Unbiased quality assessment

Assessing the quality of the papers for answering RQ3 was a challenging issue. Even

though the data extracted from the papers to judge their quality was detailed and based on a

well thought framework, the criteria used to select the papers themselves could be thought

of as subjective. Our justification for the validity of this criterion is discussed in the

Section 5.3 and we re-emphasize the fact that this is the minimum requirement for having a

valid empirical study in the domain of SBST.

7 Conclusion

The automation of test case generation has been a long-standing problem in software

engineering. Search-based software testing, or in other words the application of

metaheuristic search (MHS) algorithms for test case generation, has shown to be a very

promising approach for solving this problem by re-expressing test case generation

problems as search problems. As a result, a great deal of research has been conducted and

published. The time was therefore ripe to perform a systematic review of the state of the art

70

and appraise the evidence regarding the cost-effectiveness of such an approach. A

systematic review is very different from more informal, traditional surveys, in the sense

that it aims at being comprehensive in its coverage and repeatability by relying on well-

defined paper selection and analysis procedures. This systematic review focuses, due to

space constraints, on one specific but crucial aspect: the way SBST techniques have been

empirically assessed. This aspect is highly important as all MHS algorithms are heuristics

and therefore cannot guarantee their success in solving a test case generation problem or

any other problem for that matter. Only an empirical investigation can provide the

necessary confidence that a specific MHS algorithm is appropriate for a given test case

generation problem.

In addition to a large-scale, systematic review, our contribution also includes guidelines,

in the form of a framework, on how to conduct empirical studies in search-based software

testing. Results of our review have shown that the research reported so far has mostly

focused on structural coverage and unit testing. However, the research is increasingly more

diversified in the types of topics being tackled. Results also show that empirical studies in

this field would benefit from more standardized and rigorous ways to perform and report

studies. More specifically, three important empirical issues stand out from our analysis.

Studies need to, more systematically and rigorously, account for the random variation in

the results generated by any MHS algorithm. Such random variation implies that

alternative techniques can only be compared by statistical means, that is, statistical

hypothesis testing. This, unfortunately, is not performed well in most published papers and

our framework provides guidelines about which statistical test to perform in which

circumstance. Last, another important issue is that it is impossible to assess how a MHS

technique performs in absolute terms: to be able to conclude on its usefulness to tackle a

specific test case generation problem, a proposed technique needs to be compared with

simpler and existing alternatives to determine whether it brings any advantage. This is

again missing in an important number of papers and needs to be carefully addressed by all

studies in the future.

Despite the above limitations, credible results are available and existing results confirm

that MHS algorithms are indeed promising for solving a wide variety of test case

generation problems. Future research work will have to better establish their limitations

and the types of problems for which they are applicable and required.

71

Acknowledgment

The authors wish to thank Simula School of Research and Innovation (SSRI) for funding

this work.

References

[1] "Computer Science Conference Ranking," 2008, http://www.cs-conference-
ranking.org/conferencerankings/topicsii.html.

[2] "Genetic Algorithms Framework," Rubicite Interactive, 2004,
http://sourceforge.net/projects/ga-fwork.

[3] "UML Profile for Modeling and Analysis of Real-time and Embedded Systems
(MARTE)," Object Management Group (OMG), 2008, http://www.omg.org/cgi-
bin/doc?ptc/2008-06-08.

[4] W. Afzal, R. Torkar, and R. Feldt, "A systematic review of search-based testing for
non-functional system properties," Information and Software Technology, vol. 51,
pp. 957-976, 2009.

[5] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic
Review of the Application and Empirical Investigation of Evolutionary Testing," in
Technical Report Simula.SE.293: Simula Research Laboratory, 2008.

[6] B. Beizer, Software testing techniques Van Nostrand Reinhold Co., 1990.
[7] A. Bertolino, "Software testing research: achievements, challenges, dreams," in

2007 Future of Software Engineering: IEEE Computer Society, 2007.
[8] L. C. Briand, Y. Labiche, and M. Shousha, "Stress testing real-time systems with

genetic algorithms," in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO '05) Washington DC, USA: ACM, 2005.

[9] L. C. Briand, Y. Labiche, and M. Shousha, "Using genetic algorithms for early
schedulability analysis and stress testing in real-time systems," Genetic
Programming and Evolvable Machines, vol. 7, pp. 145-170, 2006.

[10] P. M. S. Bueno and M. Jino, "Identification of potentially infeasible program paths
by monitoring the search for test data," in Proceedings of the fifteenth IEEE
international conference on Automated Software Engineering (ASE '00) 2000, pp.
209-218.

[11] P. M. S. Bueno, W. E. Wong, and M. Jino, "Improving random test sets using the
diversity oriented test data generation," in Proceedings of the 2nd international
workshop on Random testing: co-located with the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE '07) Atlanta, Georgia: ACM,
2007.

[12] E. K. Burke and G. Kendall, Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques: Springer 2006.

[13] K. Y. Cai and D. Card, "An analysis of research topics in software engineering -
2006," Journal of Systems and Software, vol. 81, p. 8, 2008.

[14] J. A. Capon, Elementary Statistics for the Social Sciences: Wadsworth Publishing
Co Inc, 1988.

[15] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell,
S. Mancoridis, K. Rees, M. Roper, and M. Shepperd, "Reformulating software
engineering as a search problem," IEE Software vol. 150, pp. 161-175, 2003.

[16] D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers:
World Scientific Publishing Company, 1997.

72

[17] R. Drechsler and N. Drechsler, Evolutionary Algorithms for Embedded System
Design: Kluwer Academic Publishers, 2002.

[18] T. Dyba, V. B. Kampenes, and D. I. K. Sjoberg, "A systematic review of statistical
power in software engineering experiments," Information and Software
Technology, vol. 48, pp. 745-755, 2006.

[19] T. Dyba, B. A. Kitchenham, and M. Jorgensen, "Evidence-based software
engineering for practitioners " IEEE software, vol. 22, p. 8, January/February 2005
2005.

[20] S. A. Ghazi and M. A. Ahmed, "Pair-wise test coverage using genetic algorithms,"
in The 2003 Congress on Evolutionary Computation (CEC '03) 2003, pp. 1420-
1424.

[21] M. Harman, "The Current State and Future of Search Based Software Engineering,"
in 2007 Future of Software Engineering: IEEE Computer Society, 2007.

[22] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J. Wegener, "The impact of
input domain reduction on search-based test data generation," in Proceedings of the
the 6th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on the foundations of software engineering Dubrovnik,
Croatia: ACM, 2007.

[23] M. Harman and B. F. Jones, "Search-based software engineering," Information and
Software Technology, vol. 43, pp. 833-839, 2001.

[24] M. Harman and P. McMinn, "A theoretical empirical analysis of evolutionary
testing and hill climbing for structural test data generation," in Proceedings of the
2007 International Symposium on Software Testing and Analysis (ISSTA '07)
London, United Kingdom: ACM, 2007.

[25] C. Hart, Doing a Literature Review: Releasing the Social Science Research
Imagination: Sage Publications Ltd, 1999.

[26] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms: Wiley-Interscience,
1997.

[27] D. Johnson, "A theoretician's guide to the experimental analysis of algorithms," in
Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth
DIMACS Implementation Challenges, 2002, pp. 215-250.

[28] B. F. Jones, H. H. Sthamer, and D. E. Eyres, "Automatic structural testing using
genetic algorithms," Software Engineering Journal, vol. 11, pp. 299-306, 1996.

[29] K. S. Khan, R. Kunz, J. Kleijnen, and G. Antes, Systematic Reviews to Support
Evidence-Based Medicine: How to Review and Apply Findings of Healthcare
Research: Royal Society of Medicine Press Ltd, 2003.

[30] B. A. Kitchenham, "Guidelines for performing Systematic Literature Reviews in
Software Engineering," 2007.

[31] B. A. Kitchenham, T. Dyba, and M. Jorgensen, "Evidence-based software
engineering," in Proceedings of the 26th International Conference on Software
Engineering (ICSE '04): IEEE Computer Society, 2004.

[32] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El
Emam, and J. Rosenberg, "Preliminary Guidelines for Empirical Research in
Software Engineering," IEEE Transactions on Software Engineering, vol. 28, p. 14,
August 2002.

[33] K. Lakhotia, M. Harman, and P. McMinn, "A multi-objective approach to search-
based test data generation," in Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO '07) London, England: ACM, 2007.

[34] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki, E. Popovici, K. Sullivan, J.
Harrison, J. Bassett, R. Hubley, and A. Chircop, "A Java-based Evolutionary

73

Computation Research System," George Mason University's ECLab Evolutionary
Computation Laboratory, 2007, http://www.cs.gmu.edu/~eclab/projects/ecj/.

[35] T. Mantere and J. T. Alander, "Evolutionary software engineering, a review,"
Applied Soft Computing, vol. 5, pp. 315-331, 2005.

[36] A. P. Mathur, Foundations of Software Testing: Pearson Education, 2008.
[37] P. McMinn, "Search-based software test data generation: A survey," Software

Testing, Verification and Reliability, vol. 14, p. 52, 2004.
[38] C. C. Michael, G. McGraw, and M. A. Schatz, "Generating software test data by

evolution," IEEE Transactions on Software Engineering, vol. 27, pp. 1085-1110,
2001.

[39] J. Miller, M. Reformat, and H. Zhang, "Automatic test data generation using
genetic algorithm and program dependence graphs," Information and Software
Technology, vol. 48, pp. 586-605, 2006.

[40] D. S. Moore and G. P. McCabe, Introduction to the Practice of Statistics, Fourth
ed.: W. H. Freeman, 2002.

[41] I. H. Osman and J. P. Kelly, Metaheuristics: Theory and Applications: Kluwer
Academic Publishers, 1996.

[42] H. Pohlheim, "GEATbx - The Genetic and Evolutionary Algorithm Toolbox for
Matlab," 2007.

[43] P. Puschner and R. Nossal, "Testing the results of static worst-case execution-time
analysis," in Proceedings of the 19th IEEE Real-Time Systems Symposium, 1998,
pp. 134-143.

[44] D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures,
Third ed.: Chapman & Hall/CRC, 2003.

[45] T. Shiba, T. Tsuchiya, and T. Kikuno, "Using artificial life techniques to generate
test cases for combinatorial testing," in Proceedings of the 28th Annual
International Computer Software and Applications Conference (COMPSAC '04)
2004, pp. 72-77.

[46] M. Srinivas and L. M. Patnaik, "Genetic algorithms: a survey," Computer, vol. 27,
pp. 17-26, 1994.

[47] N. Tracey, J. Clark, and K. Mander, "Automated program flaw finding using
simulated annealing," in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA '98) Clearwater Beach,
Florida, United States: ACM, 1998.

[48] R. H. Untch, A. J. Offutt, and M. J. Harrold, "Mutation analysis using mutant
schemata," in Proceedings of the 1993 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA '93) Cambridge, Massachusetts, United
States: ACM, 1993.

[49] S. Wappler and I. Schieferdecker, "Improving evolutionary class testing in the
presence of non-public methods," in Proceedings of the twenty-second IEEE/ACM
international conference on Automated Software Engineering (ASE '07) Atlanta,
Georgia, USA: ACM, 2007.

[50] A. Watkins and E. M. Hufnagel, "Evolutionary test data generation: a comparison
of fitness functions," Software: Practice and Experience, vol. 36, pp. 95-116, 2006.

[51] J. Wegener, A. Baresel, and H. Sthamer, "Evolutionary test environment for
automatic structural testing," Information and Software Technology, vol. 43, pp.
841-854, 2001.

[52] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen,
Experimentation in Software Engineering: An Introduction: Kluwer Academic
Publishers, 2000.

74

[53] M. Xiao, M. El-Attar, M. Reformat, and J. Miller, "Empirical evaluation of
optimization algorithms when used in goal-oriented automated test data generation
techniques," Empirical Software Engineering, vol. 12, pp. 183-239, 2007.

[54] Y. Zhan and J. A. Clark, "Search-based mutation testing for Simulink models," in
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
'05) Washington DC, USA: ACM, 2005.

[55] Y. Zhan and J. A. Clark, "The state problem for test generation in Simulink," in
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
'06) Seattle, Washington, USA: ACM, 2006.

75

An Enhanced Test Case Selection Approach for

Model-Based Testing: An Industrial Case Study
Hadi Hemmati, Lionel Briand, Andrea Arcuri, Shaukat Ali,

Published in the proceedings of the 18th ACM International Symposium on Foundations of

Software Engineering (FSE), pp. 267-276, 2010

Abstract— In recent years, Model-Based Testing (MBT) has attracted an increasingly

wide interest from industry and academia. MBT allows automatic generation of a large and

comprehensive set of test cases from system models (e.g., state machines), which leads to

the systematic testing of the system. However, even when using simple test strategies,

applying MBT in large industrial systems often leads to generating large sets of test cases

that cannot possibly be executed within time and cost constraints. In this situation, test case

selection techniques are employed to select a subset from the entire test suite such that the

selected subset conforms to available resources while maximizing fault detection. In this

paper, we propose a new similarity-based selection technique for state machine-based test

case selection, which includes a new similarity function using triggers and guards on

transitions of state machines and a genetic algorithm-based selection algorithm. Applying

this technique on an industrial case study, we show that our proposed approach is more

effective in detecting real faults than existing alternatives. We also assess the overall

benefits of model-based test case selection in our case study by comparing the fault

detection rate of the selected subset with the maximum possible fault detection rate of the

original test suite.

1 Introduction

Model-Based Testing (MBT) is getting increasing attention both in industry and academia

as a test automation approach [1]. The idea is to generate executable test cases by

systematically traversing specification models (e.g., represented as UML state machines

[2]) based on a test strategy such as a coverage criterion that aims to cover certain features

of the model (e.g., all transitions). There are many academic and commercial MBT tools

[3] and some studies report on the applicability and cost-effectiveness of MBT [1].

Unfortunately, in practice, more specifically at the integration and system levels, MBT

may lead to very large test suites, even for simple coverage criteria. We have observed

76

cases [3] leading to the generation of thousands of test cases for relatively modest

industrial case studies with well-known coverage criteria such as all transition-pairs and all

round-trip paths [4]. Therefore, in many situations where deadlines are tight, resources

limited, or the testing cost is high due to the use of hardware-in-the-loop or access to

dedicated test infrastructures (e.g., network), executing the entire test suite is not an option.

This is typically the case for many embedded and distributed systems. For example, system

level testing of a video conferencing system requires establishing connections with other

video conferencing systems over the network and streaming audio and video and

communicating control data. To test the software of such system, we have to assign enough

resources (actual physical devices dedicated for the test) to the test case, which increases

the cost of executing each test case compared to running a test case created for testing a

local function on a PC. In addition, such test cases should properly handle acceptable

delays in the system execution and the network communication, which means that the

execution time of each test case can be quite high in such systems.

The goal of selection techniques, given limited resources leading to an estimated

maximum test suite size, is to maximize the fault detection rate of the selected subset. In

general, this test case selection problem is NP hard (traditional set cover) [5]. Other than

random selection, there have been two main types of test case selection heuristics proposed

in the literature. The first class of techniques (coverage-based) tries to directly maximize

the coverage (e.g., code or model coverage) of the selected subset [6] and the second type

(similarity-based), which has recently been getting more interest among researchers, is

about minimizing similarity (where its definition varies on different studies) between

selected test cases [7].

In this paper, we propose a new similarity-based selection technique which is applied on

test suites automatically generated from UML state machines. The approach, which does

not require any execution information and is applied before executing any test case, first

improves the similarity function for model-based test case selection introduced in [7], by

using triggers and guards on transitions of UML state machine as a basis of measuring

similarity. Second, it improves the selection algorithm by using Genetic Algorithms (GAs)

[8] instead of a Greedy search. This work, to the best of authors’ knowledge, is the first to

address similarity-based test case selection for UML-based testing. The selection technique

is integrated with a fully automated test case generation tool (TRUST) [3], where the

inputs are UML state machines and outputs are the selected executable test cases. The

context and objectives of our industrial case study can be briefly characterized as follows:

77

(1) our selection technique is applied to an industrial system where MBT was already used

for test case generation, (2) there are no seeded faults and all faults are based on actual

mistakes made by developers, (3) the size of the test suite is significantly larger than that of

previous, similar studies [7, 9] (more than double of their largest test suite), (4) a

comparison is performed not only with other similarity-based techniques (even those

which are not specific to MBT but are applicable), but also with all other well-known

selection techniques (additional coverage-based [10, 11], GA-based coverage [12, 13], and

random selection [4]), (5) we provide a thorough discussion on cost analysis, (6) the

improvement, in terms of fault detection rate, by our selection technique is compared to

using a stricter coverage criterion, and (7) the practical benefits of using our test case

selection technique for MBT is investigated by showing that our approach can select a

small (approximately 10%) subset of the automatically generated test suite which can find

more than 90% of the faults detectable by the entire test suite.

The rest of the paper is organized as follows. The next section reports on background

information about test case selection. Section 3 discusses the basic principles regarding

GA which are necessary to understand the paper. Section 4 provides a brief overview of

related works covering similarity-based selection techniques. Section 5 introduces our

approach for test case selection in state machine-based testing, and Section 6 reports the

experimentation results of applying the technique on an industrial case study. Section 7

concludes the paper and outlines our future work plan.

2 Test Case Selection

There are several strategies for reducing the number of automatically generated test cases

in MBT. One can try using a less demanding coverage criterion (i.e., a criterion that results

in fewer number of test cases). For instance, if using all transition-pairs [4] generates a far

too large test suite, the all-transitions [4] criterion can be adopted instead to decrease the

number of test cases, which still achieves systematic testing but may reduce the fault

detection rate. However, often this is not a practical solution as one cannot ensure that the

number of test cases will be below a required threshold. Test suite reduction can also be

useful when the goal is to minimize the test suite by removing redundant test cases with

respect to a criterion (e.g., code coverage). In test case selection, given a maximum number

of test cases, the goal is to select a subset of the entire test suite that maximizes fault

detection. Prioritization techniques, on the other hand, do not remove any test case but

78

order their execution [11], and therefore do not address our problem. As a result, we focus

in this paper only on test case selection.

Test case selection is mostly studied in the context of regression testing, where the goal

of test case selection is to find a subset of the original test suite that guarantees the

execution of fault-revealing test cases [4, 5]. The main differences between model-based

test case selection and selection in the context of regression testing are that, in our context,

we are not interested in finding the affected parts of the system and we do not have

execution information of the test suite as it is the case in regression testing. Therefore,

heuristics such as using component meta data [14], and execution traces (e.g., call stack

[15]) are not applicable here. In addition, most studies in test case selection (even those

which are general purpose and not specific to regression testing) are based on code-level

information and do not directly apply to MBT (e.g., code-based dependency analysis [16]

and additional statement coverage [10, 11]). Rather, MBT selection heuristics are based

only on the characteristics of the (abstract) test cases.

There are three main classes of selection techniques which are introduced for MBT:

1) Random [5] or semi-random selection [4], where there is no guidance to select test

cases.

2) Coverage-based selections, where we hypothesize that “the test cases which have

more coverage (such as model-based and requirement-based coverage) are more

likely to detect faults”. The idea is inspired from redundant test case removal in test

case reduction, where redundant test cases are those which have the same coverage.

Note that assessing the coverage of a test case must not necessarily require its

execution. For example, transition coverage in a state machine can be determined if

traceability has been preserved between a test case and its source state machine.

Most coverage-based techniques are re-expressed into optimization problems where

the goal is to select the best combination (or permutation in case of prioritization

[11]) of test cases to achieve full coverage [17-20]. For example, in [11] a Greedy

search selects, at every step, the test case that covers the most uncovered statements

whereas in [12, 19] a GA is used to find the maximum coverage.

3) Similarity-based selections, where we hypothesize that “the more diverse the test

cases the higher their fault revealing capacity [21]”. To use this approach one

needs a (dis)similarity function to measure the diversity of a subset by averaging all

pair-wise similarity values. Code-based similarity functions have been proposed in

the literature. However, to the best of authors’ knowledge, there is only one model-

79

based similarity function [7], denoted here as Identical Transitions Similarity (It).

For any two test paths tpi and tpj, It(tpi , tpj) is defined as:

“The number of identical transitions (which in UML state machines means: same

source states, triggers, and target states) in tpi and tpj divided by the average length

(number of transitions in the test path) of tpi and tpj”.

After defining a similarity function, a selection algorithm is required to choose a sample

of test cases with the minimum pair-wise similarity among its members.

3 Genetic Algorithms

For a given similarity measure, several alternative selection techniques can be used, such

as optimization techniques, Greedy search, and clustering. In this paper we use a GA and

compare it with Greedy search (which is the only reported similarity-based test case

selection algorithm to date in the context of state-based testing and MBT in general [7]) as

a baseline. The GA is used in this paper since the nature of our problem, which is a form of

optimization, resembles typical problems addressed in search-based software engineering

[22] where GAs are the most used and successful reported technique [22]. A more

comprehensive study of selection algorithms will be part of our future work. Though

further details on how we have employed a GA in a test case selection context will be

discussed in Section 4, we provide below minimum background information on GAs.

GAs rely on four basic features: population, selection, crossover and mutation. More

than one solution is considered at the same time (population). At each generation (i.e., at

each step of the algorithm), some good solutions in the current population chosen by the

selection mechanism generate offspring using the crossover operator. This operator

combines parts of the chromosomes (i.e., the solution representation) of the offspring with

a certain probability; otherwise it just produces copies of the parents. These new offspring

solutions will fill the population of the next generation.

The mutation operator is applied to make small changes in the chromosomes of the

offspring. To avoid the possible loss of good solutions, a number of best solutions can be

copied directly to the new generation without any modification. Another option is to use a

steady state approach, in which only the offspring that are not worse than their parents are

added to the next generations. Fitter individuals should have more chances to survive and

reproduce. This is represented by the selection mechanism, and there are several variants

80

for it. Eventually, after a number of generations, an individual that solves the addressed

problem will be evolved.

4 Related Work

In this section, we only review studies on similarity-based test case selection,

minimization, and prioritization techniques, since we have already discussed about

alternative techniques and their limitations for our context in Section 2. Although there

exist studies regarding similarity-based selection, minimization, and prioritization on code-

based testing, model-based test case selection using a similarity function has not been a

focus of study in the literature. However many ideas from code-based techniques can be

adapted to MBT.

Not surprisingly, most similarity-based techniques have been performed in the context

of code-based regression testing and use code coverage or other types of execution

information. In [23] the similarity function is based on all def-use pairs coverage and they

use a classification algorithm as a reduction technique, where they classify similar test

cases in one class and distribute their selection over different classes. Basic block coverage

in the code (e.g., statement coverage) is a basis for defining similarity functions in [24],

[13], and [21, 25]. Greedy search, adaptive random selection, and clustering are used in

these studies for selection/prioritization. In [26] different heuristics are used based on

execution information from the original test suite to support regression testing (e.g.,

memory operations with values from dynamic execution of a test case is used in a

similarity function). Ledru et al. [9] have introduced a similarity-based prioritization

technique which can be applied on both code-based and model-based techniques, since it is

based on the test scripts and not the source code or a specification model. The basic idea is

to analyze the test script as a string and compare each pair of test cases as two strings using

edit-distance functions such as Levenshtein [27]. In this paper, we refer to this similarity

function as String-Based Similarity (Sb). Using this function Ledru et al. applied a Greedy

search to select test cases.

The only similarity-based test case selection technique in MBT is introduced in [7],

where sequences of transitions in a Labeled Transition System model of the software under

test (SUT) are used for representing test paths. The similarity function is It, as defined in

Section 2, and the selection technique is a Greedy search. This work and the work of Ledru

et al. in [9] can be considered as potential baselines of comparison for our study.

81

Some empirical studies [13, 26] do not use basic random selection as a baseline of

comparison. However, it is very important to at least compare any (meta)heuristic-based

technique with random selection to show that the improvement, if any, is worth the extra

cost which is incurred when using such heuristics. Furthermore, other studies [7, 9, 23] do

not have a comparison with coverage-based techniques, which may be considered state-of-

practice.

5 Test Case Selection Based on Similarities between
Test Paths using Triggers and Guards

The problem of test case selection in our context can be formalized as:

“Given a fixed sample size n and test suite TS that detects a set of faults (F) in

the system, our goal is to find a subset of TS of size n (sn) with maximum

FD(sn), where FD(sn) is the percentage of F which is detected by sn”.

Since there is no information about the fault detection rate of each test case without

prior execution, a surrogate measure for FD(sn) is required. In similarity-based selection

techniques the assumption is that the more diverse the selected subset, the larger the

number of detected faults. Therefore, the problem is reformulated as minimizing

 :௡ሻݏሺݎݏܯ݉݅ܵ

SimMsrሺs୬ሻ ൌ ෍ SimFuncሺtp୧ , tp୨ሻ

୲୮౟ , ୲୮ౠ∈ୱ౤ ∧ ୧வ௝

Where SimFunc(tpi , tpj) returns the similarity of two test paths (abstract test cases in

MBT) in sn represented by tpi and tpj. According to this definition, we need to define (1) a

representation for a test path (tp), (2) a similarity function (SimFunc), and (3) a selection

algorithm to select the optimal sn.

In MBT finding the best test case representation depends on the type of input model,

which in our case is a UML 2.0 state machine. A path on the model (test path) seems to be

the best representation, since it is both abstract enough to be used as a similarity function

input and rich enough to contain all relevant state-based testing information. Abstract test

cases in this notation (called test path) are sequences of states and transitions, identified by

their corresponding trigger. If a transition has k triggers it will be considered to be k

82

transitions from the same source to the same target but with different triggers. A test path

can therefore be formalized as follows:

<tp> ::= <init> “,” <trans>

<trans> ::= <event> “,” <target> | <event> “,” <target> “,” <trans>

<event> ::= <triggerName>|<guardValue>|<Id>|<guardValue>“,”<triggerName>

where <init> and <target> are taken from the set of states and <triggerName> and

<guradName> from the set of triggers and guards on the transitions of the model and

<Id> is a unique id assigned to transitions which do not have any trigger or guard. If a

transition is guarded <event> contains <guardValue>.

The similarity function that we use in this study is similar to It in [7] with a minor but

important difference. Because It is based on identical transitions, they do not consider two

transitions which have the same trigger (same method call or same signal reception) but

different source or target state, to be identical. However, our similarity measure (trigger-

based similarity, Tb) is based on identical triggers. According to this definition of identical

triggers, Tb is defined as follows:

“Tb(tpi , tpj) = Number of identical triggers in tpi and tpj divided by the average

length (number of transitions in the test path) of tpi and tpj”.

Since identical triggers are more likely than identical transitions to be present in two test

paths, Tb can be considered less strict than It in assigning similarity to test paths. As a

result, Tb might be more effective in cases where there are identical triggers in different

transitions in the state machine, which is a common situation. Tb tends to distinguish

similarity among transitions in a more gradual fashion. For example, let us assume tp1 =

<1,a,2,b,3>, tp2 = <1,c,4,b,3>, and tp3 = <1,d,5,e,6>, where numbers are state identifiers

and characters are trigger names (no guard). Note that tp3 has no similarities with tp1 and

tp2 except for the initial state “1”. Though similarity-based test case selection seeks to keep

the selected test cases as diverse as possible, It cannot detect any similarity between any

pair of test paths as there is no identical transitions among tp1, tp2, and tp3. However,

Tb(tp1 , tp2) = 0.5 since there is one identical trigger “b” and the average length of the two

test paths is two. Therefore, if we want to select two test paths out of the three, It selects

83

randomly (since all similarity values are zero), but Tb will choose one of tp1 or tp2 to

discard, thus achieving more diversity among remaining test cases.

In this paper, we use a steady state GA as a selection technique. An individual (i.e., a

solution to the problem) is sn (subset of TS with size n). Given a similarity function

SimFunc(tpi , tpj), the fitness function f to minimize is the sum of SimFunc(tpi , tpj) for

each pair of (tpi , tpj) in TS (ܵ݅݉ݎݏܯሺݏ௡ሻ). We do not tune our GA parameters and use

what is suggested in the literature to increase the applicability of the approach in industry.

The selection mechanism is the rank selection which has been shown to work well [28].

The population size is set to 50 since population sizes between 20 and 80 have shown

promising results for different search space sizes [29]. We also have tried some other sizes

in this range and the GA was not very sensitive to the changes. A single point crossover is

used to combine two different parents ݏ௡
௫ and ݏ௡

௬. A random position r such that 0<r<n is

chosen. All test paths in ݏ௡
௫ from position r and onward are swapped with the values in the

same positions in ݏ௡
௬. Crossover is applied with probability Pxover (0.75 in our experiments,

a high probability as suggested in [8]) with probability 1-Pxover, the offspring are just be

copies of their parents. For example, if ݏସ
ଵ and ݏସ

ଶ are two individuals of the population in

iteration i, and r = 2, there is a probability of 0.75 that they will be replaced by ݏସ
ଵሖ and ݏସ

ଶሖ

in iteration i+1, where:

ସݏ
ଵ ൌ൏ , ଵ݌ݐ , ଶ݌ݐ , ଷ݌ݐ ସ݌ݐ ൐ ସݏ ݀݊ܽ

ଶ ൌ൏ , ௔݌ݐ , ௕݌ݐ , ௖݌ݐ ௗ݌ݐ ൐

ସݏ
ଵሖ ൌ൏ , ଵ݌ݐ , ଶ݌ݐ , ௖݌ݐ ௗ݌ݐ ൐ ସݏ ݀݊ܽ

ଶሖ ൌ൏ , ௔݌ݐ , ௕݌ݐ , ଷ݌ݐ ସ݌ݐ ൐

The selected mutation operator is similar to what is typically used for bit strings [8, 29].

Each test path in sn is mutated with probability 1/n. A mutated test path is replaced by a

test path that is selected at random from the set of all possible test paths. For example if

ସݏ
௫ ൌ൏ , ଵ݌ݐ , ଶ݌ݐ , ௖݌ݐ ௗ݌ݐ ൐ and ݌ݐହ ∈ ܶܵ then ݏସ

௬
ൌ൏ , ଵ݌ݐ , ଶ݌ݐ , ହ݌ݐ ௗ݌ݐ ൐ can be a

mutated version of ݏସ
௫. Notice that we only accept “valid” solutions. A solution sn is valid

if all the test paths in sn are unique. The first randomly generated population is forced to

contain only unique test paths. However, search operators such as crossover and mutation

can produce new offspring that have repeated test paths in them. There are several ways to

handle constraints in evolutionary algorithms. One way is to design search operators that

always produce valid individuals. In this paper, we simply discard the offspring that are not

valid. The smaller the sample (test suite) size, the lower the probability of such

84

occurrences. Since we focus here on small samples of test cases, this seems as a more

suitable strategy in our context. For example, in our case study experiments, while

sampling less than 2% of the total test suite, the probability of generating an invalid

individual in one GA run is less than 3%. Increasing the sample size to 30% of the test

suite increases this probability up to 30%. However, even with a 30% chance of invalid

individual generation, given the fixed short time for one run of the GA, it is still more

effective than its baseline of comparison (Greedy search) in detecting faults. Note that this

probability also depends on the stopping criterion, since if we let the GA run longer, the

diversity in the GA population decreases, which then results in less invalid individuals

generated by the crossover operator. We have applied three types of stopping criteria for

GAs in this study: (1) stopping after specific number of iterations, (2) stopping after a fixed

period of time (e.g., 1 second (sec)), and (3) letting the GA run for some time (e.g., 1sec)

and then stop only if there is no improvement over a specified period of time (e.g., 200

milliseconds (ms)). However, in this paper, we only report the result taken from

experiments with a fixed execution time stopping criterion since we wanted to keep cost

constant when comparing GAs with Greedy search. The pseudo-code of the employed GA

is defined as follows:

Sample a population G of m test cases uniformly from the search space (i.e.,

the set of all possible valid sets with a given size n)

Repeat until the specified time is expired

 Choose ݏ௡
௫ and ݏ௡

௬ from G

 ቀݏ௡
௫ሖ , ௡ݏ

௬ሖ ቁ ∶ൌ crossover (ݏ௡
௫ , ௡ݏ

௬
, ௫ܲ௢௩௘௥)

 Mutate(ݏ௡
௫ሖ , ௡ݏ

௬ሖ)

 If valid (ݏ௡
௫ሖ , ௡ݏ

௬ሖ) ∧ min (݂ሺݏ௡
௫ሖ ሻ, ݂ሺݏ௡

௬ሖ)) ൑ min (fሺݏ௡
௫ሻ, fሺݏ௡

௬))

 Then ݏ௡
௫ ∶ൌ ௡ݏ

௫ሖ and ݏ௡
௬
∶ൌ ௡ݏ

௬ሖ

6 Empirical Evaluation

In this section, we assess the effectiveness of the proposed approach by applying it on an

industrial case study. In addition, we evaluate its fault detection rate (referred below as

85

FDR) by comparing it to other alternatives already reported in the literature. Information

about the case study is sanitized due to confidentiality restrictions.

6.1 Case study description

The SUT is a safety monitoring component in a safety-critical control system implemented

in C++. We chose this system because it exhibits a complex state-based behavior that is

modeled as UML state machines complemented by constraints specifying state invariants

and guards, which are useful to derive automated test oracles. This SUT is typical of a

broad category of reactive systems interacting with sensors and actuators. The first version

of the system (including models and code) was developed and verified by company experts

and our research team. A total of 26 faults were found. They were introduced during

maintenance activities of subsequent versions of the SUT by developers and re-introduced

for the purpose of the experiment in the latest version of the SUT.

The correct and most up-to-date UML state machine, representing the latest version of

the SUT’s behavior, consists of one orthogonal state with two regions. Enclosed in the first

region are two simple states and two simple-composite states. The simple-composite states

contain two and three simple states. The second region encloses one simple state and four

simple-composite states that again consist of, respectively, two, two, two, and three simple

states. This adds up to one orthogonal state, 17 simple states, six simple-composite states,

and a maximum hierarchy level of two. The unflattened state machine contains 61

transitions and the flattened state machine consists of 70 simple states and 349 transitions.

Among the 26 faults, 11 of them were sneak paths (illegal transitions in the modified

model) [4]. To detect such faults the model should account for the behavior of the SUT

when receiving unexpected triggers. Such robustness behavior is not currently modeled

and therefore, these 11 faults could not be caught by any test case generated from the

model. The remaining 15 faults (detectable by the test cases generated from the model) are

collected and 15 faulty versions of the code (mutant programs) are made by introducing

one fault per program. The faults are due to both code and design level faults and belong to

one of the following categories: wrong guards on transitions, wrong state invariant,

missing transition, and wrong OnEntry action of states. The purpose was to study each real

fault in isolation in order to avoid masking effects and compute fault detection scores.

Since a test case stops executing after detecting the first failure, in a program with multiple

faults we should either rerun test cases on the SUT after each bug fix, or isolate faults by

seeding one fault per mutant program. We chose the latter case to avoid manual bug fixing

86

after each run. Our approach should not be confused with mutation testing which makes

use of mutation operators to create faults and then seed them in the SUT one by one. In our

approach, all faults were real faults, as described above.

In the next step, the correct UML state machine is given to our test case generation tool

[3] as an input model and executable test cases were automatically generated. Note that our

selection technique is based on similarities between test paths (abstract test cases without

test data). In general different faults can be detected by the same test path instantiated with

different test data. Therefore, it is necessary to run the selected test paths with different

input data and compare the FDR distribution of the test paths selected by different

techniques. However, in our case study if a test path has the ability to detect a fault, it can

be detected by any valid test data for that test path. Therefore, in our experiment, we have

one test case per test path and the FDR of a test path is equal to the FDR of the

corresponding test case.

6.2 Experiment design

To evaluate our selection technique we formulated the following four research questions:

RQ1. Which similarity measure is more effective for UML state machine-

based test case selection, in terms of FDR?

RQ2. To which extent is using a GA for test case selection more cost-effective

(in terms of time spent to find a solution) compared to a Greedy search?

RQ3. To which extent are similarity-based selection techniques more effective

than coverage-based and random selection techniques?

RQ4. In the context of MBT, what is the practical benefit of test case selection,

on a representative industrial case study, when applying a GA using our

similarity measure (Tb)?

For the first three research questions, the input test suite is generated by TRUST using

All-Transitions coverage and in RQ4 we will discuss about the effect of using other

coverage criteria. The test suite is made of 281 test cases and can detect all 15 detectable

faults. Among 281 test cases 207 cannot detect any faults and 74 catch at least one fault.

The average number of detected faults per test case is 0.72 and the maximum is five. Each

fault is also detected on average by 13 test cases. There are nine faults which are only

detected by three test cases and two faults are detectable by 65 test cases.

To capture the randomness of FDR results, which exists for all selection algorithms

(even in Greedy search when it needs to select among test cases which have the same

87

similarity measure), we ran each experiment 100 times and report distribution statistics.

We report the results of different techniques for sample sizes less than 140 (~50% of the

test suite) with intervals of 10, since our focus is, for practical reasons, on smaller size

subsets. This is due to the fact that in practice test case selection is mostly used for

selecting a relatively small sample of the test suite. Furthermore, for large sample sizes all

selection techniques will usually be as good as random selection which typically detects

most faults. We have performed non-parametric (Mann-Whitney) statistical tests, with a

significance level ߙ ൌ 0.05, to compare the FDR distributions of the proposed and

alternative selection techniques. The Mann-Whitney U-test is more robust than a

parametric test such as the t-test when there are strong departures from normality and a

large enough sample of observations (in our case 100). In addition, we provide FDR means

and medians over different runs.

To compare effectiveness of different techniques, we use three measures based on FDR.

These measures are complementary and help interpreting the FDR from different angles:

 ௜ (a subset of size i selected by techniqueݏ ሺ݅ሻ୻ is the number of faults detected byߩ (1)

Γ from the test suite TS with size n) divided by the total number of detectable faults

in TS (15 in our case). This measure is used in the paper wherever we want to

simply report the FDR for a given technique and sample size. Since we run each

test suite 100 times on faulty programs we report the FDR distributions as

Boxplots.

௠ܴܦܨܣ (2)
ఊ
ሺΓሻ. Enables the overall comparison of two selection techniques for a range

of sample sizes. ܴܦܨܣ௠
ఊ
ሺΓሻ, which is inspired by the APFD measure [11] for test

case prioritization, is adapted to test case selection in our context. It is a measure

for comparing curves and measures the sum of all ߩሺ݅ሻ୻ for all sample sizes in the

given intervals and range (0 to m). More precisely, it is equal to the area under the

curve representing ߩሺ݅ሻ୻ (y-axis) over different sample sizes (x-axis). Since sample

size has discrete values, the area under the curve is calculated as:

௠ܴܦܨܣ
ఊ ሺΓሻ ൌ

ሺ0ሻߩ ൅ ሺ݉ሻߩ
2

൅ ∑ ሺ݅ߩ ∗ ሻ୻ߛ
ቀ
௠
ఊ ቁିଵ

௜ୀଵ

݉
ߛ

where 0 ൑ ௠ܴܦܨܣ
ఊ ሺΓሻ ൑ 1. As we discussed, in this paper we report the result of

sample sizes less than 140 (~50% of the test suite) with intervals of 10, therefore

we always report ܴܦܨܣଵସ଴
ଵ଴ ሺΓሻ.

88

(3) min୩ሺΓሻ is the minimum number of test cases from the given test suite TS that are

selected by technique Γ to detect at least ݇% of the detectable faults. This measure

is more useful, from a practical standpoint, when selection techniques are compared

with respect to their reduction in cost while ensuring a given fault detection rate.

To compare the cost of GA and Greedy, the execution time spent by the algorithms to

select a subset is used as cost measure. The experiments has been conducted on a PC with

Intel Core(TM)2 Duo CPU 2.40 Hz and 4 GB memory running Windows 7.

6.3 Experiment results

In the following subsections, we investigate each of the research questions stated above.

6.3.1 Which similarity measure is more effective for UML State Machine-based test case
selection, in terms of FDR?

Since there is no reported similarity-based selection measure for UML state machines, we

need to tailor results from the most similar studies to obtain a baseline of comparisons. Sb

by Ledru et al. in [9] and It by Cartaxo et al. in [7] are two potential similarity functions

that we can adapt and apply on UML state machine-based test paths.

The measure It was straightforward to apply in our case, using the representation of our

test paths from Section 5. We identify each transition uniquely, by a string composed of its

source state, trigger, guard, and target state. States are identified by their name, triggers by

the name of the operation or signal reception, and guards by their constraint. This means

that transitions can be considered identical only if the entire string is the same. Since Sb is

a general purpose function (it applies to the text of test scripts), it requires some

modifications to be useful for our case. This was necessary since our executable test scripts

are long and contain significant platform dependant information. Therefore, comparing

such test scripts as strings results in useless similarity measures which are significantly

blurred by irrelevant information. But we nevertheless decided to implement our adjusted

version of Sb for strings using abstract test scripts, which in our case are the test paths

defined in Section 5. Therefore, all elements of the test paths (states, triggers, and guards)

constitute the alphabet of the strings to be compared. We then applied Levenshtein distance

with standard parameters (1 for match and 0 for mismatch and gap) [30] on these strings.

We denote this technique as modified Sb (Ms). The main difference between Ms and It is

the fact that Ms accounts for orders of states and triggers (with or without guards) in the

paths, whereas It only looks at the number of common transitions. We also have introduced

yet another measure using only state similarities, Identical State Similarity (Is), which is

89

equal to the number of identical states in two test paths divided by their average number of

states. This measure is at the same level of detail as It but targeting different state-related

faults.

We compare Ms, Is, and Tb with It as it is the only directly applicable solution from the

literature for our models. We use a Greedy search since this is the technique used with It in

the original study [7]. In short, for all similarity measures, our implementation of

similarity-based Greedy search is exactly the same as in [7] and works as follows: In each

step, the algorithm finds the most similar pair of test cases and removes the one which has

less number of transitions from the test suite. This will continue till the number of

remaining test paths in the test suite becomes equal to the required sample size. Removing

the shorter test path in the selected pair actually aims to keep transition coverage as high as

possible, while diversifying the subset. In cases where there is more than one pair with

maximum similarity value, one of them is randomly chosen.

Figure 1 and Figure 2 show the FDR means of the Greedy search using Tb, Is, Ms, and

It (ߩሺ݅ሻ்௕ୋ୰, ߩሺ݅ሻூ௦ୋ୰, ߩሺ݅ሻெ௦ୋ୰, and ߩሺ݅ሻூ௧ୋ୰) after running the algorithms 100 times for

sample sizes less than 140 (~50% of the test suite). In addition, Table 1 summarizes means

and medians of ρሺiሻ for these techniques and reports the Mann-Whitney U-test results

highlighting cells in gray shade when there is a statistical difference between the selected

comparison techniques and our proposed similarity measure Tb.

The results show that Tb and Is have the highest and lowest fault detection rates,

respectively. The reason that Is is by far worse than the others can be explained by the fact

Figure 1 The average FDR of TbGr, ItGr, MsGr, IsGr for different sample sizes

90

Table 1 RQ1: The median and mean FDRs per sample size (10 to 100 by intervals of 10) over 100 runs
and the Mann-Whitney U-test results (significant differences on medians with TbGr highlighted as gray

cells) for different measures using Greedy search

Selection
technique

FDRs per sample size
10 20 30 40 50 60 70 80 90 100

TbGr median 0.4 0.57 0.93 1 1 1 1 1 1 1
mean 0.41 0.57 0.90 0.97 0.97 0.97 0.98 1 1 1

ItGr median 0.33 0.53 0.6 0.6 0.5 0.8 0.8 0.8 1 1
mean 0.33 0.53 0.62 0.65 0.63 0.70 0.79 0.87 0.95 1

IsGr median 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
mean 0.29 0.42 0.43 0.43 0.44 0.44 0.44 0.45 0.44 0.44

MsGr
median 0.13 0.4 0.4 0.6 0.6 0.6 0.8 1 1 1

mean 0.18 0.35 0.5 0.53 0.57 0.6 0.77 0.99 1 1

Table 2 RQ2-3: The median and mean FDRs per sample size (10 to 100 by intervals of 10) over 100

runs and the Mann-Whitney U-test results (significant differences on medians with TbGa(175ms)
highlighted as gray cells) for different selection techniques

Selection
technique

FDR per sample size

10 20 30 40 50 60 70 80 90 100
TbGa
175ms

median 0.53 0.93 0.93 1 1 1 1 1 1 1
mean 0.56 0.83 0.92 0.96 0.97 0.97 0.99 0.98 0.98 0.98

TbGa
1000ms

median 0.53 0.9 0.93 0.93 0.93 1 1 1 1 1
mean 0.55 0.82 0.94 0.95 0.95 0.97 0.99 1 1 1

TbGr median 0.4 0.57 0.93 1 1 1 1 1 1 1
mean 0.41 0.57 0.90 0.97 0.97 0.97 0.98 1 1 1

ItGr median 0.33 0.53 0.6 0.6 0.5 0.8 0.8 0.8 1 1
mean 0.33 0.53 0.62 0.65 0.63 0.70 0.79 0.87 0.95 1

CvGr median 0.4 0.53 0.6 0.6 0.6 0.8 0.8 0.8 0.8 0.8
mean 0.37 0.52 0.63 0.67 0.69 0.77 0.77 0.81 0.85 0.86

Rnd median 0.27 0.37 0.5 0.6 0.6 0.6 0.8 0.8 0.8 0.8
mean 0.28 0.38 0.5 0.57 0.61 0.65 0.76 0.76 0.8 0.84

that there are normally several transitions per state and Is simply ignores differences

between them as far as they have the same source or target states. The results also show

that It is more effective than Sb for smaller sample sizes. This means that even when string

similarity measures (e.g., Levenshtein) use detailed path information (e.g., the order of

states and triggers), it may not be effective without careful tuning (e.g., gap and mismatch)

and therefore makes such an approach less practical.

Since It is more effective than Ms and Is, we now take it as a baseline of comparison

with our proposal Tb. As it is shown in Figure 1, Figure 2, and Table 1, for sample sizes

less than 90 (~32% of the test suite) ߩሺ݅ሻ்௕ୋ୰ is always higher than ߩሺ݅ሻூ௧ୋ୰ and after 90

both techniques find all faults. This difference between Tb and It goes up to 35% (sample

size 50) and is also shown to be statistically significant. An overall comparison of the two

curves also shows the improvement brought by Tb (ܴܦܨܣଵସ଴
ଵ଴ ሺܾܶݎܩሻ ≅ 0.88 vs.

91

ଵସ଴ܴܦܨܣ
ଵ଴ ሺݎܩݐܫሻ ≅ 0.76). This shows that in practice, our case study suggests it is likely

better to use Tb than It. TbGr is also very effective with respect to finding most faults with

fewer test cases: minଽହሺܾܶሻ ≅ 35 ≅ ሺ12% of the test suiteሻ vs. minଽହሺݐܫሻ ≅ 90 ≅

(~32% of the test suite). Although on average Tb is always more effective than It, looking

at Figure 2 suggests that both techniques show a large variance for smaller sample sizes. In

practice, this means that in the worst case, selecting a subset of test cases can lead to a very

low fault detection. In the next section we show how using GAs can help increase our

confidence in Tb by decreasing its variance.

Figure 2 FDR (y-axis) Boxplots for different selection techniques (x-axis) for sample sizes ranging
from 10 to 110 by intervals of 20 over 100. The Boxplots show the 10th, 25th, 50th, 75th, and 90th

percentiles and means

92

6.3.2 To which extent is using a GA for test case selection more cost-effective (in terms
of time spent to find a solution) compared to a Greedy search?

Before discussing about the cost-effectiveness analysis between GAs and Greedy search, it

is worth mentioning that using an exhaustive search in our case (and for most realistic

cases) is not an option, since the search space size for selecting a subset of size n is equal

to the number of possible n-combinations within a test suite of a given size. In our case, as

an example, the search space size for n=28 (~10% of the test suite) is ቀ281
28

ቁ ≅2.9*10^38.

For a given sample size and a selection technique (here a GA vs. a Greedy both using

the Tb similarity measure), our effectiveness measure is the FDR of the selected test cases

and the cost is measured in execution time since this drives the applicability of a test

strategy as discussed in Section 1. Running Greedy search 100 times for sample sizes from

10 to 140 showed that it needs 175ms on average for each selection. Therefore, we set the

GA stopping criterion to 175ms to compare their FDR using constant execution time. Next,

we will increase execution time to a significantly larger but yet practical number (1000ms)

and investigate how much more effective the GA can be. Note that Greedy search cannot

be improved even if one can afford running it for a longer period of time as opposed to the

GA which can potentially be improved within practical bounds.

Using our proposed similarity measure Tb, we investigate the extent to which a GA can

improve FDR compared to using Greedy search. Using execution times of 175ms (as for

Greedy search), Figure 2 and Figure 3 show FDR distributions for the GA and Greedy

search using Tb (ߩሺ݅ሻ்௕ୋୟ and ߩሺ݅ሻ்௕ீ௥) while running the algorithms 100 times for each

sample size from 10 to 140 (~50% of the test suite). Greedy always shows a lower FDR

(Table 2 shows that the differences are statistically significant) than the GA for sample

sizes less than 75 (~27% of the test suite), with a maximum difference of ~30% (sample

size 25). In practice, for large test suites, this is probably the most important part of the

sample size range. For larger sample sizes, an execution tie of 175ms does not seem to be

enough for the GA to be as effective as Greedy search. The main reason is that for larger

sample size the GA takes a great deal of time to generate an initial population with unique

test paths and does not have enough time to generate many subsequent populations. Still

for the overall sample size range the GA is more effective: ܴܦܨܣଵସ଴
ଵ଴ ሺܾܶݎܩሻ ≅ 0.88 vs.

ଵସ଴ܴܦܨܣ
ଵ଴ ሺܾܶܽܩሻ ≅ 0.90. To find 95% of the faults both techniques need the same number

of test cases: minଽହሺܾܶܽܩሻ ൌ minଽହሺܾܶݎܩሻ ≅ 35. However, the FDR variance for

Greedy search is significantly higher than that for the GA (Figure 2), especially for sample

93

sizes less than 50 (~ 18% of the test suite). This means that although both techniques, on

average, can find 95% of the faults with 35 test cases, the GA entails less risk. In practice,

people need to be confident in the results of a technique to use it. They cannot rely on

chance. One selects only one subset, and no one wants to incur the risk (no matter how low

the probability) of missing most of the faults.

The increase in execution time for the GA’s stopping criterion shows that on average

there is no practically significant FDR improvement (ܴܦܨܣଵସ଴
ଵ଴ ሺܶீܵܤ஺ሻ ≅ 0.90 for both

175ms and 1sec execution times). In this case, running the GA for longer execution times

does not seem to produce significantly better results. An explanation could be within

175ms the GA finds a (near-)optimal solution in our case. However, increasing execution

time helps decrease the FDR variance and therefore decreases the risk involved in test

selection. Another point is that the GA needs less time for smaller sample sizes. Therefore,

the GA running 175ms starts to perform slightly worse than the GA running 1000ms for

subsets larger than 70 (~25% of the test suite), as illustrated in Figure 2 (sample sizes>70).

6.3.3 To which extent are similarity-based selection techniques more effective than
coverage-based and random selection techniques?

In this research question, we are interested in the improvement that similarity-based

techniques can provide for model-based test case selection when compared to simpler

alternatives. We compare our proposal (TbGa) with three different techniques: (1) Random

selection (RnD) as a baseline of comparison for any type of (meta)heuristic search, (2)

Additional coverage Greedy selection [10, 11] (CvGr), and (3) ItGr as the state of the art

Figure 3 The average FDR of TbGr and TbGa(175ms) for different sample sizes

94

for similarity-based techniques. We also have experimented with using a GA for coverage-

based selection as it is defined in [12, 19]. The results show that CvGr outperforms the

GA-coverage-based technique in our case study, as visible in Figure 2. Therefore, we

compare with CvGr in this section.

All techniques are spending almost the same execution time for selection (on average less

than 200 ms). Figure 2 and Figure 4 show FDR for the different techniques (ߩሺ݅ሻ்௕ୋୟ,

 ሺ݅ሻୖ୬ୢ) when running the algorithms 100 times for each sample sizeߩ ,ሺ݅ሻ஼௩ீ௥ߩ ,ሺ݅ሻூ௧ୋ୰ߩ

from 10 to 140. Based on Table 2, for all sample sizes, TbGa(175ms) is significantly more

effective than the others.

As we can see that, on average, the FDR of TbGa is significantly higher than that for

Rnd and CvGr for all sample sizes, with maximum differences of 35% (Rnd) and 30%

(CvGr). The comparison over the entire sample size range also confirms this observation:

ଵସ଴ܴܦܨܣ
ଵ଴ ሺܴ݊݀ሻ ≅ ଵସ଴ܴܦܨܣ ,0.66

ଵ଴ ሺݎܩݒܥሻ ≅ 0.72 and ܴܦܨܣଵସ଴
ଵ଴ ሺܾܶܽܩሻ ≅ 0.90. The next

best technique, both in terms of ߩሺ݅ሻ and ܴܦܨܣ௠
ଵ଴, is ItGr, which shows that again a

similarity-based technique outperforms the coverage-based and random selection. TbGa is

also very effective in finding more faults with less number of test cases. For example,

TbGa (175ms) can find 95% of the faults with only 35 test cases (minଽହሺܾܶܽܩሻ ≅ 35)

where both coverage-based and random selection techniques cannot find 95% of the faults,

even when using 140 test cases. Another observation is that coverage-based techniques are

not much more effective than random selection.

6.3.4 In the context of MBT, what is the practical benefit of test case selection, on a
representative industrial case study, when applying TbGa?

In this subsection, we look at a broader question which is about the usefulness of test case

selection for reducing the size of the test suite generated by MBT tools, which is the main

motivation for this study. We will answer RQ4 by answering two sub- questions:

RQ4.1. Are test selection techniques more effective than using stricter

coverage criteria?

RQ4.2. How effective is test selection in reducing the cost of testing in MBT?

As we discussed in Section 2, using a stricter criterion (for example using all-transitions

instead of all-transition-pairs) is an alternative to selection techniques. If after using the

least demanding criterion (e.g., all-transitions), the test suite is still too large, then using

criteria such as all-length-N, where N is the maximum test path length can be used. Here

we compare these alternatives with using a similarity-based selection technique. In our

95

case, N=3 results in around 150 test cases and N=2 yields 27 test cases. Since TbGa (1sec)

shows on average a 100% FDR with 75 test cases, then a test suite of 150 is obviously

suboptimal. Comparing the result of length-2 with TbGa(175ms) yields ߩሺ27ሻ்௕ீ௔ ≅ 0.90

whereas ߩሺ27ሻ௟௘௡௚௧௛_ଶ ≅ 0.34. This result confirms our claim that stricter criteria cannot

be a replacement for test selection techniques.

With respect to RQ 4.2, we are looking at the reduction of cost that a selection

technique like TbGa can provide for a MBT testing strategy. In our case the original test

suite contains 281 test cases. For a one-second execution time, minଵ଴଴ሺܾܶܽܩሻ ≅ 75

meaning that 75 test cases are as effective (same FDR) as the entire test suite (281 test

cases), entailing a 73% reduction in cost. As we discussed earlier, in distributed and

embedded software systems (as our case study system), where test execution cost can be

very significant, this 73% reduction is of practical importance.

6.3.5 Discussion on validity threats

In this subsection we discuss the potential threats to the validity of the study using the

framework discussed in [31] about conducting empirical studies for search-based testing.

Construct validity: For measuring test execution cost, we used the actual time spent by

different algorithms and running all algorithms on the same machine. Our effectiveness

measure (FDR) is based on a set of real faults, as explained earlier, that we used to create

mutant programs.

Figure 4 The average FDR of Rnd, CvGr, ItGr, TbGa(175ms), for different sample sizes

96

Internal validity: We implemented both Greedy algorithm and the GA and strived to

achieve the same level of optimization. The GA parameter tuning may have positive effect

on its performance (which we have not systematically carried out) but Greedy does not

have any influential parameter. This means that GA could possibly work better with some

fine tuning. However, that would compromise the applicability of the approach as tuning

can be time consuming and difficult. Regarding our implementation of It, since we had to

adapt its definition to our context (UML state machine and the encoding and representation

of test paths), it might be a potential threat and one could argue that it is possible to more

effectively implement it.

Conclusion validity: Hundred independent runs were performed to account for random

variation and obtain a sufficient number of observations to report means, medians, and

standard deviations. We used the Mann-Whitney U-test for independent samples to check

the statistical differences in FDR across selection techniques, but only reported the latter

here for reasons explained earlier. We also discussed about practical significance by

looking at the magnitude of the differences between FDR and cost of different techniques.

External validity: Our results rely on one industrial case study using a given set of real

faults. Though running such studies is very time consuming, it is obviously required to

replicate it as many times as possible. However, as discussed earlier, the system used here

is typical of a broad category of industrial systems: control systems with state-dependent

behavior, controlling sensors and actuators.

7 Conclusions and Future Work

In this paper, we introduced a new technique for selecting test cases in the context of

Model-Based Testing (MBT), more specifically UML state machine-based testing. Our

motivation is to make MBT scalable in situations where executing test cases satisfying a

coverage criterion (e.g., all transitions) is too expensive, such as when there is hardware in

the loop, interacting external systems, or test case executions are lengthy.

We propose a new similarity-based test case selection technique, which contains a

similarity measure based on UML state machines’ triggers and guards on the transitions. It

uses a Genetic Algorithm (GA) as a selection mechanism in order to minimize similarity

among test cases. The GA uses parameter settings recommended by studies in the literature

and is therefore easy to apply. Our results, based on an industrial case study of a safety

controller, showed that our approach yields significantly better results than other

97

alternatives such as random, coverage-based, and other existing similarity-based selection

techniques. We also have shown that our technique can significantly reduce the cost of test

case execution in MBT by selecting 27% of the test suite to be executed, while retaining a

100% fault detection rate. In the future, we plan to have a more exhaustive investigation of

other possible similarity measures and selection techniques. We will also investigate

hybrid techniques which use both coverage and similarity measures, for example using a

multi-objective GA. We will also conduct additional studies on other industrial systems to

replicate the current study.

References

[1] Utting, M. and Legeard, B., Practical Model-Based Testing: A Tools Approach,
Morgan-Kaufmann, 2006.

[2] Pender, T., UML Bible, Wiley, 2003.
[3] Ali, S., Hemmati, H., Holt, N. E., Arisholm, E. and Briand, L., Model

Transformations as a Strategy to Automate Model-Based Testing - A Tool and
Industrial Case Studies, Simula Research Laboratory, Technical Report(2010-01),
2010.

[4] Binder, R. V., Testing Object-Oriented Systems: Models, Patterns, and Tools,
Addison-Wesley Professional, 1999.

[5] Mathur, A. P., Foundations of Software Testing, Addison-Wesley Professional,
2008.

[6] Jones, J. A. and Harrold, M. J., Test-Suite Reduction and Prioritization for
Modified Condition/Decision Coverage, IEEE Transactions on Software
Engineering, 29(3), 2003, 195-209.

[7] Cartaxo, E. G., Machado, P. D. L. and Neto, F. G. O., On the use of a similarity
function for test case selection in the context of model-based testing, Software
Testing, Verification and Reliability, Published Online: 22 Jul 2009.

[8] Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley Professional, 2001.

[9] Ledru, Y., Petrenko, A. and Boroday, S., Using String Distances for Test Case
Prioritisation, In Proceedings of the 24th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2009, 510-514.

[10] Rothermel, G., Harrold, M. J., Ronne, J. v. and Hong, C., Empirical studies of test-
suite reduction, Software Testing, Verification and Reliability, 12(4), 2002, 219-
249.

[11] Elbaum, S. G., Malishevsky, A. G. and Rothermel, G., Test Case Prioritization: A
Family of Empirical Studies, IEEE Transactions on Software Engineering, 28(2),
2002, 159-182.

[12] Li, Z., Harman, M. and Hierons, R. M., Search Algorithms for Regression Test
Case Prioritization, IEEE Transactions on Software Engineering, 33(4), 2007, 225-
237.

[13] Yoo, S., Harman, M., Tonella, P. and Susi, A., Clustering test cases to achieve
effective and scalable prioritisation incorporating expert knowledge, In
Proceedings of the 18th international symposium on Software testing and analysis,
2009, 201-212.

98

[14] Orso, A., Do, H., Rothermel, G., Harrold, M. J. and Rosenblum, D. S., Using
component metadata to regression test component-based software, Software
Testing, Verification and Reliability, 17(2), 2007, 61-94.

[15] McMaster, S. and Memon, A., Call-Stack Coverage for GUI Test Suite Reduction,
IEEE Transactions on Software Engineering, 34(1), 2008, 99-115.

[16] Chen, Y., Probert, R. L. and Ural, H., Regression test suite reduction based on SDL
models of system requirements, Journal of Software Maintenance and Evolution:
Research and Practice, 21(6), 2009, 379-405.

[17] Farooq, U. and Lam, C. P., A Max-Min Multiobjective Technique to Optimize
Model Based Test Suite, In Proceedings of the 10th ACIS International Conference
on Software Engineering, Artificial Intelligences, Networking and
Parallel/Distributed Computing, 2009, 569-574.

[18] Farooq, U. and Lam, C. P., Evolving the Quality of a Model Based Test Suite, In
Proceedings of the Proceedings of the IEEE International Conference on Software
Testing, Verification, and Validation Workshops, 2009, 141-149

[19] Ma, X. Y., Sheng, B. K. and Ye, C. Q., Test-Suite Reduction Using Genetic
Algorithm, Advanced Parallel Processing Technologies, Springer Berlin /
Heidelberg, 3756, 2005.

[20] Chen, T. Y. and Lau, M. F., A simulation study on some heuristics for test suite
reduction, Information and Software Technology, 40(13), 1998, 777-787.

[21] Leon, D. and Podgurski, A., A Comparison of Coverage-Based and Distribution-
Based Techniques for Filtering and Prioritizing Test Cases, In Proceedings of the
IEEE International Symposium on Software Reliability Engineering, 2003, 442-
456.

[22] Harman, M., The Current State and Future of Search Based Software Engineering,
In Proceedings of the Future of Software Engineering, 2007, IEEE Computer
Society, 342-357.

[23] Simão, A. d. S., Mello, R. F. d. and Senger, L. J., A Technique to Reduce the Test
Case Suites for Regression Testing Based on a Self-Organizing Neural Network
Architecture, In Proceedings of the COMPSAC, 2006, 93-96.

[24] Jiang, B., Zhang, Z., Chan, W. K. and Tse, T. H., Adaptive random test case
prioritization, In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE 2009), 2009, 233-244.

[25] Masri, W., Podgurski, A. and Leon, D., An Empirical Study of Test Case Filtering
Techniques Based on Exercising Information Flows, IEEE Transactions on
Software Engineering, 33(7), 2007.

[26] Ramanathan, M. K., Koyutürk, M., Grama, A. and Jagannathan, S., PHALANX: a
graph-theoretic framework for test case prioritization. , In Proceedings of the 23rd
Annual ACM Symposium on Applied Computing, 2008, 667-673.

[27] http://www.levenshtein.net/
[28] Whitley, D., The genitor algorithm and selective pressure: Why rank-based

allocation of reproductive trials is best, In Proceedings of the Third International
Conference on Genetic Algorithms (ICGA-89), 1989, 116-121.

[29] Haupt, R. L. and Haupt, S. E., Practical Genetic Algorithms, Wiley, 1998.
[30] Gusfield, D., Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology, Cambridge University Press, 1997.
[31] Ali, S., Briand, L. C., Hemmati, H. and Panesar-Walawege, R. K., A Systematic

Review of the Application and Empirical Investigation of Search-based Test-Case
Generation, Accepted for publication in IEEE Transactions on Software
Engineering, Special issue on Search-Based Software Engineering (SBSE), 2009.

99

An Industrial Investigation of Similarity

Measures for Model-Based Test Case Selection
Hadi Hemmati and Lionel Briand

Published in the proceedings of the 21st IEEE International Symposium on Software

Reliability Engineering (ISSRE), pp. 141-150, 2010

Abstract— Applying model-based testing (MBT) in practice requires practical solutions

for scaling up to large industrial systems. One challenge that we have faced while applying

MBT was the generation of test suites that were too large to be practical, even for simple

coverage criteria. The goal of test case selection techniques is to select a subset of the

generated test suite that satisfies resource constraints while yielding a maximum fault

detection rate. One interesting heuristic is to choose the most diverse test cases based on a

pre-defined similarity measure. In this paper, we investigate and compare possible

similarity functions to support similarity-based test selection in the context of state

machine testing, which is the most common form of MBT. We apply the proposed

similarity measures and a selection strategy based on genetic algorithms to an industrial

software system. We compare their fault detection rate based on actual faults. The results

show that applying Jaccard Index on test cases represented as a set of trigger-guards is the

most cost-effective similarity measure. We also discuss the overall benefits of our test

selection approach in terms of test execution savings.

1 Introduction

In recent years the software industry has shown increasing interest in automating the

process of test case generation using models of the system under test. The main idea

behind model-based testing (MBT) is to generate executable test cases (including oracles)

by systematically traversing system models (e.g., represented as UML state machines)

based on test strategies usually involving some form of coverage criterion that aims to

cover certain features of the model (e.g., all transitions in state machine-based testing

(SMBT)) [1]. MBT tools are becoming increasingly sophisticated and robust and MBT is

becoming the best test automation solution for many practitioners. However, there are still

many unsolved issues regarding how to scale up MBT to large industrial software systems.

100

Our experience has shown that in many practical contexts even simple coverage criteria

yield far too many test cases to be usable.

In general, system test case execution can be very costly in most embedded and

distributed systems when there is hardware in the loop or test execution requires access to

dedicated test infrastructures or no automated oracle is available. Testing such systems

requires, for example, assigning enough resources (e.g., actual physical devices) to the test

case, properly handling acceptable delays in the system execution and the network

communication, and manually analyzing the results when there is no automated oracles.

This can be a major hindrance for making MBT practical, especially in the context of

system testing when release deadlines are close and the project is already often behind

schedule.

Test case selection is used to reduce test suite sizes to what can be handled in a specific

context while retaining the largest possible fault revealing power. In general, regardless of

the heuristic used, this test case selection problem is NP hard (traditional set cover) [2].

Other than random selection, where there is no guidance to select test cases, there have

been two main types of test case selection heuristics proposed in the literature. In

coverage-based selection [3], the underlying hypothesis is that “the test suites which

achieve more coverage (of model or code) are more likely to detect faults”. In similarity-

based test case selections (STCS) [4], the underlying hypothesis is that “the more diverse

the test suites the higher their fault revealing power”. To use this latter approach one needs

a (dis)similarity measure to calculate the diversity of a subset by averaging all pair-wise

similarity values. After defining a similarity measure, a selection algorithm is required to

choose a set of test cases with the minimum pair-wise similarity among its members. In

[5], we introduced a new STCS technique for SMBT, which includes a new similarity

measure using triggers and guards on transitions of state machines and a genetic algorithm

(GA)-based selection algorithm. Applying this technique on an industrial case study, we

showed that STCS in general and more specifically our proposed approach is by far more

effective at detecting real faults than coverage-based and random selection.

In this paper, we take a deeper look into the effect of similarity measures in test case

selection by distinguishing the test case representation (encoding) from the similarity

function as two distinct parameters of a similarity measure. A comprehensive investigation

of different similarity functions is performed through an industrial empirical study where

the software under test (SUT) is a safety controller system which is modeled using UML

state machines and test cases are generated using our MBT tool (TRUST) [1]. The case

101

study, although modest compared to other industrial systems, is much larger both in terms

of models and number of generated test cases, than what is reported in related works.

Moreover, the faults we use are real (no seeded faults) thus significantly increasing the

level of realism. The results show that choosing a proper similarity measure has a very

significant effect on fault detection. The best similarity measure results in increasing the

fault detection rate (FDR) by 50% when compared to the best alternative, coverage-based

selection in this case, for small sample sizes (~10% of the test suite). In addition, our

approach for test case selection reduces significantly the cost of MBT by reducing the

number of test executions. For example, to achieve a FDR higher than 90%, we only need

to execute 20 test cases selected with our approach, whereas other alternatives select at

least 85 test cases to achieve the same FDR. Our approach therefore entails a 77% saving

in execution cost.

The rest of the paper is organized as follows. Section 2 reports on background

information about test case selection. Section 3 discusses on different similarity functions

which are used in this study. Section 4 provides a brief overview of related works covering

STCS techniques. Section 5 reports the experimentation results of applying different STCS

techniques on an industrial case study. Section 6 concludes the paper and outlines our

future work plan.

2 Test Case Selection

In general, there are two options for decreasing the number of test case executions. The

first is generating fewer test cases which in the context of MBT means using a less

demanding coverage criterion. For instance, if using all transition-pairs [6] generates a too

large test suite, the all-transitions [6] criterion can be adopted instead to decrease the

number of test cases. This still results in systematic testing but may reduce the FDR. The

second approach is to select a subset of test cases from the test suite for execution. This can

be done either by test suite reduction where the goal is to minimize the test suite by

removing redundant test cases with respect to a criterion (e.g., code coverage) or by test

case selection where the goal is to select a subset of the entire test suite that maximizes

fault detection based on a heuristic, given a maximum number of test cases. Using a less

demanding coverage criterion or test suite reduction is often impractical as one cannot

precisely select a maximum number of test cases. Furthermore, we have shown in [5] that

even when the scale of reduction achieved by using less demanding criteria is acceptable, it

102

is still much less cost-effective than a STCS. Test case prioritization, which does not

remove any test case but order their execution [7], could also be considered but does not

directly address our problem, though some of the underlying ideas could be adapted. For

example, as we will see in the related work section, most similarity measures that are used

in similarity-based test case prioritization can be used in test case selection as well. In this

study, the focus is on test case selection.

The problem of test case selection in our context can be formalized as: “Given a test

suite TS that detects a set of faults (F) in the system, our goal is to maximize FD(sn), where

sn is a subset of TS of size n and FD(sn) is the percentage of F which is detected by sn”. We

can classify test case selection techniques as follows: (1) those which make use of test

execution information as it is usually the case in regression testing and (2) those which

select test cases solely based upon the characteristics of the (abstract) test cases. The latter

category is the one of interest in our context where the test suite cannot be executed before

selection. Therefore, execution-based heuristics such as execution traces (e.g. call stack

[8]) are not applicable here.

2.1 Coverage-based test case selection

Maximizing coverage has been a common practice in selection and prioritization for years.

Most studies in test case selection (even those which are general purpose and not specific

to regression testing) are based on code-level information (e.g., additional statement

coverage[7]) and cannot directly be applied to MBT. However, it is possible to extract

additional information from test cases to help the selection even without executing it. For

example, transition coverage in a state machine can be determined if traceability has been

preserved between a test case and its source state machine. Most coverage-based selection

techniques are re-expressed into optimization problems where the goal is to select the best

subset of test cases to achieve full coverage. For example, a technique in [7] uses a Greedy

search to select, at every step, the test case that covers the most uncovered statements

(additional coverage-based technique) whereas in [9] a GA is used to achieve maximum

coverage.

2.2 Similarity-based test case selection

In STCS techniques, a (dis)similarity measure is used for comparing similarity (diversity)

between a pair of test cases. A similarity measure is the value that a similarity function

assigns to two inputs which are being compared. Inputs are usually encoded as a set or

sequence of elements. In the context of MBT, the inputs are abstract test cases instead of

103

concrete test cases. We do not need the execution information of the test case and abstract

test cases are naturally generated as a first step by MBT. Therefore, we reduce the cost of

test case generation by only generating executable test cases for the selected abstract test

cases and also by hiding the unnecessary information for similarity comparisons. For

example, in SMBT an abstract test case representation can be a path in the state machine

specifying the SUT. In general, different faults can be detected by the same test path

instantiated with different test data. Therefore, to compare different techniques, it is

necessary to run the selected test paths with different input data and use their FDR

distribution.

Representation (encoding) of the test cases has an important effect on the similarity

measure. Though in state-based testing a test path represents an encoded abstract test case,

the test path can be described at different levels of details. We consider three possible

encodings for a test path in UML state machine: state-based, transition-based, and trigger-

guard-based:

1. state-based: <tp> ::= state | state “,” <tp>

2. transition-based: <tp> ::= trans | trans “,” <tp>

3. trigger-guard-based: <tp> ::= <TrGu> | <TrGu> “,” <tp>

< TrGu > ::= trig |guard | id | guard “+” trig

where state is the id of a state, trans the id of a transition, trig the id of a trigger, and

guard the id of a guard in the state machine. In the case of trigger-guard-based encoding, a

transition is identified by its trigger and guard. It can be only a trigger, or a guard or both

together. If there is a transition with no guard and trigger, we use the transition id as its

identifier. Note that the difference between trigger-guard-based and transition-based

encoding is that in trigger-guard-based encoding transitions with the same trigger-guard

but different source or target state are identical.

Given an encoding, one may use different similarity functions to calculate the similarity

value. Similarity is usually defined on either two sets or two sequences of elements. The

main difference is that set-based similarity measures as opposed to sequence-based ones do

not take the order of elements into account. For example, if test case 1 includes method

calls A and B and test case 2 includes method calls B and A, respectively, and method calls

are the only encoded elements in the test path, set-based similarity functions assume these

two test cases as identical. In the next section, the functions which are used in our study are

104

introduced. In this paper, we take the best encoding from our previous study [5] and

investigate the effect of different similarity functions on the FDR of the selected test cases.

Given a set of encoded test cases (ݏ௡) and a similarity function (ܵ݅݉ܿ݊ݑܨ), the test case

selection problem is reformulated as minimizing ܵ݅݉ݎݏܯሺݏ௡ሻ:

௡ሻݏሺݎݏܯ݉݅ܵ ൌ ෍ , ௜݌ݐሺܿ݊ݑܨ݉݅ܵ ௝ሻ݌ݐ

௧௣೔ , ௧௣ೕ∈௦೙ ∧ ௜வ௝

Where ܵ݅݉ܿ݊ݑܨ (݌ݐ௜ , ݌ݐ௝) returns the similarity of two test paths (or other encoded

abstract test cases in MBT) in ݏ௡ represented by ݌ݐ௜ and ݌ݐ௝. The last step in STCS is

applying a selection algorithm which selects a subset of test cases with minimum average

pair-wise similarity (ܵ݅݉ݎݏܯ). Our experience in [5] showed that using a GA is more cost-

effective than a Greedy search which is common in the STCS literature [4]. Therefore, in

this study we use a GA as our selection mechanism. GAs rely on four basic features:

population, selection, crossover and mutation. More than one solution is considered at the

same time (population). At each generation (i.e., at each step of the algorithm), some good

solutions in the current population are chosen by the selection mechanism to generate

offspring using the crossover operator. This operator combines parts of the chromosomes

(i.e., the solution representation) of the offspring with a certain probability; otherwise it

just produces copies of the parents. These new offspring solutions will be part of the

population of the next generation. The mutation operator is applied to make small changes

in the chromosomes of the offspring. Eventually, after a number of generations, an

individual that solves the addressed problem will be evolved. We use a steady state GA

where an individual (i.e., a solution to the problem) is ݏ௡ (subset of TS with size n).

SimFunc(݌ݐ௜ , ݌ݐ௝) is the fitness function to be minimized. A mutated test path is replaced

by a test path that is selected at random from the set of all possible test paths. We do not

tune our GA parameters and use what is suggested in the literature (e.g. [10])—a high

crossover probability (0.75) and low mutation probability (inversely proportional to the

population size) and a reasonable sample size (50). The stopping criterion used in this

study is stopping after a fixed period of time (175ms), which is 10 times more than the

amount of time that a basic Greedy search would take on average in our case study.

Though the GA is more costly than the Greedy, the GA is still a better option since 175ms

is negligible compared to the execution time of a test case and no improvement can be

105

obtained with Greedy even if we let the algorithm search for longer periods of time (e.g.,

175ms).

3 Similarity Function

As we mentioned in Section 2.2, common similarity functions are either set-based or

sequence-based. In this study, we compare measures which have been used in the

similarity-based selection or prioritization literature (Counting, Hamming, Jaccard, and

Levenshtein functions) and measures (Global and Local alignments) which have not been

used in software testing but are commonly used in other disciplines (such as

bioinformatics) for similarity comparisons.

3.1 Set-based similarity functions

The main two measures in this category are the Jaccard Index [11] and the Hamming

Distance function [12]. However, we also compare another measure (we call it Counting

function) which is used in the only other reported study about STCS in MBT [4].

3.1.1 Counting function

The Counting function (Cnt) is the simplest way of comparing two sets which we have

reused from the measure used in [4] for comparing two sets of transitions. Given two sets

S1 and S2, Cnt(S1, S2) = number of identical members in S1 and S2 divided by the average

number of members in S1 and S2.

3.1.2 Hamming Distance

Hamming Distance is one of the most used distance functions in the literature which is a

basic edit-distance. The edit-distance between two sequences is defined as the minimum

number of edit operations –insertions, deletions, and substitutions– needed to transform the

first sequence into the second [12-14]. Hamming is only applicable on identical length

inputs and is equal to the number of substitutions required in one input to become the

second one [12]. If all inputs are originally of identical length, the function can be used as

a sequence-based measure. However, in most applications, inputs have different lengths.

Therefore, to force them to have an identical length, a binary vector is made per input that

indicates which elements from the set of all possible elements of the encoding exist in the

input. As a result, the function does not preserve the original order of elements in the input

anymore and it becomes a set-based similarity function. In our case, to use Hamming

Distance, each encoded test case is represented as a binary vector of length n, where n is

106

the number of all possible elements for that encoding (e.g., n is the number of all states, if

state-based encoding is used). A bit in the vector is true only if the encoded test case

contains the corresponding element (e.g., the state in the above example). We also need to

change distance into similarity in our study. Therefore, our version of the Hamming

function (denoted Ham) counts identical bits in the two input vectors, as opposed to the

standard Hamming Distance where differences are counted.

3.1.3 Jaccard Index

Jaccard Index or Jaccard similarity coefficient (denoted Jac) is defined to compare

similarity of sample sets [11]. It is defined as the size of the intersection divided by the size

of the union of the sample sets:

,ܣሺܿܽܬ ሻܤ ൌ
ܣ| ∩ |ܤ

ܣ| ∪ |ܤ

3.2 Sequence-based similarity functions

Sequence similarity is usually applied on string matching in text mining [14] and

homologous pattern recognition in bioinformatics [13]. Here we are using basic edit

distance (Levenshtein) from text mining and global and local alignment from

bioinformatics.

3.2.1 Levenshtein

One of the the most well-known algorithms implementing edit-distance which is not

limited to identical length sequences is Levenshtein [14] where each mismatch

(substitutions) or gap (insertion/deletion) increases the distance by one unit. To change

distances into similarities, we need to reward each match and penalize each mismatch and

gap. The dynamic programming [15] implementation of the algorithms in addition to

examples can be found in [14]. The relative scores assigned to matches, mismatches, and

gaps can be different (operation weight). Moreover, in some versions of the algorithm

there are different match scores based on the type of matches (alphabet weight). Here we

use a basic setting for the function (denoted Lev) where matches are rewarded by one point

and mismatch and gap are treated the same by giving no reward.

3.2.2 Global and local sequence alignments

An alignment of two sequences is a mapping between positions in them [13]. In local

alignment the goal is finding the best alignment for sub-sequences of given sequences

while in global alignment the entire sequences must be aligned. The most basic global and

107

local alignment algorithms are respectively Needleman-Wunsch (NW) [13] and Smith-

Waterman (SW) [13]. The dynamic programming implementation of the algorithms, along

with examples, can be found in [13]. The scoring matrix F for Needleman–Wunsch

alignment is defined as:

F[0][݆] = - ݆ * ݀, F[݅][0] = - ݅ * ݀

F[݅][݆]=maxቐ
Fሾ݅ െ 1ሿሾ݆ െ 1ሿ ൅ sim൫ݔ௜, ,௝൯ݕ

Fሾ݅ െ 1ሿሾ݆ሿ െ ݀,

Fሾ݅ሿሾ݆ െ 1ሿ െ ݀.

Where the sim൫ݔ௜, ௝൯ returns the match/mismatch scores between the ith member of xݕ

and the jth member of y, and ݀ is the gap penalty. The similarity between the two

sequences is F[n][m] where n and m are the lengths of the input sequences. The scoring

matrix F for SW alignment is defined in a similar way as in the NW scoring matrix but

with a small change:

F[0][݆] = - ݆ * ݀, F[݅][0] = - ݅ * ݀

F[݅][݆]=max

ە
۔

ۓ
Fሾ݅ െ 1ሿሾ݆ െ 1ሿ ൅ sim൫ݔ௜, ,௝൯ݕ

Fሾ݅ െ 1ሿሾ݆ሿ െ ݀,

Fሾ݅ሿሾ݆ െ 1ሿ െ ݀,
0

Having zero as one option in the max function results in having only positive values. In

this approach, the similarity value is the highest F[i][j] which identifies the longest most

similar subsequence between input sequences as well. Note that each alignment technique

uses a similarity function to align the input sequences. The NW alignment algorithm

actually uses the Levenshtein similarity function but with different weightings for match,

mismatch and gap. In this study, we use Levenshtein with match score +3, mismatch -2,

and a gap penalty of 1 as the similarity function for global alignment (denoted Glb). The

same settings are used for local alignment as well (denoted Loc). These parameters were

selected based on the result of a small tuning experiment that we have applied for different

parameter settings of Glb and Loc but not reported here due to space restrictions. The fact

that we only tune the parameters of Glb and Loc does not introduce any bias in the results

since Cnt, Ham, Jac, and Lev do not have parameters to be set. However, the need for

tuning is an impediment since it might be time consuming and not easy in practice. Note

that in the case of Lev, we assume the basic Levenshtein definition (with fix parameters as

+1 for match and zero for mismatch and gap). Levenshtein algorithms with other weights

108

than what is used in Lev are actually called Global alignment similarity functions in this

paper and Glb is one of them, which is tuned for our case.

4 Related Work

As we discussed in Section 2, there have been many studies on code-based test case

selection and selection for regression testing which are not applicable in our context. There

exist studies regarding similarity-based selection, minimization, and prioritization for

code-based testing. However, model-based test case selection using a similarity function

has not been a focus of many studies in the literature though many ideas from code-based

selection can be adapted to MBT. For example the authors in [16] use a bit vector encoding

for some code features (e.g. statement coverage) and Hamming Distance to measure

diversity. In [17] test cases are encoded again as bit vectors for some basic block coverage

in source code (e.g., statement coverage) but this time the Euclidian distance is used to

measure diversity. In [18] the authors use Jaccard Index on a set of covered statement and

the work in [19] applies Levenshtein on a sequence of memory operations. In [20] authors

use the whole test script as their encoded test case and apply Hamming, Euclidian,

Manhattan, and Levenshtein distance on it. However, this encoding is not very effective

when the test script contains a great deal of irrelevant platform dependant information,

which is usually the case in industrial systems.

STCS techniques for MBT are proposed in [4] and our initial work [5]. Both studies use

Cnt as their similarity function but the work in [4] uses transition-based encoding whereas

we employ the trigger-guard-based encoding. In [5] we implemented the three encodings

explained in Section 2.2 (state, transition, and trigger-guard-based) and compared their

effectiveness in terms of average FDR. The results showed that trigger-guard is the best

encoding among them. Using it with the Cnt similarity function and a GA as a selection

algorithm, we significantly increased the effectiveness of the current selection techniques

such as random, coverage-based, and the transition-based approach (the only reported

STCS in MBT [4]). In this paper, we further improve our approach in [5] by using the

same encoding (trigger-guard-based) and selection algorithm (the GA) but a better

similarity function than Cnt. We compare different similarity functions introduced in

Section 3 in terms of their FDR on an industrial case study and also discuss the cost of

each function. The practical benefits of our proposed approach compared to other

alternatives are also reported.

109

5 Empirical Study

In this section, we investigate the effect of similarity functions on the fault detection ability

of STCS techniques by applying them on an industrial case study. We also compare the

results of the best STCS approach with random and coverage-based selection techniques.

5.1 Case study description

The SUT is a safety monitoring component in a safety-critical control system implemented

in C++. We chose this system because it exhibits a complex state-based behavior that is

modeled as UML state machines complemented by constraints specifying state invariants

and guards, which are useful to derive automated test oracles. This SUT is typical of a

broad category of reactive systems interacting with sensors and actuators. The first version

of the system (including models and code) was developed and verified by company experts

and our research team. The 26 faults used in the study were introduced during maintenance

activities of subsequent versions of the SUT by developers and re-introduced for the

purpose of the experiment in the latest version of the SUT.

The correct and most up-to-date UML state machine, representing the latest version of

the SUT’s behavior, consists of one orthogonal state with two regions. Enclosed in the first

region are two simple states and two simple-composite states. The simple-composite states

contain two and three simple states. The second region encloses one simple state and four

simple-composite states that again consist of, respectively, two, two, two, and three simple

states. This adds up to one orthogonal state, 17 simple states, six simple-composite states,

and a maximum hierarchy level of two. The unflattened state machine contains 61

transitions and the flattened state machine consists of 70 simple states and 349 transitions.

Among the 26 faults, 11 of them were sneak paths (illegal transitions in the modified

model) [6]. To detect such faults the model should account for the behavior of the SUT

when receiving unexpected triggers. Such robustness behavior is not currently modeled

and therefore, these 11 faults could not be caught by any test case generated from the

model. Since the focus of this paper is on improving test cases selection rather than

generation, faults which cannot be caught by the original test suite is not of interest. The

remaining 15 faults (detectable by the test cases generated from the model) are collected

and 15 faulty versions of the code (mutant programs) are made by introducing one fault per

program. Each of these faults belongs to one of the following categories: wrong guards on

transitions, wrong state invariant, missing transition, and wrong OnEntry action of states.

110

The purpose was to study each real fault in isolation in order to avoid masking effects and

compute fault detection scores. Since a test case stops executing after detecting the first

failure, in a program with multiple faults we should either rerun test cases on the SUT after

each bug fix, or isolate faults by seeding one fault per mutant program. We chose the latter

case to avoid manual bug fixing after each run. Our approach should not be confused with

mutation testing which makes use of mutation operators to create faults and then seed them

in the SUT one by one. In our approach, all faults were real faults, as described above.

In the next step, the correct UML state machine is given to TRUST [1] as an input

model and executable test cases were automatically generated. Note that in our case study

if a test path has the ability to detect a fault, it can be detected by any valid test data for that

test path. Therefore, in our experiment, we do not need to run the test path several times

with the different input data and we have only one test case per test path and the FDR of a

test path is equal to the FDR of the corresponding test case.

The original test suites which selections are applied on is generated by TRUST using

All-Transitions coverage. The test suite is made of 281 test cases and can detect all 15

detectable faults. Among 281 test cases 207 cannot detect any faults and 74 catch at least

one fault. The average number of detected faults per test case is 0.72 and the maximum is

five. Each fault is also detected on average by 13 test cases. There are nine faults which are

only detected by three test cases and two faults are detectable by 65 test cases.

5.2 Experiment design

In [5] we showed that trigger-guard-based encoding is by far more effective than the other

alternatives for SMBT (transition-based and state-based). Also, we showed that the

improvement yielded by GA compared to Greedy search was significant. Therefore, to

evaluate different similarity functions we use the best encoding and selection technique

based on our previous study. Our research questions in the current paper can be

summarized as follows:

RQ1. What is the most cost-effective similarity function for similarity-based test case

selection in SMBT?

RQ1.1 Which similarity function (among set and sequence based functions) is

more effective in terms of FDR?

RQ1.2 Which similarity functions (set or sequence based functions) are less

expensive in terms of execution cost?

111

RQ2. In practice, how much test case execution resources do we save by using the

best STCS compared to random selection and coverage-based selections?

To account for the randomness of FDR results, which exists for all selection algorithms,

we run each experiment 100 times and report distribution statistics. We report the results of

different techniques for sample sizes less than 140 (~50% of the test suite) with intervals of

10, since our focus is on smaller size subsets. This is due to the fact that in practice test

case selection is mostly used for selecting a relatively small sample of large test suites.

Furthermore, for large sample sizes, all selection techniques will usually be as good as

random selection which typically detects most faults. We have performed non-parametric

(Mann-Whitney) statistical tests, using a significance level ߙ ൌ 0.05, to compare the FDR

medians of the proposed and alternative selection techniques. Non-parametric tests are

more robust than a parametric test (e.g., the t-test) when there are strong departures from

normality and they do have enough statistical power for the sample size we deal with in

this study (100 observations). In addition, we provide FDR means, standard deviations, and

distributions as Boxplots over different runs for the six smaller sample sizes (10 to 60),

where differences among techniques are more visible.

The measures that we use for comparing the effectiveness of different techniques are

defined in [5] as follows:

 ௜ (a subset of size i selected by techniqueݏ ሺ݅ሻ୻ is the number of faults detected byߩ .1

Γ from the test suite TS with size n) divided by the total number of detectable faults

in TS (15 in our case). This measure is used in the paper wherever we want to

simply report the FDR for a given technique and sample size. Since we run each

test suite 100 times on faulty programs we report the FDR means and variances.

௠ܴܦܨܣ .2
ఊ
ሺΓሻ. Enables the overall comparison of two selection techniques for a range

of sample sizes. ܴܦܨܣ௠
ఊ
ሺΓሻ, which is inspired by the APFD measure [7] for test

case prioritization, is adapted to test case selection in our context. It is a measure

for comparing curves and measures the sum of all ߩሺ݅ሻ୻ for all sample sizes in the

given intervals and range (0 to m). More precisely, it is equal to the area under the

curve representing ߩሺ݅ሻ୻ (y-axis) over different sample sizes (x-axis). Since sample

size has discrete values, the area under the curve is calculated as:

112

௠ܴܦܨܣ
ఊ ሺΓሻ ൌ

ሺ0ሻߩ ൅ ሺ݉ሻߩ
2

൅ ∑ ሺ݅ߩ ∗ ሻ୻ߛ
ቀ
௠
ఊ ቁିଵ

௜ୀଵ

݉
ߛ

where 0 ൑ ௠ܴܦܨܣ
ఊ ሺΓሻ ൑ 1. As we discussed, in this paper we report the result of

sample sizes less than 140 (~50% of the test suite) with intervals of 10, and

therefore always report ܴܦܨܣଵସ଴
ଵ଴ ሺΓሻ.

3. min୩ሺΓሻ is the minimum number of test cases from the given test suite TS that are

selected by technique Γ to detect at least ݇% of the detectable faults. This measure

is more useful when selection techniques are compared with respect to their

reduction in cost while ensuring a given fault detection rate.

The three measures above are complementary and help interpreting the FDR from

different angles. The experiments have been conducted on a PC with Intel Core(TM)2 Duo

CPU 2.40 Hz and 4 GB memory running Windows 7.

5.3 Experiment results

In this section we answer research questions RQ1 and RQ2 based on our case study.

5.3.1 Experiment results for RQ1

We start with RQ1.1 and first compare the effectiveness of set-based and sequence-based

techniques separately and identify the best function in each class. We then compare the

best set-based similarity versus the best sequence-based function. Figure 1.a shows the

average FDR of the three set-based functions introduced in Section 3.1 (ߩሺ݅ሻ஼௡௧ , ߩሺ݅ሻ௃௔௖ ,

 ሺ݅ሻு௔௠). The results show that Jac has the largest average FDR and Ham the smallest oneߩ

for almost every sample size and especially so for smaller sample sizes. An overall

comparison of the curves also suggests that Jac fares better than Cnt and Ham.

ଵସ଴ܴܦܨܣ)
ଵ଴ ሺܿܽܬሻ ≅ ଵସ଴ܴܦܨܣ , 0.95

ଵ଴ ሺݐ݊ܥሻ ≅ ଵସ଴ܴܦܨܣ , 0.93
ଵ଴ ሺ݉ܽܪሻ ≅ 0.89). Using Jac is

also better in finding faults with fewer test cases as for example minଽ଴ሺJacሻ ≅ 20 (~7% of

the test suite) whereas minଽ଴ሺCntሻ ≅ 30 (~11% of the test suite) and minଽ଴ሺHamሻ ≅

40 (~14% of the test suite). Table 1 contains the FDR means and standard deviations of the

three functions over 100 runs for various sample sizes. Mann-whitney U-tests shows that

Jac median FDR is significantly higher than those of Cnt and Ham, for sample sizes less

than 50. For sample sizes between 50 and 140, Jac and Cnt show similar FDR results,

which are significantly higher than the FDR results for Ham. Looking at Boxplots in

113

Figure 2 and the standard deviations in Table 1 however suggests that Jac is a better option

since it shows less variance for sample sizes above or equal to 30. For sample sizes higher

than 140 (50%), all techniques’ FDR quickly converges to 1.0.

The most plausible reason explaining the above results is that although all three

algorithms consider the number of identical elements in the inputs, Ham only reports this

value without any normalization. Jac and Cnt, however, normalize the number of identical

elements with respect to the total elements in both inputs, which makes the similarity value

more precise. For example, let A, B, and C be three input sets. A and B are identical both

containing one member x. On the other hand C contains three members x, y, and z.

Therefore, a good similarity function should assign higher similarity value to (A,B) than

(A,C). Since the number of identical elements in both pairs (A,B) and (A,C) is one,

Ham(A,B)=Ham(A,C)=1 whereas Cnt(A,B)=Jac(A,B)=1 but Cnt(A,C)=0.5 and

Jac(A,C)=0.34. Therefore, Jac and Cnt are more precise than Ham. Comparing Jac and

Cnt, we notice that both use the same information (number of identical and different

(a) Set-based similarity functions

(b) Sequence-based similarity functions

(c) The best set and sequence-based functions

(d) The best similarity-based selection vs.
baselines

Figure 1 The average FDR of different selection techniques for sample sizes 10 to 140

114

elements in the input sets). Assume the number of identical elements in two inputs A and B

is S and the number of different elements is D. Then Cnt(A,B)=S/(S+D/2) and

Jac(A,B)=S/(S+D). Theoretically, none is preferable to the other but our case study is

showing that Jac, which normalizes the similarity value by treating S and D the same, is

more effective in finding faults than Cnt which gives more weight to identical elements (S)

than different ones (D).

Figure 1.b shows the average FDR of three sequence-based selection techniques,

introduced in Section 3.2 (ߩሺ݅ሻ௅௘௩ , ߩሺ݅ሻீ௟௕ , ߩሺ݅ሻ௅௢௖). Not surprisingly Glb performs better

than Lev. With sample sizes less than 130, Glb is always significantly more effective in

terms of FDR (based on Mann- Whitney U-test) since it is basically a tuned version of Lev.

However, Loc with the same settings as Glb is much less effective. A plausible reason is

that this algorithm is designed for long sequences in bioinformatics, where aligning the

whole sequence results in very bad scores. Therefore, they align the sequences locally,

which is not as precise as globally aligning them. However, in our case where the average

and maximum length of test paths is 5 and 7, respectively, Glb performs better. Comparing

the overall curves shows clear differences (ܴܦܨܣଵସ଴
ଵ଴ ሺݒ݁ܮሻ ≅ ଵସ଴ܴܦܨܣ , 0.88

ଵ଴ ሺܾ݈ܩሻ ≅

ଵସ଴ܴܦܨܣ , 0.92
ଵ଴ ሺܿ݋ܮሻ ≅ 0.85). In terms of finding more faults with fewer test cases, Glb is

significantly better than other sequence-based similarity functions. For example,

minଽ଴ሺLevሻ ≅ 50, minଽ଴ሺGlbሻ ≅ 25, minଽ଴ሺLocሻ ≅ 60. Furthermore, Lev and Loc show

high variance (Table 1 and Figure 2), which makes them very risky to use. For example,

even with a large sample size like 110, 10% of the 100 selections using Loc result in an

FDR below 0.6 whereas Glb, even with sample size 20, ensures that FDR > 0.6 with a

confidence over 90%.

In Figure 1.c the best sequence-based (Glb) is compared with the best set-based (Jac)

similarity function. From average FDR’s point of view, for sample sizes less than 50, Jac

performs better than Glb. In addition, an overall comparison of the curves shows a similar

performance (ܴܦܨܣଵସ଴
ଵ଴ ሺܾ݈ܩሻ ≅ 0.92 vs. AFDRଵସ଴

ଵ଴ ሺJacሻ ≅ 0.95) and a similar results for

variance comparisons (Table 1 and Figure 2). However, the differences are not practically

significant in most cases. On the other hand, Jac is from a practical standpoint easier to use

since it does not require any parameter settings, whereas weights and penalties in Glb

require tuning. Therefore, based on these results, we suggest using Jaccard Index as

similarity function in STCS.

Answering RQ1.2 we compare the cost of different similarity functions both in terms of

computational complexity and the actual time required for the similarity calculation. We

115

notice that set-based measures are less expensive (O(n+m)) than sequence-based measures

(O(n*m)), where n and m are the size of two test cases being compared represented as sets

of trigger-guards. In terms of the actual time spent for the calculation, set-based measures

required around 0.5 seconds in average for building the similarity matrix (filled with 39340

similarity values between all pairs of test cases in the test suite), whereas sequence-based

measures require more than 3 seconds to build such matrix. These results also suggest that

set-based measures are less expensive. Therefore, we suggest Jaccard Index, given its low

cost, high effectiveness, low variation, and ease of use.

5.3.2 Experiment results for RQ2

We compare our suggested selection technique (Jac) with random selection (Rnd),

coverage-based Greedy selection (CovGr), coverage-based GA selection (CovGA), and the

state of the art in STCS [4] (TransGr). TransGr uses a transition-based encoding, a

Counting similarity function, and a Greedy search for selection. Note that Jac refers to a

STCS which uses trigger-guard-based encoding, Jaccard Index as similarity function, and a

GA for selection. Figure 1.d shows all average FDRs for different sample sizes for all the

techniques. The improvement we get using our technique is clearly visible from the graph

and is confirmed by Mann-Whitney U-tests, for sample sizes less than 90. For example, for

sample size 30 (~10% of the test suite), we get a 50% improvement from the best

alternative technique (CovGrd). The results get even more interesting when we see that the

best improvements are on the smaller sample sizes (less than 30% of the test suite), which

are more likely to be used in practice. The overall comparison of curves also show large

differences (ܴܦܨܣଵସ଴
ଵ଴ ሺܿܽܬሻ ≅ ଵସ଴ܴܦܨܣ ,0.95

ଵ଴ ሺܶݎܩݏ݊ܽݎሻ ≅ ଵସ଴ܴܦܨܣ ,0.80
ଵ଴ ሺݎܩݒ݋ܥሻ ≅

ଵସ଴ܴܦܨܣ ,0.76
ଵ଴ ሺܣܩݒ݋ܥሻ ≅ 0.7, and ܴܦܨܣଵସ଴

ଵ଴ ሺܴ݊݀ሻ ≅ 0.69). As we have mentioned, the

minimum number of test cases required for Jac to yield an average FDR above 0.9 is 20

(minଽ଴ሺJacሻ ≅ 20 (or ~7% of TS) whereas the best alternatives require at least 85 test

cases (minଽ଴ሺTransGrሻ ≅ 85 or ~30% of TS), thus implying a near 77% reduction in cost.

Note that, for sample sizes larger than 100, the mean FDR of TransGr is 1.0 whereas the

mean FDR of Jac is below 1.0. The most plausible reason is that Jac uses the GA with a

175ms stopping criterion, which is a very short time for exploring the solution space for

large sample sizes. Therefore, among these techniques, the best for yielding 100% FDR

with minimum number of test cases is a GA with longer stopping time (e.g., using 1 sec

instead of 175ms, Jac can find all faults for sample sizes less than 30). Given the small

116

execution times involved, this has no practical consequences on the applicability of the

GA.

The other interesting observation from Figure 2 and Table 1 is the confidence that we

gain by using our approach rather than coverage-based selection, random selection, or even

the best existing STCS approaches. For example, looking at results for sample size 40 in

Figure 2, we see that 90% of the 100 runs of our approach resulted in a median FDR equal

to 1.0, while 75% of all runs, for all the alternative approaches (Rnd, CovGrd, CovGA, and

TransGrd), yield a median FDR below 0.80. These results strengthen further our

confidence in recommending Jac to support SMBT (and in general MBT) in practice.

Analyzing the cost of STCS compared to alternatives, we consider the actual selection

time spent by each technique, since no better measure is applicable in our context. For

example, the number of fitness evaluations in GAs, a better alternative in some cases, is

not applicable to CovGr and Rnd. We use 175ms as stopping criterion for the GA, which

seems unfair given that CovGr only requires on average one tenth of this time and Rnd less

than 1 ms. However, CovGr and Rnd could not be improved even with increased execution

time. Moreover, stopping the GA exactly at the execution time used by CovGr, still

improves the FDR though the improvement is not practically significant. From a practical

standpoint, all these differences are anyway negligible as 175ms, even when considering

the overhead of the similarity matrix creation (in average 500ms for Jac), is very small

compared to the actual test case execution time (which is in the range of minutes). In cases

where the number of test cases is much larger than in our case study, our conclusions

Table 1 The mean FDRs (highest values per sample size are in bold) and their standard deviations
per sample size over 100 runs

Selection
technique

FDRs per sample size

10 20 30 40 50 60
M S M S M S M S M S M S

A
Jac 0.72 0.14 0.90 0.11 0.96 0.07 0.98 0.05 0.97 0.06 0.97 0.07
Cnt 0.57 0.18 0.84 0.14 0.90 0.12 0.95 0.08 0.96 0.07 0.97 0.06

Ham 0.52 0.14 0.71 0.14 0.85 0.14 0.91 0.12 0.92 0.11 0.93 0.10

B
Glb 0.67 0.14 0.88 0.12 0.93 0.08 0.97 0.05 0.98 0.05 0.98 0.05
Lev 0.48 0.16 0.67 0.14 0.80 0.14 0.86 0.12 0.92 0.10 0.93 0.09
Loc 0.44 0.13 0.61 0.14 0.76 0.13 0.82 0.13 0.85 0.12 0.90 0.12

C

TranGr 0.35 0.13 0.54 0.13 0.65 0.14 0.62 0.15 0.67 0.14 0.74 0.13
CovGr 0.35 0.14 0.53 0.13 0.62 0.13 0.67 0.13 0.73 0.14 0.75 0.15

CovGA 0.35 0.14 0.50 0.15
0.54

5
0.17 0.63 0.16 0.66 0.19 0.72 0.15

Rnd 0.28 0.16 0.42 0.18 0.50 0.16 0.56 0.16 0.63 0.19 0.66 0.18

 M: Mean, S: Standard Deviation. A: Set-based, B: Sequence-based, C: Baselines

117

would still hold as both the time of executing test cases and computing similarities would

increase, the latter still being negligible. Overall, in order to minimize the overall testing

effort, we recommend the use of Jac over existing alternatives.

5.4 Discussion on validity threats

This study was conducted according to recently proposed guidelines for conducting

empirical studies in search-based testing [21]. In terms of the construct validity of our

measures, effectiveness (FDR) is based on a set of real faults, as explained earlier, that we

used to create mutant programs. Comparing the cost of different similarity functions we

considered the computational complexity of their implementations along with their actual

time consumptions to gain a more precise understanding of their relative cost. The cost

discussion on different selection techniques was not practically interesting in our case

because the difference between the execution time of different techniques is negligible

compared to even one test case execution time (less than a second compared to minutes).

However, for very large test suites with faster test case executions, the differences among

selection techniques may no longer be negligible compared to test execution time.

However, in most cases, we expect the selection time to be negligible compared to the total

reduction in test execution time (time required for executing all excluded test case). The

exact threshold above which a selection technique will no longer be cost-effective depends

on the test suite size, the percentage of selection, and the average test case execution time.

Note that, in our implementation of STCS algorithms, the similarity matrix is created

beforehand and kept in memory. This creates an initial overhead and will generate a

memory problem for large test suites. The other option which may be even quicker

(depending on the number of distinct similarity evaluations that GA requires during its

execution and the matrix size) is the on-demand calculation of similarities. In addition, the

most used similarities may be cached. Except for sequence-based similarity functions

(which implementation is taken from [13]) we implemented the other similarity functions

and search techniques and strived to achieve the same level of optimization. Our proposed

similarity function (Jac) does not require any tuning but the parameter tuning for Glb and

Loc, which is done with a small experiment on a small sample set might not be optimal

This means that it is in theory possible to obtain a better FDR than Jac using an optimal

Glb or Loc. However, this tuning, in general, is not easy to apply in practice and entails

extra cost.

118

One hundred independent runs were performed for each selection technique to account

for random variation and obtain a sufficient number of observations to report means,

medians, and standard deviations. We used the non-parametric Mann-Whitney U-test for

independent samples to check the statistical differences in FDR across selection techniques

and we are thus not relying on any assumption. We also discussed about practical

significance by looking at the magnitude of the differences between FDR (percentage of

improvement) and cost (actual time) of different techniques. Our results rely on one

industrial case study using a set of real faults. Though such realistic studies are rare in the

research literature and very time consuming, it must be replicated on other systems and

Figure 2 FDR (y-axis) Boxplots for different selection techniques (x-axis) for sample sizes ranging from
10 to 60 by intervals of 10 over 100 runs. The Boxplots show the 10th, 25th, 50th, 75th, and 90th

percentiles and means

119

sets of faults. However, as discussed earlier, the system used here is typical of a broad

category of industrial systems: control systems with state-dependent behavior.

6 Conclusion and Future Work

In the context of embedded and telecom software, among many other examples, system

testing must often occur on realistic infrastructure and test networks involving limited

access time and entailing significant costs. Though Model-Based Testing (MBT) has been

found to be an interesting solution in practice, on typical industrial models, the number of

test cases generated is still very large. In addition, for many systems, automatically

generating oracles from models is very difficult or impossible. In such cases, test cases

should be evaluated manually, greatly increasing the cost of test execution and analysis. In

this paper, we investigate ways to select an affordable subset with maximum fault

detection rate by maximizing diversity among test cases with respect to a similarity

measure. In the context of state machine-based testing, a common but specific type of

MBT, we used a trigger-guard-based encoding for test case representation and proposed

six different similarity measures. A Genetic algorithm was used for optimizing the selected

subsets for each measure and their fault detection rates were compared. Applying the

techniques on an industrial case study, we showed that using Jaccard Index to measure the

trigger-guards similarity of the respective test paths yields a subset of the test suite with the

best fault detection rate. Comparing the results of our best proposal with currently existing

approaches such as coverage-based and random selection, and other similarity-based

selection techniques, we also showed that we are far more effective than other alternatives

for smaller sample sizes (which are more interesting in practice) and can save up to 77% of

the test execution cost of state machine-based testing. In the future, we plan to look at the

effect of other search techniques and other combination of encodings and similarity

functions on similarity-based selections. In addition we will replicate the study on another

industrial system to analyze the generalizability of the approach.

References

[1] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. Briand, "Model
Transformations as a Strategy to Automate Model-Based Testing - A Tool and
Industrial Case Studies," Simula Research Laboratory, Technical Report(2010-
01)2010.

[2] A. P. Mathur, Foundations of Software Testing, 1 ed.: Addison-Wesley
Professional, 2008.

120

[3] J. A. Jones and M. J. Harrold, "Test-Suite Reduction and Prioritization for Modified
Condition/Decision Coverage," IEEE Transactions on Software Engineering, vol.
29, pp. 195-209, 2003.

[4] E. G. Cartaxo, P. D. L. Machado, and F. G. O. Neto, "On the use of a similarity
function for test case selection in the context of model-based testing," Software
Testing, Verification and Reliability, 2009.

[5] H. Hemmati, L. Briand, A. Arcuri, and S. Ali, "An Enhanced Test Case Selection
Approach for Model-Based Testing: An Industrial Case Study," in 18th ACM
International Symposium on Foundations of Software Engineering (FSE), 2010.

[6] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools:
Addison-Wesley Professional, 1999.

[7] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, "Test Case Prioritization: A
Family of Empirical Studies," IEEE Transactions on Software Engineering, vol. 28,
pp. 159-182, 2002.

[8] S. McMaster and A. Memon, "Call-Stack Coverage for GUI Test Suite Reduction,"
IEEE Transactions on Software Engineering, vol. 34, pp. 99-115, 2008.

[9] Z. Li, M. Harman, and R. M. Hierons, "Search Algorithms for Regression Test
Case Prioritization," IEEE Transactions on Software Engineering, vol. 33, pp. 225-
237, 2007.

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning: Addison-Wesley Professional, 2001.

[11] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining: Addison
Wesley, 2006.

[12] G. Dong and J. Pei, Sequence Data Mining: springer, 2007.
[13] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids: Cambridge University Press,
1999.

[14] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology: Cambridge University Press, 1997.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2 ed.: The MIT Press, 2001.

[16] S. Yoo, M. Harman, P. Tonella, and A. Susi, "Clustering test cases to achieve
effective and scalable prioritisation incorporating expert knowledge," in 18th ACM
International Symposium on Software Testing and Analysis (ISSTA), 2009.

[17] W. Masri, A. Podgurski, and D. Leon, "An Empirical Study of Test Case Filtering
Techniques Based on Exercising Information Flows," IEEE Transactions on
Software Engineering, vol. 33, 2007.

[18] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, "Adaptive random test case
prioritization," in 25th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2009.

[19] M. K. Ramanathan, M. Koyutürk, A. Grama, and S. Jagannathan, "PHALANX: a
graph-theoretic framework for test case prioritization," in 23rd Annual ACM
Symposium on Applied Computing, 2008.

[20] Y. Ledru, A. Petrenko, and S. Boroday, "Using String Distances for Test Case
Prioritisation," in 24th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2009.

[21] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic
Review of the Application and Empirical Investigation of Search-based Test-Case
Generation," IEEE Transactions on Software Engineering, Special issue on Search-
Based Software Engineering (SBSE), in press, 2010.

121

Reducing the Cost of Model-Based Testing

through Test Case Diversity
Hadi. Hemmati, Andrea. Arcuri, and Lionel. Briand

Published in the proceedings of the 22nd IFIP International Conference on Testing

Software and Systems (ICTSS), formerly TestCom/FATES, pp. 63-78, 2010

Abstract— Model-based testing (MBT) suffers from two main problems which in many

real world systems make MBT impractical: scalability and automatic oracle generation.

When no automated oracle is available, or when testing must be performed on actual

hardware or a restricted-access network, for example, only a small set of test cases can be

executed and evaluated. However, MBT techniques usually generate large sets of test cases

when applied to real systems, regardless of the coverage criteria. Therefore, one needs to

select a small enough subset of these test cases that have the highest possible fault

revealing power. In this paper, we investigate and compare various techniques for

rewarding diversity in the selected test cases as a way to increase the likelihood of fault

detection. We use a similarity measure defined on the representation of the test cases and

use it in several algorithms that aim at maximizing the diversity of test cases. Using an

industrial system with actual faults, we found that rewarding diversity leads to higher fault

detection compared to the techniques commonly reported in the literature: coverage-based

and random selection. Among the investigated algorithms, diversification using Genetic

Algorithms is the most cost-effective technique.

1 Introduction

In The idea of model-based testing (MBT) [1] is to generate executable test cases by

systematically analyzing specification models (e.g. represented as UML state machines)

following a test strategy such as a coverage criterion, that aims to cover certain features of

the model (e.g., all transitions). MBT brings many advantages but also entails the

additional cost of modeling the software under test (SUT). In addition, there are two

factors that significantly increase the cost of MBT: (1) the lack of automated oracle (e.g.,

when assessing the subjective perception of a media quality in a videoconference system),

and (2) the high cost of test case execution (e.g., when testing must be performed on actual

hardware or a restricted-access network). In both situations, the test suite must be as small

122

as possible while, to the extent possible, preserving its fault revealing power. However, for

real world size models, MBT techniques usually generate large sets of test cases regardless

of the applied coverage criteria. Therefore, a model-based technique is required to select an

optimal subset of test cases to be executed, which is, in general, a NP-hard problem.

In similarity-based test case selection, the idea is to diversify the selected test cases with

respect to a similarity measure. In [2, 3], we proposed a similarity-based selection

technique for testing based on UML state machines (SMBT). We compared different

similarity measures in terms of what information from the test cases they have to evaluate

(test case encodings) and how this evaluation should be done (similarity functions). The

results showed that, in the context of SMBT, the similarity measure that represents a test

case as a set of trigger-guards [2] and uses Jaccard Index [4] as the similarity function [3]

is the most effective measure in terms of fault detection rate (FDR).

In this paper, we take a deeper look into the idea of diversifying test cases and

investigate why similarity-based selected test cases are effective in finding faults. We also

study different strategies that, given a similarity measure and a test suite, we can use to

select a subset of the test suite. We applied our experiments on an industrial software

system and a set of actual faults, and the results clearly showed that rewarding diversity is

effective. The main explanation is that the test cases that find different faults belong to

distinct clusters based on the similarity measure. In addition we found that, among

different selection strategies, Genetic Algorithms (GAs) [5] are the most cost-effective

technique for similarity-based test case selection. We also have shown that, in our case

study, we could save up to 80% of test case executions, and get more than 99% FDR, by

using a GA compared to a coverage-based selection technique.

The rest of the paper is organized as follows. Section 2 introduces the similarity-based

test case selection technique. Section 3 discusses the different strategies which are used in

this paper to diversify test cases. Section 4 provides a brief overview of related works

covering similarity-based selection techniques. Section 5 reports the experimentation

results of applying the selection techniques on an industrial case study. Section 6 concludes

the paper and outlines our future work plan.

2 Similarity-based Test Case Selection

Unlike coverage-based selection, where the goal is maximizing the coverage of the test

model by the selected test cases (e.g. transition coverage in SMBT) to maximize chances

123

of fault detection, similarity-based selection techniques maximize diversity among the

selected subset. Diversity is calculated using a (dis)similarity measure between pairs of test

cases. A similarity measure is the value that a similarity function assigns to two inputs

which are being compared. In a testing context, inputs are usually encoded as a set or

sequence of elements. In the context of MBT, the inputs are abstract test cases defined on

the test model rather than concrete test cases. We do not use the execution information of

the test case as, in our context, the goal is to select them before execution. Abstract test

cases are naturally generated as a first step by MBT and can hide the unnecessary

information for similarity comparisons. For example, in SMBT an abstract test case

representation can be a path in the state machine specifying the SUT. In general, different

faults can be detected by the same test path instantiated with different test data (e.g., event

parameter values). Therefore, to compare different techniques, it is necessary to run the

selected test paths with different input data and analyze their FDR distribution.

Representation (encoding) of the test cases has an important effect on the similarity

measure. Though in SMBT a test path represents an encoded abstract test case, the test

path can be described at different levels of details. In [2], we studied three encodings for a

test path in UML state machine: state-based, transition-based, and trigger-guard-based, and

reported that trigger-guard-based encoding is the most effective one in terms of fault

detection, where a test path(tp) is represented as:

<tp> ::= <TrGu> | <TrGu> “,” <tp>

< TrGu > ::= trig |guard | id | guard “+” trig

where trig is the identification of a trigger, and guard is the identification of a guard in

the state machine. In this representation, a transition is identified by its trigger and guard. It

can be only a trigger, or a guard or both together. If there is a transition with no guard and

trigger, we use the transition id (id) as its identifier.

Given an encoding, one may use different similarity functions to calculate the similarity

value. In [3] we studied different set-based and sequence-based similarity functions and

proposed Jaccard Index as the most cost-effective. Given a set of n encoded test cases (sn)

and a similarity function (SimFunc), the test case selection problem is reformulated as

minimizing SimMsr(sn):

124

௡ሻݏሺݎݏܯ݉݅ܵ ൌ ෍ , ௜݌ݐ൫ܿ݊ݑܨ݉݅ܵ ௝൯݌ݐ

௧௣೔ , ௧௣ೕ∈௦೙ ∧ ௜வ௝

where SimFunc(tpi , tpj) returns the similarity of two test paths (or other encoded

abstract test cases in MBT) in sn represented by tpi and tpj. The last step in similarity-based

selection is using a strategy to select a subset of test cases with minimum average pair-wise

similarity (SimMsr). In the rest of this paper, we focus on finding the best strategy for this

selection.

3 Strategies for Maximizing Diversity

Given a similarity measure we have two strategies to select the most diverse test cases.

One is based on clustering test cases and taking samples from each cluster and the second

is searching for the most diverse subsets. In this section, we introduce one clustering and

two search techniques that will be investigated.

3.1 Clustering-based techniques

Clustering algorithms divide data instances into natural groups by maximizing their

internal homogeneity and external separation [6]. Regardless of the specific algorithm

which is used for clustering, most clustering techniques use a proximity measure as a mean

to determine the closeness (similarity), or dissimilarity (distance) between pairs of

instances and pairs of clusters.

In this study, we are using one of the simplest clustering algorithms, which has been

frequently used in software engineering, including software testing [7]: Agglomerative

Hierarchical Clustering (AHC) [6]. AHC starts with forming clusters containing each

exactly one object (a test case in this study). A sequence of merge operations is then

performed until the desired number of clusters is achieved. At each step, the two most

similar clusters will be joined together. The measure that we used for assessing similarity

between two clusters, inter-cluster similarity, is Average Linkage and it is defined as the

average of all pair-wise similarities between all instances of those two clusters [6]. After

applying clustering, we need a sampling technique for selecting one or more test case per

cluster. We use one-per-cluster sampling where the number of clusters is the same as the

selected sample size and then randomly select one member from each cluster. The pseudo-

code of the employed AHC follows:

125

(1) Make one cluster (Ck) per test path (tpi).

(2) While the number of clusters is more than sampleSize

(3) Find the two most similar clusters Cx and Cy (with the maximum

InterClusterSim(Cx, Cy)). Where:

,௫ܥ൫݉݅ܵݎ݁ݐݏݑ݈ܥݎ݁ݐ݊ܫ ௬൯ܥ ൌ
∑ , ௜݌ݐ൫ܿ݊ݑܨ݉݅ܵ ௝൯௧௣೔∈஼ೣ⋀௧௣ೕ∈஼೤݌ݐ

|௫ܥ| ∗ หܥ௬ห

(4) Merge the two clusters.

3.2 Test case selection using Adaptive Random Testing

Another technique that we investigate is Adaptive Random Testing (ART), which has been

proposed as an extension to Random Testing [8]. Its main idea is that diversity among test

cases should be rewarded, because failing test cases tend to be clustered in contiguous

regions of the input domain. This has been shown to be true in empirical analyses

regarding applications whose input data are of numerical type [8]. Recently, Object-

Oriented software has been also shown to manifest such a property [9]. Therefore, ART is

a candidate selection strategy in our context as well. In this paper, we use the basic ART

algorithm described in [8], but we ensure that no replicated test case is given in output. The

pseudo-code for ART is:

(1) Z={}

(2) Add a random test case to Z

(3) Repeat until |Z|= sampleSize

(4) Sample K random test cases that are different from Z

(5) For each of these test cases k

(6) k.maxSim = max(SimFunc(k , z ∊ Z))

(7) Add the k with minimum maxSim to Z

3.3 GA-based test case selection

A GA [5] is used in this paper since the nature of our problem, which is a form of

optimization, resembles typical problems addressed in search-based software engineering

[10]. GAs are the most used and successful reported technique in this domain [10] and rely

on four basic features: population, selection, crossover and mutation. More than one

126

solution is considered at the same time (population). At each generation (i.e., at each step

of the algorithm), some good solutions in the current population, selected by the selection

mechanism, generate offspring using the crossover operator. This operator combines parts

of the chromosomes (i.e., the solution representation) of the offspring with a certain

probability; otherwise it just produces copies of the parents. These new offspring solutions

will fill the population of the next generation. The mutation operator is applied to make

small changes in the chromosomes of the offspring. Eventually, after a number of

generations, an individual that solves the addressed problem will be evolved.

In this paper, we use a steady state GA as a selection technique, in which only the

offspring that are not worse than their parents are added to the next generations. An

individual in our context is a subset of size n from the original test suite (denoted sn).

Given a similarity function SimFunc(tpi , tpj), the fitness function f to minimize is the sum,

for all pairs (tpi , tpj) in sn, of SimFunc(tpi , tpj), denoted SimMsr. We use a single point

crossover with probability of Pxover to combine two different parents ݏ௡
௫ and ݏ௡

௬. A mutated

test path is replaced by a test path that is selected at random from the set of all possible test

paths. A valid solution is a set of test cases in which there is no duplicate. We have applied

two types of stopping criteria for the GA in this study: (1) stopping after specific number

of fitness evaluations, and (2) stopping after a fixed period of time (e.g., 350ms). The

pseudo-code of the employed GA follows:

(1) Sample a population G of m sets of test cases uniformly from the search space

(i.e., the set of all possible valid sets with a given size n)

(2) Repeat until the stopping criterion is met

(3) Choose s୬
୶ and s୬

୷ from G

(4) ൫ś୬
୶ , ś୬

୷
൯ ∶ൌ crossover (s୬

୶ , s୬
୷
, P୶୭୴ୣ୰)

(5) Mutate(ś୬
୶, ś୬

୷)

(6) If valid (ś୬
୶ , ś୬

୷) ∧ min (fሺś୬
୶ሻ, fሺś୬

୷)) ൑ min (fሺs୬
୶ሻ, fሺs୬

୷))

(7) Then s୬
୶ ∶ൌ ś୬

୶ and s୬
୷
∶ൌ ś୬

୷

4 Related Work

There are three approaches reported in the literature to select a subset of test cases from a

test suite that can be applied in our context: (1) Random or semi-random selection [11],

127

where there is no guidance to select test cases; (2) Coverage-based selections, where we

hypothesize that “the test cases which have more coverage are more likely to detect faults”

(e.g., in [12] a Greedy search selects, at every step, the test case that covers the most

uncovered statements whereas in [13, 14] a GA is used to find the maximum coverage.);

(3) Similarity-based selections try to diversify test cases, given a similarity measure,

assuming that maximizing diversity among the selected test cases maximizes the number

of detected faults.

Diversifying test cases has been studied on code-based test case selection and mostly in

the context of regression testing. The similarity measure in such cases is usually based on

code coverage [7, 15-18]. In [19] a sequence of memory operations is used to calculate the

similarity and in [20] the authors use the whole test script in string format as the input for

similarity function. The work in [21] is the only one where the similarity function is based

on model-level information. Test cases are represented as sequence of transitions in a LTS

model of the system and the number of identical transitions in the sequence is the

similarity function. Our similarity measure is different from theirs, both in terms of

encoding and similarity function—we use trigger-guard sets on UML state machines and

apply the Jaccard Index. In [2, 3] we have compared the effectiveness of our similarity

measure with the measure in [21] and the results showed a great improvement using our

technique, which therefore is applied in this study as well. Given a similarity measure,

different strategies have been used to diversify the selected subsets: Greedy search in [17,

19-21], Neural network based classification in [18], ART in [17], AHC in [7, 15, 16]. In

this paper, using our similarity measure, we compare ART, AHC, and a GA.

5 Empirical Evaluation

5.1 Case study description

The SUT under study is a typical safety monitoring component in a safety-critical control

system implemented in C++ and modeled as UML state machines complemented by

constraints specifying state invariants and guards. This SUT is typical of a broad category

of reactive systems interacting with sensors and actuators. The first and the subsequent

maintained versions of the system (including models and code) were developed and

verified by company experts and our research team. The correct and the most up-to-date

UML state machine, representing the latest version of the SUT’s behavior, consists of one

orthogonal state, 17 simple states, six simple-composite states, and a maximum hierarchy

128

level of two. The unflattened state machine contains 61 transitions and the flattened state

machine consists of 70 simple states and 349 transitions.

The correct latest UML state machine was given to our test case generation tool

(TRUST) [22] as an input model. Using All-Transitions coverage, 281 test paths and

corresponding executable test cases were automatically generated. In our case study, if a

test path has the ability to detect a fault, it can be detected by any valid test data for that

test path. Therefore, in our experiment, we have one test case per test path and the FDR of

a test path is equal to the FDR of the corresponding test case. As it is typical in many

embedded systems, the average execution time for these test cases is in the order of

minutes, which makes running all the 281 test cases very time consuming.

We use 15 faulty versions of the code that are made by introducing one real fault per

program. The 15 faults used in the study were introduced during maintenance activities by

developers and re-introduced for the purpose of the experiment in the latest version of the

SUT. Each of these faults belongs to one of the following categories: wrong guards on

transitions, wrong state invariant, missing transition, and wrong OnEntry action in states.

Among 281 test cases, 207 cannot detect any faults and 74 catch at least one fault. The

average number of detected faults per test case for the 15 faulty versions is 0.72 and the

maximum is five. Each fault is also detected on average by 13 test cases. There are nine

faults which are only detected by three test cases and two faults are detectable by 65 test

cases.

5.2 Experiment design

In our industrial case study, we investigate the following research questions:

RQ1. Why does diversifying test cases improve fault detection?

o RQ1.1. Do test cases that find the same faults tend to be more similar to

each other than with other test cases?

o RQ1.2. Do test cases that find different faults tend to be more different

from each other than test cases that find the same faults?

RQ2. What is the most cost-effective way to diversify (given our similarity measure) a set

of test cases?

o RQ2.1. Does clustering-based test case selection improve the average FDR

compared to coverage-based and random selection?

o RQ2.2. Are search-based techniques more cost-effective than clustering-

based selection in terms of fault detection?

129

RQ3. How cost-effective is diversifying test cases compared to state of practice techniques

for test case selection?

In RQ1 we are analyzing why diversifying test cases improves FDR. In other words, are

test cases distinctly clustered with respect to different faults? We have carried out an

exhaustive analysis based on our industrial case study. Given N=281 test cases, we ran all

of them on the actual SUT and all its faulty version to check which of the M faults they are

able to detect (in our case study M=15). We then calculated the similarity of each pair of

test cases, for a total of N*(N-1)/2 pairs. Note that the exhaustive analysis of the search

space landscape is based on the similarity values of all test case pairs. However, test case

selection is performed for any arbitrary sampleSize where using an exhaustive search is not

an option, since the search space size for selecting a subset of size sampleSize is equal to

the number of possible sampleSize combinations within a test suite of a given size. In our

case, as an example, the search space size for sampleSize =28 (~10% of the test suite) is

2.9*10^38.

To address RQ1, we investigate two hypotheses: (1) For each fault cluster, the similarity

between pairs of test cases that find the same faults is, on average, significantly higher than

the similarity of other test case pairs in the test suite, and (2) For each pair of fault clusters,

the similarity between test cases that find different faults is significantly lower than the

similarity of test case pairs that find the same fault in the test suite. If hypothesis (1) holds,

then test cases finding the same faults will cluster in close areas of the test case space. As a

result, rewarding diversity in test case selection would be beneficial. But hypothesis (2)

should also hold, otherwise diversity might be harmful since we would need more than one

test case from the same area to detect all faults.

In RQ2, we are interested in how to diversify the test cases, given the similarity measure

used in RQ1. Our baselines of comparison are random selection (Rnd) and a coverage-

based selection technique (CovGr) which is based on one of the most used selection

techniques in the literature: it applies a Greedy search to maximize the coverage of the

selected test cases [12]. In this paper, in each step of the Greedy search in CovGr, we look

for the test cases which cover the most yet uncovered transitions on the UML state

machine representing the SUT. Finally, in RQ3 we look at the practical benefits of our

proposed approach based on our industrial SUT. In this study, as mentioned in Section 3,

AHC is used as our clustering algorithm and a GA and ART as search-based techniques.

Our measure of effectiveness is the FDR of the selected subset from the original test suite.

Ideally, given the same amount of computational cost, we would say that a technique is

130

better than the other if it obtains higher average FDR. For practitioners, such cost would

typically be measured as the time that an algorithm takes before completing its task.

Comparing algorithms using time is not a robust option from a practical standpoint though.

Low-level implementation details may have a strong effect on computational time. If we

use time as stopping criterion, then we may not truly compare algorithms but instead their

implementations [23]. To cope with this problem, a measure that is independent from

implementation details would be useful. For example, when comparing search algorithms,

it is a common practice to allow each algorithm to run until a maximum number of fitness

evaluations is executed (e.g., 100,000 [24]). However, the assumption here is that the total

search cost is proportional to the number of fitness evaluations and the cost of other

operations than fitness evaluation is either equal or negligible in both algorithms.

To compare GAs with ART, following the same general reasoning, we use the number

of similarity comparisons (C) as stopping criterion, where n is the size of the output test

case set. We hence can run both the GA and ART with the same preset number of

similarity comparisons. For a GA that runs for W fitness evaluations (each consisting of Q

similarity comparisons), we have that C(GA) = W * Q = W * n * (n-1)/2 whereas for ART

we have [8]: C(ART) = K * n * (n-1)/2.

We would like to run both ART and the GA such that C(ART)=C(GA), but that might

not be possible because K (the size of the candidate set in ART) is a constant that is upper

bounded by N (281 in our case). In other words, the basic ART cannot be run for an

arbitrary amount of computational resources as it is the case for GAs (for which we can

choose arbitrarily high values for W). To cope with this problem, we can just run ART

several independent times (e.g., J times), and then take the best result out of these J runs.

Therefore, to obtain fair comparisons using similarity measures, we can simply enforce

W=J*K.

Whenever we could not use a fair metric (as the number of fitness evaluations) for

comparing different algorithms for test selection, we used the time expressed in

milliseconds as stopping criterion, which is the time spent by our implementation of the

algorithms on a PC with Intel Core(TM)2 Duo CPU 2.40 Hz and 4 GB memory running

Windows 7. As we previously discussed, though this is not particularly robust in general, it

is a reasonable option in our context as a significant effort was made to optimize

implementations and the execution environment was stable.

To account for the randomness of the results, which exists for all selection algorithms,

we ran each experiment 100 times and analyzed distributions. We report the results for

131

different techniques for sample sizes less than 140 (~50% of the test suite) with intervals of

10, since our focus is, for practical reasons, on smaller size subsets. (In practice, test case

selection is mostly used for selecting a relatively small sample of large test suites.)

Furthermore, for large sample sizes, all selection techniques will usually be as good as

random selection and typically detect most faults. We have performed non-parametric

(Mann-Whitney U-test) statistical tests, using a significance level of 0.05, to compare the

FDR distribution of the proposed and alternative selection techniques. Non-parametric

tests are more robust than a parametric test (e.g., the t-test) when there are strong

departures from normality and for large enough samples, as this is the case in this study

(100 observations).

5.3 Experiment results

5.3.1 Why does diversifying test cases improve fault detection?

For each of the M=15 faults, we calculated the similarity of the test case pairs that both

found each of these faults (groups of test case pairs, from F1 to F15). Mann-Whitney U-

tests were performed (α =0.05) to see whether there was a difference in similarity value

between the pairs in F1 to F15 and the set of all remaining pairs of test cases (T - Fi). Table

1 summarizes the results where bold median values represent statistically significant

differences between the distributions of these Fi with T - Fi. Note that F1 and F2, F3 and

F4, and F7 to F15 are on the same table row, as they have the same descriptive statistics.

This is due to the fact that most test case pairs are the same and those that are not the same

have high similarity values (according to our similarity measure).

The results show that the difference is significant for the first six groups. The other

groups also show a high difference in terms of mean and median but, since there are only

three observations for each of those groups, we cannot get statistically significant

differences. Therefore, the first hypothesis of RQ1.1: “Test cases that find the same faults

tend to be more similar to each other than with other test cases” is confirmed.

To investigate RQ1.2, for each pair of fault clusters Fi and Fj, let us consider the

similarity distribution (Dd) of test case pairs which belong to two different clusters, i.e.,

test cases that find different faults. We compare Dd with the similarity distribution (Ds) of

test case pairs which both are in one of those two clusters, i.e., test cases that find the same

fault. The median of Dd and Ds per cluster pair is reported above the diagonal in Table 2.

There are cases where fault clusters Fi are exactly the same, i.e., their respective faults are

found by exactly the same set of test cases. Distinguishing them does not have any effect

132

on the FDR results (either all or none of the faults will be revealed by a selected set of test

cases) and therefore such clusters are not distinguished. As a result, there are seven distinct

fault clusters (labeled as A to G) matching the columns and rows of Table 2. Their

mapping to the 15 fault clusters is as follows: A(F1 and F2), B(F3 and F4), C(F5), D(F6),

E(F7 to F9), F(F10 to F12), G(F13 to F15).

The bold values show the cases where there is a statistically significant difference

between Dd and Ds, based on a Mann-Whitney U-test. The presence of significant

differences support the claim that fault clusters are far away from each other and therefore

that rewarding diversity is useful. In cases where two clusters are overlapping, the size of

the overlap compared to the size of their union will determine whether rewarding diversity

is harmful. If the ratio of the overlapping part (intersection) over the union is high, a test

case that finds one of the two faults would have a high probability of finding the other. In

this case, rewarding diversity is still a reasonable option. We measure this ratio by dividing

the size of two clusters’ intersection |I| by the size of their union |U|: IU=|I|/|U|. The cells

below the diagonal of Table 2 report this measure per cluster pair.

Among 21 cluster pairs, 15 contain distinct clusters with significant differences between

Dd and Ds. There are three clusters (E, F, and G) that only contain a few test cases (three

per cluster), which are not amenable to statistical analysis and show no statistically

Table 1 Min, max, median, mean, and standard deviation of similarity values of the test
cases that find the same faults

Groups Pairs Min Median Mean Max SD
T 39340 0.076 0.250 0.291 1.000 0.166
F1,F2 2080 0.181 0.4 0.432 1.000 0.173
F3,F4 91 0.375 0.571 0.561 0.833 0.143
F5 28 0.200 0.464 0.475 0.800 0.168
F6 28 0.714 0.714 0.714 0.714 0.000
F7 to 15 3 0.375 0.428 0.434 0.500 0.062

Table 2 Each cell above the diagonal shows the median of Dd and Ds (Dd/Ds) and each cell
below the diagonal shows the overlapping measure (IU), per cluster pairs. Bold median
values highlight significant differences (Mann-Whitney U-test) between the Dd and Ds

 A B C D E F G
A - 0.33/0.42 0.33/0.40 0.71/0.40 0.18/0.40 0.18/0.40 0.18/0.40
B 0.21 - 0.37/0.57 0.71/0.66 0.37/0.57 0.37/0.57 0.37/0.57
C 0.12 0 - 0.71/0.71 0.37/0.42 0.37/0.42 0.37/0.42
D 0.12 0.57 0 - 0.11/0.71 0.11/0.71 0.11/0.71
E 0 0 0 0 - 0.37/0.42 0.37/0.42
F 0 0 0 0 0 - 0.37/0.42
G 0 0 0 0 0 0 -

133

significant differences. Clusters B and D which are not significantly different from each

other show a high overlapping value (0.57), implying that although these clusters are not

distinct, there is a 57% probability that a test case that is selected from their union can find

both faults. Two cluster pairs, <A,D> and <C,D>, show unexpected results—Dd median

lower than the Ds median—and they are not highly overlapping. Therefore, since among

21 pairs, 15 pairs fit the situation where similarity-based selection is effective, two do not,

and four are neutral, we can conclude that, overall, in most cases “test cases that find

different faults tend to be more different from each other than test cases that find the same

faults”.

Overall, the results of our analysis confirm that diversity in test case selection should be

encouraged and that our similarity measure is adequate. It also seems that since test cases

finding the same faults are clustered together and these clusters are mostly distinct,

clustering algorithms are a reasonable candidate approach to achieve diversity, though we

will investigate what is the best strategy in the next research question.

5.3.2 What is the most cost-effective way to diversify a set of test cases?

To answer RQ2 we first compare the AHC clustering algorithm with CovGr and Rnd

introduced in Section 5.2. Figure 1 shows the FDR results of the algorithms.

Overall, the results show that for all sample sizes AHC is more effective than its two

alternatives except that for sample sizes less than 30 (~10% of the test suite) the difference

between the average FDRs of CovGr and AHC is not statistically significant (based on

Mann-Whitney tests). Considering the fact that in practice the results for smaller sample

Figure 1 The average FDR of AHC, Rnd, and CovGr for different sample sizes

134

sizes are more important, AHC may not be preferred to CovGr given the high cost of a

clustering technique compared to simple Greedy search. On average (for all sample sizes

over 100 runs) each selection requires 350ms, 10ms, and less than 1ms when using AHC,

CovGr, and Rnd, respectively. Though those time differences may not seem relevant, they

may become so on much larger test suites of thousands of test cases. However, for sample

sizes higher than 40, there is a huge (up to 40%) improvement using AHC compared to

CovGr. In addition, AHC ensures 100% FDR with 80 test cases whereas CovGr and Rnd

find less than 95% of the faults even with 140 test cases.

Note that, in theory, since Rnd does not use any heuristic to increase FDR, we cannot

improve it. However, we can improve CovGr by running it several time with different

random selections, wherever the coverage among alternative test cases is equal, and

reporting the best result out of all runs. To compare the FDR results of CovGr when it

costs exactly the same as AHC, we let CovGr improve its results by random reselection

and stopped the algorithm after 350ms. The results showed that in our case, there is no

practically significant difference in CovGr FDR for 10 and 350 ms of running time.

Addressing RQ2.1, given that the FDR of AHC is always equal or superior to that of

CovGr or Rnd, and the fact that we cannot predict for a given test suite the sample size

threshold above which AHC will be certain to fare significantly better, we favor the

systematic use of AHC over CovGr and Rnd. Moreover, in practice, this strategy makes

even more sense when considering that test case execution time (which in our case is in the

range of minutes) is usually much higher than selection time for any of the techniques

(which in our case is in the range of milliseconds).

Figure 2 The average FDR of ART and the GA with 10,000 fitness evaluations for different
sample sizes

135

Comparing search-based techniques with AHC, first we need to find out which search

technique is more cost-effective. In this study, we compare the FDR of ART and a GA.

The GA is stopped after 10,000 fitness evaluations, and ART is run 1000 times with K=10

(so both algorithms use the same number of similarity comparisons). Figure 2 shows the

average FDR of the techniques for each sample size over 100 runs. In general, the GA

fares better and more particularly so from sample size 20 (~7% of the test suite) to 70

(~25% of the test suite). For sample sizes larger than 70, the FDR of both techniques

converges to 1.0. The differences for smaller sample sizes are statistically significant but,

because these differences may not practically significant (at most 10% improvement for

the GA), we need to look closely at the relative cost of ART and the GA.

As we mentioned earlier, the number of fitness evaluations is usually a good platform-

independent measure for the cost of search techniques. However, in our implementation, a

matrix made of all pair-wise similarities is created before any search. Therefore, this

overhead is the same for all search algorithms and the fitness evaluation is not an

expensive part of the search. Therefore, we cannot be sure that total cost is proportional to

the number of fitness evaluation. In Figure 3, we have plotted the actual time spent by the

two algorithms (ART and the GA with 10,000 fitness evaluations). The required time for

10,000 fitness evaluations using both techniques is exponentially increasing and they both

spend almost the same time for very small sample sizes (less than 20). For sample sizes

higher than 20 (~7% of the test suite), ART quickly gets more expensive than the GA.

Figure 3 The time in milliseconds required by the GA and ART to run 10,000 fitness
evaluations for different sample sizes

136

Given that it always has equal or worse FDR results, there is no reason for choosing ART

over the GA.

In the next step, we compare AHC with the GA but using the same execution time that

AHC requires for its selection (350ms). Figure 4 shows that the GA is clearly preferable

over AHC considering that spending the same time as AHC, the GA fares in general much

better and can almost double the average FDR results of AHC for small sample sizes. It is

also more effective in finding all faults: AHC requires 80 test cases whereas the GA only

needs 40 test cases to achieve 100% FDR. To draw more conservative conclusions

regarding the superiority of the GA, we even conducted another experiment and ran AHC a

relatively long time (20,000ms) to compare its FDR result with the GA using 350ms

(Figure 4). However, even when letting AHC work for almost 60 times longer than the GA

it still yields much lower FDR. Therefore, our suggested answer to RQ2 is using the GA

over the other alternatives.

5.3.3 How cost-effective is diversifying test cases compared to state of practice
techniques for test case selection?

To answer RQ3, we compare our best candidate based on RQ2, which is similarity-based

selection using a GA, with a coverage-based Greedy search (CovGr). Looking at Figure 1,

the first observation is that the GA can save more than 80% of the test case execution cost,

given the fact that the GA, on average, finds more than 99% of the faults by 40 test cases

whereas CovGr requires more than 220 test cases to achieve the same (not plotted in the

figure). To have a more detailed cost-effectiveness assessment, we look at the

Figure 4 The average FDR of the GA with 350ms and AHC with 350 and 20,000ms for
different sample sizes

137

improvement that the GA may provide over time. Since this improvement varies over

sample sizes as well, we plotted in Figure 5 the percentage of FDR improvement provided

by the GA over CovGr for five sample sizes: 10, 15, 20, 25, and 50 (ranging from 4 to 18

% of the test suite), over a time period of 10ms (the average time required by CovGr to

select test cases) to 350ms (the average time required by AHC to select test cases). Note

that as we mentioned earlier, as opposed to the GA, CovGr does not improve over time.

A first observation from Figure 5 is that the smaller the sample size, the larger the

improvement provided by the GA. Also, it is interesting to see that the GA, even with

10ms execution time, always detects more faults than CovGr. For example, the average

FDR of the GA is 80% larger than the CovGr FDR for 10ms. Finally, a cost analysis shows

that in cases where we can afford spending more time for selection, the GA can be greatly

improved. For all five sample sizes shown in Figure 5, the GA’s improvement over CovGr

almost doubles if we give it 350ms instead of 10ms. This improvement over time gets very

large when the sample size gets smaller. For example, for sample size 10 the GA can yield

a 160% higher FDR than CovGr, which in practice is a great benefit given that the cost for

this improvement is only 350ms for a test suite of 281 test cases where the cost of running

one extra test case is in the order of minutes.

6 Discussion on Validity Threats

The main threats to the validity of this study are firstly the fairness of comparisons in terms

of cost and secondly the generalizability of the results.

Figure 5 The percentage of improvement of similarity-based selection using GA over
CovGr for different sample sizes (SS) in time range of 10 to 350ms

138

Similarity comparisons of test cases and clusters are the most influential part of

selection techniques. In our implementations of the algorithms, all pair-wise similarities

are pre-calculated in a similarity matrix which is given to the selection algorithm as an

input parameter. Obviously, this implementation is not scalable and the similarity matrix

will face memory limitations for large test suites. However, if we can afford pre-

calculation, then the most expensive part of the search algorithms may not be the fitness

evaluation anymore. We can see its effect on comparing ART and the GA where having

the same number of similarity evaluations ART requires much more time. We have not

studied on-demand similarity calculations, which might give different FDR results using

the same stopping time. In addition, inter-cluster similarity calculation in AHC is very

expensive and in our implementation it is repeated for each iteration of the algorithm. The

code can be optimized by caching the similarities between clusters in each iteration and in

the next iteration only calculate the similarities if it is not already available. However,

implementing this improvement is not trivial since saving similarities of all combinations

of clusters in all iterations may be not possible due to memory limitations. There is a

tradeoff to be made between memory cost and execution speed.

The second issue is due to the fact that all our results and conclusions rely on a single

industrial case study using a given set of real faults. Though running such studies is time

consuming, it must obviously be replicated. However, as discussed earlier, the system used

here is typical of a broad category of industrial systems: control systems with state-

dependent behavior, controlling sensors and actuators.

7 Conclusion and Future Work

In practice, executing test cases generated by model-based testing (MBT) techniques is

costly. This cost is due to the large test suites which are typically generated by MBT tools

on industrial-scale systems to systematically achieve a coverage/adequacy criterion.

However, for system level testing, in many situations testing should take place on the

deployment platform where the cost (time and resource) of each test execution may be

high. This may be due to the cost of using actual hardware, potential damages in case of

failure, or access to restricted infrastructure (e.g., test network). In addition, for many

systems, automatically generating oracles from models is very difficult or impossible. In

such cases, test cases should be evaluated manually, greatly increasing the cost of test

execution and analysis. In cases such as the ones mentioned above, one must execute a

139

subset of the generated test suite whose size is dependent on context. In this paper, we

propose a new approach for test case selection from UML state machines, by maximizing

the diversity of the selected test cases. To measure diversity we used a specific test case

representation for UML state machines (triggers-guards sets), which should be adapted in

case of using other models, and a model-independent similarity function (Jaccard Index).

We investigated why diversifying test cases with respect to our similarity measure

increases fault detection rates and compared different strategies to diversify the test cases:

Clustering, Adaptive Random Testing, and Genetic Algorithms (GAs). The results of our

study on an industrial software system and actual faults showed that: (1) rewarding

diversity leads to finding more faults, (2) our proposed similarity-based selection (using

Jaccard Index on the set of trigger-guards with a GA selection) is the most cost-effective

approach compared to the other alternatives. In addition, we showed that in practice this

approach can reduce the cost of test case execution in MBT by selecting a small set of test

cases which can find all (or most) faults in short amount of time. In the future, we plan to

replicate the study on another industrial system. In addition, we will evaluate alternative

optimization and search techniques.

References

 [1] Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach.
Morgan-Kaufmann (2006)

[2] Hemmati, H., Briand, L., Arcuri, A., Ali, S.: An Enhanced Test Case Selection
Approach for Model-Based Testing: An Industrial Case Study. 18th ACM
International Symposium on Foundations of Software Engineering (FSE) (2010)

[3] Hemmati, H., Briand, L., Arcuri, A.: Investigation of Similarity Measures for
Model-Based Test Case Selection. Simula Research Laboratory, Technical
Report(2010-05) (2010)

[4] Teknomo, K.: Similarity Measurement. http:\\people.revoledu.com\kardi\tutorial\
Similarity.

[5] Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Professional (2001)

[6] Xu, R., Wunsch II, D.C.: Survey of Clustering Algorithms. IEEE Transactions on
Neural Netwoks 16 (2005) 645-678

[7] Yoo, S., Harman, M., Tonella, P., Susi, A.: Clustering test cases to achieve
effective and scalable prioritisation incorporating expert knowledge. 18th ACM
International Symposium on Software Testing and Analysis (ISSTA) (2009)

[8] Chen, T.Y., Kuoa, F.-C., Merkela, R.G., Tseb, T.H.: Adaptive Random Testing:
The ART of test case diversity. Journal of Systems and Software 83 (2010) 60-66

[9] Ciupa, I., Leitner, A., Oriol, M., Meyer, B.: ARTOO: Adaptive Random Testing for
Object-Oriented Software. 30th IEEE International Conference on Software
Engineering (ICSE) (2008)

140

[10] Harman, M.: The Current State and Future of Search Based Software Engineering.
Future of Software Engineering. IEEE Computer Society (2007) 342-357

[11] Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley Professional (1999)

[12] Elbaum, S.G., Malishevsky, A.G., Rothermel, G.: Test Case Prioritization: A
Family of Empirical Studies. IEEE Transactions on Software Engineering 28
(2002) 159-182

[13] Li, Z., Harman, M., Hierons, R.M.: Search Algorithms for Regression Test Case
Prioritization. IEEE Transactions on Software Engineering 33 (2007) 225-237

[14] Ma, X.Y., Sheng, B.K., Ye, C.Q.: Test-Suite Reduction Using Genetic Algorithm.
Advanced Parallel Processing Technologies, Vol. 3756. Springer Berlin /
Heidelberg (2005)

[15] Leon, D., Podgurski, A.: A Comparison of Coverage-Based and Distribution-Based
Techniques for Filtering and Prioritizing Test Cases. 14th IEEE International
Symposium on Software Reliability Engineering (ISSRE) (2003)

[16] Masri, W., Podgurski, A., Leon, D.: An Empirical Study of Test Case Filtering
Techniques Based on Exercising Information Flows. IEEE Transactions on
Software Engineering 33 (2007)

[17] Jiang, B., Zhang, Z., Chan, W.K., Tse, T.H.: Adaptive random test case
prioritization. 25th IEEE/ACM International Conference on Automated Software
Engineering (ASE) (2009)

[18] Simão, A.d.S., Mello, R.F.d., Senger, L.J.: A Technique to Reduce the Test Case
Suites for Regression Testing Based on a Self-Organizing Neural Network
Architecture. 30th Annual International Computer Software and Applications
Conference (COMPSAC) (2006)

[19] Ramanathan, M.K., Koyutürk, M., Grama, A., Jagannathan, S.: PHALANX: a
graph-theoretic framework for test case prioritization. 23rd Annual ACM
Symposium on Applied Computing (2008)

[20] Ledru, Y., Petrenko, A., Boroday, S.: Using String Distances for Test Case
Prioritisation. 24th IEEE/ACM International Conference on Automated Software
Engineering (ASE) (2009)

[21] Cartaxo, E.G., Machado, P.D.L., Neto, F.G.O.: On the use of a similarity function
for test case selection in the context of model-based testing. Software Testing,
Verification and Reliability (2009)

[22] Ali, S., Hemmati, H., Holt, N.E., Arisholm, E., Briand, L.: Model Transformations
as a Strategy to Automate Model-Based Testing - A Tool and Industrial Case
Studies. Simula Research Laboratory, Technical Report(2010-01) (2010)

[23] Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A Systematic Review
of the Application and Empirical Investigation of Search-based Test-Case
Generation. IEEE Transactions on Software Engineering, Special issue on Search-
Based Software Engineering (SBSE), in press (2010)

[24] Harman, M., McMinn, P.: A Theoretical and Empirical Study of Search Based
Testing: Local, Global and Hybrid Search. IEEE Transactions on Software
Engineering 36 (2010) 226-247

141

Empirical Investigation of the Effects of Test

Suite Properties on Similarity-Based Test Case

Selection
Hadi Hemmati, Andrea Arcuri, and Lionel Briand

To appear in the proceedings of the 4th IEEE International Conference on Software

Testing, Verification and Validation (ICST), March 21-25, 2011

Abstract— Our experience with applying model-based testing on industrial systems

showed that the generated test suites are often too large and costly to execute given project

deadlines and the limited resources for system testing on real platforms. In such industrial

contexts, it is often the case that only a small subset of test cases can be run. In previous

work, we proposed novel test case selection techniques that minimize the similarities

among selected test cases and outperforms other selection alternatives. In this paper, our

goal is to gain insights into why and under which conditions similarity-based selection

techniques, and in particular our approach, can be expected to work. We investigate the

properties of test suites with respect to similarities among fault revealing test cases. We

thus identify the ideal situation in which a similarity-based selection works best, which is

useful for devising more effective similarity functions. We also address the specific

situation in which a test suite contains outliers, that is a small group of very different test

cases, and show that it decreases the effectiveness of similarity-based selection. We then

propose, and successfully evaluate based on two industrial systems, a solution based on

rank scaling to alleviate this problem.

1 Introduction

Rewarding diversity in test cases has been shown to lead to higher fault detection in

numerical applications, because failing test cases tend to cluster in contiguous regions [1].

 In previous work [2-4], we proposed similarity-based test case selection (STCS)

techniques for model based testing (MBT), which applied the idea of rewarding diversity

on abstract test cases generated from UML state machines.

Our motivation was that running all the system-level test cases generated by a standard

criterion, e.g., round trip path for UML state machines, was not feasible, due to the high

cost of running them on the deployed platform or test network. So, from a practical

142

standpoint, to solve the testing problems of our industrial partners, it was necessary to

devise techniques to select smaller test suites. Our approach is, given a small budget of test

cases that can be run, to reward diversity (i.e., penalize similarity) in the chosen test cases.

We assessed different similarity measures and diversified test cases using Genetic

Algorithms (GAs) and Adaptive Random Testing (ART). The proposed techniques were

applied on one industrial case study where the goal was to decrease test execution cost

down to an affordable number of test cases while preserving, to the maximum extent, the

fault detection rate (FDR) of the original test suite. Results showed that, compared to

random and coverage-based selection, much higher FDR can be achieved when using

STCS.

These promising results motivated the need to gain a better understanding of STCS,

which is essential to develop novel and more effective techniques. Unlike our previous

work [2-4], where we were exploring alternative STCS techniques, in this paper we

analyze their variation in effectiveness, in a controlled manner and using simulation, when

varying the relationship between similarity distributions and fault detection among test

cases. In other words, the goal is to investigate under which circumstances STCS is more

effective. The results shed light on the best and worst conditions for STCS, thus preparing

the ground for improved similarity measures and STCS results.

The intuition is that STCS would perform better when test cases which detect distinct

faults are dissimilar and test cases that detect a common fault are similar. Such a condition

was verified [2] in one industrial case study, where we found that test cases finding a

common fault were indeed clustered together in the test case space and these clusters were

mostly distinct.

In this paper, to investigate the above intuition in a more precise and systematic way,

we resort to a large number of experiments based on simulation. Two industrial case

studies were used to guide the simulations and thereby obtain more realistic results. On one

hand, the results of our empirical study confirm our intuition about what drives the

effectiveness of STCS, though they provide insights that are more complex than what was

originally expected. On the other hand, such analyses pointed out a particular characteristic

of MBT (compared to numerical applications) that can make STCS less effective. The

situation appears when there is a small clustered set of test cases that is far away from all

the others (referred to as outliers), which is not uncommon, for example, in state machine-

based testing when a small group of transition paths is mostly disconnected from the rest of

the state machine. Our empirical analyses show that, in that case, the FDR of STCS can

143

significantly decrease. We hence propose an approach, based on rank scaling, to

manipulate similarity values so as to alleviate this problem.

The rest of the paper is organized as follows. The next section provides background

information about similarity-based test case selection. Section 3 discusses the problems

related to outliers and outlines our solution to alleviate it. Section 4 describes the

experiment design and reports the results. Section 5 provides a brief overview of related

works covering similarity-based selection techniques. Finally, Section 6 concludes the

paper and outlines our future work plan.

2 Similarity-based Test Case Selection

Unlike coverage-based selection, where the goal is maximizing the coverage of a test

model (e.g., transition coverage in a state machine) by the selected test cases to maximize

chances of fault detection, STCS techniques maximize diversity among the selected test

cases. Diversity is calculated using a (dis)similarity measure between pairs of test cases. A

similarity measure is a value that a similarity function assigns to the pair. Inputs of the

function are usually an encoded test case as a set or sequence of elements. In the context of

MBT, the inputs are abstract test cases defined on the test model rather than concrete test

cases. We do not use the execution information of the test case as, in our context, the goal

is to select them before execution. Abstract test cases are naturally generated as a first step

by MBT and can hide the unnecessary information for similarity comparisons. For

example, in state machine-based testing, an abstract test case representation can be a path

in the state machine specifying the software under test (SUT). In general, different faults

can be detected by the same test path instantiated with different test data (e.g., event

parameter values). Therefore, to calculate the FDR of a technique, it is necessary to run the

selected test paths with different input data and analyze its FDR distribution.

2.1 Encoding and similarity functions

The representation (encoding) of test cases has an important effect on a similarity measure.

Though in MBT a test path represents an encoded version of a test case, the test path can

be described at different levels of details. In [4], we studied three encodings for a test path

in UML state machines: state-based, transition-based, and trigger-guard-based. We

reported that trigger-guard-based encoding is the most effective one in terms of fault

detection, where a test path (tp) is represented as:

144

<tp> ::= <TrGu> | <TrGu> “,” <tp>

< TrGu > ::= trig |guard | id | guard “+” trig

where trig is the identification of a trigger, and guard is the identification of a guard in

the state machine. In this representation, a transition is identified by its trigger, a guard, or

both. If there is a transition with no guard and trigger, we use the transition id (id) as its

identifier.

Given an encoding, one may use different similarity functions to calculate the similarity

value. In [3] we studied six set-based and sequence-based similarity functions. We

proposed Jaccard Index [5] as the most cost-effective set-based and Needleman-Wunsch

(NW) [6] as the best sequence-based similarity function. The Jaccard Index is defined as

the size of the intersection divided by the size of the union of the two encoded test cases,

whereas the NW algorithm assigns a similarity value based on the global alignment [6] of

the two encoded test cases by arranging the sequences of elements in the test cases to

identify regions of similarity between the sequences.

From an STCS point of view, the only required constraints on the similarity measures

are that they must be positive and symmetric, which is true for all proposed set and

sequence based measures. This means that properties such as reflexivity

(Sim(݌ݐ௜ , ௜݌ݐ ௝)=maximum iff݌ݐ ൌ , ௜݌ݐ)௝) and triangular inequality (D݌ݐ +(௝݌ݐ

D(݌ݐ௝ , , ௜݌ݐ)௞)>= D݌ݐ , ௜݌ݐ)௞) where D݌ݐ , ௜݌ݐ)௝) = 1/ Sim݌ݐ ௝)) do not necessarily hold݌ݐ

among different pairs of test cases [7]. For example, NW values can be in any range and,

except for symmetry, does not feature any other well-known property of distance/similarity

measures [8].

Given a set of n encoded test cases (sn) and a similarity function (Sim), the test case

selection problem is reformulated as minimizing SimMsr(sn):

௡ሻݏሺݎݏܯ݉݅ܵ ൌ ෍ ܵ݅݉൫݌ݐ௜ , ௝൯݌ݐ

௧௣೔ , ௧௣ೕ∈௦೙ ∧ ௜வ௝

where Sim(tpi , tpj) returns the similarity of two test paths (encoded abstract test cases in

MBT) in sn represented by tpi and tpj. The last step in STCS is using a strategy to select a

subset of test cases with minimum average pair-wise similarity (SimMsr). This test case

selection problem is NP hard (traditional set cover) [9] and using an exhaustive search in

145

our cases (and for most realistic cases) is not an option, since the search space size for

selecting a subset of size n is equal to the number of possible n-combinations within a test

suite of a given size. As an example from our case studies, the search space size for n=28

in a test suite of size 281 (~10% of the test suite) is ቀ281
28

ቁ ≅2.9*10^38.

In [2] we have examined GA, ART, and a hierarchal clustering algorithm as selection

algorithms and found out that GA was the most cost-effective technique among them. In

this paper, we show our analyses when both using GA as our proposed technique (called

STCS_GA) and ART as the most well-known algorithm (called STCS_ART) for

diversifying test cases. The algorithms are introduced in the following subsections.

2.2 Adaptive Random Testing

ART has been proposed as an extension to Random Testing [1]. Its main idea is that

diversity among test cases should be rewarded, because failing test cases tend to be

clustered in contiguous regions of the input domain. This has been shown to be true in

empirical analyses regarding applications whose input data are of numerical type [1].

Therefore, ART is a candidate selection strategy in our context as well. In this paper, we

use the basic ART algorithm described in [1], but we ensure that no replicated test case is

given in output. The pseudo-code for ART is:

(1) Z={}

(2) Add a random test case to Z

(3) Repeat until |Z|= sampleSize

(4) Sample K random test cases that are different from Z

(5) For each of these test cases k

(6) k.maxSim = max(Sim(k , z ∊ Z))

(7) Add the k with minimum maxSim to Z

2.3 Genetic Algorithms

In this paper, we use a steady state GA with the same settings as it has been used in [2], in

which only the offspring that are not worse than their parents are added to the next

generations. An individual in our context is a subset of size n from the original test suite

(denoted sn). Given a similarity function Sim(tpi , tpj), the fitness function f to minimize is

the sum, for all pairs (tpi , tpj) in sn, of Sim(tpi , tpj), denoted SimMsr. We use a single point

146

crossover with probability of Pxover to combine two different parents ݏ௡
௫ and ݏ௡

௬. A mutated

test path is replaced by a test path that is selected at random from the set of all possible test

paths. A valid solution is a set of test cases in which there is no duplicate. The stopping

criterion is 10,000 fitness evaluations, which is equal to the cost of 1,000 runs of ART with

a candidate size 10 in terms of the resulting number of distance calculations. The pseudo-

code of the employed GA is as follows:

(1) Sample a population G of m sets of test cases uniformly from the search space

(i.e., the set of all possible valid sets with a given size n)

(2) Repeat until the stopping criterion is met

(3) Choose s୬
୶ and s୬

୷ from G

(4) ൫ś୬
୶ , ś୬

୷
൯ ∶ൌ crossover (s୬

୶ , s୬
୷
, P୶୭୴ୣ୰)

(5) Mutate (ś୬
୶, ś୬

୷)

(6) If valid (ś୬
୶ , ś୬

୷) ∧ min (fሺś୬
୶ሻ, fሺś୬

୷)) ൑ min (fሺs୬
୶ሻ, fሺs୬

୷))

(7) Then s୬
୶ ∶ൌ ś୬

୶ and s୬
୷
∶ൌ ś୬

୷

(8) Else If valid (ś୬
୷) ∧ min (fሺs୬

୶ሻ, fሺś୬
୷)) ൑ min (fሺs୬

୶ሻ, fሺs୬
୷))

(9) Then s୬
୷
∶ൌ ś୬

୷

(10) Else If valid (ś୬
୶) ∧ min (fሺś୬

୶ሻ, fሺs୬
୷)) ൑ min (fሺs୬

୶ሻ, fሺs୬
୷))

(11) Then s୬
୶ ∶ൌ ś୬

୶

3 Impact of Outliers and Rank Scaling Solution

Unlike test suites for numerical applications, where the population of all possible input test

data is distributed with similar density in the input space, it is not uncommon in MBT that

a subset of test cases be very dissimilar to the rest of the test suite (outliers). For example,

if the test suite is derived from a state machine and (1) the state machine contains a

partition which is initiated by a transition from the initial state, (2) this partition has no

transition to/from the rest of the state machine and (3) the triggers of the transitions in the

segment are very different than the triggers of the transitions in the main part of the state

machine, then the test suite generated from such a model will contain a small set of test

cases, which will be very dissimilar to the rest of the test suite, that covers that segment.

Investigating the behavior of STCS in such a situation is necessary in order to gain

confidence about STCS effectiveness in the context of MBT. But because we are

147

evaluating STCS on industrial case studies, and such artifacts are difficult to obtain in large

numbers to support a systematic investigation, we perform simulations based on industrial

case studies to increase realism.

We can show that both STCS_GA and STCS_ART will try to select half of the test

cases from the outlier clusters (for simplicity, we will assume the presence of only one

outlier cluster). The reason is that the similarity between any pair, in which one test case is

from the main set of test cases and the other from the outlier set, would have a very low

value compared to the other similarity values in the matrix. Therefore, to minimize

 .௡ሻ, the selection algorithm is guided to select as many as possible of these pairsݏሺݎݏܯ݉݅ܵ

Given a minimized test suite of size n, there will be m test cases from the main set, and o

test cases from the outlier set, with the constraint m+o=n. The number of pairs in which

the two test cases are from different sets would be m*o. Under the constraint m+o=n, the

term m*o is maximized when m=o, from which it follows o=n/2 (Schur-concave function

[10]). Therefore, nearly half of test cases will be chosen from the outlier cluster regardless

of the proportion of the cluster sizes. Consequently, if the outlier cluster is small and does

not contain any fault revealing test case, the FDR of STCS will likely be low.

Since we expect poor results in the presence of no-fault revealing outlier, we suggest

using a rank scaling technique to alleviate the problem. In this technique, the raw values in

a similarity matrix are replaced by their rank. The rank is simply the index of the value

after ordering all similarity values of the matrix in an array. This rank scaling approach is

derived from solutions for solving outlier problem in statistics [11] and help decreases the

large similarity differences between test cases from the outlier cluster and the rest of the

test suite.

Notice that, in this paper, we are assuming N (test suite size) small enough such that a

N*N matrix can be stored without significant overheads (this was the case for the two

industrial case studies analyzed in this paper). When this is not possible, and we need to

compute the similarity values on the fly each time we evaluate the similarity of a set of test

cases, a dynamic rank scaling is needed. For example, a data structure (e.g., a hash-table)

could be used to store all the unique similarity values encountered so far during the search

(e.g., while using STCS_GA). Rank scaling would hence be based on those values.

148

4 Empirical Study

In this section we report the design and results of our empirical analysis. The high-level

goal of this study is to investigate under which circumstances, characterized by the

correlation between similarities of test cases and their fault detection, and the distribution

of test cases in their definition space, a STCS is most effective in terms of fault detection

rate (FDR).

4.1 Test suites description

In this study, we test different hypotheses regarding the effectiveness of STCS on different

input test suites to minimize. Given a test suite of size N, we can consider a N*N matrix to

represent the test suite in which all similarity pairs are stored (actually, only half of it is

necessary, due to the symmetric property of the similarity functions).

These matrices are all based on the modification of test suites from two industrial case

studies. However, we had to manipulate the matrices to create all the possible situations of

a test suite with respect to the properties we want to investigate, as further explained

below.

The SUT in case study A is a safety monitoring component in a safety-critical control

system implemented in C++. A flattened version of the state machine representing the SUT

consists of 70 states and 349 transitions. There are 15 real faults in the SUT which are

detectable by a test suite automatically generated from a UML state machine representing

the SUT’s behaviour. The test suite, which is generated using our MBT tool (TRUST)

[12], contains 281 abstract test cases (test paths) covering all round trip paths [13] in the

state machine. Each test path either detects a certain fault or not regardless of its input data.

In other word, the FDR values of the test paths of this case study are independent from

input data.

The SUT in case study B is the core subsystem of a video-conference system which

manages sending and receiving of multimedia streams implemented in C. As the previous

case study, we deal with real faults detectable by an automatically generated test suite

using TRUST. Case study B is smaller than A with 11 states, 70 transitions, 59 test cases

(covering all round trip paths in the state machine) and only four detectable faults. But

unlike case study A, the FDR of the test paths are not independent from input data.

Depending on which data are chosen as input parameters for the events on the state

machine, a fault may or may not be detected.

149

4.2 Research questions

The high level goal of this study leads to the following research questions:

RQ1. Under which conditions, with respect to the similarity of fault revealing test cases in

a test suite, STCS performs best?

RQ1.1. Is STCS more effective if test cases which detect distinct faults are dissimilar?

RQ1.2. Is STCS more effective if test cases which detect common faults are similar?

These questions directly target the hypothesis on rewarding diversity, as discussed in

Section 1, and seek to confirm it in the context of MBT. The diversity hypothesis is

investigated with respect to two distinct properties through RQ1.1 and RQ1.2.

RQ2. Is rewarding diversity robust to small clusters of test case outliers (test cases which

are very dissimilar to the rest of test suite)?

RQ3. What is the effect of rank scaling in the presence and absence of outliers?

RQ3.1. Does using rank scaled similarities improve STCS effectiveness in the presence of

outliers?

RQ3.2. Does using rank scaled similarities impact negatively STCS effectiveness when

there is no outlier?

The problem of outliers, discussed in Section 3, is being examined in RQ2. Our

motivation, as mentioned above, is that in contrast to numerical applications, outliers are

not a rare feature of test suites when they are generated using MBT. In question RQ3, the

first sub-question RQ3.1 asks whether rank scaling is useful to alleviate the effect of

outliers. RQ3.2 investigates whether rank scaling can reduce FDR when there is no outlier.

If results show that rank scaling does not reduce the FDR in such situations and that rank

scaling alleviates the outlier problem, then it would be recommended to always apply rank

scaling in STCS.

4.3 General settings of the experiments

We designed two experiments Exp1 to answer RQ1 and Exp2 to answer RQ2 and RQ3. In

both experiments we use STCS_GA and STCS_ART based on trigger-guard encoding and

NW as similarity function when it must be specified. Note that the results of our study in

[3], which was based on only case study A, showed the same level of effectiveness for both

NW and Jaccard Index. We had recommended the Jaccard Index in that study since it is

easier to apply than NW. However, in case study B, NW provides much better results. The

most plausible explanation for this difference is that the sequence of test path elements

150

matters regarding fault detection in case study B and NW is a sequence-based function.

Therefore, in this paper NW is used for both case studies.

Since we have built this study based on our previous work, the overall settings of the

algorithms are the same as our previous study settings. For GA, the stopping criterion is

10,000 fitness evaluations, the crossover probability is 0.75 and the population size is 50.

For ART, the candidate size is 10 and 1000 repetitions (from which we select the best) are

performed for each run of the algorithm to ensure fair comparisons with GA. More details

regarding the settings and rationale behind our choices can be found in [2].

Each experiment uses input matrices which are generated by modifying similarity

matrices of the case studies A and B, which we refer to as simulations. We repeat the

experiments on different sample sizes (four for case study A and six for case study B) to

check whether the results are consistent across the size range. Although the actual sizes for

the sample sets are different for the two case studies, the percentage of selected test cases

among all test suites is almost the same: sample sizes for experiments driven from case

study A are equal to 5, 15, 25, and 35, and sample sizes for the experiments driven from

case study B range from 3 to 8. The important point here is running the experiments on

relatively small sample sizes, since this is the most interesting case in practice, when it is

not possible to run many test cases on the actual hardware and platform (as for the

industrial systems used as a case study in this paper). Furthermore, for larger sizes all

techniques converges to 100% FDR and differences will not be significant.

For both algorithms and all sample sizes, each experiment is repeated 1000 times (100

runs for search technique with different random seeds and 10 different input matrices per

each matrix type to account for random variation in both search techniques and matrix

generation). A rigorous statistical procedure has been used to evaluate and compare the

effectiveness of these randomized algorithms [14].

4.4 Design and results of Exp1

To answer RQ1, we designed Exp1 where STCS_GA and STCS_ART, are applied on nine

different types of input similarity matrices. These similarity matrices are artificially built—

though based on case study A—to simulate all possible combinations of two properties of a

test suite with respect to its test cases’ similarities. Property X denotes the similarity

between test cases that detect a common fault and Property Y denotes the similarity

between test cases that detect distinct faults. In other words, RQ1.1 and RQ1.2 address the

effect of Property Y and X on STCS effectiveness. In our simulations, each of these two

151

properties can have three values: High (top 10%: [0.9,1.0]), Low (bottom 10%: [0.0,0.1]),

and Random (randomly picked from the valid range: [0.0,1.0]), which makes nine possible

combinations of the properties as an identifier for a test suite. For example, a test suite

where test cases that detect a common fault are highly similar and those that detect

different faults are very dissimilar, is identified by Property X=High and Property Y=Low.

Note that, since the similarity functions we use only need to be positive and symmetric,

when we generate matrices for our experiments, we do not need to validate each similarity

value by checking its relationship with other values for other test case pairs in the same

matrix.

To generate matrices with different property combinations while remaining as realistic

as possible, we kept the original number of faults (15) and same failure rate as in case

study A (74/281) and built matrices with sizes 300, 600, 6,000, and 12,000 (nine matrices

for each matrix size). Recall that the reason for using different sizes is to test the

independence of the results from test suite size and therefore help the generalization of the

results to larger case studies (i.e., does the technique scale?). Though this is only realistic

when the system under test has already undergone significant verification, to make the

analysis tractable, we assumed that each test case can find at most one fault. At this stage it

is difficult to assess the consequences of this assumption and it therefore constitutes a

threat to validity.

For each matrix type, 10 instances are generated. Both STCS_GA and STCS_ART are

applied on these matrices 100 times, which yields a total of 1000 runs. In total, given that

there are four sample sizes, nine matrix types, 1000 runs, and two selection techniques,

then 288,000 (4*9*10*2*100*4) observations are collected in Exp1, each with an FDR

value for the selected test cases. The FDR is the average number of faults detected by the

selected test cases, for each run of the STCS, divided by the total number of faults (15).

Figure 1 and Figure 2 shows partial results for Exp1. Due to space constraints, we chose to

present only the FDR results for two sample set sizes (15 and 25) and two matrix sizes

(300 and 12000) for each of the STCSs, but the same trend was observed over all sample

sets and matrices as illustrated in Figure 3 for effect sizes. The first observation is that,

regardless of the type of SCTS, sample size, and matrix size, test suites with a Low value

for Property Y show higher FDR. This means that the most important factor for ensuring

the success of STCS is having test cases detecting distinct faults as far (dissimilar) as

possible from each other. This confirms our hypothesis and answers RQ1.1.

152

To answer RQ1.2, if we first look at cases where Property Y has a Low value, we can

see significant differences in test suites with High values for Property X when compared to

the others. This means that the combination of High/Low values for property X/Y is the

best combination for STCS. This directly confirms the hypothesis discussed in RQ1.

However, Property Y seems to have stronger effect since its value completely overrides the

effect of Property X.

To gain more confidence in the conclusions drawn from this empirical study, we also

carried out a series of statistical tests. For each of the 16 combinations of matrix sizes and

test sample sizes, we used a Mann-Whitney U-test to compare the performance of the

property combination High/Low against the other eight combinations. This test verifies

Figure 1 FDR of a sample set (of size 15 and 25) of test cases selected by STCS_GA from different
matrix types of size 300 and 12000. Matrix types on X_Axis are identified as Property X/Property

Y where each property can be random (r), low (l) or high (h). Each boxplot shows 1000
observations (100 STCS runs per matrix on 10 different matrix instances)

153

whether two FDR distributions are statistically different. For STCS_GA, the p-values were

always lower than our selected level of significance (0.05). For STCS_ART, resulting p-

values were lower than 0.05 in all cases but four out of the 16*8=128 comparisons. This

provides strong statistical evidence to support the claim that High/Low is the best condition

under which to use STCS.

To quantify the magnitude of improvement in a standardized way, in Figure 3 we plot

the effect size measure of STCS_GA and STCS_ART for different sample and matrix sizes

using the Vargha-Delaney’s A statistic. This statistic estimates the probability that a data

point randomly taken from a set (i.e., a probability distribution) will have higher value than

another point randomly taken from a second data set. When the two distributions are the

same, we would have A=0.5. The results in Figure 3 show that, most of the time, the A

Figure 2 FDR of a sample set (of size 15 and 25) of test cases selected by STCS_ART from
different matrix types of size 300 and 12000. Matrix types on X_Axis are identified as Property

X/Property Y where each property can be random (r), low (l) or high (h). Each boxplot shows 1000
observations (100 STCS runs per matrix on 10 different matrix instances)

154

values are close to 1. This means that, for the High/Low combination, it is nearly certain

that STCS will yield better results than in the other eight cases, even when we take into

account the variance of the results due to the randomized nature of these algorithms.

4.5 Design and results of Exp2

For Exp2, we apply STCS_GA and STCS_ART on four types of matrices per case study.

We manipulated the original matrices from each case study to examine the effect of

outliers on the FDR of the test suites. We did so by adding extra percentages of outlier test

cases. For case study A and B, respectively, we built matrices with 1, 2, 5, 10, and 20 and

5, 10, and 20 percent extra test cases (1 and 2 percent would not make sense for the smaller

case study B with only 59 test cases). Four types of matrices are generated for each case

study and size: (1) Random/Base: The original matrix from the case study plus extra test

cases with random similarity values in the same range of similarity values as in the original

matrix. This matrix is the baseline for the FDR comparisons; (2) Cluster/Base: The original

matrix plus extra test cases with random similarity to each other but very low similarity

(outliers) to the rest of the test suite (original test cases). This low similarity value must be

set to be much lower than the minimum values within each of the groups containing the

original and additional test cases. If min and max are the minimum and maximum values in

the original matrix, we first change the matrix by replacing every value x with x+10*(max-

(a)

(b)

Figure 3 Effect size measure A (each calculated out of 1000 observations) for FDR of a sample set
selected by STCS_GA (a) and STCS_ART (b) shown as boxplots for the eight comparisons. The
effect size compares the High/Low matrix type with the all other eight matrix types of Figure 1

and Figure 2. X_Axis shows the sample size/matrix size

155

min) to ensure much higher NW similarity values among the original test cases compared

to such values with outliers. The NW values between outliers are then generated to be in

the same range as the original matrix. Last, to simulate a low similarity between the

outliers and the original test cases, we set the NW value between them to zero. The

constructed matrix therefore represents the situation where outlier test paths are present in

the test suite; (3) Random/Ranking: The same matrix as Random/Base but after applying

rank scaling as introduced in the research question subsection; (4) Cluster/Ranking: The

same matrix as Cluster/Base but after applying rank scaling.

To answer RQ2, we compare the FDR of a selected subset of test cases (for four

different sizes) from a test suite represented by the Cluster/Base matrix with the FDR of a

same size subset using the Random/Base matrix. This comparison investigates the effect of

outliers on the STCS effectiveness.

To investigate RQ3, we compare STCS effectiveness on the matrices from

Cluster/Ranking and Cluster/base, we will assess whether rank scaling has significantly

alleviated the effect of the outliers (RQ3.1). We also compare the effectiveness of STCS on

the Random/Ranking and Random/Base matrices to check for possible negative effects of

rank scaling when there is no outlier (RQ3.2).

We generate 10 instances of each of the 32 matrices (four matrix types and eight outlier

percentages in the two case studies) to account for random variation in matrix generation.

Both STCS_GA and STCS_ART are applied on these matrices 100 times to account for

random variation in search techniques. In total, given that there are four sample sizes in

case study A and six sample sizes in case study B, 320 matrices, 100 runs, and two

selection techniques, then 640,000 (10*320*100*2) observations are collected for Exp2.

Each observation has an FDR value for the selected test cases. The FDR calculation for

case study A is the same as for Exp1 but is different for case study B, since, in the latter

case, whether each test path detects a fault depends on which input data is used. For case

study B, we randomly (with equal probability for each input data value) generated 10

different test cases per test path. Therefore, probability ௙ܲ of finding a specific fault ݂ with

the selected subset of test paths is equal to one minus the probability of not finding the

fault by any of the test paths in the chosen set: ௙ܲ ൌ(1 െ ∏ ሺ1 െ ௜ሻ݌
௡
௜ୀଵ) where n is the size

of the subset and ݌௜ is the estimated probability of detecting fault ݂ with test path i in the

subset: number of times the fault is detected by the 10 test cases generated for that test path

divided by 10. The FDR is hence computed by averaging these probabilities ∑ ௙ܲ/|ܨ|,

156

where |ܨ| is the number of faults. From the results of Exp2, answering RQ2 and RQ3,

Figure 4 and Figure 5 are chosen to show one representative example since the trend is

again the same over different sample sizes and algorithms for case study A. In Figure 4.a,

the clear gap between Cluster/Base and Random/Base shows a strong drop in STCS

effectiveness in the presence of outliers (RQ2). Comparing Cluster/Base and

Cluster/Ranking we can clearly see that rank scaling helps STCS improve its effectiveness

in the presence of outliers (RQ3.1) and comparing Random/Base and Random/Ranking

clearly shows there is no reduction in FDR when there is no outlier in the test suite

(RQ3.1).

In case study B, outliers also decrease effectiveness of STCS, though to a lesser extent

(RQ2), and rank scaling once again does not compromise the potential FDR for test suites

without outliers (RQ3.2). However, as it can be seen in the Figure 4.b, the improvement for

case study B when comparing Cluster/Base and Cluster/Ranking is relatively small

(RQ3.1), perhaps in part because the impact of outliers is already smaller to start with in

this case study.

As in the previous experiment, to get more reliable results, we also carried out a

rigorous statistical procedure using Mann-Whitney U-tests and Vargha-Delaney’s A

statistics (effect size) to compare FDR distributions across the four types of matrices.

Comparing the performance of Random/Base with Random/Ranking (RQ3.2) yields p-

(a)

(b)

Figure 4 FDR of a sample set selected by STCS_GA from test suites based on case study A with
size 35 (a) and case study B with size 8 (b). Four combinations are compared: with (Clustered) or
without outliers (Random), and using rank scaling (Ranking) or not (Base). The graphs show the

average FDR over 1000 STCS_GA runs. X_Axis shows the percentage of outliers

157

values lower than 0.05 in only one case out of 20 comparisons (five extra test case

percentages time four matrices) for STCS_GA and two out of 20 comparisons for

STCS_ART, where, even in those cases, the FDR difference between Random/Base and

Random/Ranking is practically negligible. This statistically confirms that rank scaling is

not particularly harmful in most cases when no outlier is present. However, when we

compare Cluster/Base against Cluster/Ranking (RQ3.1), we obtain 11 cases with

significant p-values for STCS_GA, and six cases for STCS_ART.

In Figure 5, we plot the effect size measure of STCS_GA for different sample and

matrix sizes when we compare Cluster/Base against Cluster/Ranking (RQ3.1) in case study

A. For small sample sizes and small outlier cluster, the effect is minimal (i.e., very close to

0.5). However, for larger sizes, the effect gets much stronger (close to 0.7).

As explained before, the main reason for which we apply rank scaling is to balance the

distribution of the selected test cases from each cluster of outliers (if present). To examine

this phenomenon, we considered one scenario (case study A with 20% extra test cases

Figure 5 The effect size measure A for FDR of sample sets selected by STCS_GA from the test

suite driven from case study A. X and Y axes show the outliers percentage and the sample set size

Table 1 Average number of test cases selected by STCS_GA from the outlier cluster (20% extra
test cases on the case study A) with and without rank scaling

Sample Size Best No Ranking Ranking
5 1 2.95 2.94
15 3 7.06 6.77
25 4 12.01 10.61
35 6 17.00 14.41

158

forming a cluster of 56 test case outliers) and applied STCS_GA for selecting test case

subsets (four sample sizes). Table 1 shows the average number of test cases taken from the

outlier cluster with and without rank scaling. The best column shows the optimal number

of test cases if we would select by only considering the size of the test suite and its outlier

cluster, as expressed by the formula below.

ݐݏ݁ܤ ൌ 1 ൅ ሾ
݁ݖ݅ܵݎ݁ݐݏݑ݈ܿ ∗ ሺ݁ݖ݈݅ܵ݁݌݉ܽݏ െ 1ሻ

݁ݖ݅ܵ݁ݐ݅ݑܵݐݏ݁ݐ

Based on the results in Table 1—Note the relation between Table 1 and Figure 4: the

last row of Table 1 corresponds to Figure 4.a, with 20% extra test cases — it is clear that

without rank scaling roughly half of the sample set is taken from the outlier cluster. The

data suggest that rank scaling partially alleviates the problem. We get better improvement

for larger sample sizes and the reason why this is the case will require further investigation.

One possible alternative to rank scaling for solving the outlier problem could be an

approach that can be summarized as (1) finding the outlier cluster(s) using a clustering

technique and identifying an outlier cluster based on the ratio of the inter-cluster distances

to the intra-cluster distances (2) assigning a sample size to the outlier cluster based on the

proportion of its size to the entire test suite size (3) and finally applying the STCS

separately on the outlier and the main test cases. In previous work [2], we found that

clustering techniques were less effective than STCS. Furthermore, rank scaling is easier

and computationally cheaper than clustering techniques. However, hybrid combinations

would be promising areas for further research.

4.6 Discussion on threats to validity of the results

This study was conducted according to recently proposed guidelines for conducting

empirical studies in search-based testing [15] and using statistical tests to assess

randomized algorithms in software engineering [14]. Regarding construct validity of the

experiments, the most important factor is the validity of the measures used for assessing

FDR and similarity comparisons. These measures are taken from previously published

studies [2-4] and their validity are already discussed there. Another remaining concern is

the artificially generated similarity values in the experiments. As discussed in the

background section, we are using the NW similarity measure, which entails no constraint

on the different pairs of similarities. Therefore, the assignment of High, Low, and Random

159

values cannot lead to incorrect matrices. However, the assumption in Exp1 that each test

case can find at most one fault constitutes a threat to validity of the results. A more general

experiment where each test case can find each fault with a certain probability should be

conducted to achieve more reliable results.

The randomized nature of the employed algorithms poses a threat to internal validity.

To account for it, the experiments were run many times with different random seeds, thus

leading 1000 observations for each case study/sample size/search technique/matrix type

combination (100 runs of search technique on 10 randomly generated input matrices). In

addition, a rigorous statistical procedure (comprising significance tests and effect size

measures) has been used to strengthen the conclusion validity of the results.

To cope with external validity, we conducted experiments using many different

combinations of sample sizes, test suite sizes, case studies, and STCS techniques. In

particular, the use of two industrial systems to drive the simulations (by retaining some of

their characteristics such as failure rate of test cases and number of faults) provides

stronger support to the applicability of our approach to other industrial systems. But, as for

all empirical studies, our results might not generalize to other case studies and only

replications will help build confidence.

5 Related Work

STCS for MBT was first introduced in [16], where sequences of transitions in a Labeled

Transition System model of the SUT are used for representing test paths. The similarity

function is simply counting the common transitions in two test paths and a Greedy Search

is used for minimizing the sum of pair similarities. Later, Hemmati et al. [4] introduced

and improved STCS for UML based testing by using a trigger-guard based encoding of test

paths, by using better similarity measures [3] and by resorting to more powerful search

techniques [2].

Except for these works on model-based STCS, diversifying test cases has been studied

on code-based test case selection, minimization and prioritization, mostly in the context of

regression testing. The basis for computing test case similarity in these studies is usually

on code coverage or on some other execution information. For example, in [17] and in

[18], all def-use pairs coverage and a sequence of memory operations are used to calculate

the similarities, respectively.

160

To the best of authors’ knowledge, no existing study systematically investigates the

impact of test suite properties on STCS in the context of MBT. Similar studies published to

date have been conducted in the numerical application domain to examine the effect of test

suite properties, with respect to test case similarities and their fault detection, on the ART

algorithm. Several papers have been published on this subject [1], in which for example

optimal conditions for ART have been theoretically studied [19]. However, as discussed in

Section 3, MBT is very different from the unit-testing of numerical applications in terms of

the distribution of input test data in the input space (e.g., clusters of outliers are unlikely in

the numerical application domain).

6 Conclusion and Future Work

In previous studies we proposed similarity-based test case selection (STCS) techniques to

reduce the cost of model-based testing (MBT) [2-4]. Though the technique was

successfully applied on one industrial system, we needed more empirical evidence to

support the idea that maximizing the diversity of test cases was a good principle for test

case selection and understand under which conditions.

In this paper, we conducted a large scale simulation, based on two industrial case

studies, to investigate, in a controlled manner, how relevant properties of a test suite affect

the effectiveness of STCS. When considering properties are about the relationship between

fault detection and similarity distributions among test cases, our results showed that the

most ideal situation for a STCS is when, in a test suite, (1) test cases that detect a common

fault are similar and (2) test cases which detect distinct faults are dissimilar. Our empirical

study shows that property (2) is much more important than property (1). This result will

help us devise improved similarity functions in the future, which in turn will result into

more effective STCS.

In this paper, we also investigated the problem of outliers in a test suite—which are not

unlikely to happen in MBT—that could compromise the performance of STCS. Results

confirmed the significant impact of outliers and an approach, based on using rank scaling

measurement instead of raw similarity values, was proposed to address the outlier problem.

Though rank scaling had a positive effect, it only partially addressed the outlier problem

and additional strategies remain to investigate.

161

Future work will examine other solutions for the outlier problem based on combining

clustering and STCS techniques. We will also use the insights that we gained from this

study to develop techniques to improve STCS.

Acknowledgement

The authors wish to thank Marius Liaaen, from Tandberg AS, now part of Cisco, for

helping us in conducting experiments.

References

[1] T. Y. Chen, F.-C. Kuoa, R. G. Merkela, and T. H. Tseb, "Adaptive Random
Testing: The ART of test case diversity," Journal of Systems and Software, vol. 83,
pp. 60-66, 2010.

[2] H. Hemmati, A. Arcuri, and L. Briand, "Reducing the Cost of Model-Based Testing
through Test Case Diversity," in 22nd IFIP International conference on Testing
Software and Systems (ICTSS), formerly TestCom/FATES, pp. 63‐78, 2010.

[3] H. Hemmati and L. Briand, "An Industrial Investigation of Similarity Measures for
Model-Based Test Case Selection," in 21st IEEE International Symposium on
Software Reliability Engineering (ISSRE), pp. 141‐150, 2010.

[4] H. Hemmati, L. Briand, A. Arcuri, and S. Ali, "An Enhanced Test Case Selection
Approach for Model-Based Testing: An Industrial Case Study," in 18th ACM
International Symposium on Foundations of Software Engineering (FSE), pp.
267‐276, 2010.

[5] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining: Addison
Wesley, 2006.

[6] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids: Cambridge University Press,
1999.

[7] R. Xu and D. C. Wunsch II, "Survey of Clustering Algorithms," IEEE Transactions
on Neural Netwoks, vol. 16, pp. 645-678, 2005.

[8] G. Dong and J. Pei, Sequence Data Mining: springer, 2007.
[9] A. P. Mathur, Foundations of Software Testing, 1 ed.: Addison-Wesley

Professional, 2008.
[10] P. J. Boland, H. Singh, and B. Cukic, "Comparing partition and random testing via

majorization and Schur functions," IEEE Transactions on Software Engineering,
vol. 29, pp. 88-94, 2003.

[11] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,
3 ed.: Chapman & Hall, 2003.

[12] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. Briand, "Model
Transformations as a Strategy to Automate Model-Based Testing - A Tool and
Industrial Case Studies," Simula Research Laboratory, Technical Report(2010-01),
2010.

[13] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools:
Addison-Wesley Professional, 1999.

[14] A. Arcuri and L. Briand, "A practical guide for using statistical tests to assess
randomized algorithms in software engineering," Accepted for publication in the

162

proceedings of the ACM/IEEE International Conference on Software Engineering
(ICSE), 2011.

[15] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic
Review of the Application and Empirical Investigation of Search-based Test-Case
Generation," IEEE Transactions on Software Engineering, Special issue on Search-
Based Software Engineering (SBSE), vol 36, pp 742-762, 2010.

[16] E. G. Cartaxo, P. D. L. Machado, and F. G. O. Neto, "On the use of a similarity
function for test case selection in the context of model-based testing," Software
Testing, Verification and Reliability, 2009.

[17] A. d. S. Simão, R. F. d. Mello, and L. J. Senger, "A Technique to Reduce the Test
Case Suites for Regression Testing Based on a Self-Organizing Neural Network
Architecture," in 30th Annual International Computer Software and Applications
Conference (COMPSAC), 2006.

[18] M. K. Ramanathan, M. Koyutürk, A. Grama, and S. Jagannathan, "PHALANX: a
graph-theoretic framework for test case prioritization," in 23rd Annual ACM
Symposium on Applied Computing, 2008.

[19] T. Y. Chen and R. Merkel, "An upper bound on software testing effectiveness,"
ACM Transactions on Software Engineering and Methodology, vol. 17, 2008.

163

Achieving Scalable Model-Based Testing

Through Test Case Diversity
Hadi Hemmati, Andrea Arcuri, and Lionel Briand

Submitted to ACM Transactions on Software Engineering and Methodology (TOSEM),

2010

Abstract— The increase in size and complexity of modern software systems entails

scalable, systematic, and automated testing approaches. Model-based testing (MBT), as a

systematic and automated test case generation technique, is being successfully applied to

verify industrial-scale systems and is supported by commercial tools. However, scalability

is still an open issue for large systems as in practice there are limits to the amount of

testing that can be performed in industrial contexts. Even with standard coverage criteria,

the resulting test suites generated by MBT techniques can be very large and expensive to

execute, especially for system level testing on real deployment platforms and network

facilities. Therefore, a scalable MBT technique should be flexible regarding the size of the

generated test suites and should be easily accommodated to fit resource and time

constraints. Our approach is to select a subset of the generated test suite in such a way that

it can be realistically executed and analyzed within the time and resource constraints, while

preserving the fault revealing power of the original test suite to a maximum extent. In this

paper, to address this problem, we introduce a family of similarity-based test case selection

techniques. We evaluate 320 different similarity-based selection techniques and then

compare the effectiveness of the best similarity-based selection technique with other

common selection techniques in the literature. The results based on two industrial case

studies show significant benefits and a large improvement in performance when using a

similarity-based approach. We complement these analyses with further studies on the

scalability of the technique and the effects of failure rate on its effectiveness. We also

propose a method to identify optimal tradeoffs between the number of test cases to run and

fault detection.

164

1 Introduction

Model- Model-based testing (MBT) [1] has been used for many years with the intent of

generating executable test cases by systematically analyzing specification models (e.g.,

represented as UML state machines) following a test strategy such as a coverage criterion,

that aims to cover certain features of the model (e.g., all transitions). One of the main

obstacles to the transfer of MBT technology into industrial practice is scalability [2-5].

Scalability is an issue spanning all steps of the MBT procedure [1, 6], from handling large

system models to generating and executing large test suites [2]. In this paper, we focus on

an important but neglected scalability aspect of MBT: Given a software under test (SUT),

how to optimize MBT fault revealing power within resource and time constraints?

In practice, system testing must be at least partially performed on the actual hardware

platform (e.g., with actual sensors and actuators) or on a network specifically configured to

help controlled and systematic testing (e.g., emulating IP traffic). This can have a large

effect on the overall cost of testing since (a) test case execution time may be much higher

than what can be expected, for example, at the unit test level, and (b) test case execution

may require dedicated physical resources (e.g., specific assigned machines and restricted-

access network) of limited availability. In an example from one of our industrial case

studies, which will be introduced later in Section 5.1.1, each test case execution requires

several communicating machines (video conferencing systems) dedicated to the test

execution and takes a couple of minutes to complete. Therefore, in this context lowering

the cost of test suite execution, both in terms of time and resource usage, is crucial for the

scalability and therefore applicability of MBT. Our experience in applying MBT on two

industrial case studies, with different sizes and from different application domains,

suggests that the cost of executing test suites generated by MBT (given standard coverage

criteria) can entail the use of far higher resources and time than what the budget and

deadlines permit.

To address this problem, we introduced in [3] a flexible technique to allow the tester to

adjust the size of the test suites according to the project’s budget and deadlines while

maximizing the test suite fault revealing power. The technique, that we call similarity-

based test case selection (STCS), is based on selecting the most diverse subset of test cases

among those which are generated by applying a coverage criterion on a test model

(denoted the original test suite). In other words, the choice of test cases to execute is

optimized with respect to their pair-wise similarity, based on the underlying assumption

165

that there is a positive correlation between the diversity of test cases and their fault

detection [2, 7].

In this paper, we introduce 320 different STCS techniques (STCS variants), which

result from different combinations of decisions regarding the three components

(parameters) characterizing any such technique: the encoding (representation) of abstract

test cases (ATCs, that are the platform-independent representations of test cases), the

similarity function, and the algorithm employed to minimize similarities. We apply all

these alternative STCS techniques on two industrial case studies, spanning different

application domains. First, based on analyzing the fault detection rate (FDR) and selection

cost of the techniques, we found that the choices made for any of the abovementioned three

parameters has a significant impact. Second, we obtain the best results with an STCS that

encodes ATCs using a state-trigger-guard-based encoding, generates similarity matrices

using a Gower-Legendre similarity function [8], and applies an (1+1) Evolutionary

Algorithm [9] to minimize average pair-wise similarities in the selected ATCs. Third, to

assess the effectiveness of STCS when compared to simpler and common options for

selection in the testing literature, we further compare our best STCS variant to random

selection and coverage-based selection techniques, where one maximizes model coverage

in the selected ATCs. The results of such comparisons show a staggering reduction in cost

(50% to 80%) and improvement in FDR (e.g., up to 45% over coverage-based and 110%

over random selection) when using the best STCS variant.

To obtain more general results, we also study the effect of varying the failure rate (θ) on

the effectiveness of STCS by manipulating one of the original test suites from the case

studies and generating different input test suites with various θs. The results show that the

best STCS is never worse than non-STCS techniques regardless of the θ value. We also

analyze the relationship between test case similarities and FDRs and devise a heuristic to

estimate when increasing test suite size is unlikely to increase FDR. This heuristic enables

practitioners to select a tradeoff between test suite size and FDR by analyzing the variation

in average similarity among selected test cases. In summary, the main contributions of this

paper are:

 We analyze the impact of the three STCS parameters on STCS effectiveness

 We identify the best STCS among 320 possible variants resulting from the setting

of three parameters

166

 We compare the best STCS with other, more common test selection alternatives

 We analyze the impact of the test suite failure rate on STCS effectiveness

 We study the scalability of STCS

 We propose a heuristics which helps select a tradeoff between test suite size and

fault detection

The rest of the paper is organized as follows. The next section motivates the study by

explaining the importance of test suite scalability in MBT. Section 3 provides background

information about model-based test case selection. Section 4 introduces our approach for

test case selection (STCS). Section 5 describes the experiments’ design and reports the

results. Section 6 provides an overview of related works covering similarity-based

selection techniques. Finally, Section 7 concludes the paper and outlines our future work

plan.

2 Test Suite Scalability in Model-based Testing

The cost of test suite execution is an important factor for applicability of any test case

generation technique. The number of generated test cases, which are going to be executed,

has a direct relation with this cost. However, test suites generated by MBT approaches tend

to be very large and they get exponentially larger with increasing model size (larger

SUTs). Further, the problem gets even worse when the testing is semi-automated (e.g.,

automatically generating oracles may be very difficult or impossible, such as in a

subjective quality assessment of a video stream) and human-effort is necessary in the

execution and analysis of the test cases.

Using different coverage criteria seems to be a solution for this problem, since one may

apply a less demanding criterion to end up with a smaller (less costly) test suite. However,

our previous investigation [3] showed that such an approach does not solve the problem

because (a) A coverage criterion is a mean for systematically targeting specific types of

faults, e.g. in UML state machine-based testing (USBT), if one changes the coverage

criterion from all transitions to all states to reduce the size of test suite, the new test cases

may not detect the same type of faults anymore; (b) Even if one is flexible regarding the

targeted type of faults, there is a limited number of standard coverage criteria that are

applicable on a given model. Therefore, often this is not a practical solution as one cannot

167

ensure that the number of test cases will be below a required threshold corresponding to

the testing budget.

The above discussion suggests there is a need for a more flexible approach to solve the

problem of test suite scalability in MBT. Such an approach should be based on applying a

reasonable coverage criterion (based on the domain and project information) and then

eliminating some of the generated ATCs to only produce a concrete test suite of

manageable size, which can be completely executed and analyzed within the project

deadlines and resource constraints. This elimination step is usually based on one criterion

(e.g., maximizing a code coverage measure such as statement coverage) that is assumed to

have a correlation with the FDR of the test suite. Applying the criterion on the original test

suite can be done in three ways: test case selection, test suite minimization, and test case

prioritization. A selection technique, given a maximum number of test cases, selects a

subset of the original test suite that optimizes the chosen criterion. The goal of a test suite

minimization is to minimize the test suite by removing redundant test cases with respect to

the criterion. Note that the main difference between selection and minimization is that a

selection technique requires the output test suite size as an input parameter, but

minimization techniques may generate test suites of any size. Therefore, in our context we

favor a selection technique that ensures a maximum number of test cases. However, it is

always useful to be able to minimize the test suite (while preserving its original FDR) in

cases where there is no restriction or no clear criteria to select the test suite size. It is also

possible to order the execution of all test cases in the test suite using a prioritization

technique, but this is not required to solve our problem. Therefore, in this paper, we focus

on test case selection and extend the idea to minimization when we try to estimate the

optimal size of the test suite.

3 Model-based Test Case Selection

Test case selection/minimization is mostly studied in the context of regression testing,

where the goal is to find a subset of the original test suite that guarantees the execution of

fault-revealing test cases [10-13]. The main differences between model-based test case

selection and selection in the context of regression testing are that, in our context: (a) we

are not interested in identifying the changed parts of the system and (b) we do not have test

execution information, as it is the case in regression testing, because selected test cases will

be executed for the first time. Therefore, heuristics such as using component metadata [14],

168

and execution traces (e.g., call stack [15]) are not applicable here. In addition, most studies

in test case selection (even those which are general purpose and not specific to regression

testing) are based on code-level information and do not directly apply to MBT (e.g., code-

based dependency analysis [16] and additional coverage [10]). Rather, MBT selection

heuristics are based only on the characteristics of the (abstract) test cases.

There can be different classes of applicable selection techniques in MBT. The simplest

technique is Random Testing (RT) [17], where there is no guidance to select test cases.

Maximizing coverage has been a common practice over the years in selection and

prioritization [10, 18]. In MBT, coverage is defined at the model level, which can be

extracted from ATCs without execution. For example, transition coverage in a state

machine [19] can be determined if traceability has been preserved between an ATC and its

source state machine. Most coverage-based selection techniques are re-expressed into

optimization problems where the goal is to select the best subset of test cases to achieve

full coverage. For example, a technique presented in [10] uses a Greedy search to select, at

every step, the test case that covers the most uncovered statements (additional coverage

technique). Similarly, in [20] a Genetic Algorithm is used to achieve maximum coverage

in the selected subset of test cases. STCS is a newly introduced [3, 21, 22] category of

selection techniques which can be applied in both code and model-based testing.

An STCS technique selects the most diverse test cases with respect to a similarity

measure, which requires assigning a similarity value to each pair of test cases and

minimizing the average pair-wise similarities between the selected test cases. In the next

section, we will explain STCS steps in details. The underling idea behind STCS techniques

is borrowed from rewarding diversity among input data [23]. The same idea is applied by

STCS to diversify the selected test cases assuming that “the more diverse the test cases, the

higher their fault detection rate”. To investigate, in a controlled manner, the relationship

between fault detection and similarity distributions among test cases, we have conducted a

large scale simulation [7], based on two industrial case studies. Our results showed that the

most ideal situation for an STCS is when, in a test suite, (1) test cases which detect distinct

faults are dissimilar and (2) test cases that detect a common fault are similar. We have also

studied these hypotheses on one industrial case study [2] and found that test cases finding a

common fault were indeed clustered together in the test case space (defined by the

similarity measure) and that these clusters were mostly distinct.

169

4 Similarity-based Test Case Selection

In this section, we explain the procedure of STCS and introduce all alternative techniques

that we have used in this study in each step of the STCS. As we mentioned earlier, the

basis of STCS is minimizing the average pair-wise similarity between the selected test

cases. This requires identifying a similarity measure for pairs of ATCs and an optimization

algorithm to minimize the output set of ATCs with respect to that measure. Therefore, an

STCS is composed of three phases: (1) encoding of ATCs, (2) similarity matrix generation,

and (3) minimizing similarities.

4.1 Encoding of abstract test cases

Before identifying any similarity measure, the inputs to the similarity function should be

represented at a proper level of abstraction, containing relevant information and no

unnecessary details. In the context of MBT, the inputs are ATCs instead of concrete test

cases since we do not need platform dependent information and ATCs are naturally

generated as a first step by MBT. As a result, we reduce the cost of test case generation by

only generating executable test cases for the selected ATCs and also by hiding the

unnecessary information for similarity comparisons. Encoding of the ATCs has an

important effect on the effectiveness of the STCS. Though in USBT a test path represents

an encoded ATC, the test path can be described at different levels of details. We consider

four possible encodings for a test path in UML state machine: state-based (SB), transition-

based (TB), trigger-guard-based (TGB), and state-trigger-guard-based (STGB):

 SB: <tp> ::= state | state “,” <tp>

 TB: <tp> ::= tran | tran “,” <tp>

 TGB: <tp> ::= <TG> | <TG> “,” <tp>

< TG > ::= trig |guard | id | guard “+” trig

 STGB: <tp>::= state | state “,” <TG> “,” <tp>

where state is the id of a state, trans the id of a transition, trig the id of a trigger, and

guard the id of a guard in the state machine. In the case of TGB encoding, a transition is

identified by its trigger and guard. It can be only a trigger, or a guard or both together. If

there is a transition with no guard and trigger, we use the transition id as its identifier. SB

encoding focuses on state level faults whereas TB and TGB can better extract relevant

170

information to detect transition-based faults. Note that the difference between TGB and TB

encoding is in the level of abstraction, because TGB does not differentiate between

transitions with the same trigger-guard but different source or target state. STGB contains

both state and trigger-guard information and has therefore the highest level of details. But

the extra information may introduce noise when existing faults are of a certain type that

could be more directly detected if the encoding contained only the relevant information for

those faults. For example, if the existing faults are all detectable by traversing certain states

of the system, regardless of how that state was reached (state-based faults), then including

triggers and guards in the encoding would result in unnecessary noise in the similarity

calculations, as we will show in our empirical analysis.

As an illustrative example, assume that the UML state machine in Figure 1 represents

the SUT. Applying an all-transition criterion (with a breadth-first search) on this model

results in the transition tree of Figure 2 and a test suite ts_example containing tp1 to tp4.

Table 1 shows these four ATCs encoded with SB, TB, TGB, and STGB.

4.2 Similarity matrix generation

Once the ATCs are encoded, they are given to a similarity function (SimFunc) which takes

two sets/sequences of elements (we use “{ }” to represent sets and “< >” for representing

sequences) and assigns a similarity value to each pair. The results of measuring all these

similarity values are recorded in a similarity matrix (in case of large test suites we can

replace this matrix generation phase with an on-the-fly similarity calculation, which will be

discussed in Section 5.4). The similarity matrix can be an upper/lower triangular matrix,

since the similarity measure should be symmetric (the similarity between test case A and

Figure 1 Example UML State Machine

171

test case B is equal to the similarity between test case B and test case A). Therefore, we

only need to store half of the matrix.

Given an encoding, one may use different set/sequence-based similarity functions [24].

The main difference between them is that set-based similarity measures, as opposed to

sequence-based ones, do not take the order of elements into account. For example, if the

encoding is SB, and the first test case corresponds to a path in the state machine that visits

state A and then state B, whereas the second test case corresponds to a path that visits state

B and then state A, set-based similarity functions, unlike sequence-based functions, assume

these two test cases as identical. In [24] we have introduced three set-based and three

sequence-based functions. In the following of this section, those functions and two more

set-based functions, which are used in this study, are defined and explained by examples.

Figure. 2 Example transition tree

Table 1 Encoded ATCs using SB, TB, TGB, and STGB

Abstract
Test
Case

SB Encoding
TB

Encoding
TGB Encoding STGB Encoding

tp1 <A,E,END> <7,8> <b,8> <A,b,E,8,END>
tp2 <A,B,C,D,A> <1,2,4,6> <a,[G1]b,[G3],c> <A,a,B,[G1]b,C,[G3],D,c,A>
tp3 <A,B,C,D,B> <1,2,4,5> <a,[G1]b,[G3],b> <A,a,B,[G1]b,C,[G3],D,b,B>
tp4 <A,B,C,C > <1,2,3> <a,[G1]b,[G2] > <A,a,B,[G1]b,C,[G2],C >

172

4.2.1 Set-based similarity functions

Set-based similarity measures are widely used in data mining [25] to assess the closeness

of two objects described as multidimensional feature vectors, where the set is composed of

the features’ values [8]. In our case, each ATC is a vector of elements. Each element is

either a state, a transition, or a trigger-guard, depending on the encoding of the ATC (SB,

TB, TGB, and STGB). Each element in the vector is taken from a limited alphabet of

possible states, transitions, or trigger-guards in the model. However, the vector size can be

different since the length of ATCs may vary.

Hamming Distance. Hamming Distance is one of the most used distance functions in

the literature and is a basic edit-distance. The edit-distance between two strings is defined

as the minimum number of edit operations (insertions, deletions, and substitutions) needed

to transform the first string into the second [26-28]. Hamming is only applicable on

identical length strings and is equal to the number of substitutions required in one input to

become the second one [26]. If all inputs are originally of identical length, the function can

be used as a sequence-based measure. However, in realistic applications test inputs usually

have different lengths. Therefore, to obtain inputs of identical length, a binary string is

produced to indicate which elements, from the set of all possible elements of the encoding,

exist in the input. This binary string, however, does not preserve the original order of

elements in the inputs and therefore leads to a set-based similarity function.

In our case, to use Hamming Distance, each ATC is represented as a binary string

Hamtp, where |Hamtp| is equal to the number of all possible elements for that encoding

(e.g., |Hamtp| is the number of all states, if a SB encoding is used). A bit in Hamtp is true

only if the ATC contains the corresponding element (e.g., the state for SB). We also need

to change distance into similarity in our study. Therefore, our version of the Hamming

function (denoted HAM) counts identical bits in the two input strings, and not differences

as in the standard Hamming Distance, and then divides it by the number of all possible

elements for that encoding (|Hamtp|).

As an example, let us take tp3={A,B,C,D,B} and tp4={A,B,C,C} as input sets from

Table 1, where the encoding is SB. Let us assume that bits one to five in any Hamtpi

represent the existence of states A to E in the tpi, then Hamtp3 = {11110} and Hamtp4 =

{11100}, and as a result: HAM(tp3,tp4)=4/5=0.8.

173

Jaccard Index, Gower-Legendre(Dice), and Sokal-Sneath(Anti-Dice) measures. This

family of measures is defined based on commonalities and differences between two sets of

inputs. The general formula for calculating similarity of two ATCs (denoted by A and B)

with these similarity functions is:

,ܣሺ݉݅ݏ ሻܤ ൌ
ܣ| ∩ |ܤ

ܣ| ∩ |ܤ ൅ ܣ|ሺݓ ∪ |ܤ െ ܣ| ∩ ሻ|ܤ

Where |ܣ ∩ ܣ| is the size of intersection of A and B and|ܤ ∪ is the size of union of |ܤ

A and B. When w=1, the above formula corresponds to Jaccard Index or Jaccard similarity

coefficient (denoted JAC), that is the size of the intersection divided by the size of the

union of the sample sets. When w=1/2, we get the Gower-Legendre or Dice measure

(denoted GOW), and when w=2 this is called Sokal-Sneath or Anti-Dice (denoted SOK).

The difference between these three measures is on the weight that the measure puts on

differences between input sets (|ܣ ∪ |ܤ െ ܣ| ∩ where for the same inputs, similarity is ,(|ܤ

higher/lower for GOW/SOK than JAC. For instance, for tp3 and tp4 in the above example,

with the same encoding SB, |3݌ݐ ∪ |4݌ݐ ൌ 4, and |3݌ݐ ∩ |4݌ݐ ൌ 3. Therefore,

JAC(tp3,tp4) = 3/4 = 0.75, GOW(tp3,tp4) = 6/7 = 0.86, and SOK(tp3,tp4) = 3/5 = 0.6.

Counting function. The Counting function is defined based on the similarity measure

used in [21] for comparing two sets of transitions in a specific modeling language (Labeled

Transition System). We have defined a generalized version of this function (denoted as

CNT) as the number of identical elements in the input sets divided by the average length of

inputs (in our case ATCs). CNT is equal to GOW in cases where all elements are unique in

the input ATCs. Note that, to be precise, inputs of CNT are not sets, since their elements

are not unique, but for the sake of simplicity we consider them as set-based measures. As

an example, CNT(tp3,tp4)=3/4.5=0.67 for tp3 and tp4 with SB encoding.

4.2.2 Sequence-based similarity functions

In sequence-based similarity functions, as opposed to set-based functions, the order of

elements in the input sequences matters. As we discussed, edit distance functions such as

the base version of the Hamming Distance are sequence-based. However, the Hamming

Distance is limited to identical length input strings. In this sub-section, we introduce

174

Levenshtein as an edit-distance function. We also introduce the concepts of Global and

Local alignment from bioinformatics and describe one similarity function per alignment.

Levenshtein. One of the most well-known algorithms implementing edit-distance, and

which is not limited to identical length sequences, is Levenshtein [28]: Each mismatch

(substitutions) or gap (insertion/deletion) increases the distance by one unit. To change

distances into similarities, we need to reward each match and penalize each mismatch and

gap. The relative scores assigned to matches, mismatches, and gaps can be different

(operation weight). Moreover, in some versions of the algorithm there are different match

scores based on the type of matches (alphabet weight) [28]. Here we use a basic setting for

the function (denoted LEV) where matches are rewarded by one point and mismatch and

gap are treated the same by giving no reward. For example, given the same inputs as

previous examples (tp3 and tp4 using SB encoding), the first three elements in tp3 and tp4

match, and there is one mismatch and one gap at the end. Since matches increment the

similarity value and mismatches and gaps do not change the value, then LEV(tp3,tp4)=3.

Global alignment and Needleman-Wunsch similarity function. An alignment of two

sequences is a mapping between positions of their elements [27]. An alignment score is

assigned to each pair of sequences, measuring the matches, mismatches, and gaps. The

goal of an alignment algorithm is finding the best way of positioning the elements of input

sequences to maximize the alignment score. Global alignment is an algorithm that aligns

the entire input sequences. In our context, we are not interested in the actual aligned ATC

pairs. However, the score assigned to each pair is actually a similarity value, which is

defined based on matches, mismatches, and gaps. The most basic global alignment

algorithm is Needleman-Wunsch (NW) [27] where the scoring function is actually the

same as the Levenshtein similarity function. We use match score +3, mismatch -2, and a

gap penalty of -1 (which are justified in the next paragraph) as the operation weights of

NW similarity function for global alignment.

Note that the only difference between LEV and NW are the operation weights. In the

case of LEV, we assume the basic Levenshtein [28] definition (with +1 for match and zero

for mismatch and gap), and in the case of NW we use different operation weights as it is

usual in Global alignment. The chosen weights are based on our context (USBT) rationale.

Given the fact that STCS focuses on similarity, we do not want to miss any similarities

between ATCs. Therefore, we give more weight to similarities as otherwise most values

175

would be negative. Every gap and mismatch decreases the total similarity value but we

penalize mismatches more than gaps. That is because in USBT, when comparing two

ATCs, gaps only represent missing behavior, but any mismatch distinguishes ATCs from

each other. To assess this weighting scheme we also had a small tuning that compared the

effectiveness of different NWs when match scores vary between 0 to 5 and gap penalty and

mismatch scores between 0 to -5. The results showed that higher values for matches than

for mismatches are the best. However, there is not a significant and consistent

improvement while increasing the differences between these values. Therefore, we kept the

relative weighing order but with the smallest differences in the actual values. One can

argue that NW settings may not be the best possible weighting. Although this is indeed

true, any tuning is expensive and problem dependant.

Let us look at one example. Given tp3 and tp4 with SB encoding from Table 1,

NW(tp3,tp4)=3*(+3)+1*(-2)+1*(-1)=+6 and the actual aligned sequences are:

<A,B,C,D,B> and <A,B,C,C, – >, where the dash symbol identifies a gap. The dynamic

programming [29] implementation of the algorithms, along with examples, can be found in

[27]. The scoring matrix F for NW alignment is defined as:

F[0][݆] = - ݆ * ݀, F[݅][0] = - ݅ * ݀

F[݅][݆]=maxቐ
Fሾ݅ െ 1ሿሾ݆ െ 1ሿ ൅ sim൫ݔ௜, ,௝൯ݕ

Fሾ݅ െ 1ሿሾ݆ሿ െ ݀,

Fሾ݅ሿሾ݆ െ 1ሿ െ ݀.

Where x and y are input sequences. The sim൫ݔ௜, ௝൯ returns the match/mismatch scoresݕ

between the ith member of x and the jth member of y, and ݀ is the gap penalty. The

similarity between x and y is F[N][M] where N and M are the lengths of x and y

respectively.

Local alignment and Smith-Waterman similarity function. In Local alignment, the

goal is to find the best alignment for sub-sequences of the given input sequences. The

output of a Local alignment is two aligned substrings with the highest alignment score.

Like Global alignment, we are not interested in the actual aligned sequences, but the score

assigned to each pair is a similarity function. The most basic Local alignment algorithms is

Smith-Waterman (SW) [27], where the scoring matrix F is defined in a similar way as in

the NW scoring matrix, but with a small change:

176

F[0][݆] = - ݆ * ݀, F[݅][0] = - ݅ * ݀

F[݅][݆]=max

ە
۔

ۓ
Fሾ݅ െ 1ሿሾ݆ െ 1ሿ ൅ sim൫ݔ௜, ,௝൯ݕ

Fሾ݅ െ 1ሿሾ݆ሿ െ ݀,

Fሾ݅ሿሾ݆ െ 1ሿ െ ݀,
0

Having zero as one option in the max function results in having only positive values. In

this approach, the similarity value is the highest F[i][j] which identifies the most similar

subsequence between input sequences as well. We used the same operation weights as NW

for SW with the same reasoning. As an example, SW(tp3,tp4)=3*(+3)=+9 and the actual

aligned sequences are: <A,B,C> and <A,B,C>.

4.3 Minimizing similarities

In the last step of STCS, the similarity matrix and the desired number of selected test cases

(test selection size) is given to an algorithm which minimizes the average pair-wise

similarity between all pairs of ATCs in the selected set. Note that this problem is, in

general, an NP-hard problem (traditional set cover) [30]. Therefore, using an exhaustive

search in most realistic problems is not an option, since the search space size for selecting

a subset of size n is equal to the number of possible n-combinations within a test suite of a

given size. For example, in one of our case studies, the search space size for n=28 (~10%

of the test suite with size 281) is ቀ281
28

ቁ ≅2.9*10^38. Given a similarity matrix, we have

analyzed four strategies to select the most diverse test cases: (1) Greedy-based, (2)

Clustering-based, (3) Adaptive Random Testing, and (4) Search-based.

4.3.1 Greedy-based minimization

In this paper, what we call a similarity-based Greedy algorithm (SimGrd) is an exact

implementation of the selection technique which is used in the only published related

(STCS for MBT) work [21] (that we are aware of), and we will use it as an STCS baseline.

Assume we want to select n ATCs (sn) out of a test suite (TS). In each step, a pair of ATCs

that has the maximum similarity in the similarity matrix (maximum SimFunc(tpi , tpj)) is

chosen. If there is more than one pair with the same similarity (maximum similarity) all are

chosen. Then, among all ATCs in all selected pairs the one with shortest length is selected

and removed from the original TS. The algorithm is stopped when there are n ATCs

remaining from the TS. Selecting the shortest ATC is done to avoid purely random

177

elimination assuming that longer ATCs can detect more faults [31]. However, some degree

of randomness might still affect the results if more than one ATC in the set of selected

pairs have the shortest length. There are potential improvements to this algorithm, but we

keep this as the original proposal in [21] to have a valid baseline of comparison.

4.3.2 Clustering-based minimization

Clustering algorithms partition objects into groups, using a similarity/distance measure

between pairs of objects and pairs of clusters, so that objects belonging to the same groups

are similar and those belonging to different groups are dissimilar. Though clustering

techniques are not minimization techniques, the fact that clusters are formed based on the

similarities/distances among inputs makes these algorithms a potential solution for our

selection problem. To select n ATCs, a clustering-based technique partitions the ATCs in

the original test suite into n non-empty clusters so that (dis)similar ATCs (do not) fall in

the same cluster. Then a one-per-cluster sampling method (in this study we randomly

select one ATC per cluster) is applied to provide the final n diverse ATCs. In this paper,

we have tried two of the most used clustering techniques in software engineering, which

will be introduced next.

K-Means clustering. The first clustering algorithm used in this paper (KMC) is inspired

from the most popular clustering algorithm, K-Means clustering [32]. Though K-Means

was proposed over 50 years ago and thousands of clustering algorithms have been

designed since then, K-Means and its extensions are still widely used [32]. K-Means

objective is to minimize the average squared Euclidean distance of objects from their

cluster means [33].

Squared Euclidean distance ൌ ෍ | ሬԦݔ

௫ሬሬԦ∈஼ೖ

െ ߤሬሬԦ ሺܥ௞ሻ|
ଶ

Where a cluster mean is the centroid ߤሬሬԦ of a cluster (C)

ሬሬԦߤ ሺ߱ሻ ൌ
1

|ܥ|
෍ݔሬԦ

௫ሬሬԦ∈஼

178

In our context, where we do not use Euclidean distance but our defined similarity

functions, we do not have a geometrical centroid. One alternative could be to define one of

the cluster members as the representative of the cluster, but it is not always easy to devise a

rationale for such a representative in our context. Because for example, most of the

similarity measures, unlike Euclidian distance, are not transitive and violate the triangle

inequality property [26], which can results in an ATC being similar to a cluster

representative (which is similar to all ATCs in the cluster) but not similar at all to any of

the ATCs in the cluster.

Our version of K-Means clustering (denoted as KMC), instead of comparing one single

cluster representative, uses intra/inter-cluster similarity measures based on Average

Linkage. The Average Linkage intra-cluster similarity between an ATC (tpi) and a cluster

 .௫ members (tpx)ܥ is defined as the average similarities between the tpi and all (௫ܥ)

, ௫ܥሺ݉݅ܵݎ݁ݐݏݑ݈ܥܽݎݐ݊ܫ ௜ሻ݌ݐ ൌ
∑ , ௫݌ݐሺܿ݊ݑܨ݉݅ܵ ௜ሻ௧௣ೣ∈஼ೣ௔௡ௗ ௧௣ೣஷ௧௣೔݌ݐ

|௫ܥ|

Each iteration of KMC assigns an ATC to the cluster with maximum intra-cluster

similarity for that ATC. Using intra-cluster similarities, we no longer can use the original

stopping criterion of K-Means clustering: “stopping when the average squared Euclidean

distance between objects and their cluster centroids does not decrease from iteration m to

iteration m+1”, since there is no centroid anymore. Instead KMC uses inter-cluster

similarity measure (the average similarity between all possible pairs of ATCs from two

clusters) and stop iterating when inter-cluster similarity does not decrease from iteration m

to iteration m+1.

, ௜ܥ൫݉݅ܵݎ݁ݐݏݑ݈ܥݎ݁ݐ݊ܫ ௝൯ܥ ൌ
∑ , ௜ܥ൫݉݅ܵݎ݁ݐݏݑ݈ܥܽݎݐ݊ܫ ௝൯௧௣ೕ∈஼ೕ݌ݐ

หܥ௝ห

Agglomerative Hierarchical Clustering. One of the clustering algorithms which has

been frequently used in software engineering, including software testing [18, 34, 35], is

Agglomerative Hierarchical Clustering (AHC) [8]. AHC starts with forming clusters each

containing exactly one object (an ATC in this study). A sequence of merge operations is

then performed until the desired number of clusters is achieved. At each step, the two most

similar clusters will be joined together. The measure that we use for assessing similarity

179

between two clusters, inter-cluster similarity, is the Average Linkage. The pseudo-code of

the employed AHC follows:

(1) Make one cluster (Ck) per ATC (tpi).

(2) While the number of clusters is more than sampleSize (n)

(3) Find the two most similar clusters Cx and Cy (with the maximum

InterClusterSim(Cx, Cy)).

(4) Merge the two clusters.

4.3.3 Adaptive Random Testing

Adaptive Random Testing (ART) has been proposed as an extension to Random Testing

[23]. Its main idea is that diversity among test cases should be rewarded, because failing

test cases tend to be clustered in contiguous regions of the input domain. This has been

shown to be true in empirical analyses regarding applications whose input data are of

numerical type [36]. Therefore, ART is a candidate similarity minimization strategy in our

context as well. In this paper, we use the basic ART algorithm described in [23], but we

ensure that no replicated ATC is given in output. The pseudo-code for ART is:

(1) Z={}

(2) Add a random ATC to Z

(3) Repeat until |Z|= sampleSize (n)

(4) Sample K random ATCs that are different from Z

(5) For each of these ATCs k

(6) k.maxSim = max(SimFunc(k , z ∊ Z))

(7) Add the k with minimum maxSim to Z

4.3.4 Search-based minimization techniques

Many software engineering problems can be re-formulated as search problems, for which

search algorithms can be applied to solve them [37]. This has led to the development of a

research area often referred to as Search-Based Software Engineering, for which several

successful applications can be found in the literature [38], with a large representation from

software testing [39]. Therefore, in this paper we also analyze the use of search algorithms

for STCS.

180

Given a set of n encoded ATCs (sn) and a similarity function (SimFunc), the test case

selection problem is reformulated as minimizing SimMsr(sn):

௡ሻݏሺݎݏܯ݉݅ܵ ൌ ෍ , ௜݌ݐ൫ܿ݊ݑܨ݉݅ܵ ௝൯݌ݐ

௧௣೔ , ௧௣ೕ∈௦೙ ∧ ௜வ௝

where SimFunc(tpi , tpj) returns the similarity of two ATCs in sn represented by tpi and

tpj. The space of all possible sub-sets of size n represents the search space. The sets with

the minimum fitness values are called global optima. SimMsr is used as the fitness function

to guide the search algorithms to find (near-)optimal sets of ATCs.

A search algorithm can be run for an arbitrarily amount of time. The more time is used, the

more elements of the search space can be evaluated. This would lead to better results on

average. Unfortunately, in general we cannot know whether an element of the search space

is a global optimum, because such knowledge would require an evaluation of the entire

search space. Therefore, stopping criteria need to be defined, as for example timeouts or

fixed number of fitness evaluations.

The minimization problem we address in this paper must address constraints on the

elements of the search space. In particular, each element is a set of ATCs, and therefore no

duplicate ATC is allowed. Running a test case twice would not lead to find more faults (as

long as the execution of each test case is independent, as it is the case in our industrial case

studies). There are several ways to handle constraints [40], and in this paper we simply

enforce each search operator to always sample valid sets, because it is the simplest feasible

solution in our context (see next section on Random Search, for more information on

unique ATC selection).

There are several types of search algorithms that one can choose. On average, on all

possible problems, all search algorithms perform equally, and this is theoretically proven in

the famous No Free Lunch theorem [41]. Nevertheless, for specific classes of problems

(e.g., software engineering problems) there can be significant differences among the

performance of different search algorithms. Therefore, it is important to study and evaluate

different search algorithms when there is a specific class of problems we want to solve, as

for example software testing and its sub-problems. This type of comparisons in software

testing can be found for example in [42-44]. In this study, we have applied and evaluated

six widely used search techniques to minimize SimMsr(Sn). In the following sections, we

describe each of them in turn.

181

Random Search. Random Search (RS) is the simplest search algorithm. It samples

search elements at random (i.e., sets of n ATCs), and then, once the algorithm is stopped

(e.g., due to a timeout), the element with best fitness value is given as output. RS does not

exploit any information about previously visited elements when choosing the next

elements to sample. Often, RS is used as a baseline for evaluating the performance of other

more sophisticated meta-heuristics [39]. Note the difference between RS, which is a search

algorithm, and RT which simply selects ATCs at random without any iteration.

What distinguishes alternative RS algorithms is the probability distribution used for

sampling the new solutions. In general, a uniform distribution is employed. However, for

the problem we address in this paper, we need to guarantee that no duplicate ATC is

present in a selected test set. To sample a subset sn of size n of unique elements from an

original set of size k, we use the following procedure to generate sn. We start from an

empty s, and we add one ATC at a time, until n ATCs are inserted. When we add a new

ATC, we choose it randomly from the k ATCs. If the chosen ATC is already present in s,

we choose another one at random. Because this ATC could be already in s, we repeat this

process until we find one ATC that is not present in s. How long is this process going to

take? On average, it is really fast. The probability of sampling an ATC that is not in s is

equal to p=(k-|s|)/k. The goal of STCS is to produce small subsets of effective test cases

and, therefore, in general we would have n<<k. We can realistically consider the case n ≤

k/2 (i.e., we consider the cases in which the selected test suites are not larger than 50% of

the original suite). In this case, p=(k-|s|)/k ≤ (k-k/2)/k=0.5. Because we can describe the

process of sampling a unique ATC as a geometric distribution with probability p [45], then

the expectation E of this process would be E=1/p ≤ 2. Therefore, to generate a set of n

unique ATCs, on average we just need to sample at most 2n ATCs.

Hill Climbing. Hill Climbing (HC) belongs to the class of local search algorithms [46].

It starts from a search element, and then it looks at neighbor solutions. A neighbor solution

is structurally close, but the notion of distance among solutions is problem dependent. If at

least one neighbor solution has better fitness value, then HC “moves” to it and it

recursively looks at the new neighborhood. If no better neighbor is found (i.e., the current

element represents a local optimum), then HC re-starts from a new element in the search

space. HC algorithms differ on how the starting points are chosen, on how the

neighborhood is defined and on how the next element is chosen among better ones in the

neighborhood.

182

Often, the starting elements are chosen at random, and this is what we employ for the

HC used in this paper. We use the common strategy to visit the neighborhood that makes

HC move to the first found neighbor solution with better fitness. Another common strategy

would be to evaluate first all the elements in the neighborhood, and then moving to the best

one (i.e., the so called steepest ascent). In this paper, the neighborhood of a set sn is defined

as follows: for each of the n ATCs, consider its replacement with a random ATC that is not

already in sn. The size of the neighborhood is hence n. Notice that considering all possible

ATCs, instead of just one at random, would lead to a far too large neighborhood of size

n*(k-n), since there is k-n possible neighbors per ATC.

Steady State Genetic Algorithms. Genetic Algorithms (GAs) [47] are inspired from

evolutionary theory, and they are the most used search algorithm in search-based software

engineering [37-39]. GAs rely on four basic features: population, selection, crossover and

mutation. More than one solution is considered at the same time (population). At each

generation (i.e., at each step of the algorithm), some good solutions in the current

population, selected by the selection mechanism, generate offspring using the crossover

operator. This operator combines parts of the chromosomes (i.e., the solution

representation) of the offspring with a certain probability; otherwise it just produces copies

of the parents. These new offspring solutions will fill the population of the next generation.

The mutation operator is applied to make small changes in the chromosomes of the

offspring.

In this paper, we use a steady state GA (SSGA), in which only the offspring that are not

worse than their parents are added to the next generations. Parents are chosen using rank

selection [48]. We use a single point crossover with probability Pxover to combine two

different parents ݏ௡
௫ and ݏ௡

௬. Each ATC in an offspring is mutated with probability 1/n. A

mutated ATC is replaced by an ATC that is selected at random from the set of all possible

ATCs. The crossover and mutation operators could generate invalid elements (i.e., sets

with non-unique ATCs). To cope with this problem, the offspring go through a repair

phase in which all repeated ATCs are randomly replaced with new ones until all are unique

(in a similar way in which random sets are sampled, see Random Search in Section 4.3.4).

183

(1) Sample a population G of m sets of ATCs uniformly from the search space (i.e.,

the set of all possible valid sets with a given size n)

(2) Repeat until the stopping criterion is met

(3) Choose ݏ௡
௫ and ݏ௡

௬ from G

(4) ൫́ݏ௡
௫ , ௡ݏ́

௬
൯ ∶ൌ crossover (ݏ௡

௫ , ௡ݏ
௬
, ௫ܲ௢௩௘௥)

(5) Mutate (́ݏ௡
௫, ௡ݏ́

௬)

(6) if ((́ݏ௡
௫, ௡ݏ́

௬) is invalid)

(7) Then Repair (́ݏ௡
௫, ௡ݏ́

௬)

(8) If min (ܵ݅݉ݎݏܯሺ́ݏ௡
௫ሻ, ௡ݏሺ́ݎݏܯ݉݅ܵ

௬)) ൑ min (ܵ݅݉ݎݏܯሺݏ௡
௫ሻ, ௡ݏሺݎݏܯ݉݅ܵ

௬))

(9) Then ݏ௡
௫ ∶ൌ ௡ݏ́

௫ and ݏ௡
௬
∶ൌ ௡ݏ́

௬

(1+1) Evolutionary Algorithm. (1+1) Evolutionary Algorithm (EA) [9] is a single

individual evolutionary algorithm. It starts from a single individual (i.e., an element of the

search space) that is in general chosen at random. Then, a single offspring is generated at

each generation by mutating the parent. The offspring never replace their parents if they

have worse fitness value. In our context, we can see (1+1) EA as being an instance of the

SSGA described in the previous section when the population size is set to one single

individual.

Memetic Algorithms. Memetic Algorithms (MAs) [49] are a meta-heuristic that uses

both global and local search (e.g., a GA with a HC). It is inspired by Cultural Evolution. A

meme is a unit of imitation in cultural transmission. The idea is to mimic the process of the

evolution of these memes. From an optimization point of view, we can approximately

describe a MA as a population-based meta-heuristic in which, whenever an offspring is

generated, a local search is applied to it until it reaches a local optimum. A simple way to

implement a MA is to use a GA, with the only difference that, at each generation, on each

offspring a HC is applied until a local optimum is reached. The cost of applying those local

searches is high, hence the population size and the total number of generations are usually

lower than in GAs.

Simulated Annealing. Simulated Annealing (SA) [50] is a search algorithm that is

inspired by a physical property of some materials used in metallurgy. Heating and then

cooling the temperature in a controlled way often brings to a better atomic structure. In

184

fact, at high temperature the atoms can move freely, and a slow cooling rate gets them

fixed in suitable positions. In a similar way, a temperature is properly decreased in SA to

control the probability of moving to a worse solution to escape from local optima in the

search space.

From an algorithmic point of view, SA is similar to HC. SA stores one element at a time

and, at each step of the algorithm, it samples a new neighbor. If this neighbor has better

fitness, then SA moves to it and discards the previous element. Otherwise, SA moves to

this new neighbor according to a probability function that is based on the current

temperature. In contrast to HC, SA does not restart from a random element in the search

space in case of local optima. Given a starting temperature T, one common way to reduce it

is to update it every x steps, using for example T’=λT, where λ<1.

5 Empirical Study

In this section, we report the design and results of our empirical analysis. The section starts

with description of the case studies and research questions, follows by explaining the

experiments settings, the study design, and results. The section ends with discussion on

scalability and threats to validity of the results.

5.1 Test suites description

There are two different SUTs used in this study, which are subsystems of two industrial

software systems. There is also a set of similarity matrices, which are built based on one of

the industrial case studies to simulate different SUTs with specific characteristics. The

simulated matrices will be explained in Section 5.3.3. The remainder of this section

introduces the two industrial case studies.

5.1.1 Case study A

The SUT in case study A is the core subsystem of a video-conference system at Tandberg

AS (now part of Cisco), which manages sending and receiving of multimedia streams

implemented in C. Audio and video signals are sent through separate channels and there is

also a possibility of transmitting presentations in parallel with audio and video.

Presentations can be sent by only one conference participant at a time and all others

receive it. A three-level hierarchical state machine describes A’s behavior and consists of

four submachine states. The first submachine state hides three simple states, whereas the

second contains two additional submachine states, each having three simple states. This

185

state machine was modeled by the authors and verified by the company’s experts. The

flattened version of the state machine (automatically generated by our USBT tool, TRUST

[6]) consists of 11 states and 70 transitions. Constraints specifying state invariants and

guards are expressed in the Object Constraint Language (OCL) [51] and are used to derive

automated test oracles. Applying TRUST, 59 ATCs, covering all transitions in the state

machine, are generated as the original test suite. Ten concrete test cases (each concrete test

case is an instantiation of one ATC with a given value for each trigger’s input parameter)

are randomly generated per ATC (with equal probability for each input data value).

Running these 590 concrete test cases on four releases of the SUT resulted in detecting

four distinct faults. These faults are all reported in bug reports of the releases and are

detected by ATCs either by visiting a specific state, taking a specific path, or using a

specific input data for the triggers. Note that there are reported faults which are not

detected by our test suite because they are either related to functionalities which are not

modeled, e.g., user interface, or they are related to non-functional requirements, e.g.,

robustness behaviors, which are not accounted for in the current model of the SUT.

Since each ATC corresponds to several concrete test cases, which may or may not

detect a fault, in our experiments we need to estimate the FDR of a set of ATCs (sn). Given

the 10 concrete test cases per ATC, the FDR of sn is equal to the average probability of

finding the existing faults. Probability ௙ܲ of finding a specific fault ݂ with the selected

subset of ATCs is equal to one minus the probability of not finding the fault with any of

the ATCs in the chosen set: ௙ܲ ൌ(1 െ ∏ ሺ1 െ ௜ሻ݌
௡
௜ୀଵ) where n is the size of the subset and

 ௜ is the estimated probability of detecting fault ݂ with ATC i in the subset: number of݌

times the fault is detected by the 10 test cases generated for that ATC divided by 10. The

FDR is hence computed by averaging these probabilities: ∑ ௙ܲ/|ܨ|, where |ܨ| is the

number of faults.

5.1.2 Case study B

The SUT in case study B (information about this case study is sanitized due to

confidentiality restrictions) is a safety monitoring component in a safety-critical control

system implemented in C++. This SUT is typical of a broad category of reactive systems

interacting with sensors and actuators. The first version of the system (including models

and code) was developed and verified by the company experts and our research team. A

total of 26 faults were introduced during maintenance activities of subsequent versions of

186

the SUT by developers and re-introduced for the purpose of the experiment in the latest

version of the SUT.

The correct and most up-to-date UML state machine, representing the latest version of

the SUT’s behavior, consists of one orthogonal state with two regions. Enclosed in the first

region are two simple states and two simple-composite states. The simple-composite states

contain two and three simple states. The second region encloses one simple state and four

simple-composite states that again consist of, respectively, two, two, two, and three simple

states. This adds up to one orthogonal state, 17 simple states, six simple-composite states,

and a maximum hierarchy level of two. The unflattened state machine contains 61

transitions and the flattened state machine consists of 70 simple states and 349 transitions.

The correct, most recent UML state machine was given to TRUST as an input model.

Using all-transitions coverage, 281 ATCs and the corresponding executable test cases

along with their test oracles were automatically generated. In this case study, if an ATC

has the ability to detect a fault, it can be detected by any valid test data for that ATC.

Therefore, unlike case study A, we only need one concrete test case per ATC to compute

its FDR and the test suite FDR is simply the number of faults detected by the concrete test

cases corresponding to the set of selected ATCs (sn), divided by the total number of

detectable faults in the system.

Among the 26 faults, 11 of them were sneak paths (illegal transitions in the modified

model) [52]. To detect such faults the model should account for the behavior of the SUT

when receiving unexpected triggers. Such robustness behavior is not currently modeled

and therefore, these 11 faults could not be detected by any test case generated from the

model. The remaining 15 faults (detectable by the test cases generated from the model) are

used to produce 15 faulty versions of the code by introducing one fault per program. The

faults are due to both code and design level faults.

There are four main differences between these two case studies: (1) Case study A is

smaller both in terms of the model size (number of states and transitions) and the test suite

size (number of ATCs generated for the input model); (2) The number of faults detected by

the test suite is much higher for case study B. Recall that we do not account for faults that

relate to robustness behavior, which is not modeled in the current state machines, as this

case studies focus exclusively on the nominal behavior of the SUTs; (3) The fault detection

in case study A depends on the input data, whereas ATCs in case study B either detect or

not a fault regardless of input data; and (4) The failure rate (θ)—i.e. the probability that a

test case chosen at random from the original test suite triggers any failure (we assume a

187

uniform probability and not a usage profile)—is much higher for case study A. Notice that,

in these case studies, the θ is expected to be much higher than testing scenarios in which

all possible test cases are considered. This is because MBT is effective in generating test

suites with high fault detection rates. In case study B, 74 out of 281 ATCs detect at least

one fault thus yielding θ = 74/281≅0.26. However, θ in case study A is higher. Because in

this case study each ATC has a probability of detecting a fault that depend on input data,

we calculate the probability for an ATC i to detect at least one fault as ௜ܲ ൌ 1 െ

∏ ሺ1 െ ௜௙ሻ݌
ସ
௙ୀଵ , where ݌௜௙ is the probability for ATC i to detect fault f. Therefore, the θ is

ሺ∑ ௜ܲ
ହଽ
௜ୀଵ ሻ 59⁄ = 43.28/59≅0.73. This high θ is a direct consequence of the faults types in

case study A. Since the SUT in case study A was rather stable, we had to look back into

the earliest releases to be able to detect faults, and therefore, since the SUT was of poor

quality (was not well tested at that stage), it contained faults which were relatively easy to

detect with MBT.

Case study A is smaller but it has interesting characteristics such as a high failure rate

and a dependency between FDR and input data. Therefore, we report the results from both

case studies separately to show potential differences due to differences in SUT

characteristics. In a subsequent step, we also summarize the results in a more general way

by looking at the two cases together along with the results from a simulation study. Table 2

summarizes the SUT features.

5.2 Research questions

The main goal of this study is to propose a model-based test case selection technique that is

adjustable based on available testing budget and resources. This is expected to make MBT

more scalable in situations where, for a number of possible reasons, test case execution is

Table 2 Summary of case study features

Feature Case study A Case study B
Domain Multimedia

systems
Safety control

systems
Number of states in the flattened state machine 11 70
Number of transitions in the flattened state machine 70 349
Number of ATCs covering all transition of the state
machine

59 281

Number of detectable faults 4 15
Failure rate 73% 26%
Are input data important in fault detection? YES No

188

expensive. To achieve this goal, we perform a series of experiments to (1) investigate

many alternative STCS techniques, (2) assess how effective STCS is compared to other

techniques, (3) determine in which situations it can be expected to be more effective, and

(4) what benefits can be expected in practice. The experiments are designed to answer the

following five research questions:

RQ1: How influential are STCS parameters on its effectiveness?

STCS consists of three phases (Section 4) within which many variants of the technique can

be formed. Setting parameters of the phases leads to a completely specified STCS

technique (one variant). An important question is to assess how the choice of techniques—

for encoding, similarity function, and minimization algorithm—affects STCS

effectiveness. In other words, we want to understand whether all three parameters matter,

which ones have a significant effect, and why it is so.

RQ2: What is the most cost-effective STCS variant?

Since choosing a specific STCS strategy requires to set three parameters out of a large

possible number of combinations, one needs clear guidance to choose the best combination

possible in a given context. Therefore we aim at identifying the most cost-effective

variants of these parameters in the case studies, explain the results, and attempt to

generalize them to provide guidelines.

RQ3: What is the practical benefit of using STCS?

Once the best STCS strategy has been identified (RQ2), we want to assess the

improvement we gained over the state of the art. The non-STCS baselines of comparison

are Random Testing (RT) [17]—randomly selecting n ATCs from the original test suite—

and coverage-based techniques (described in details in Section 5.3.2). A coverage-based

technique maximizes a model coverage measure (e.g., number of covered transitions in

USBT) in the selected test cases. We will describe them in more details in the design

section (Section 5.3.2). Improvement is achieved either with higher FDR for the same

number of test cases or the same level of FDR but with fewer test cases.

RQ4: What is the effect of the failure rate on the effectiveness of STCS?

Since θ in both of our case studies is quite high, it is important to apply STCS in SUTs

with lower θ before generalizing the results. Therefore, in this question we specifically

address the effect of θ on STCS effectiveness.

RQ5: How one can estimate the minimum number of test cases required for achieving

(near) maximum FDR?

189

In practice choosing a test budget is a tradeoff within constrained limits. For a software

tester, it may be possible to argue for a larger budget and obtain it if justified. Therefore,

we investigate the relationship between average similarity within a test set and its FDR to

assess whether this can help us decide when enough test cases have been selected. Can we

conclude that, if after increasing test suite size average pair-wise similarity reaches a

plateau, then there is little chance to expect any further improvement in FDR when

augmenting further the test suite?

5.3 Experiment design and results

We designed four experiments to answer the five research questions described in Section

5.2. Two different analyses on the results of the first experiment help answer RQ1 and

RQ2 and there are three other experiments to answer the three remaining questions,

respectively. Each experiment consists of running several STCS variants on the SUT

similarity matrices, either actual or manipulated for the sake of simulation. The techniques

are implemented by the authors in Java and our large empirical study is concurrently

executed on an IBM multicore-based cluster of 84 computer nodes, each with eight cores

(each computing node has dual Intel quad-core 2.5GHz processors) with eight GB shared

memory and Linux Ubuntu operating system.

5.3.1 Experiment 1: answering RQ1 and RQ2

In this experiment, we look at all the STCS variants discussed in Section 4 and perform

two different analyses to answer RQ1 and RQ2. We investigate a total of 320 STCS

variants (four encodings: SB, TB, TGB, STGB; eight similarity functions: LEV, NW, SW,

CNT, HAM, JAC, SOK, GOW; and 10 minimization algorithms: SimGrd, KMC, AHC,

ART, RS, HC, SSGA, (1+1)EA, MA, SA).

There is no specific parameter setting for encoding definitions and similarity matrix

generations in the experiments other than what is defined in Section 4. However, certain

minimization algorithms need parameter settings. SimGrd, KMC, and AHC involve no

parameters. For ART, we used k=10 (as suggested in [23]). For search-based techniques,

we made choices based on what is suggested in the literature [47] and our previous

experience (e.g., [2, 3, 7, 24]). We use a high crossover probability (0.75) for GA and MA.

Mutation probability is the standard one: 1/n, for SSGA, MA, and (1+1)EA. Population

size is set to 50 for SSGA and 10 for MA. The rank selection for SSGA and MA uses a 1.5

bias. For SA, the initial temperature is set to 0.9, and it is reduced by 5% (i.e., λ=0.95)

190

every 10*n steps of the algorithm. We will discuss about potential threats to validity of the

results due to these parameter settings in Section 5.5.

Each STCS variant is applied on both case studies A and B for different test selection

sizes (3 to 15 by intervals of one for case study A and 10 to 140 by intervals of 10 for case

study B). The reason that we do not continue after 15 (case A) and 140 (case B) ATCs,

respectively, is that most techniques converge to the maximum FDR over these sizes.

Comparisons are more important for smaller test selection sizes since they represent more

realistic scenarios in practice. For each size, each STCS variant is executed 100 times and

FDR is computed for the selected ATCs. In addition, to take into account the random

nature of these STCS algorithms, we followed a rigorous procedure to assess whether there

is any statistically significant difference among the performances of these STCS variants

[53]. To rank the variants, we assign a score to each variant called variant score, which is

initialized to zero. For each variant and test selection size, we perform 319 non-parametric

Mann-Whitney U-tests to assess the statistical significance of FDR differences (if any)

between the considered variant and all the others over 100 runs. This resulted in

13*320*319/2=663,520 and 14*320*319/2=714,560 statistical tests for case studies A and

B, respectively. If the results of the tests show a significant difference (at level α =0.05)

between the variants’ results, the effect size is calculated using the A statistic [53, 54] for

the FDR of the two variants and the variant score of the better variant (with higher A

statistic) increments while the score of the worse variant decrements. There will be no

change if the test result shows no significant difference (i.e., if the p-values are higher than

0.05). Note that Vargha-Delaney’s A statistic, which is an effect size measure, is used

instead of comparing the medians of the distributions since we cannot state that the

compared distributions have same shape [53]. This statistic estimates the probability that a

data point randomly taken from a set (i.e., a probability distribution) will have higher value

than another point randomly taken from a second data set. When the two distributions are

the same, we would have A=0.5.

After performing all statistical tests, each test selection size of a variant has a score in

the range [-319, +319]. The scores are replaced by ranks from 1 to 320 (lower rank

represents higher FDR). The average of the ranks over test selection sizes makes a one

rank value per pair (variant, case study). We also combined the results from the two case

studies in one rank value by averaging the two ranks of each variant. Note that we cannot

take both case study results together while performing the ranking, since the number of

samples is different in the two cases. Therefore, we first rank variants in each case study

191

and then average them. In the next step, given the rank values for each variant, a Kruskal-

Wallis test, which is a non-parametric analysis of variance test, is applied per each of the

three variant parameters separately. Table 3 reports the p-value and Chi-squared results,

which show how much of variance is explained by each parameter from the Kruskal-

Wallis tests.

In addition, Figure 3 to Figure 5 show the boxplots of the variant ranks when

considering one parameter at a time. For example, Figure 3.a shows the distribution of

ranks when using any of the four encodings in case study A as boxplots (the middle line is

the median). There are 80 observations per category (eight similarity functions times 10

minimization algorithms). Figure 3.b and Figure 3.c show the same boxplots for case study

B and both studies together, respectively. As visible from the boxplots and confirmed by

the statistical tests, all parameters have a significant effect on ranks (and consequently the

FDR). The only non-significant result is for similarity functions on case study B (p-

value=0.83). However, by considering both studies together, similarity functions also show

significant differences. To answer RQ1, we account for both case studies, and results

suggest that all parameters, when taken individually, have a significant effect on the FDR.

However, we cannot say which parameter is more important than the other, since the Chi-

squared statistic values vary greatly for the three parameters across case studies.

RQ2 can also be answered based on the boxplots by choosing the best parameter value

per parameter. However, that might be misleading since there is no consistent, dominant

parameter across case studies (RQ1) and interaction effects might take place between

parameters, e.g., the best encoding and the best similarity function may not form the best

combination. Therefore, the most accurate way of finding the best STCS variant is to

analyze the ranks of all 320 variants. To do this, we built a rank table per case study and

Table 3 The Kruskal-Wallis test results on the effect of different variant parameters on FDR

Parameters
Case study A Case study B

Both case studies
together

p-value
Chi-

squared
p-value

Chi-
squared

p-value
Chi-

squared
Encoding 1.344e-14 67.67 < 2.2e-16 170.64 1.874e-5 24.60
Similarity
function

< 2.2e-16 161.62 0.8349 3.50 < 2.2e-16 159.64

Minimization
algorithm

0.0028 25.11 5.836e-9 56.67 6.886e-6 40.23

192

for both case studies together. Table 4 to Table 6 show the first top 20 rows out of 320

rows of each rank table.

 Looking at each case study individually shows that JAC, SOK and GOW are the best

similarity functions and that (1+1)EA, MA, and SA are the best candidates for

minimization algorithm in both case studies. The fact that set-based similarity measures

perform better than sequence-based ones shows that the difference between the orders of

elements in ATCs does not play an important role in their FDR. This may be, however, a

characteristic of the faults in our case studies. Search-based techniques definitely overcome

Greedy, ART, and clustering-based techniques— this may be expected since they are

meant to be optimization techniques, as opposed to the other alternatives. SB is the best

encoding for case study A followed by STGB whereas TGB followed by STGB are more

effective on case study B. The difference in best encoding between case studies A and B

can be explained by differences in the number of faults, fault rate, and types of faults in the

two case studies. In case study A, faults are mostly state faults and are easy to find.

Therefore, a simple state-based encoding is enough to differentiate ATCs according to the

faults they detect, whereas in case study B we need to account for more details in the test

to differentiate ATCs revealing different faults.

To draw a conclusion based on both case studies together, we need to look at the rank of

the best STCS variants in Table 4, where the average ranks over the two case studies are

computed. STGB appears to be the best encoding—most probably because it contains all

necessary information from the path—but it is also slightly suboptimal in each study

individually, as it introduces irrelevant information in the similarity computations. Unless

we know exactly the type of faults we can expect in a case study, we should select as a

default STGB to ensure we do not miss any useful information from the ATCs, though it

might be somewhat suboptimal. Among JAC, SOK and GOW, which are the best

similarity functions in the case studies, GOW shows the best results when averaging the

ranks. That implies that assigning more weight to similarities than differences—that is

what differentiates GOW compared to JAC and SOK—seems more effective, though

differences are relatively minor. Regarding minimization algorithms, we already knew that

search-based techniques like SSGA are more effective than ART and clustering-based

techniques, such as AHC [2]. Looking at the results of each study individually confirms

that finding. However, a more interesting result is that (1+1)EA, which is a simplified GA

(a non-population-based GA), is more effective in both case studies than SSGA and

actually is the best when considering both case studies together. In general, whether this

193

(a) Case study A

(b) Case study B

(c) Both case studies together

Figure 3 The effect of encoding on FDR of STCS

194

(a) Case study A

(b) Case study B

(c) Both case studies together

Figure 4 The effect of similarity function on FDR of STCS

195

(a) Case study A

(b) Case study B

(c) Both case studies together

Figure 5 The effect of minimization algorithm on FDR of STCS

196

Table 4 Top 20 STCS variants in the rank table for both case studies together

Table 5 Top 20 STCS variants in the rank table for case study A

Table 6 Top 20 STCS variants in the rank table for case study B

197

result stands depends on the search landscape, but considering the simplicity of the

(1+1)EA, for example in terms of parameters, together with the results from the two case

studies, we suggest to adopt it as the best minimization algorithm for STCS.

When we analyzed the cost of different techniques, we saw no significant difference

between the execution time when generating encoded ATCs. There is a significant

difference in execution time between sequence and set-based similarity matrix generations.

But the more effective techniques (set-based ones) are actually the cheaper ones. Among

set-based techniques there is no significant difference. For example, for the bigger case

study (case study B) the whole matrix generation time is in the range of 400 to 800

milliseconds (ms) using the set-based functions depending on the encoding and the

function, but sequence-based techniques need more than three seconds to generate the

same size matrices. These differences are not practically significant for these case studies,

but for larger SUTs the difference may matter. In Section 5.4, where we investigate

scalability issues, more details about the cost of sequence and set-based techniques will be

provided.

To perform a fair comparison of minimization algorithms, we evaluate the FDRs of

different STCSs while keeping their execution cost equal. We force algorithms to have

exactly the same cost by using the same stopping criterion. When comparing search-based

minimization algorithms and ART, we can force them to have the same number of

similarity comparisons and thus obtain a platform independent cost measure. Given a test

selection size n, search-based techniques stop after 10,000 fitness evaluations (each

consisting of n*(n-1)/2 similarity comparisons). For ART, the candidate size is 10

(resulting in 10*n*(n-1)/2 similarity comparisons). Therefore, we run ART 100 times and

select the best among them to have the same number of total similarity comparisons as the

search-based techniques. However, it is not possible to use the same cost measure for

SimGrd, KMC, and AHC. Therefore, we have to rely on execution time even though this is

an imperfect measure of cost [39]. What makes comparisons simpler however is that AHC

and KMC, which are worse in terms of FDR, are also more expensive, thus dismissing

them as valid alternatives. SimGrd is the only algorithm that is quicker but less effective.

We borrowed this algorithm from the only related work on STSC [21] and treat it as a

baseline of comparison for our work. Therefore, we do not change its design and the

current algorithm cannot be run for a longer time to achieve better results. Thus, we cannot

198

fix the selection time of SimGrd in the same way we do with search-based algorithms in

order to perform a fair comparison. However, SimGrd does not appear to be an interesting

alternative since: (a) It is one of the worst algorithms in terms of rank based on Figure 5

(its median is very low and there is a high variation in its results, especially visible in case

study B) and it only appears twice out of 60 among the best variants in Table 4 to Table 6;

(b) its FDR cannot be improved by assigning more time to its execution; (c) the algorithm

is more expensive for smaller test selection sizes, which are more of interest in practice,

since instead of selecting test cases, it removes them from the test suite to reach the

preferred size. Therefore smaller test selection sizes require more eliminations that makes

them more expensive. The cost of selection by SimGrd for small test selection sizes is even

more expensive than search-based techniques. For example, for case study B and test

selection size 10, SimGrd takes 175ms on average whereas (1+1)EA only needs 17ms.

As a result, we can summarize Experiment 1 as follows: All STCS parameters are

potentially influential on FDR and the most cost-effective variant is STGB, GOW, and

(1+1)EA for encoding, similarity function, and minimization algorithm, respectively. In the

rest of this paper we denote this variant as Best_STCS.

5.3.2 Experiment 2: answering RQ3

In Experiment 2, we are interested in evaluating STSC cost and effectiveness compared to

state of the art, non-STCS test case selection strategies. The goal is to assess the magnitude

of improvement that STSC provides, which can be measured both in terms of higher FDR

with the same number of test cases but also by achieving the same FDR with fewer test

cases. In this experiment, based on the results of Experiment 1, we take Best_STCS as the

best representative of STCS selection techniques and compare it with other possible non-

STCS selection strategies, which are either coverage-based test case selection or random

testing (RT). RT is simply randomly selecting n ATCs with uniform probability from the

original test suite. Coverage-based techniques vary in two dimensions: what should be

covered and how this coverage should be maximized. Therefore, we first need to determine

the best coverage-based technique as a representative of this category. In a model-based

selection context, coverage can only be defined based on the ATCs, since no execution or

source code information is available. The most well-known USBT coverage criterion,

which is used for test case selection in the literature, is transition coverage [19]. Based on

our encoding for STCS, we also define state, trigger-guard, and state-trigger-guard based

coverage criteria. Regarding maximization of coverage, we apply two of the most used

199

techniques in the literature: Greedy [19, 55] and GA [20, 56]. In the Greedy-based

technique (CovGrd), which is inspired by the additional coverage technique [10], a greedy

algorithm selects in a stepwise manner one additional ATC which covers the most

uncovered elements, based on the selected coverage criterion. In our context, an element is

one of the following: state, transition, and trigger-guard, based on the encoding. In case of

the STGB encoding, the goal is covering both all states and all trigger-guards. The second

approach (CovGA) uses a SSGA (with the same settings and stopping criterion as the

SSGA used in STCS) to maximize the total coverage of the selected test set. Applying

these two techniques (CovGrd, CovGA) with the four coverage criteria (corresponding to

the four encodings), we evaluated the FDR of the selected ATCs on the two case studies.

Figure 6 shows FDR means, over a range of test selection sizes, for the eight variants of

coverage-based techniques labeled with the name convention:

Encoding_MaximizationAlgorithm. The first observation (more visible on Figure 6.b, case

study B) is that the effectiveness trend among coverage criteria is the same as the

effectiveness trend among encodings in STCS techniques. For case study A the ordering of

FDRs is SB>STGB>TB>TGB and for case study B it is TGB>STGB>TB>SB. However,

the differences in case study A (Figure 6.a) are practically negligible because of the high

failure rate (θ). Since there are a few easy-to-detect faults in the SUT of case study A,

regardless of the coverage criterion, both Greedy and GA techniques are able to catch the

faults. Thus, the differences in terms of FDR are very small. Therefore, taking the average

FDR from both case studies together, we choose STGB as the best coverage criterion.

Comparing CovGrd and CovGA, we could not find any practical difference in any of the

case studies and, considering the high cost of SSGA compared to a Greedy algorithm, we

suggest STGB_CovGrd as the best representative of coverage-based category.

Comparing Best_STCS, STGB_CovGrd, and RT, Figure 7 reports their mean FDRs

over the range of test selection sizes in case study A (Figure 7.a) and case study B (Figure

7.b). We also reported the A statistic (effect size measure) for comparing Best_STCS vs

STGB_CovGrd and Best_STCS vs. RT, respectively, in Figure 8.a (for case study A) and

Figure 8.b (for case study B). The A statistics show the probability that a selected test set

by Best_STCS (randomly taken from the 100 runs) will have higher FDR than a selected

test set by STGB_CovGrd and RT(randomly taken from the 100 runs), respectively.

200

(a) Case study A

(b) Case study B

Figure 6 The FDR comparison of different coverage-based test case selection techniques for different
test selection sizes

(a) Case study A

(b) Case study B

Figure 7 The FDR comparison between the best STCS (Best_STCS) and non-STCS techniques
(STGB_CovGrd and RT) for different test selection sizes

Based on these results, we clearly see the improvement in FDR in case study B. The

mean FDR of Best_STCS reaches 100% with only 40 ATCs (around 14% of the original

test suite) while the two alternatives cannot reach 100% even with 140 ATCs (half of the

original test suite). Using Best_STCS, 50% to 80% fewer test cases are required to achieve

the same FDR as STGB_CovGrd and RT. Looking at the percentage of mean FDR

improvement, especially for smaller test selection sizes, Best_STCS provides between 15%

201

to 45% improvement over STGB_CovGrd and 80% to 110% over RT. The maximum

improvement is obtained around test selection sizes 20 to 30 where Best_STCS has already

reached a very high FDR though STGB_CovGrd lags far behind. We also have applied a

Mann-Whitney U-test on the FDRs of different test selection sizes, comparing Best_STCS

with STGB_CovGrd and RT. All p-values are very low (zero or close to zero). This

phenomenon is also visible in Figure 8.b, where the effect size around test selection size 20

is close to 1.0, thus showing that Best_STCS is nearly always a better option in terms of

effectiveness for case study B.

However, the improvements are not practically significant in case study A. The

differences in mean FDRs (from Figure 7.a) are small. In some cases there is not even a

statistically significant difference between them and the A statistic also does not show very

high values. The small differences among techniques have been also observed in Figure 6

when comparing coverage-based techniques. The most plausible explanation is the high

failure rate (θ) since most selected test sets, even if they are chosen by a simple selection

technique, are good enough to detect most of the easy-to-detect faults. Therefore, a more

complex technique such as Best_STCS may not be of practical help in this case.

Running a deeper analysis of this case study, we plot the FDR distributions as boxplots

in Figure 9.a (Best_STCS vs. RT) and Figure 9.b (Best_STCS vs. STGB_CovGrd). It is

easy to see two trends: (1) In the interval from 7 to 9 Best_STCS performs better in terms

of all the statistics discussed above. For test selection sizes above 10 all techniques

(a) Case study A

(b) Case study B

Figure 8 The effect size measure (A statistic) when comparing FDR of Best_STCS against
STGB_CovGrd and RT for different test selection sizes

202

perform the same (almost reaching maximum possible FDR) and for very small test

selection sizes (3 to 6) none of the techniques can dominate the other. (2) Best_STCS and

RT have the least and most variance in results, respectively. Note that, in practice,

selecting a subset of test cases with a high variance technique can, in the worst case, lead

to a very low FDR. Therefore, even for case study A, we would prefer using Best_STCS

than STGB_CovGrd or RT.

Cost is also an important factor in selecting the best technique. The simple algorithms

used in CovGrd and RT definitely result in very low execution time. RT execution time is

extremely low (e.g., in case study B, execution time is less than 0.1ms for any test

selection sizes). STGB_CovGrd’s execution time is around 11ms for any test selection

size. However, Best_STCS takes, for example, 17ms, 51ms, 108ms, and 189ms for test

selection sizes 10, 20, 30, and 40 respectively. Though these differences are not practically

significant (especially for smaller test selection sizes which are more of interest in test case

selection), they may become so in the case of larger systems. In practice, if considering

each test case execution time (e.g., in our case studies, it is in the range of minutes), an

additional 200 milliseconds for test case selection is negligible, as long as the more

expensive technique can yield the same or higher FDR than alternatives with fewer test

cases. In other words, given that the total cost of a solution is the selection time plus the

execution time of the selected test cases, when each test case execution time is in the range

of minutes and total selection time in the range of hundreds of milliseconds, any reduction

(a) Best_STCS vs. RT

(b) Best_STCS vs. STGB_CovGrd

Figure 9 Distribution of FDRs over 100 runs for different test selection sizes of Best_STCS,
STGB_CovGrd, and RT as boxplots on case study A

203

in the number of test cases is much more effective in reducing the total cost than saving

milliseconds during selection. We will discuss more about the cost of the techniques for

larger systems in Section 5.4.

In summary, the results of Experiment 2 answers RQ3 by showing that, most of the

time, Best_STCS results in equal or higher FDR with fewer ATCs when compared with

state of the art alternatives (coverage-based selections and RT). In a few cases, Best_STCS

is not more effective than these baselines, but because it shows less variance, it is still a

less risky technique to use. In addition, in most cases the FDR improvement is very

significant (e.g., for some test selection sizes and case studies, 40% and 110%

improvement is achieved when compared to STGB_CovGrd and RT, respectively). Even

for case study A, where the failure rate (θ) was high, the Best_STCS never performed

worse than the baselines (in terms of A statistics), except for very small test selection sizes

of three, four, and six ATCs (Figure 8.a), where in those cases Best_STCS shows less

variance in results (Figure 9). Therefore, we suggest using Best_STCS as a model-based

test case selection technique, even for small test suites, since there is essentially no harm

using Best_STCS. The extra cost for small test suites is negligible, Best_STCS has the

potential to result in much better FDR and a reduced MBT cost. If the test suite execution

cost is negligible, then there is no need for any kind of selection, since the entire test suite

can probably be executed within the project time constraints.

5.3.3 Experiment 3: answering RQ4

In Experiment 3, we simulate test suites with different θs to study its effect on the

effectiveness of STCS. We are specifically interested in investigating whether STCS still

provides higher FDR than coverage-based and random selection when the original test

suite θ is low. To run such experiment, we need test suites with lower θs than that of our

current case studies. Therefore, we take case study B, which has the lowest θ (26%) to start

with, and use it to form 25 types of test suites with equal size (200), but with different θs

ranging from 25% down to 1%. These test suites are formed by removing a different subset

of 81 ATCs from the original test suite of 281 ATCs. Because we do not generate artificial

ATCs or change the fault detection pattern of ATCs (which faults are detected by which

ATCs), this design preserves most features of the original industrial case study. Notice

that, regardless of the matrix generation procedure, we cannot build a fault detecting

matrix with θ lower than 1/(281-73)=0.48% from case study B. There can be many test

suites with size 200 and a given θ based on case study B. Therefore, we generate 30

204

different test suites per θ and apply Best_STCS, STGB_CovGrd, and RT 100 times for

different test selection sizes on each test suite.

Figure 10.a and Figure 10.b show three-dimension graphs to visualize variations in

effect size measure (A statistic) when comparing the FDR of ATCs selected by Best_STCS

vs. RT and Best_STCS vs. STGB_CovGrd, respectively. Two parameters are varied to

explain variations in A statistic values: θ from 1% to 25%, test selection size from 10 (5%

of the test suite) to 100 (50% of the test suite). Results from the graphs, reporting the A

statistic of the FDRs for each value of θ and test selection size (there are 3000 data points

for each A statistic value: 100 runs and 30 test suites), show that Best_STCS is never worse

than its alternatives (A statistic ≥ 0.5) regardless of test selection size and θ. This answers

RQ4. If we carefully analyze the A statistic change over different test selection sizes for

different θs, we can see that the trend is the same as what has been seen in Figure 8.b (the

original case study B with θ=26%). There is a test selection size value where A is

maximum (e.g., test selection size 20 in Figure 8.b and Figure 10.b) and from there on,

increasing the test selection size decreases A since any technique can detect faults with a

large enough test selection size.

Another interesting observation is that, for a given moderate test selection size (so that

not all techniques are effective), A is higher when θ is large. A higher θ provides the better

(a) Best_STCS vs. RT (b) Best_STCS vs. STGB_CovGrd

Figure 10 The effect size measure (A statistic) when comparing FDR of Best_STCS against
STGB_CovGrd and RT for different test selection sizes (10 to 100) and failure rates (1% to 25%)

205

techniques with more opportunity to increase FDR by selecting the right ATCs. However,

beyond a certain point, the differences between techniques start to reduce and we finally

reach a point where all ATCs detect faults and technique will result in the same FDR as

RT. In summary, the results of Experiment 3 suggest that Best_STCS dominates its

alternatives and that it is not an artifact of the high failure rate (θ) of our case studies. It

also confirms that Best_STCS may not be significantly better when the original test suite’s

θ is extremely low or high. This highlights the importance of applying STCS on

systematically generated test cases resulting from a cost-effective MBT strategy, in order

to guarantee a high enough θ. On the other side of the range, extremely high θs are

unlikely on realistic systems.

5.3.4 Experiment 4: answering RQ5

Though in practice the test budget may be imposed by external constraints, the tester may

have some degree of freedom to increase it if it is believed to yield significant benefits in

terms of fault detection. We are therefore interested in finding a heuristic that helps the

tester choose an optimal test selection size for STCS. Our heuristic is based on the average

similarity of ATC pairs in the set (ܵ݅݉ݎݏܯሺݏ௡ሻ), which is the same as the fitness function

of (1+1)EA in Best_STCS. If there is a linear correlation between ܵ݅݉ݎݏܯሺݏ௡ሻ and the

FDR of ݏ௡ over different test selection sizes, we can get a fairly good estimate of the FDR

of the selected ATCs based on their ܵ݅݉ݎݏܯሺݏ௡ሻ.

In Experiment 4, we re-apply Best_STCS on both case studies and calculate the

normalized ܵ݅݉ݎݏܯሺݏ௡ሻ per output selected test set. We normalize the values between

zero and one, so that we can plot them with FDR values in one overlay graph using the

same scale. To do so, we need to know the maximum and minimum possible ܵ݅݉ݎݏܯሺݏ௡ሻ.

The minimum similarity measure corresponds to the set of two ATCs with minimum pair-

wise similarity (݉ݑ݉݅݊݅ܯሺܵ݅݉ܿ݊ݑܨ൫݌ݐ௜ , ௝൯ሻ). That is because adding any ATC to the݌ݐ

set of two ATCs with minimum similarity will increase (or not change) the average of the

similarities among ATCs in the set. Therefore, maximum ܵ݅݉ݎݏܯሺݏ௡ሻ is equal to

 :ሺܶܵሻ, where TS is the entire test suite, and the normalized similarity measure isݎݏܯ݉݅ܵ

௡ሻݏሺ݉ݎ݋ܰ ൌ
௡ሻݏሺݎݏܯ݉݅ܵ െ , ௜݌ݐ൫ܿ݊ݑܨሺܵ݅݉݉ݑ݉݅݊݅ܯ ௝൯ሻ݌ݐ

ሺܶܵሻݎݏܯ݉݅ܵ െ , ௜݌ݐ൫ܿ݊ݑܨሺܵ݅݉݉ݑ݉݅݊݅ܯ ௝൯ሻ݌ݐ

206

Figure 11 shows the average FDR(ݏ௡) (y-axis) as a function of ܰ݉ݎ݋ሺݏ௡ሻ (x-axis) for

case study A (Figure 11.a) and case study B (Figure 11.b), over 100 runs. The test selection

size n was varied between 2 to 30 (50% of the test suite) by intervals of two and 5 to 140

(50% of the test suite) by intervals of five for case studies A and B, respectively. It is

clearly visible in these two case studies that there is a monotonic increase in average FDR

as test selection size and Norm increase. After a certain Norm threshold, the average FDR

gets close to the maximum and plateaus. This was expected since increasing Norm results

from increasing the test selection size and, of course, the average FDR naturally converges

towards 1.0.

However, what is more interesting is the near-linear relationship between Norm and FDR,

before reaching the plateau. In practice, while considering increases in test selection size,

one can look at the trend of Norm (or ܵ݅݉ݎݏܯሺݏ௡ሻ)) and choose to increase the test

selection size only when it triggers a significant increase in ܵ݅݉ݎݏܯሺݏ௡ሻ afterwards.

Because of the observed relationship between Norm and FDR, we know that if the former

does not significantly increase, we are unlikely to obtain significant increases in FDR.

However, a significant increase in Norm may not guarantee an increase in FDR if its

maximum value has already been reached, which we cannot know in practice. The

relationship between Norm and FDR is expected to vary significantly as, depending on the

(a) Case study A with test selection sizes between

2 to 30 (50% of the test suite), intervals of two.

(b) Case study B with test selection sizes between

5 to 140 (50% of the test suite), intervals of five.

Figure 11 Scattered plot of the averaged FDR (y-axis) and the normalized similarity measure (x-
axis) of selected test cases over 100 runs using Best_STCS

207

failure rate (θ) of the test suite, maximum FDR can be achieved with different test

selection sizes. This makes it impossible to know beforehand the value of Norm by which

maximum FDR is reached. This implies that guiding the choice of test selection size based

on increases in Norm may lead to a conservative choice that will guarantee that an increase

in FDR is possible but not certain if it has already reached its maximum, thus leading to an

unnecessarily large test selection size.

Figure 12 shows the average FDRs along with SimMsr and Norm, for different test

selection sizes. We can see the same trend in both studies (Figure 12.a for case study A and

Figure 12.b for case study B): the elbow point (when the last significant decrease in the

slope of the tangent line appears) in the Norm or SimMsr curve happens in the same

interval of test selection sizes as when FDR reaches its maximum. We can also match these

test selection sizes with test selection sizes corresponding to the elbow points in Figure 11

a and b. Table 7 (case study A) and Table 8 (case study B) reports the average FDR and

Norm for different test selection sizes close to the elbow points of the curves in Figure11

and Figure 12. The test selection sizes that correspond to the elbow points in the scattered

plots are in bold. It is clear that the gain in average FDR and Norm from those test

selection sizes onward is not significant. Therefore, in practice one can decide about the

number of test cases to be executed based on the testing budget (maximum affordable) and

the increase in Norm values (maximum necessary) when increasing test selection size. For

(a) Case study A (b) Case study B

Figure 12 Average FDR, similarity measure, and the normalized similarity measure for different
test selection sizes using Best_STCS

208

example, in case study A, one would determine that beyond a test selection size of 10

(elbow points), the gain in FDR would likely be much smaller.

In summary, answering RQ5, we can say that by observing how average similarity

among test cases increases as test selection size increases, we can identify the point above

which similarity starts increasing at a much slower pace and FDR is not likely to increase

significantly. This is made possible by the presence of a near linear relationship between

similarity and FDR until the latter reaches its maximum.

5.4 Discussion on scalability of STCS

The main motivation for STCS is to make MBT scalable, but how scalable are STCS

techniques themselves? In this section we discuss about how STCS scales up to larger

inputs. Note that the input of an STCS is a set of ATCs (original test suite). A larger input

means more ATCs and/or longer ATCs. Therefore, we look at the scalability issue from

these two points of view. Scalability can be discussed for each step separately. Encoding is

the cheapest phase, since ATCs are already generated by the MBT tool. The only extra cost

is eliminating the unnecessary elements from the ATCs to produce the encoded

sets/sequences. Therefore, encoding linearly scales up with increasing the ATC length and

test suite size.

In general, the time complexity of set-based and sequence-based techniques for

calculating the similarity of two ATCs (tp1 and tp2) is O(|tp1|+|tp2|) and O(|tp1|*|tp2|)

respectively, where |tpi| is the length of tpi. The matrix generation, in total, needs

|TS|*(|TS|-1)/2 similarity calculations, where |TS| is the number of ATCs in the test suite

(e.g., NW takes in average three seconds for a 281*281 similarity matrix—

Table 7 Average FDR and Norm values for test selection sizes close to the elbow points in scattered
plot of Average FDR vs. Norm for case study A

 n=4 n=6 n=8 n=10 n=12
Norm 0.441931 0.590401 0.675518 0.723759 0.752873
Average
FDR

0.851713 0.9176 0.978124 0.986415 0.993835

Table 8 Average FDR and Norm values for test selection sizes close to the elbow points in scattered
plot of Average FDR vs. Norm case study B

 n=15 n=20 n=25 n=30 n=35
Norm 0.598903 0.641039 0.670007 0.688725 0.703399
Average FDR 0.7304 0.844533 0.924667 0.980867 0.995533

209

(281*280)/2=39,340 similarity value calculations—in case study B, but GOW only

requires half a second, on a PC with Intel Core2 Duo CPU 2.40 Hz). Therefore, similarity

matrix generation in Best_STCS also scales up fairly well, linearly with ATC length and

polynomial (O(|TS|2)) with test suite size. However, the polynomial growth in similarity

matrix size is a memory scalability problem. One potential solution is on-demand

similarity calculation instead of storing all paired similarities. We can also use a hash table

to save the similarity of the most used ATCs in the minimization process. We did not

investigate these techniques since it was not necessary for our two industrial case studies.

The most time consuming phase of an STCS is the minimization of similarities, which

is an iterative search in Best_STCS. Since we always can set up a time limit as stopping

criterion of (1+1)EA, Best_STCS is always applicable for large test suites. However,

reducing the search time (compared to the problem size) degrades its effectiveness. Then

the question is finding the problem size threshold from where Best_STCS, given the same

fixed time budget, is not more effective than baselines anymore. Precisely answering this

question requires many more empirical studies on very large industrial SUTs.

Unfortunately, obtaining these artifacts for research purposes is not always possible. To

cope with this problem, we applied Best_STCS on simulated similarity matrices with

different sizes (note that the scalability of this step only depends on the number of ATCs

and not the ATCs’ length, since in this step we already have a similarity matrix as an input

for the search). Using similarity matrices with 600, 6000, and 12000 ATCs—generated by

randomly assigning values1 to each pair and keeping the failure rate (θ) and number of

faults the same as the test suite in case study B—we realized that keeping the same number

of fitness evaluations as in this study (10,000), the actual extra time required when we

increase the number of ATCs is small and very negligible compared to the improvement of

FDR that we potentially get using Best_STCS instead of non-STCS techniques. For

example, selecting 20 ATCs out of 281 ATCs of case study B takes 51ms on a PC with

Intel Core2 Duo CPU 2.40 Hz, whereas it takes 75ms, 130ms, and 139ms when the test

suite size is 600, 6000, and 12000, respectively. However, if we also increase the test

selection size with the same proportion of the test suite as before, the selection cost is

much more. For example, if we select 850 out of 12000 ATCs in the test suite (almost the

same proportion as selecting 20 out of 281 ATCs in case study B), we need 85 seconds.

1 Note that the exact similarity values do not matter, since we are only interested on the selection cost in larger matrices and not the

actual FDR of the resulting selected test sets.

210

But in practice, even 85 seconds is a very negligible cost for selecting from a large test

suite of 12000 ATCs.

Given the fact that the total cost of test suite execution (்ݐݏ݋ܥௌ) is ்ݐݏ݋ܥௌ ൌ ௦௘௟ݐݏ݋ܥ ൅

݊ ∗ ,௦௘௟ is the selection overhead, n is the number of selected ATCsݐݏ݋ܥ ௧௖, (whereݐݏ݋ܥ

and ݐݏ݋ܥ௧௖ is the cost of each test case execution) then, obviously, not executing the

unnecessary test cases is worth spending some extra seconds for test case selection,

especially when each test case execution is costly. Therefore, in summary, we found

Best_STCS to be a scalable selection technique, which is applicable in very large systems

with reasonable cost while keeping its high effectiveness.

5.5 Discussion on validity threats

In this subsection, we discuss the potential threats to the validity of the study using the

framework introduced in [57] for empirical studies in software engineering.

Construct validity: In this study any comparison is based on the cost or effectiveness of

selection techniques. To evaluate the effectiveness of a selection technique, we need a

measure to assess how effective at detecting faults a selected test set is. We use the fault

detection rate (FDR), which is based on real faults, as explained in Section 5.1. There are

three cost measures considered in the experiments: (a) selection time (actual time spent by

the selection technique), (2) number of similarity calculations (which is used in comparing

search-based minimization algorithms), and (3) test case execution time. Each test case

execution time is taken from the industrial case studies and does not depend on the

experiment settings. The number of similarity calculations is also a platform independent

measure, but using actual selection time comes with known problems [39] such as platform

dependency. However, in this study, this measure is used only to compare different

techniques with the same execution settings. Therefore, the relative differences are used,

not the exact platform dependant values. The differences between test case selection

overhead and test suite execution time is so large that our results would hold even by

running test case selection on slower machines. We do not have a discussion on memory

consumption of the selection techniques, since we do not use it as a cost measure when

comparing different techniques in our case studies. However, it is briefly discussed when

discussing about the scalability of STCS in Section 5.4.

Internal validity: All encoding techniques, similarity functions (except alignment

algorithms), and minimization algorithms are implemented by the authors. Any potential

defect in the implementation may be a threat to internal validity. In addition, parameter

211

settings of similarity functions and search techniques may have an effect on their

effectiveness. Regarding similarity functions, there exist techniques that are known to have

influential parameters (e.g., NW). This means that they could possibly work better with

some fine tuning. However, that would compromise the applicability of the approach as

tuning can be time consuming and difficult in practice. Regarding minimization

algorithms, Greedy and clustering-based techniques do not have parameters to be set.

While comparing the remaining techniques (ART and search-based techniques), to

alleviate possible threats to internal validity, we used (wherever applicable) equal values

for the techniques’ parameters such as stopping criterion and mutation rate. However, it is

again possible that one of the algorithms from the search-based category, with a specific

tuning, would work better than (1+1)EA with any parameter settings. But again, that would

affect the applicability of the technique, since the current parameters are taken from the

literature and using any other parameter values would require careful and time-consuming

tuning.

When we generated the simulated similarity matrices with different θs in Experiment 3

and different sizes in experiments on scalability, we minimized threats to internal validity

by keeping most features of the original industrial case study untouched to avoid

introducing confounding factors. The goal was also to reduce external validity threats by

making the SUT as similar as possible to real systems. However, the fault detection pattern

among ATCs might not be the same if we had an industrial case study with the same θ or

size.

Conclusion validity: Because randomized algorithms are affected by chance, to reduce

the threats to conclusion validity we followed a rigorous statistical procedure to analyze

the collected data. One hundred independent runs of each algorithm were performed to

account for random variation and to collect a sufficient number of observations on the FDR

and cost of each selected test set generated by a selection technique. In Experiment 3,

where we also had randomness in the similarity matrices, 30 matrices were generated per

θ. All conclusions are supported by non-parametric statistical tests (Mann-Whitney U-test

and Kruskal-Wallis test). In Experiment 1, the number of observations was different in the

two case studies and, as a result, we did not apply statistical tests on the combined data.

Rather, the conclusions are based on the average of the results from the two case studies.

To compare selection techniques and assess the magnitude of the differences in cost and

FDR, we used an effect size measure (A statistic) in addition to showing boxplots.

212

External validity: Our results rely on two industrial case studies using real faults,

complemented by a set of simulated test suites. The SUTs are from different domains with

different characteristics (e.g., different sizes and number of faults) and the simulated

matrices try to generalize the results in two dimensions (different θs and different sizes).

However, replicating our studies in various domains as many times as possible is of course

required to gain confidence in our results and better understand their limitations. Despite

the fact that one can never be sure whether case study results generalize to other systems,

we have carefully tried to qualitatively explain our results, thus contributing to understand

how they might generalize.

6 Related Works

Though STCS is a new topic in MBT, similar ideas have already been applied in the

context of regression testing. Similarity in that domain is mostly defined using some type

of code-level coverage of the test cases. For example, in [13] the similarity function is

based on all def-use pairs coverage and they use a classification algorithm as a

minimization technique, where they classify similar test cases in one class and distribute

their selection over different classes. Basic block coverage in the code (e.g., statement

coverage) is a basis for defining similarity functions in [18, 34, 35, 58]. Greedy search,

adaptive random selection, and clustering are used in these studies for

selection/prioritization. In [59] different heuristics are used based on execution information

from the original test suite to support regression testing (e.g., memory operations with

values from dynamic execution of a test case is used in a similarity function). Feldt et al.

[60] has taken a different approach by proposing a diversification technique which is

driven by execution related information of the test cases such as the test setup, arguments,

control flow, outcome of evaluation, etc. They have applied an information distance

function on the description of the test cases. The problem with all these approaches is that

they need source code coverage and/or previous execution information which are not

available in our context when we do system level, black-box testing and select test cases to

minimize test execution.

Ledru et al. [22] have introduced a similarity-based prioritization technique which can

be applied on both code-based and model-based techniques, since it is based on the test

scripts and not the source code or a specification model. The basic idea is to analyze the

test script as a string and compare each pair of test cases as two strings using an edit-

213

distance function. This approach is missing the encoding phase and results in using noisy

data (platform dependant information in the test scripts) when applying a

similarity/distance function.

There is also a category of test case diversification techniques which are based on data

diversity. ART, as introduced in Section 4.3.3, for example, is one of the most well-known

techniques in this group. Vega et al. [61] also applied test data variance as a test quality

measure. In MBT, ATCs do not contain test data and concrete test cases are generated by

adding specific test data to each ATC. Test data variance techniques may be useful when

generating the concrete test suite from ATCs. However, we are interested in reducing the

set of ATCs as much as possible before concretizing them. This means that these

techniques can be complementary to STCS, if we employ a diversity-based test data

generation technique to select input data for the selected ATCs.

To the best of our knowledge, the only STCS technique applied on the model level was

recently introduced in [21], where sequences of transitions in a Labeled Transition System

model of the SUT are used to represent test paths. The similarity function is our CNT, as

defined as Counting Function in Section 4.2.1, and the selection technique is a Greedy

search, that is SimGrd in Section 4.3.1. If we tailor their approach for USBT, the encoding

is similar to our TB described in Section 4.1. Therefore, their technique can actually be

considered as one of our 320 variants. If we consider their technique as an STCS baseline

of comparison, Best_STCS is on average the best variant (18th best variant for case study A

and 6th best for the case study B) and is a much better choice than their variant, which is

ranked 127th for case study A, 111th for case study B, and 66th on average.

This study is an extension of the work we reported in [2, 3, 24]. The general idea of

STCS is introduced in [3] and SB, TB, and TGB encodings are compared while using a

CNT similarity function and a SSGA/SimGrd algorithm on case study B. We also

compared the variant identified by TGB, CNT, and SSGA with coverage-based selection

and random testing. In [24] we have focused on comparison between six similarity

functions (all similarity functions introduced in this paper except GOW and SOK) on the

same case study. In [2], we further evaluated the approach proposed in [3] when replacing

SSGA with AHC and ART. Also, we conducted an experiment to investigate why

diversifying test cases improves FDR by showing that, given our similarity function, test

cases which detect distinct faults are dissimilar and test cases that detect a common fault

are similar. In [7], we conducted a series of experiments investigating the properties of test

suites with respect to similarities among fault revealing test cases and identified the ideal

214

situation for STCS. We also proposed a rank scaling technique for modifying similarity

values to address outliers problem in STCS (i.e., a small group of very different test cases).

7 Conclusion and Future Work

In practice, system level testing on real hardware platforms or test networks may be a

highly expensive task and very constrained. Therefore, an ideal automated testing approach

should be adjustable to the time and resource constraints of the project. This is especially

essential for large systems where automated systematic testing, such as model-based

testing, typically results in very large test suites. In this paper, we introduced a family of

model-based test case selection techniques, called similarity-based test case selections

(STCS), which, given a test selection size, minimize the similarity among selected test

cases to increase the chance of detecting more faults. We first investigated the different

STCS parameters (namely encoding, similarity function, and minimization algorithm) and

showed that all parameters are potentially influential on fault detection. Among 320

identified STCS variants, we found the technique (Best_STCS) with state-trigger-guard-

based encoding, Gower-Legendre similarity function, and (1+1) Evolutionary Algorithm to

be the most cost-effective technique on average on two industrial case studies. Using

Best_STCS, much higher FDR is achieved for the same number of test cases compared to

the baselines (e.g., for some test selection sizes and case studies, 40% and 110%

improvement is achieved compared to the best coverage-based selection and random

testing, respectively). This leads to very large savings in terms of number of test cases that

do not need to be executed (up to 80% reduction in the number of test cases required for

detecting the same number of faults). We also found Best_STCS more effective than other

baseline selection techniques regardless of test selection size and failure rate. The

scalability of different Best_STCS steps was investigated for larger test suites and test

cases. In addition, we proposed a method, based on monitoring change in average

similarity when test selection size increases, to help test manager in deciding about the best

test selection size within their constraints.

A possible future work can be combining similarity-based and coverage-based selection

techniques by applying a multi-objective search technique [62] that minimizes similarities

while it maximizes coverage of the selected test cases. Another extension of this work is to

assign weights to test cases based on estimates of their execution cost and modify the

215

selection technique to minimize the total execution cost. Analysis of the search space

properties in this field of application is also an interesting further investigation.

Acknowledgements

The authors wish to thank Marius Liaaen, from Tandberg AS, now part of Cisco, for

helping us in conducting some of the experiments.

References

[1] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach:
Morgan-Kaufmann, 2006.

[2] H. Hemmati, A. Arcuri, and L. Briand, "Reducing the Cost of Model-Based Testing
through Test Case Diversity," in 22nd IFIP International conference on Testing
Software and Systems (ICTSS), formerly TestCom/FATES: LNCS 6435, 2010(b),
pp. 63-78.

[3] H. Hemmati, L. Briand, A. Arcuri, and S. Ali, "An Enhanced Test Case Selection
Approach for Model-Based Testing: An Industrial Case Study," in 18th ACM
International Symposium on Foundations of Software Engineering (FSE), 2010, pp.
267-276.

[4] S. Dalal, A. Jain, and J. Poore, "Workshop on Advances in Model-Based Software
Testing," in Proceedings of the 27th International Conference on Software
Engineering (ICSE), 2005, p. 680.

[5] F. W. Vaandrager, "Does it Pay Off? Model-Based Verification and Validation of
Embedded Systems!," Radboud University Nijmegen2006.

[6] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. Briand, "Model
Transformations as a Strategy to Automate Model-Based Testing - A Tool and
Industrial Case Studies," Simula Research Laboratory, Technical Report(2010-01),
2010.

[7] H. Hemmati, A. Arcuri, and L. Briand, "Empirical Investigation of the Effects of
Test Suite Properties on Similarity-Based Test Case Selection, ," in 4th
International Conference on Software Testing, Verification and Validation (ICST),
2011.

[8] R. Xu and D. Wunsch, "Survey of Clustering Algorithms," IEEE Transactions on
Neural Netwoks, vol. 16, pp. 645-678, 2005.

[9] S. Droste, T. Jansen, and I. Wegener, "On the analysis of the (1+1) evolutionary
algorithm," Theoretical Computer Science, vol. 276, pp. 51-81, 2002.

[10] J. A. Jones and M. J. Harrold, "Test-Suite Reduction and Prioritization for Modified
Condition/Decision Coverage," IEEE Transactions on Software Engineering, vol.
29, pp. 195-209, 2003.

[11] Y. Chen, R. L. Probert, and H. Ural, "Regression test suite reduction based on SDL
models of system requirements," Journal of Software Maintenance and Evolution:
Research and Practice, vol. 21, pp. 379-405, 2009.

[12] G. Rothermel, M. J. Harrold, J. v. Ronne, and C. Hong, "Empirical studies of test-
suite reduction," Software Testing, Verification and Reliability, vol. 12, pp. 219-
249, 2002.

[13] A. d. S. Simão, R. F. d. Mello, and L. J. Senger, "A Technique to Reduce the Test
Case Suites for Regression Testing Based on a Self-Organizing Neural Network

216

Architecture," in 30th Annual International Computer Software and Applications
Conference (COMPSAC), 2006, pp. 93 - 96.

[14] A. Orso, H. Do, G. Rothermel, M. J. Harrold, and D. S. Rosenblum, "Using
component metadata to regression test component-based software," Software
Testing, Verification and Reliability, vol. 17, pp. 61-94, 2007.

[15] S. McMaster and A. Memon, "Call-Stack Coverage for GUI Test Suite Reduction,"
IEEE Transactions on Software Engineering, vol. 34, pp. 99-115, 2008.

[16] G.-V. Jourdan, P. Ritthiruangdech, and H. Ural, "Test Suite Reduction Based on
Dependence Analysis," in Computer and Information Sciences – ISCIS 2006. vol.
4263/2006: Springer Berlin / Heidelberg, 2006, pp. 1021-1030.

[17] R. Hamlet, "Random testing," in Encyclopedia of Software Engineering: Wiley,
1994, pp. 970-978.

[18] D. Leon and A. Podgurski, "A Comparison of Coverage-Based and Distribution-
Based Techniques for Filtering and Prioritizing Test Cases," in 14th IEEE
International Symposium on Software Reliability Engineering (ISSRE), 2003, pp.
442-456.

[19] B. Korel, G. Koutsogiannakis, and L. H. Tahat, "Model-Based Test Prioritization
Heuristic Methods and Their Evaluation," in 3rd Workshop on Advances in Model
Based Testing, A-MOST, 2007, pp. 34-43.

[20] X. Y. Ma, B. K. Sheng, and C. Q. Ye, "Test-Suite Reduction Using Genetic
Algorithm," in Advanced Parallel Processing Technologies. vol. 3756: Springer
Berlin / Heidelberg, 2005, pp. 253-262.

[21] E. G. Cartaxo, P. D. L. Machado, and F. G. O. Neto, "On the use of a similarity
function for test case selection in the context of model-based testing," Software
Testing, Verification and Reliability, in press, 2009.

[22] Y. Ledru, A. Petrenko, and S. Boroday, "Using String Distances for Test Case
Prioritisation," in 24th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2009, pp. 510-514.

[23] T. Y. Chen, F.-C. Kuoa, R. G. Merkela, and T. H. Tseb, "Adaptive Random
Testing: The ART of test case diversity," Journal of Systems and Software, vol. 83,
pp. 60-66, 2010.

[24] H. Hemmati and L. Briand, "An Industrial Investigation of Similarity Measures for
Model-Based Test Case Selection," in 21st IEEE International Symposium on
Software Reliability Engineering (ISSRE), 2010, pp. 141-150.

[25] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining: Addison
Wesley, 2006.

[26] G. Dong and J. Pei, Sequence Data Mining: springer, 2007.
[27] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids: Cambridge University Press,
1999.

[28] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology: Cambridge University Press, 1997.

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2 ed.: The MIT Press, 2001.

[30] A. P. Mathur, Foundations of Software Testing, 1 ed.: Addison-Wesley
Professional, 2008.

[31] A. Arcuri, "Longer is Better: On the Role of Test Sequence Length in Software
Testing," in IEEE International Conference on Software Testing, Verification and
Validation (ICST), 2010, pp. 469 - 478

217

[32] A. K. Jain, "Data Clustering: 50 Years Beyond K-means," in press with Pattern
Recognition Letters., 2009.

[33] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval: Cambridge University Press, 2008.

[34] W. Masri, A. Podgurski, and D. Leon, "An Empirical Study of Test Case Filtering
Techniques Based on Exercising Information Flows," IEEE Transactions on
Software Engineering, vol. 33, pp. 454-477, 2007.

[35] S. Yoo, M. Harman, P. Tonella, and A. Susi, "Clustering test cases to achieve
effective and scalable prioritisation incorporating expert knowledge," in 18th ACM
International Symposium on Software Testing and Analysis (ISSTA), 2009, pp. 201-
212.

[36] L. J. White and E. I. Cohen, " A domain strategy for computer program testing,"
IEEE Transactions on Software Engineering (TSE), vol. 6, pp. 247-257, 1980.

[37] M. Harman and B. F. Jones, "Search-based software engineering," Information and
Software Technology, vol. 43, pp. 833-839, 2001.

[38] M. Harman, "The Current State and Future of Search Based Software Engineering,"
in Future of Software Engineering: IEEE Computer Society, 2007, pp. 342-357.

[39] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, "A Systematic
Review of the Application and Empirical Investigation of Search-based Test-Case
Generation," IEEE Transactions on Software Engineering, vol. 36, pp. 742-762,
2010.

[40] Z. Michalewicz and M. Schoenauer, "Evolutionary Algorithms for Constrained
Parameter Optimization Problems," Evolutionary Computation vol. 4, pp. 1-32,
1996.

[41] D. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE
Transactions Evolutionary Computation vol. 1, pp. 67-82, 1997.

[42] A. Arcuri and X. Yao, "Search Based Software Testing of Object-Oriented
Containers," Information Sciences, vol. 178, pp. 3075-3095, 2008.

[43] M. Xiao, M. El-Attar, M. Reformat, and J. Miller, "Empirical evaluation of
optimization algorithms when used in goal-oriented automated test data generation
techniques," Empirical Software Engineering, vol. 12, pp. 183-239, 2007.

[44] M. Harman and P. McMinn, "A theoretical and empirical study of search based
testing: Local, global and hybrid search," IEEE Transactions on Software
Engineering (TSE), vol. 36, pp. 226-247, 2010.

[45] W. Feller, An Introduction to Probability Theory and Its Applications, 3rd ed. vol.
1: Wiley, 1968.

[46] E. H. L. Aarts and J. K. Lenstra, Local search in combinatorial optimization:
Princeton University Press, 2003.

[47] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning: Addison-Wesley Professional, 2001.

[48] D. Whitley, "The GENITOR algorithm and selection pressure: why rank-based
allocation of reproductive trials is best," in the third International Conference on
Genetic Algorithms 1989, pp. 116-121.

[49] P. Moscato and C. Cotta, "A Modern Introduction to Memetic Algorithms " in
Handbook of Metaheuristics. vol. 146: Springer, 2010, pp. 141-183.

[50] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms: Wiley-Interscience,
1998.

[51] T. Pender, UML Bible: Wiley, 2003.
[52] R. V. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools:

Addison-Wesley Professional, 1999.

218

[53] A. Arcuri and L. Briand, "A Practical Guide for Using Statistical Tests to Assess
Randomized Algorithms in Software Engineering," in ACM/IEEE International
Conference on Software Engineering (ICSE), 2011.

[54] A. Vargha and H. D. Delaney, "A critique and improvement of the CL common
language effect size statistics of McGraw and Wong," Journal of Educational and
Behavioral Statistics, vol. 25, pp. 101-132, 2000.

[55] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel, "Test Case Prioritization: A
Family of Empirical Studies," IEEE Transactions on Software Engineering, vol. 28,
pp. 159-182, 2002.

[56] Z. Li, M. Harman, and R. M. Hierons, "Search Algorithms for Regression Test
Case Prioritization," IEEE Transactions on Software Engineering, vol. 33, pp. 225-
237, 2007.

[57] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen,
Experimentation in Software Engineering: An Introduction: Kluwer Academic
Publishers, 2000.

[58] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, "Adaptive random test case
prioritization," in 25th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2009, pp. 233-244.

[59] M. K. Ramanathan, M. Koyutürk, A. Grama, and S. Jagannathan, "PHALANX: a
graph-theoretic framework for test case prioritization," in 23rd Annual ACM
Symposium on Applied Computing, 2008, pp. 667-673.

[60] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, "Searching for Cognitively Diverse
Tests: Towards Universal Test Diversity Metrics," in Proceedings of the 1st
Workshop on Search-Based Software Testing, 2008, pp. 178-186.

[61] D. Vega, I. Schieferdecker, and G. Din, "Test Data Variance as a Test Quality
Measure: Exemplified for TTCN-3," in 19th IFIP International Conference on
Testing of Communicating Systems and 7th International Workshop on Formal
Approaches to Testing of SoftwareTestCom/FATES, 2007, pp. 351-364.

[62] K. Lakhotia, M. Harman, and P. McMinn, "A multi-objective approach to search-
based test data generation," in The Genetic and Evolutionary Computation
Conference (GECCO), 2007, pp. 1098-1105.

	ThesisSummaryFinal
	Paper1
	Paper2
	Paper3
	Paper4
	Paper5
	Paper6

