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Abstract—Aspect-Oriented Modeling (AOM) has been the 

subject of intense research over the last decade and aims to 

provide numerous benefits to modeling, such as enhanced 

modularization, easier evolution, higher applicability as well as 

reduced modeling effort. However, these benefits can only be 

obtained at the cost of learning and applying new modeling 

approaches. Studying their applicability is therefore important 

to assess whether they are worth using in practice. In this 

paper, we report the first controlled experiment to assess the 

applicability of AOM, focusing on a recently published UML 

profile (AspectSM). This profile was originally designed to 

support model-based robustness testing in an industrial 

context but is applicable to the behavioral modeling of other 

crosscutting concerns. This experiment assesses the 

applicability of AspectSM from two aspects: the quality of 

derived state machines and the effort required to build them. 

With AspectSM, a crosscutting behavior is modeled using so-

called “aspect state machine”. The applicability of aspect state 

machines is evaluated by comparing them with standard UML 

state machines that directly model the entire system behavior, 

including crosscutting concerns. The quality of both aspect and 

standard UML state machines derived by subjects is measured 

by comparing them against their corresponding reference state 

machines. Results show that aspect state machines derived 

with AspectSM are significantly more complete and correct 

though AspectSM took significantly more time than the 

standard approach, probably due to a lack of familiarity of the 

subjects.  

Keywords: Aspect-Oriented Modeling; Controlled 

Experiment; Applicability; Robustness; UML State machines 

I.  INTRODUCTION 

Aspect-Oriented Modeling (AOM) aims to provide 

enhanced Separation of Concerns (SoCs) during design 

modeling [1, 2]. Crosscutting concerns, for example related 

to robustness or security behavior, are modeled as aspect 

models and are subsequently woven into their primary/base 

model capturing non-crosscutting concerns, such as nominal 

functional behavior. AOM is expected to yield benefits such 

as improved readability, enhanced modularization, easier 

evolution, improved model quality, increased reusability of 

models, as well as reduced modeling effort [2]. However, 

there to date is very little evidence supporting such benefits. 

Empirical investigations, such as controlled experiments and 

case studies, are required to support the above claims and 

better comprehend AOM‘s limitations. This paper, as part of 

a larger set of studies, is a first step in this direction and 

reports of the first controlled experiment assessing of the 

applicability of AOM.  

In industrial models such as state machines, one must 

not only model nominal behavior but also robustness 

behavior, for example describing how the system should 

react to abnormal environmental conditions. This is for 

example needed—and that was our original motivation—to 

support the model-based robustness testing of embedded or 

communication systems [3], though there are many more 

possible applications. In a previous paper, we reported on 

AspectSM [4], a UML profile for AOM, which was defined 

to model crosscutting behaviors using extended UML state 

machines, with the objectives of minimizing modeling effort 

and the learning curve for modeling crosscutting behavior. 

The AspectSM profile focuses on UML state machines as 

they are the extensively used notations in practice, for 

example in model-based test case generation in the context 

of control and communication systems [3, 5]. Comparable 

approaches [6-9] in the literature do not use UML extension 

mechanisms and make use of specific notations for aspect-

related features that do not follow any standard. With our 

industrial partners, and generally in most realistic settings, it 

is necessary to provide AOM support based on the UML 

standard to facilitate adoption. A detailed comparison of the 

AspectSM profile with other related profiles can be found in 

[4]. AspectSM has been successfully applied to model 

robustness behavior of video conferencing systems for the 

purpose of model-based robustness testing at Cisco Systems 

Inc., Norway [5].   

Crosscutting behavior, such as robustness behavior in 

industrial systems, can result in cluttered UML state 

machines. As a result, modeling such crosscutting behavior 

directly on UML state machines can be error-prone and 

entails significant modeling effort due in part of extensive 

redundant modeling. Consistent with AOM claims, using 

AspectSM to model crosscutting behavior as aspect state 

machines separately from the base state machine should 

reduce cluttering in models and hence improves the overall 

quality of the models, which thereby increases the 

applicability of the approach. Studying the applicability of 

AspectSM is therefore essential to demonstrate that its use 
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is beneficial to ease its adoption in practice. In addition, 

from a more general standpoint, studying the applicability of 

AspectSM provides preliminary evidence about the benefits 

that can be obtained with AOM. We therefore performed 

and report here on the first controlled experiment to evaluate 

the applicability of AspectSM by comparing it with directly 

modeling crosscutting behavior using standard UML state 

machines. The controlled experiment was conducted with 

25 graduate students taking a graduate course in ‗Advanced 

Software Architecture‘ at the University Institute of 

Information Technology (UIIT) at the Pir Mehr Ali Shah 

Arid Agriculture University, Rawalpindi, Pakistan. The 

original design (specification and state machines) of the 

case study system we used in the experiment was defined 

independently from our experiment―a Automatic Teller 

Machine (ATM) control system provided in a well-known 

textbook [10] ― but we had to model the case study with 

three additional crosscutting behaviors: cancel transaction, 

network failure and power failure. The quality of state 

machines is measured with three objective measures: 

Completeness, Correctness and Redundancy, which are 

proposed for this experiment but can be reused to perform 

similar experiments in the future, either with AspectSM or 

other state machine-based approaches. Furthermore, we 

evaluate the effort (measured in time) that subjects spent to 

model crosscutting behaviors using standard UML state 

machines and aspect state machines. Experiment results 

show that modeling crosscutting behavior as aspect state 

machines significantly increases completeness and 

correctness of models and significantly reduces redundancy 

as compared with standard UML state machines. On the 

other hand, aspect-oriented modeling took significantly 

more time than standard UML state machines.  

The rest of the paper is organized as follows. Section II 

describes the necessary background on aspect state 

machines. Section III provides details on the experiment 

planning and Section IV reports on results and discussions. 

Section V provides possible threats to validity of our 

experiment and Section VI compares related controlled 

experiments in Aspect-oriented Software Development 

(AOSD) to our experiment. Finally, we conclude our paper 
in Section VII. 

II. MODELING ASPECT STATE MACHINES 

AspectSM [11] is a UML profile, which was proposed to 

support the modeling of system robustness behavior—a 

very common type of crosscutting behavior in many types 

of systems such as communication and control systems [2]. 

An example of a robustness behavior for a communication 

system is related to how the system should react, in various 

states, in the presence of high packet loss. The system 

should be able to recover lost packets and continue to 

behave normally in a degraded mode. In the worst case, the 

system should go back to the most recent state and not 

simply crash or show inappropriate behavior. In a control 

system, one needs to model, for example, how the system 

should react, in various states, when a sensor breaks down. 

AspectSM allows modeling crosscutting behavior as aspect 

UML state machines. Such an approach, relying on a 

standard and using the target notation (i.e., UML state 

machine in our context) as the basis to model the aspects 

themselves, is expected to make the practical adoption of 

aspect modeling easier in industrial contexts. In our 

previous work [11], we thoroughly compared AspectSM 

with similar existing AOM profiles and we observed that 

AspectSM is the only approach that is exclusively based on 

standard UML notation, thus eliminating the need for 

learning additional non-standard notations or languages, and 

therefore making it easier to reuse open source and 

commercial modeling tools. This is highly important in 

most industrial contexts and strongly affects the adoption of 

modeling technologies. In addition, it is easier to train 

engineers in standard languages such as UML as many of 

them have been exposed to it during their university 

education and previous work experiences. 

Though AspectSM was originally defined to support 

scalable, model-based, robustness testing, including test 

case and oracle generation, a fundamental question is 

whether it is easier to model crosscutting concerns such as 

robustness with AspectSM than simply relying on UML 

state machines to do it all. In AspectSM, the core 

functionality of a system is modeled as one or more 

standard UML state machines (called base state machines). 

Crosscutting behavior of the system (e.g., robustness 

behavior) is modeled as aspect state machines using the 

AspectSM profile. State machines developed using this 

profile will be referred to as aspect state machines. A 

weaver [11] then automatically weaves aspect state 

machines into base state machines to obtain a complete 

model, that can for example be used for testing purposes. 

The AspectSM profile specifies stereotypes for all features 

of AOM, in which the concepts of Aspect, Joinpoint, 

Pointcut, Advice, and Introduction [2] are the most 

important ones, which are specified as stereotypes of the 

AspectSM profile. Interested readers may consult [4], where 

further details of the profile are provided.  

Below, we present an example of the application of 

AspectSM. An aspect state machine modeling crosscutting 

behavior EmergencyStop is shown in Figure 1. This UML 

state machine is stereotyped as <<Aspect>>, which means 

that it is an aspect state machine. The <<Aspect>> 

stereotype has two attributes: name and baseStateMachine, 

 
Figure 1. An aspect state machine for crosscutting behavior EmergencyStop 
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whose values are shown in the note labeled as ‗1‘ in Figure 

1. The name attribute contains the name of the aspect 

(EmergencyStop in this example), whereas the 

baseStateMachine attribute holds the name of the base state 

machine, on which this aspect will be woven, which is 

ElevatorControl in this example.  

The aspect state machine consists of two states: 

SelectedStates and ElevatorStopped. SelectedStates is 

stereotyped as <<Pointcut>>, which means that this state 

selects a subset of states from the base state machine. There 

are three attributes of <<Pointcut>>, whose values are 

shown in the note labeled as ‗2‘ in Figure 1. The name 

attribute indicates the name of the pointcut and type denotes 

the type of the pointcut, which is Subset in this case. In 

AspectSM, different types of pointcuts can defined, a 

complete list of other types of pointcuts is presented in [11]. 

The third attribute selectionConstraint contains a query in 

OCL on the UML state machine metamodel, which selects 

all states of the base state machine except ElevatorAtFloor 

and Idle. All the model elements stereotyped as 

<<Introduction>> (one state, two transitions) will be newly 

introduced elements in the base state machine during 

weaving. This aspect introduces the ElevatorStopped state 

in the base state machine, and selects all states of the base 

state machines except ElevatorAtFloor and Idle (via 

SelectedStates) and introduces transitions from them to 

ElevatorStopped with trigger EmergencyStopButtonPressed. 

In addition this aspect introduces transitions from 

ElevatorStopped to all the states selected by SelectedStates 

with trigger EmergencyStopButtonReleased.       

III. EXPERIMENT PLANNING 

This section discusses the planning of the experiment 

according to the definition and reporting template defined 

by Wohlin et al. [12]. Section III.A provides goals, research 

questions, and hypotheses; Section III.B provides details on 

the participants of the experiment, whereas Section III.C 

provides details on the material we used for the experiment. 

Section III.D provides metrics that we used to assess the 

quality of aspect state machines with standard UML state 

machines. Section III.E discusses the design of the 

experiment, whereas Section III.F and Section III.G 

describe the procedure that we followed to conduct the 

experiment. Last, in Section III.H, we discuss how we select 

statistical tests for analyzing experiment data. 

A. Goal, Research Questions and Hypotheses 

The objective of our experiment is to assess the 

AspectSM profile with respect to its applicability to model 

crosscutting behaviors as aspect state machines. 

Applicability is assessed from two aspects: the quality of 

derived state machines and the effort required to model 

crosscutting behaviors. We measure the quality of state 

machines from three complementary points of view: 

completeness, correctness, and redundancy of an aspect 

state machine and a standard UML state machine with 

respect to their corresponding reference state machines.  

Based on the objective of our experiment, we defined 

the following four research questions.  

RQ 1: Does the use of AspectSM improve the completeness 

of state machines with respect to reference state machines, 

when compared to standard UML state machines? 

We wish to compare the completeness of aspect state 

machines modeling crosscutting behaviors with standard 

UML state machines modeling the same crosscutting 

behaviors. The quality of both the aspect and standard state 

machines is measured against reference state machines as 

aspect and standard state machines are not directly 

comparable. None of the expected differences between them 

can a priori be certain to be in a specific direction. This 

therefore leads to the definition of a two-tailed null 

hypothesis: 

H
1
0: Completeness of aspect state machines is the same as 

that of standard UML state machines. 

RQ 2: Does the use of AspectSM improve the correctness of 

state machines with respect to reference state machines, 

when compared to standard UML state machines? 

This research question aims to compare the correctness of 

aspect state machines and standard UML state machines 

with their corresponding reference state machines. This 

leads to the following two-tailed null hypothesis.  

H
2
0: Correctness of aspect state machines is the same as that 

of standard UML state machines. 

RQ 3: Does the use of AspectSM reduce the redundancy in 

state machines with respect to reference state machines, 

when compared to standard UML state machines? 

This research question leads to the following two-tailed null 

hypothesis.  

H
3
0: Redundancy in aspect state machines is the same as 

that of standard UML state machines. 

RQ 4: Does the use of AspectSM reduce the modeling 

effort? 

The previous three research questions looked at measuring 

the quality of state machines, whereas this research question 

is concerned with the effort required to model crosscutting 

behaviors. This leads to the following two-tailed null 

hypothesis. 

H
4
0: The effort to model aspect state machines is the same 

as that of standard UML state machines. 

Table I. Complexity of the reference state machines modeling the crosscutting behaviors of the case study 

Crosscutting 

behavior 

Reference base state machine Reference standard state machine Reference aspect state machine 

# of states # of transitions # of states # of transitions # of states # of transitions # of Pointcuts 

Cancel Transaction 

6 13 

6 15 7 15 2 

Network Failure 7 22 8 16 2 

Power Failure 7 21 8 15 2 
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B. Participants 

The controlled experiment was conducted at the Pir Mehr 

Ali Shah Arid Agriculture University, Rawalpindi, Pakistan. 

The subjects in the experiment were 25 graduate students 

taking a graduate course in ‗Advanced Software 

Architecture‘ at the University Institute of Information 

Technology (UIIT). The course is offered in the Master of 

Science program. The students in this degree already hold a 

Bachelor in Computer Science or Information Technology 

and have already been exposed to the UML notation and 

extensions in the form of UML profiles. On average, each 

student went through five development and two modeling 

courses. Eighteen students (out of twenty-five) have used 

the UML notation for their final year projects before the 

experiment was conducted. Twenty students gained 

development experience in IT companies or as teaching 

staff in computer science.  

Our motivation in selecting this group of subjects was to 

find participants with adequate background (e.g., UML 

modeling) that could be trained to use our AOM approach 

over a short period of time. Our goal was to assess 

AspectSM with fully trained, competent participants in 

order to assess the maximum potential benefits of the 

approach. Most industrial practitioners have very little 

knowledge of AOP and even less of AOM. Ensuring they 

have the required background is also difficult. This is why 

we relied on a group of mature and trained graduate 

students. The subjects were free to choose to participate or 

not into the experiments and were told their choice would 

have no effect on their course grades. All students 

underwent specific, additional training for the experiments 

(Section III.0). Five students decided not to participate in 

the experiment. 

C. Material 

1) Case Study System: The system used for the 

experiment is the popular automated teller machine (ATM) 

system reported in [10]. Detailed specifications and the 

corresponding state machine are presented in Appendix A, 

but the complexity of the reference state machines for both 

aspect and standard UML state machines in terms of 

numbers of states and transitions is shown in Table I. The 

state machine modeling nominal behavior will be referred to 

as base state machine in this paper as it is modeling the core 

behavior of the ATM system. This state machine was 

provided to the subjects and they were asked to model the 

following crosscutting behaviors.  

Cancel Transaction: A customer may cancel a transaction at 

any time except when the ATM is closed down or not idle. 

Whenever a cancel request is made, the transaction is 

terminated and then the card is ejected.  

Network Failure: The ATM‘s behavior in the presence of 

network failure is also important. Whenever the network 

connection fails during the ATM operation, except when it 

is closed down, the current transaction is saved in its local 

memory and it then tries to recover the network connection. 

If the network connection is established, the saved 

transaction is loaded and the ATM continues the transaction. 

Otherwise, it will simply remain closed down.  

Power Failure: In the case of power failure, then the ATM 

starts its Uninterruptible Power Supply (UPS) and continues 

the operation.  

2) Answer Sheet: Two answer sheets were developed 

to collect answers for two groups: one for the group using 

standard UML state machines (Standard) to directly model 

crosscutting behaviors on the base state machine and the 

second for the group modeling crosscutting behaviors using 

aspect state machines (Aspect). Each answer sheet was 

designed such that subjects can provide their solution one 

after another and provide the time required to model each 

crosscutting behavior.  

D. Dependent Variables  

In this section, we present the dependent variables and 

their justification. 

1) State machine completeness (Completeness): This 

variable measures the completeness of a subject‘s state 

machine by comparing it with a reference state machine. It 

is determined by the completeness of states and transitions-

two main modeling elements of a state machine. Note that, 

since we have two sets of results with respect to two 

different treatments: standard state machines and aspect 

state machines, two sets of measures were designed to 

evaluate the completeness of two different types of state 

machines derived by the subjects given different treatments. 

The formula for CompletenessT (completeness of 

transitions) is shown in Table II, which calculates the 

transition completeness of a subject‘s state machine by 

looking at the matched transitions of a subject‘s solution 

with the reference solution (this holds for each group). The 

measures needed for deriving the quality measures in Table 

II are presented in Table III. Matching of transitions is 

determined by looking at whether the source and target 

states of a transition match to the source and target states of 

any transition in the reference model. Three model elements 

constituting a transition (i.e., guard, trigger, and effect) are 

further assessed to evaluate the completeness of a matched 

transition. Matching of the trigger, guard, and effect of a 

transition is determined whether their names are the same or 

similar to the corresponding elements of the matched 

transition in the reference state machine. The completeness 

of a matched transition is calculated based on the proportion 

of the matched trigger, guard, and effect of the transition. 

For instance, if only the guard and trigger of a transition 

matches with a transition in the reference solution, then this 

means that the transition matches 66% (2/3) of the reference 

transition. For standard state machines, we compare only the 

guard, trigger, and effect of a transition; while for aspect 

state machines, we also check whether required stereotypes 

are applied to transitions. This is so because AspectSM 
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requires applying stereotypes on states and transitions in 

aspect state machines (Section II). For each matched 

transition k in a subject‘s solution, we check if its guard, 

trigger, or effect is missing with respect to the matched 

transition in the reference solution (Table III). For each 

missing guard, trigger, and effect, we assign value 1 to the 

corresponding variable (MTguard_k, MTtrigger_k or MTeffect_k), 

otherwise 0.  

Similarly, we calculate CompletenessS (completeness 

of states) as shown in Table II. The overall completeness 

(Completeness) of the state machine is therefore calculated 

based on the completeness of states and transitions. A 

simpler way to do so is to simply take the average of 

CompletenessT and CompletenessS. However, since the 

numbers of states and transitions in a solution might be 

different, taking the average might not be appropriate. 

Table II. Quality measures for a state machine diagram 

Category Measure Formula  Formula 

Completeness CompletenessS 1-MS 

 
CompletenessT 1-MT 

Correctness CorrectnessS CompletenessS*(1-IS) 

 
CorrectnessT CompletenessT*(1-IT) 

Redundancy RedundancyS Nextras_s/Ns_s 

 RedundancyT Nextrat_s/Nt_s 

Table III. Measures to derive quality measures in Table II 

# Measure Specification 

1 MSname_k Missing name of the kth state in a subject‘s state machine diagram 

2 MSstereotype_k Missing stereotype of the kth state in a subject ‘s aspect state machine diagram 

3 MTguard_k Missing guard of the kth transition in a subject ‘s state machine diagram 

4 MTtrigger_k Missing trigger of the kth transition in a subject ‘s state machine diagram 

5 MTeffect_k Missing effect of the kth transition in a subject‘s state machine diagram 

6 MTstereotype_k Missing stereotype of the kth transition in a subject‘s aspect state machine diagram 

7 MS 

For standard state machine:  

For aspect state machine:  

8 MT 

For standard state machine:  

For aspect state machine:  

9 ISname_k Incorrect name of the kth state in a subject‘s state machine diagram 

10 ISstereotype_k Incorrect stereotype of the kth state in a subject‘s aspect state machine diagram 

11 ITguard_k Incorrect guard of the kth transition in a subject‘s state machine diagram 

12 ITtrigger_k Incorrect trigger of the kth transition in a subject‘s state machine diagram 

13 ITeffect_k Incorrect effect of the kth transition in a subject‘s state machine diagram 

14 ITstereotype_k Incorrect stereotype of the kth transition in a subject‘s aspect state machine diagram 

15 IS 

For standard UML state machine:  

For aspect state machine:   

16 IT 

For standard state machine:   

For aspect state machine:   

17 Ns_s # of states in a subject‘s state machine diagram 

18 Nt_s # of transitions in a subject‘s state machine diagram 

19 Nextras_s # of extra states in a subject‘s state machine diagram 

20 Nextrat_s # of extra transitions in a subject‘s state machine diagram 

21 Ns_r # of states in the reference state machine diagram 

22 Nt_r # of transitions in the reference state machine diagram 
MSname_k, MSstereotype_k , Mguard_k, Mtrigger_k, Meffect_k, MTstereotype_k ,Iname_k, ISstereotype_k, Iguard_k, Itrigger_k, Ieffect_k , and ITstereotype_k are Boolean variables that take value 0 and 1 only. ‘n’ refers to the number of 

matched states or transitions. 
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Considering each modeling element (state or transition) 

having the same weight, we calculate the overall 

completeness based on the proportions of states and 

transitions in a state machines. To achieve this, first we 

obtain the overall completeness of transitions by 

multiplying CompletenessT with the total number of the 

transitions in the reference model (Nt_r). Similarly, we 

calculate overall completeness of states by multiplying 

CompletenessS with the total number of states Ns_r. Finally, 

we take sum of both and divide it with the sum of the 

numbers of states and transitions in the reference state 

machine. Notice that our metrics give equal weights to each 

type of model elements of state machines (e.g., states and 

transitions). The metrics for each individual type of model 

elements are combined together to indicate the overall 

completeness and correctness of state machines. At this 

stage of research, it is difficult to precisely devise a different 

weight pattern.  

2) State machine correctness (Correctness): 

Correctness of a state machine is determined based on 

correctness of states and transitions. CorrectnessT (i.e., 

correctness of matched transitions) is calculated by the 

formula shown in Table II. In this formula, we compare a 

subject‘s solution with the reference solution and for each 

matched transition, we determine if its contained modeling 

elements are correct. Modeling elements contained by a 

transition include guard, trigger, and effect. For aspect state 

machines, additionally, we check whether stereotypes and 

their attributes applied on each matched transition is correct. 

For instance, if only the stereotype is incorrect, then the 

correctness of the transition will be 75% (3/4). Finally, 

because correctness partly depends on completeness, the 

overall correctness of transitions (CorrectnessT) is obtained 

by multiplying CorrectnessT with CompletenessT as we 

assume missing transitions to be incorrect. For instance, if 

completeness is 60% for a subject‘s solution, then we 

calculate correctness only for the matched 60% transitions 

and the remaining unmatched transitions (40%) are also 

considered incorrect. Total correctness (Correctness) is 

calculated in the similar way as we do for Completeness. 

3) Redundancy in state machines (Redundancy): 

Redundant states and transitions are the ones in a subject‘s 

solution that do not match with any model elements in the 

reference solution. Redundancy is calculated based on 

redundancy in states (RedundancyS) and transitions 

(RedundancyT). Redundant states are measured with 

RedundancyS calculated as Nextra_s /Ns_s , where Nextras_s is 

the number of extra states identified by a subject and Ns_s is 

the number of states identified by a subject. Similarly, we 

calculate RedundancyT as shown in Table II and Table III. 

Finally, the overall redundancy (Redundancy) in state 

machines is calculated in a similar fashion as Completeness 

and Correctness. 

Since our goal is to devise a set of objective metrics to 

measure the quality of state machines constructed by 

subjects, we compare them with reference state machines, 

so that subjective evaluation can be reduced to a minimum. 

We therefore make possible the comparison of models 

derived by different subjects in such a way that identical 

results would be obtained by different persons measuring a 

model. In addition, these metrics are not specific to this 

experiment and the profile under evaluation (AspectSM) 

and hence they are reusable and can be applied to other 

experiments that involve measuring the quality of UML 

state machines.  

4) Required modeling effort (Effort): It is the time 

(minutes) taken by a subject to model each crosscutting 

behavior. It was simply measured as Completion time – 

Starting time.  

E. Design 

The design of our experiment is summarized in Table 

IV. We used a between-subjects design [12] due to the 

limited number of tasks we could run within time 

constraints. During the training sessions (Section III.0), each 

subject was equally trained to understand the two different 

types of state machines: aspect state machines (Aspect) and 

standard state machines (Standard). After the training 

sessions but before the actual experiment tasks, the subjects 

were also given an assignment to practice designing state 

machines. This assignment was marked by the first author 

of this paper and grades were used to form blocks (i.e., 

groups of students of equivalent skills). The experiment 

groups were then formed through randomization and 

blocking to obtain two comparable groups of 10 students 

each (Group 1 and Group 2) with similar proportions of 

students from each block. Each group was provided with the 

base state machine of ATM (Section III.C) and Group 1 was 

asked to model crosscutting behaviors with aspect state 

machines, whereas Group 2 was asked to model 

crosscutting behaviors directly on the base state machine. 

We decided to provide the base state machine to the subjects 

instead of asking them to model the behavior of the ATM 

system from scratch based on the textual requirement 

specifications due to the following two reasons: 1) 

AspectSM was specifically designed to model crosscutting 

behaviors and we were only interested in studying the 

quality of state machines when modeling crosscutting 

behaviors, 2) Due to time constraints, modeling a complete 

system from scratch wasn‘t practically feasible. Note that in 

the experiment, we ordered the crosscutting behaviors based 

on their complexity (Table IV) from simple to complex, to 

enable the subjects to tackle increasingly more complex 

crosscutting behaviors.  
Table IV. Design for the experiment 

Crosscutting behavior Group 1 Group 2 

Cancel Transaction Aspect Standard 

Network Failure Aspect Standard 

Power Failure Aspect Standard 
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F. Training 

Subjects were trained by the first author of this paper. 

Two three-hour sessions were given on the following topics: 

1) Recap of UML state machines since subjects were 

already familiar with this topic preceding the training, 2) 

Introduction to the Object Constraint Language (OCL), 3) 

Introduction to aspect-oriented software development 

(AOSD), and 4) Aspect-oriented modeling (AOM) using the 

AspectSM profile. Each topic was accompanied with 

several examples and interactive class assignments. As 

previously discussed, the subjects were given a home 

assignment after the training sessions to practice the three 

state machine modeling approaches and groups were later 

formed based on the grades of this assignment. 

G. Data collection  

The solutions were collected from the participants and 

were marked by the first author of this paper. The data was 

encoded into a JMP [13] data file to perform the statistical 

analysis. For the experiment, data integrity was checked 

using the following rule: for the same subjects and for each 

step, the starting time should precede the completion time, 

and the completion time of the current task must precede the 

starting time of the next task. In addition, to avoid mistakes 

in marking the solutions, the first two authors double-

checked the solutions marked by the other. Moreover, for a 

sample of randomly selected solutions, the first two authors 

also checked the consistency of the entries in the JMP file 

with the marks on the answer sheets and no inconsistencies 

were detected. 

H. Selection of Statistical Tests 

Using statistical testing, we check whether the differences 

between modeling approaches are statistically significant to 

determine if we can reject the null hypotheses stated in 

Section III.A. To check for significant differences between 

the two approaches under investigation, we performed the 

non-parametric Wilcoxon rank-sum test [14]. For all 

statistical tests reported in this section, we used a 

significance level of =0.05. We employed this test because 

our data set meets all the criteria required by this test, which 

are: 1) observations in the Aspect and Standard state 

machine groups are independent of each other, 2) sample 

size of both groups are equal, and 3) distributions of 

dependent variables strongly depart from normality, based 

on the results of the Shapiro–Wilk W test [14] we 

performed.  

IV. RESULTS AND DISCUSSION 

In this section, we present results and discussions for 

each individual research question (Sections IV.A-IV.D), 

followed by an overall discussion in Section IV.E. Note that 

in the next sections, we only provide mean values for the 

dependent variables. However, detailed descriptive statistics 

are provided in Appendix B.  

A. Completeness of Aspect State Machines (RQ 1) 

Table V shows average percentages of completeness for 

the three crosscutting behaviors: Cancel Transaction, 

Network Failure, and Power Failure, respectively, in terms 

of completeness of transitions (CmT), completeness of 

states (CmS), and overall completeness (Cm).  

We observed from Table V that overall, for Cancel 

Transaction, AspectSM achieved around 9% higher 

completeness (from 69% to 78%) than the standard state 

machines modeling approach. The results of the Wilcoxon 

rank-sum test for Cancel Transaction are also presented in 

Table V, where none of the results are significant as all p-

values for completeness measures for Cancel Transaction 

are above 0.05. To further interpret the non-significant 

results, we conducted power analysis [14]. The result of Cm 

yielded an estimated effect size of 0.15 (20% of average) to 

achieve 80% power (see Table X in Appendix C). The 

observed effect size is 0.05, which is lower than this 

estimated effect size (0.15), thus explaining the lack of 

significance. This suggests that we need to collect more 

Table V. Results of the Wilcoxon test for all quality measures* 

CB Measure Mean 

(Aspect) 

Mean 

(Standard) 

Mean Diff. 

(Aspect-Standard) 

p-

value 
C

a
n

ce
l 

T
r
a

n
sa

c
ti

o
n

 

CmT 0.81 0.69 0.12 0.06 

CmS 0.78 - - - 

Cm 0.78 0.69 0.09 0.20 

CrT 0.81 0.69 0.12 0.06 

CrS 0.78 - - - 

Cr 0.78 0.69 0.09 0.20 

ReT 0 0.33 -0.33 0.008 

ReS 0.06 0.38 -0.32 0.17 

Re 0.02 0.37 -0.35 0.02 

Effort 22 8 14 0.0009 

N
e
tw

o
r
k

 F
a

il
u

r
e
 

CmT 0.62 0.47 0.15 0.20 

CmS 0.78 0.88 -0.10 0.11 

Cm 0.69 0.51 0.18 0.16 

CrT 0.62 0.47 0.15 0.20 

CrS 0.75 0.88 -0.13 0.053 

Cr 0.68 0.51 0.17 0.156 

ReT 0.25 0.15 0.10 0.57 

ReS 0.28 0.19 0.09 0.35 

Re 0.27 0.17 0.1 0.48 

Effort 15 9 6 0.364 

P
o
w

e
r
 F

a
il

u
r
e
 

CmT 0.88 0.72 0.16 0.65 

CmS 0.86 0.88 -0.02 0.15 

Cm 0.87 0.74 0.13 0.96 

CrT 0.88 0.72 0.16 0.96 

CrS 0.83 0.88 -0.05 0.65 

Cr 0.84 0.74 0.10 0.08 

ReT 0.03 0.27 -0.24 0.02 

ReS 0.09 0.38 -0.29 0.06 

Re 0.06 0.30 -0.24 0.01 

Effort 16 7 9 0.01 

All CmT 0.77 0.63 0.14 0.02 

CmS 0.81 0.88 -0.07 0.01 

Cm 0.78 0.64 0.14 0.03 

CrT 0.77 0.63 0.14 0.02 

CrS 0.78 0.88 -0.10 0.004 

Cr 0.77 0.64 0.13 0.04 

ReT 0.08 0.25 -0.17 0.008 

ReS 0.14 0.31 -0.17 0.166 

Re 0.23 0.39 -0.16 0.02 

Effort 18 8 10 0.0001 

* CB: Crosscutting Behavior, Cm: Completeness, Cr: Correctness, Re: Redundancy, CmT: 

CompletenessT, CmS: CompletenessS, CrT: CorrectnessT, CrS: CorrectnessS, ReT: 

RedundancyT, and ReS: RedundancyS.  



Simula Research Laboratory, Technical Report 2011-06          October 2011  
 

8 

observations, if we want to draw conclusions with 

confidence for effect sizes below 20% of the average. 

For Network Failure, overall, aspect state machines are 

69% complete, that is 18% more complete than standard 

state machines. The results of the Wilcoxon rank-sum test 

for Network Failure are shown in Table V, where once 

again we didn‘t observe any significant differences as p-

values for completeness measures are above 0.05. For 

Power Failure, overall, aspect state machines are 87% 

complete, that is around 13% more complete than standard 

state machines. As for the first two crosscutting behaviors, 

there were no significant differences observed due to small 

sample sizes as shown by the results of power analysis 

which are provided in Appendix C. 

When we combined observations from all crosscutting 

behaviors for completeness measures, aspect state machines 

obtained an average completeness of 78 %, whereas that of 

standard state machines is 64% (Table V). Due to larger 

sample sizes, we now observed significant differences 

between both groups as shown by bold p-values in Table V. 

For all three completeness measures (CmT, CmS, and Cm), 

the p-values are this time below 0.05. Overall, for Cm, the 

p-value is 0.03 and the mean difference is positive hence 

leading to the conclusion that aspect state machines are 

significantly more complete when compared to standard 

UML state machines for modeling crosscutting behaviors. 

The most plausible cause for such a difference is that the 

aspect state machines are less complex in terms of number 

of modeling elements than the standard state machines when 

modeling crosscutting behaviors (Table I). Though the 

complexity brought by pointcuts could be a hindrance to the 

application of aspect state machines, results suggest it does 

not seem to be the case.  

B. Correctness of Aspect State Machines (RQ 2) 

For Cancel Transaction, we observe from Table V that 

the overall correctness (Cr) of aspect state machines is 9% 

higher than standard UML state machines. However, the 

results of the Wilcoxon rank-sum test reported in Table V 

show that the differences are not significant. For Network 

Failure, aspect state machines have 17% more correctness 

than standard state machines, whereas for Power Failure, 

aspect state machines have 10% more correctness than 

standard state machines. However, the results of the 

Wilcoxon rank-sum test in Table V show that the 

differences between aspect and standard UML state 

machines for Network Failure and Power Failure are not 

significant as p-values are above 0.05 for all correctness 

measures for these two crosscutting behaviors. As for 

Completeness, the non-significant results of Correctness 

for individual crosscutting behaviors are probably due to 

small sample sizes yielding low statistical power as shown 

by the results of power analysis provided in Appendix C. 

When the observations are combined for all three 

crosscutting behaviors for correctness, we observe 

significant differences with p-values for correctness 

measures that are all below 0.05 (Table V). The p-value for 

overall correctness is 0.04 and the positive mean difference 

suggests that the aspect state machines yield higher 

correctness than standard UML state machines. This result 

is consistent with the result of completeness and is likely 

due to the lower complexity of aspect state machines when 

compared to standard UML state machines for modeling 

crosscutting behaviors (Table I). 

C. Redundancy in Aspect State Machines (RQ 3) 

In terms of redundancy, one can observe from Table V 

that overall for Cancel Transaction, redundancy of the 

aspect state machines is 35% less than the standard state 

machines. For Network Failure, we observe 10% more 

redundancy in the aspect state machines. For Power Failure, 

the aspect state machines yield 24% less redundancy than 

standard state machines. For all three crosscutting behaviors 

together, aspect state machines result in 16% less 

redundancy. The results of the Wilcoxon rank-sum test 

(Table V) show significant differences between aspect and 

standard UML state machines for redundancy. For overall 

redundancy (Re), the p-value is 0.02 and the negative mean 

difference implies that aspect state machines have 

significantly lower redundancy when compared to standard 

UML state machines. 

D. Effort for Modeling Aspect State Machines (RQ 4) 

From Table V, we can observe that the subjects took 

more time for modeling all crosscutting behaviors using 

AspectSM. For example, the subjects took on average 14 

more minutes for Cancel Transaction, six more minutes for 

Network Failure and nine more minutes for Power Failure. 

The results of the Wilcoxon rank-sum test on the effort of 

modeling individual crosscutting behaviors (Table V) show 

that significant differences were observed for Cancel 

Transaction and Power Failure, where the subjects took 

significantly more time to model aspect state machines, as 

indicated by p-values below 0.05. However, there were no 

significant differences observed for Network Failure. When 

the observations were combined from all crosscutting 

behaviors, we observed that the subjects took significantly 

more time to model aspect state machines as compared to 

standard UML state machines for modeling crosscutting 

behaviors (p-value=0.0001). This could be due to a relative 

lack of experience in modeling aspect state machines using 

AspectSM when compared to standard UML state 

machines. 

E. Overall Discussion and Concluding Remarks 

Based on the experiment results discussed above, we 

conclude that overall, the completeness and correctness of 

the aspect state machines derived by the subjects are 

significantly better than the standard ones for modeling the 

same set of crosscutting behaviors. In addition, we also 

observed that the redundancy of the aspect state machines is 

significantly less than the standard state machines. This is 

most likely due to the fact that the aspect state machines are 
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less complex in terms of number of modeling elements than 

the standard state machines for modeling crosscutting 

behaviors, as visible in Table I.  

Regarding modeling effort, we observed that the 

subjects took significantly more time to design aspect state 

machines than the ones who designed standard state 

machines. This may be explained by the limited experience 

of the subjects regarding AspectSM. We also collected 

statistics about the most common mistakes subjects did 

while modeling aspect state machines and observed that 

most mistakes were either in applying stereotypes or their 

associated values for attributes. We found that 27% of 

transitions modeled by subjects have missing stereotypes, 

missing attributes of stereotypes, incorrect stereotypes, or 

incorrect attribute values. Such percentage was observed for 

states as well. This leads to the conclusion that subjects 

found it difficult to apply the stereotypes required by the 

AspectSM profile. This suggests that in the future, we 

probably need to put more attention on the application of 

stereotypes during training and thus perhaps expect a 

reduced modeling time and improved modeling quality 

when using AspectSM.  

In conclusion, even though AspectSM took significantly 

more time, it resulted into higher quality models: 

significantly better completeness and correctness, and less 

redundancy than the standard UML state machine modeling 

approach. More training with AspectSM is expected to 

further reduce modeling effort and improve the quality of 

aspect state machines. Based on the above analysis, we 

recommend using AspectSM for modeling crosscutting 

behavior to achieve higher quality models. 

V. THREATS TO VALIDITY 

Below, we discuss the threats to validity of our 

controlled experiment based on the concepts discussed in 

[12]. Conclusion validity threats are concerned with factors 

that can influence the conclusion that can be drawn from the 

results of the experiments. As with most controlled 

experiments in software engineering, our main conclusion 

validity threat is related to the sample size on which we base 

our analysis. To deal with this, our experiment design 

required modeling three crosscutting behaviors to maximize 

the number of observations within time constraints. The 

other concern is that the quality of state machines can be 

interpreted in various ways, depending on one‘s subjective 

opinion. However we made an effort to minimize subjective 

judgments and be objective as much as possible by 

proposing a set of objective metrics to measure quality of 

state machines by comparing them with their corresponding 

reference models. By doing so, subjective perceptions can 

be reduced to minimum and the comparison of models 

derived by different subjects becomes possible. 

Additionally, these metrics are general and are therefore 

reusable, can be applied to multiple experiments and help 

prevent bias in the evaluation results. 

Internal validity threats exist when the outcome of 

results are influenced by external factors and are not 

necessarily due to the application of the treatment being 

studied. Through our experiment design (between-subjects 

design), we have tried to minimize the chances of other 

factors being confounded with our primary independent 

variable: the use of aspect state machines. We avoided any 

biased assignment of subjects to groups by using blocking 

based on assignment marks. The main threat of construct 

validity is that we were not able to investigate all features of 

aspect-orientation (such as all types of basic advice) in this 

experiment due to the nature of our crosscutting behaviors.  

Two main threats to external validity are related to our 

experiment and are typical to controlled experiments in 

artificial settings: 1) Are the subjects representative of 

software professionals? 2) Is the experiment material 

representative of industrial practice, in terms of the size of 

the artifacts we used? Regarding the former, many 

practitioners have very little knowledge of AOP or AOM in 

general, and hence require significant training. This is why 

we chose a group of experienced graduate students with a 

suitable educational background (Section III.B). In addition, 

some studies in [15-17] reported on the performance of 

trained software engineering students for various tasks when 

compared with professional developers. These differences 

were not statistically significant when compared to junior 

and intermediate developers, thus suggesting that there is no 

evidence that students trained for the tasks at hand may not 

be used as subjects in place of professionals. In terms of the 

second threat small case studies and tasks often tends to 

minimize the differences among treatments. As we see in 

Table I, for example, for crosscutting behavior Network 

Failure, the standard UML state machine has seven states 

and 22 transitions. Such numbers are representative of the 

state machines of classes and small components. However, 

because crosscutting concerns are expected to have an even 

higher impact on large models, we expect the use of 

AspectSM to be even more beneficial in such cases.  

VI. RELATED WORK 

Most experimentation in Aspect-Oriented Software 

Development (AOSD) has been conducted to evaluate 

Aspect-oriented Programming (AOP) when compared to 

object-oriented programming in terms of development time, 

errors in development, and performing maintenance tasks. A 

controlled experiment [18] was performed in industry 

settings to measure effort and errors using AOP for applying 

different maintenance tasks related to tracing crosscutting 

concerns, i.e., the use of logging to record execution of a 

program. The results showed that aspect-orientation resulted 

in reducing both development effort and number of errors.  

Another experiment is reported in [19], which compares 

aspect-orientation (AspectJ) with a more traditional 

approach (Java) in terms of development time for 

crosscutting concerns. A similar experiment is reported in 

[20] focusing on development time to perform debugging 

and change activities on object-oriented programs using 
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AspectJ. Both of these experiments revealed mixed results, 

i.e., aspect-orientation has positive impact on development 

time only for certain tasks. For instance, AOP seems to be 

more beneficial when the crosscutting concern is more 

separable from the core behavior.  

An experiment is reported in [21], where two software 

development processes based on a same aspect modeling 

approach (i.e., the Theme approach) are compared to 

determine their impacts on maintenance tasks such as 

adding new functionality or improving existing 

functionality. The first process (aspectual process) involves 

generating AO code in AspectJ from Theme AO models, 

whereas the second process (hybrid process) involves 

generating object-oriented code in Java from Theme 

models. Maintenance tasks are measured based on metrics 

such as size, coupling, cohesion, and separation of concerns. 

The results showed that on average the aspectual process 

took lesser time than the hybrid process. 

An exploratory study is reported in [22] to assess if AOP 

has any impact on software maintenance tasks. Eleven 

software professionals were asked to perform different 

maintenance tasks using Java and AspectJ. The results of 

the experiment revealed that AOP performed slightly better 

than Object-oriented Programming (OOP), but there were 

no statistically significant results observed. Another 

exploratory study is reported in [23] to measure fault-

proneness with AOP. Three evolving AOP programs were 

used and data about different faults made during their 

development were collected. The experiment revealed two 

major findings: 1) Most of the faults were due to lack of 

compatibility between aspect and base code, 2) The 

presence of faults in AOP features such as Pointcuts, 

Advice, and inter-type declarations was as likely as for 

normal programming features. The results turned out to be 

statistically significant. Another exploratory study is 

reported in [23], which aims to assess if aspects can help 

reducing effort on resolving conflicts that can occur during 

model compositions. To do so, they compared AOM with 

non-AOM in terms of effort to resolve conflicts and number 

of conflicts resolved on six releases of a software product 

line. The results of the study showed that aspects improved 

modularization and hence helped better localize conflicts, 

which in turn resulted in reducing the effort involved in 

resolving conflicts.  

Our experiment is different from these experiments from 

several perspectives. First, our experiment focused on the 

design of the software development life cycle and AOM. 

Most of the experiments in the literature have focused on 

comparing AOP with OOP. We evaluated the 

―applicability‖ (in terms of completeness, correctness, and 

redundancy) of crosscutting behaviors modeled as aspect 

state machines and compared to standard UML state 

machines. We further compared the effort of modeling 

crosscutting behaviors using AspectSM and standard UML 

state machines. In addition, in our recent controlled 

experiments [24], we evaluated the readability of 

AspectSM, which is indirectly measured through defect 

identification and fixing rates in state machines, and the 

scores obtained when answering a comprehension 

questionnaire about the system behavior. Results showed 

that defect identification and fixing rates are significantly 

better with AspectSM than with both flat and hierarchical 

state machines. However, in terms of comprehension scores 

and inspection effort, no significant difference was observed 

between any of the approaches. 

VII. CONCLUSION AND FUTURE WORK 

Aspect-oriented Modeling (AOM) has been the subject 

of intense research in the past decade as it is expected to 

provide several benefits when modeling complex software 

systems, including enhanced separation of concerns, 

improved readability, easier model evolution, increased 

reusability, and reduced modeling effort. However, there is 

limited empirical evidence regarding such benefits in the 

AOM research literature. 

In this paper, we reported the first controlled experiment 

that was conducted to evaluate the ―applicability‖ of an 

AOM state machine modeling approach. We looked at 

applicability from two aspects: the quality of derived state 

machines in terms of completeness, correctness, and 

redundancy, and modeling effort. The specific AOM 

approach under evaluation is a UML profile (AspectSM) 

which was specifically designed to model crosscutting 

behavior (e.g., robustness behavior) using standard UML 2 

state machines with a light weight extension for aspect-

oriented features. The AspectSM profile was previously 

applied to an industrial case study for automated state-based 

robustness testing in Cisco Systems Inc, Norway and is 

described in [4]. The applicability of state machines 

modeling crosscutting behavior using AspectSM (aspect 

state machines) is compared with that of standard UML 2 

state machines.  

Results showed that the completeness and correctness of 

aspect state machines is significantly higher than for 

standard state machines modeling on the same set of 

crosscutting behaviors (from 64% to 78% and 64% to 77%, 

respectively). Furthermore, the redundancy in aspect state 

machines is significantly less than that for standard UML 

state machines (from 39% to 23%). The most plausible 

explanation is that aspect state machines are less complex 

than standard UML state machines in terms of number of 

modeling elements. We further observed that aspect state 

machines took significantly more effort to build than 

standard UML state machines for modeling crosscutting 

behaviors. However, given the familiarity of subjects with 

standard state machines and the fact that AspectSM is a new 

technology for them, we expect that with more AspectSM 

training and experience this difference might fade away. 

Based on the results of the experiment, we recommend 

using aspect state machines for modeling crosscutting 

concerns, but only on the condition that modelers receive 

sufficient training. In the future, we are planning to replicate 
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the experiment to obtain larger sample sizes and increase the 

analysis statistical power.  
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APPENDIX A: SPECIFICATION AND BASE STATE MACHINE 

FOR THE ATM SYSTEM 

The complete specification of ATM as adopted from 

[11] is shown below followed by its state machine in Figure 

2.  

 

“A bank has several automated teller machines (ATMs), 

which are geographically distributed and connected via a 

wide area network to a central server. Each ATM machine 

has a card reader, a cash dispenser, a keyboard/display, 

and a receipt printer. By using the ATM machine, a 

customer can withdraw cash from either a checking or a 

saving account, query the balance of an account, or transfer 

funds from one account to another. A transaction is initiated 

when a customer inserts an ATM card into the card reader. 

Encoded on the magnetic strip on the back of the card is 

recognized, the system validates the ATM card to determine 

that the expiration date has not passed, that the user-

entered PIN matches the PIN maintained by the system, and 

that the card is not lost or stolen. The customer is allowed 

three attempts to enter the correct PIN; the card is 

confiscated if the third attempt fails.  

If the PIN is validated satisfactorily, the customer is 

prompted for a withdrawal, query, or transfer transaction. 

Before a withdrawal transaction can be approved, the 

system determines that sufficient funds exist in the requested 

account, that the maximum daily limit will not be exceeded, 

and that there are sufficient funds at the local cash 

dispenser. If the transaction is approved, the requested 

amount of cash is dispensed; a receipt is printed containing 

information about the transaction, and the card is ejected. 

Before a transfer transaction can be approved, the system 

determines that the customer has at least two accounts and 

that there are sufficient funds in the account to be debited. 

For approved query and transfer requests, a receipt is 

printed and the card is ejected. Customer records, account 

records, and debit card records are all maintained at the 

server. 

An ATM operator may start up and close down the ATM 

to replenish the ATM cash dispenser and for routine 

maintenance. It is assumed that functionality to open and 

close accounts and to create, update, and delete customer 

and debit card records is provided by an existing system 

and is not part of this problem. “ 

The base state machine for the ATM system is shown in 

Figure 2. 

 

  

 

Figure 2. Base state machine for ECS 
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APPENDIX B: DESCRIPTIVE STATISTICS FOR DEPENDENT 

VARIABLES 

This appendix provides detailed descriptive statistics, 

i.e., minimum (min), median, maximum (max), mean, and 

standard deviation (std) for each dependent variable. Table 

VI, Table VII, and Table VIII provide detailed descriptive 

statistics for Cancel Transaction, Network Failure, and 

Power Failure respectively. Table IX provides descriptive 

statistics for dependent variables, when observations from 

all crosscutting behaviors are combined together. 

Table VI. Descriptive statistics for various measures for Cancel Transaction 

Descriptive Statistics  Min Median Max Mean Std 

Measure Approach 

CompletenessT Aspect 0 1 1 0.8 0.33 

Standard 0.33 0.67 1 0.69 0.19 

CompletenessS Aspect 0.5 0.75 1 0.77 0.2 

Standard - - - - - 

Completeness Aspect 0.33 0.83 1 0.79 0.22 

Standard 0.33 0.67 1 0.69 0.19 

CorrectnessT Aspect 0 1 1 0.80 0.33 

Standard 0.33 0.67 1 0.69 0.19 

CorrectnessS Aspect 0.5 0.75 1 0.77 0.20 

Standard - - - - - 

Correctness Aspect 0.33 0.83 1 0.79 0.22 

Standard 0.33 0.67 1 0.69 0.19 

RedundancyT Aspect 0 0 0 0 0 

Standard 0 0.5 0.67 0.33 0.28 

RedundancyS Aspect 0 0 0.5 0.05 0.17 

Standard 0 0 1 0.38 0.52 

Redundancy Aspect 0 0 0.17 0.02 0.06 

Standard 0 0.5 0.75 0.37 0.32 

Effort (Minutes) Aspect 15 20 50 23 11 

Standard 5 9 15 8.5 3.5 

Table VII. Descriptive statistics for various measures for Network Failure  

Descriptive Statistics  Min Median Max Mean Std 

Measure Approach 

CompletenessT Aspect 0 0.75 1 0.62 0.33 

Standard 0.11 0.47 0.75 0.47 0.20 

CompletenessS Aspect 0.5 0.75 1 0.78 0.2 

Standard 0 1 1 0.88 0.35 

Completeness Aspect 0.2 0.8 1 0.69 0.26 

Standard 0.2 0.5 0.78 0.51 0.18 

CorrectnessT Aspect 0 0.75 1 0.62 0.33 

Standard 0.11 0.47 0.75 0.47 0.20 

CorrectnessS Aspect 0.5 0.75 1 0.75 0.19 

Standard 0 1 1 0.88 0.35 

Correctness Aspect 0.2 0.8 0.9 0.67 0.25 

Standard 0.2 0.5 0.78 0.51 0.18 

RedundancyT Aspect 0 0 1 0.25 0.38 

Standard 0 0 0.75 0.15 0.29 

RedundancyS Aspect 0 0.33 0.75 0.28 0.27 

Standard 0 0 1 0.19 0.37 

Redundancy Aspect 0.2 0.8 0.9 0.67 0.25 

Standard 0.2 0.5 0.78 0.51 0.18 

Effort (Minutes) Aspect 5 16.5 30 9.8 15 

Standard 5 9 15 9.1 3.87 

 

 

 

 
Table VIII. Descriptive statistics for various measures for Power Failure 

Descriptive Statistics  Min Median Max Mean Std 

Measure Approach 

CompletenessT Aspect 0.38 0.88 1 0.88 0.20 

Standard 0 0.88 1 0.72 0.36 

CompletenessS Aspect 0.75 0.75 1 0.86 0.13 

Standard 0 1 1 0.88 0.35 

Completeness Aspect 0.56 0.88 1 0.87 0.13 

Standard 0.11 0.831 1 0.74 0.32 

CorrectnessT Aspect 0.38 0.88 1 0.88 0.2 

Standard 0 0.88 1 0.72 0.36 

CorrectnessS Aspect 0.56 0.75 1 0.81 0.15 

Standard 0 1 1 0.88 0.35 

Correctness Aspect 0.56 0.88 1 0.84 0.13 

Standard 0.11 0.83 1 0.74 0.32 

RedundancyT Aspect 0 0 0.33 0.04 0.11 

Standard 0 0.2 1 0.27 0.32 

RedundancyS Aspect 0 0 0.5 0.09 0.19 

Standard 0 0.5 1 0.37 0.35 

Redundancy Aspect 0 0 0.4 0.06 0.14 

Standard 0.1 0.24 0.9 0.30 0.26 

Effort (Minutes) Aspect 5 10 35 16 10 

Standard 5 5 15 7 4 

Table IX. Descriptive statistics for various measures 

Descriptive Statistics  Min Median Max Mean Std 

Measure Approach 

CompletenessT Aspect 0 0.88 1 0.77 0.3 

Standard 0 0.67 1 0.64 0.28 

CompletenessS Aspect 0.5 0.75 1 0.81 0.18 

Standard 0 1 1 0.88 0.34 

Completeness Aspect 0.2 0.85 1 0.78 0.21 

Standard 0.11 0.67 1 0.64 0.25 

CorrectnessT Aspect 0 0.88 1 0.77 0.3 

Standard 0 0.67 1 0.63 0.28 

CorrectnessS Aspect 0.5 0.75 1 0.78 0.17 

Standard 0 1 1 0.72 0.21 

Correctness Aspect 0.2 0.84 1 0.7 0.21 
Standard 0.11 0.67 1 0.64 0.25 

RedundancyT Aspect 0 0 1 0.09 0.24 
Standard 0 0.16 1 0.25 0.29 

RedundancyS Aspect 0 0 0.75 0.14 0.24 

Standard 0 0 1 0.31 0.41 

Redundancy Aspect 0 0 0.9 0.23 0.34 

Standard 0 0.43 0.9 0.39 0.26 

Effort (Minutes) Aspect 5 19 50 18 11 

Standard 5 7 15 8 4 
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APPENDIX C: RESULTS OF POWER ANALYSIS FOR NON-

SIGNIFICANT RESULTS 

Power analysis can be used during the design stage of an 

experiment to determine how many subjects are likely to be 

needed, or after the fact to help interpret non-significant 

results. The latter may be due to small samples sizes and 

effect sizes that are smaller than expected. Power analysis is 

particularly important for controlled experiments in 

software engineering that involve human subjects, as they 

normally suffer from small sample sizes because of the 

limited availability of trained subjects and the high cost of 

conducting experiments. In our context, like in most 

software engineering experiments, the number of subjects is 

imposed by external constraints and a retrospective power 

analysis, as suggested in [25], helps interpret non-significant 

results in such conditions. For each statistical test 

considered, such an analysis estimates the minimum effect 

size at which we can observe an acceptable level of power 

(typically 80%). This means that above that minimum, we 

can probably interpret a non-significant result as an absence 

of effect. Below this threshold the effect might be present 

but remain undetected.  

In our experiment, we are interested in comparing the 

aspect state machines with standard UML state machines. 

We perform power analysis for the dependent variables that 

did not yield significant results and followed the method of 

calculating power as reported in [25], which requires a fixed 

sample size, a set significance level (0.05) and power level 

(80%), and uses the observed variance to calculate the 

corresponding, minimum effect size. We didn‘t use 

standardized effect sizes as suggested by Cohen [26] since 

those cannot be easily interpreted in a software engineering 

context.  

Table X summarizes the results of power analysis. The 

table shows the estimated effects size thresholds 

corresponding to 80% power for measures that yielded non-

significant results (Minimum effect size). This means that for 

effect sizes less than these thresholds, power is less than 

80% thus entailing a significant risk of error (type II) in not 

rejecting the null hypotheses. In other words, for effect sizes 

below these thresholds, we cannot draw conclusions with 

confidence from the statistical test results presented in Table 

V. The Average column in Table X shows the average 

values for the dependent variables, when combining all the 

observations being compared from both approaches. The 

last column shows the percentage of Average that 

corresponds to the minimum effect size. For example, in 

Table X, the result of Completeness for Network Failure 

yielded an estimated effect size of 0.17 (28% of average) to 

achieve 80% power. The observed effect size is 0.09, which 

is lower than this estimated effect size (0.17), thus 

explaining the lack of significance. This suggests that we 

need to collect more observations, if we want to draw 

conclusions with confidence for effect sizes below 28% of 

the average. Similar results are observed for other measures 

for individual crosscutting behaviors, which are summarized 

in Table X. 

 

 

 

 

 

 

 

 

 

 

Table X. Results of power analysis 

Crosscutting Behavior  Measure p-value Observed Effect Size Minimum Effect Size Average  Minimum Effect Size/Average 

Cancel Transaction Completeness 0.20 0.05 0.15 0.74 0.20 

Correctness 0.20 0.05 0.15 0.74 0.20 

Network Failure Completeness 0.16 0.09 0.17 0.6 0.28 

Correctness 0.156 0.08 0.16 0.59 0.27 

Redundancy 0.48 0.08 0.16 0.59 0.27 

Power Failure Completeness 0.96 0.07 0.18 0.81 0.22 

Correctness 0.08 0.05 0.18 0.79 0.23 

 


