
Simula Research Laboratory, Technical Report 2011-06 October 2011

1

Empirically Evaluating the Impact of Applying Aspect State Machines on Modeling

Quality and Effort

Shaukat Ali
1,2

, Tao, Yue
1
, Lionel Briand

1,2

1
Certus Software V&V Center, Simula Research Laboratory,

P.O.Box 134, 1325, Lysaker, Norway
2
Department of Informatics, University of Oslo, Norway

{shaukat, tao, briand}@simula.no

Abstract—Aspect-Oriented Modeling (AOM) has been the

subject of intense research over the last decade and aims to

provide numerous benefits to modeling, such as enhanced

modularization, easier evolution, higher applicability as well as

reduced modeling effort. However, these benefits can only be

obtained at the cost of learning and applying new modeling

approaches. Studying their applicability is therefore important

to assess whether they are worth using in practice. In this

paper, we report the first controlled experiment to assess the

applicability of AOM, focusing on a recently published UML

profile (AspectSM). This profile was originally designed to

support model-based robustness testing in an industrial

context but is applicable to the behavioral modeling of other

crosscutting concerns. This experiment assesses the

applicability of AspectSM from two aspects: the quality of

derived state machines and the effort required to build them.

With AspectSM, a crosscutting behavior is modeled using so-

called “aspect state machine”. The applicability of aspect state

machines is evaluated by comparing them with standard UML

state machines that directly model the entire system behavior,

including crosscutting concerns. The quality of both aspect and

standard UML state machines derived by subjects is measured

by comparing them against their corresponding reference state

machines. Results show that aspect state machines derived

with AspectSM are significantly more complete and correct

though AspectSM took significantly more time than the

standard approach, probably due to a lack of familiarity of the

subjects.

Keywords: Aspect-Oriented Modeling; Controlled

Experiment; Applicability; Robustness; UML State machines

I. INTRODUCTION

Aspect-Oriented Modeling (AOM) aims to provide

enhanced Separation of Concerns (SoCs) during design

modeling [1, 2]. Crosscutting concerns, for example related

to robustness or security behavior, are modeled as aspect

models and are subsequently woven into their primary/base

model capturing non-crosscutting concerns, such as nominal

functional behavior. AOM is expected to yield benefits such

as improved readability, enhanced modularization, easier

evolution, improved model quality, increased reusability of

models, as well as reduced modeling effort [2]. However,

there to date is very little evidence supporting such benefits.

Empirical investigations, such as controlled experiments and

case studies, are required to support the above claims and

better comprehend AOM‘s limitations. This paper, as part of

a larger set of studies, is a first step in this direction and

reports of the first controlled experiment assessing of the

applicability of AOM.

In industrial models such as state machines, one must

not only model nominal behavior but also robustness

behavior, for example describing how the system should

react to abnormal environmental conditions. This is for

example needed—and that was our original motivation—to

support the model-based robustness testing of embedded or

communication systems [3], though there are many more

possible applications. In a previous paper, we reported on

AspectSM [4], a UML profile for AOM, which was defined

to model crosscutting behaviors using extended UML state

machines, with the objectives of minimizing modeling effort

and the learning curve for modeling crosscutting behavior.

The AspectSM profile focuses on UML state machines as

they are the extensively used notations in practice, for

example in model-based test case generation in the context

of control and communication systems [3, 5]. Comparable

approaches [6-9] in the literature do not use UML extension

mechanisms and make use of specific notations for aspect-

related features that do not follow any standard. With our

industrial partners, and generally in most realistic settings, it

is necessary to provide AOM support based on the UML

standard to facilitate adoption. A detailed comparison of the

AspectSM profile with other related profiles can be found in

[4]. AspectSM has been successfully applied to model

robustness behavior of video conferencing systems for the

purpose of model-based robustness testing at Cisco Systems

Inc., Norway [5].

Crosscutting behavior, such as robustness behavior in

industrial systems, can result in cluttered UML state

machines. As a result, modeling such crosscutting behavior

directly on UML state machines can be error-prone and

entails significant modeling effort due in part of extensive

redundant modeling. Consistent with AOM claims, using

AspectSM to model crosscutting behavior as aspect state

machines separately from the base state machine should

reduce cluttering in models and hence improves the overall

quality of the models, which thereby increases the

applicability of the approach. Studying the applicability of

AspectSM is therefore essential to demonstrate that its use

Simula Research Laboratory, Technical Report 2011-06 October 2011

2

is beneficial to ease its adoption in practice. In addition,

from a more general standpoint, studying the applicability of

AspectSM provides preliminary evidence about the benefits

that can be obtained with AOM. We therefore performed

and report here on the first controlled experiment to evaluate

the applicability of AspectSM by comparing it with directly

modeling crosscutting behavior using standard UML state

machines. The controlled experiment was conducted with

25 graduate students taking a graduate course in ‗Advanced

Software Architecture‘ at the University Institute of

Information Technology (UIIT) at the Pir Mehr Ali Shah

Arid Agriculture University, Rawalpindi, Pakistan. The

original design (specification and state machines) of the

case study system we used in the experiment was defined

independently from our experiment―a Automatic Teller

Machine (ATM) control system provided in a well-known

textbook [10] ― but we had to model the case study with

three additional crosscutting behaviors: cancel transaction,

network failure and power failure. The quality of state

machines is measured with three objective measures:

Completeness, Correctness and Redundancy, which are

proposed for this experiment but can be reused to perform

similar experiments in the future, either with AspectSM or

other state machine-based approaches. Furthermore, we

evaluate the effort (measured in time) that subjects spent to

model crosscutting behaviors using standard UML state

machines and aspect state machines. Experiment results

show that modeling crosscutting behavior as aspect state

machines significantly increases completeness and

correctness of models and significantly reduces redundancy

as compared with standard UML state machines. On the

other hand, aspect-oriented modeling took significantly

more time than standard UML state machines.

The rest of the paper is organized as follows. Section II

describes the necessary background on aspect state

machines. Section III provides details on the experiment

planning and Section IV reports on results and discussions.

Section V provides possible threats to validity of our

experiment and Section VI compares related controlled

experiments in Aspect-oriented Software Development

(AOSD) to our experiment. Finally, we conclude our paper
in Section VII.

II. MODELING ASPECT STATE MACHINES

AspectSM [11] is a UML profile, which was proposed to

support the modeling of system robustness behavior—a

very common type of crosscutting behavior in many types

of systems such as communication and control systems [2].

An example of a robustness behavior for a communication

system is related to how the system should react, in various

states, in the presence of high packet loss. The system

should be able to recover lost packets and continue to

behave normally in a degraded mode. In the worst case, the

system should go back to the most recent state and not

simply crash or show inappropriate behavior. In a control

system, one needs to model, for example, how the system

should react, in various states, when a sensor breaks down.

AspectSM allows modeling crosscutting behavior as aspect

UML state machines. Such an approach, relying on a

standard and using the target notation (i.e., UML state

machine in our context) as the basis to model the aspects

themselves, is expected to make the practical adoption of

aspect modeling easier in industrial contexts. In our

previous work [11], we thoroughly compared AspectSM

with similar existing AOM profiles and we observed that

AspectSM is the only approach that is exclusively based on

standard UML notation, thus eliminating the need for

learning additional non-standard notations or languages, and

therefore making it easier to reuse open source and

commercial modeling tools. This is highly important in

most industrial contexts and strongly affects the adoption of

modeling technologies. In addition, it is easier to train

engineers in standard languages such as UML as many of

them have been exposed to it during their university

education and previous work experiences.

Though AspectSM was originally defined to support

scalable, model-based, robustness testing, including test

case and oracle generation, a fundamental question is

whether it is easier to model crosscutting concerns such as

robustness with AspectSM than simply relying on UML

state machines to do it all. In AspectSM, the core

functionality of a system is modeled as one or more

standard UML state machines (called base state machines).

Crosscutting behavior of the system (e.g., robustness

behavior) is modeled as aspect state machines using the

AspectSM profile. State machines developed using this

profile will be referred to as aspect state machines. A

weaver [11] then automatically weaves aspect state

machines into base state machines to obtain a complete

model, that can for example be used for testing purposes.

The AspectSM profile specifies stereotypes for all features

of AOM, in which the concepts of Aspect, Joinpoint,

Pointcut, Advice, and Introduction [2] are the most

important ones, which are specified as stereotypes of the

AspectSM profile. Interested readers may consult [4], where

further details of the profile are provided.

Below, we present an example of the application of

AspectSM. An aspect state machine modeling crosscutting

behavior EmergencyStop is shown in Figure 1. This UML

state machine is stereotyped as <<Aspect>>, which means

that it is an aspect state machine. The <<Aspect>>

stereotype has two attributes: name and baseStateMachine,

Figure 1. An aspect state machine for crosscutting behavior EmergencyStop

Simula Research Laboratory, Technical Report 2011-06 October 2011

3

whose values are shown in the note labeled as ‗1‘ in Figure

1. The name attribute contains the name of the aspect

(EmergencyStop in this example), whereas the

baseStateMachine attribute holds the name of the base state

machine, on which this aspect will be woven, which is

ElevatorControl in this example.

The aspect state machine consists of two states:

SelectedStates and ElevatorStopped. SelectedStates is

stereotyped as <<Pointcut>>, which means that this state

selects a subset of states from the base state machine. There

are three attributes of <<Pointcut>>, whose values are

shown in the note labeled as ‗2‘ in Figure 1. The name

attribute indicates the name of the pointcut and type denotes

the type of the pointcut, which is Subset in this case. In

AspectSM, different types of pointcuts can defined, a

complete list of other types of pointcuts is presented in [11].

The third attribute selectionConstraint contains a query in

OCL on the UML state machine metamodel, which selects

all states of the base state machine except ElevatorAtFloor

and Idle. All the model elements stereotyped as

<<Introduction>> (one state, two transitions) will be newly

introduced elements in the base state machine during

weaving. This aspect introduces the ElevatorStopped state

in the base state machine, and selects all states of the base

state machines except ElevatorAtFloor and Idle (via

SelectedStates) and introduces transitions from them to

ElevatorStopped with trigger EmergencyStopButtonPressed.

In addition this aspect introduces transitions from

ElevatorStopped to all the states selected by SelectedStates

with trigger EmergencyStopButtonReleased.

III. EXPERIMENT PLANNING

This section discusses the planning of the experiment

according to the definition and reporting template defined

by Wohlin et al. [12]. Section III.A provides goals, research

questions, and hypotheses; Section III.B provides details on

the participants of the experiment, whereas Section III.C

provides details on the material we used for the experiment.

Section III.D provides metrics that we used to assess the

quality of aspect state machines with standard UML state

machines. Section III.E discusses the design of the

experiment, whereas Section III.F and Section III.G

describe the procedure that we followed to conduct the

experiment. Last, in Section III.H, we discuss how we select

statistical tests for analyzing experiment data.

A. Goal, Research Questions and Hypotheses

The objective of our experiment is to assess the

AspectSM profile with respect to its applicability to model

crosscutting behaviors as aspect state machines.

Applicability is assessed from two aspects: the quality of

derived state machines and the effort required to model

crosscutting behaviors. We measure the quality of state

machines from three complementary points of view:

completeness, correctness, and redundancy of an aspect

state machine and a standard UML state machine with

respect to their corresponding reference state machines.

Based on the objective of our experiment, we defined

the following four research questions.

RQ 1: Does the use of AspectSM improve the completeness

of state machines with respect to reference state machines,

when compared to standard UML state machines?

We wish to compare the completeness of aspect state

machines modeling crosscutting behaviors with standard

UML state machines modeling the same crosscutting

behaviors. The quality of both the aspect and standard state

machines is measured against reference state machines as

aspect and standard state machines are not directly

comparable. None of the expected differences between them

can a priori be certain to be in a specific direction. This

therefore leads to the definition of a two-tailed null

hypothesis:

H
1
0: Completeness of aspect state machines is the same as

that of standard UML state machines.

RQ 2: Does the use of AspectSM improve the correctness of

state machines with respect to reference state machines,

when compared to standard UML state machines?

This research question aims to compare the correctness of

aspect state machines and standard UML state machines

with their corresponding reference state machines. This

leads to the following two-tailed null hypothesis.

H
2
0: Correctness of aspect state machines is the same as that

of standard UML state machines.

RQ 3: Does the use of AspectSM reduce the redundancy in

state machines with respect to reference state machines,

when compared to standard UML state machines?

This research question leads to the following two-tailed null

hypothesis.

H
3
0: Redundancy in aspect state machines is the same as

that of standard UML state machines.

RQ 4: Does the use of AspectSM reduce the modeling

effort?

The previous three research questions looked at measuring

the quality of state machines, whereas this research question

is concerned with the effort required to model crosscutting

behaviors. This leads to the following two-tailed null

hypothesis.

H
4
0: The effort to model aspect state machines is the same

as that of standard UML state machines.

Table I. Complexity of the reference state machines modeling the crosscutting behaviors of the case study

Crosscutting

behavior

Reference base state machine Reference standard state machine Reference aspect state machine

of states # of transitions # of states # of transitions # of states # of transitions # of Pointcuts

Cancel Transaction

6 13

6 15 7 15 2

Network Failure 7 22 8 16 2

Power Failure 7 21 8 15 2

Simula Research Laboratory, Technical Report 2011-06 October 2011

4

B. Participants

The controlled experiment was conducted at the Pir Mehr

Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.

The subjects in the experiment were 25 graduate students

taking a graduate course in ‗Advanced Software

Architecture‘ at the University Institute of Information

Technology (UIIT). The course is offered in the Master of

Science program. The students in this degree already hold a

Bachelor in Computer Science or Information Technology

and have already been exposed to the UML notation and

extensions in the form of UML profiles. On average, each

student went through five development and two modeling

courses. Eighteen students (out of twenty-five) have used

the UML notation for their final year projects before the

experiment was conducted. Twenty students gained

development experience in IT companies or as teaching

staff in computer science.

Our motivation in selecting this group of subjects was to

find participants with adequate background (e.g., UML

modeling) that could be trained to use our AOM approach

over a short period of time. Our goal was to assess

AspectSM with fully trained, competent participants in

order to assess the maximum potential benefits of the

approach. Most industrial practitioners have very little

knowledge of AOP and even less of AOM. Ensuring they

have the required background is also difficult. This is why

we relied on a group of mature and trained graduate

students. The subjects were free to choose to participate or

not into the experiments and were told their choice would

have no effect on their course grades. All students

underwent specific, additional training for the experiments

(Section III.0). Five students decided not to participate in

the experiment.

C. Material

1) Case Study System: The system used for the

experiment is the popular automated teller machine (ATM)

system reported in [10]. Detailed specifications and the

corresponding state machine are presented in Appendix A,

but the complexity of the reference state machines for both

aspect and standard UML state machines in terms of

numbers of states and transitions is shown in Table I. The

state machine modeling nominal behavior will be referred to

as base state machine in this paper as it is modeling the core

behavior of the ATM system. This state machine was

provided to the subjects and they were asked to model the

following crosscutting behaviors.

Cancel Transaction: A customer may cancel a transaction at

any time except when the ATM is closed down or not idle.

Whenever a cancel request is made, the transaction is

terminated and then the card is ejected.

Network Failure: The ATM‘s behavior in the presence of

network failure is also important. Whenever the network

connection fails during the ATM operation, except when it

is closed down, the current transaction is saved in its local

memory and it then tries to recover the network connection.

If the network connection is established, the saved

transaction is loaded and the ATM continues the transaction.

Otherwise, it will simply remain closed down.

Power Failure: In the case of power failure, then the ATM

starts its Uninterruptible Power Supply (UPS) and continues

the operation.

2) Answer Sheet: Two answer sheets were developed

to collect answers for two groups: one for the group using

standard UML state machines (Standard) to directly model

crosscutting behaviors on the base state machine and the

second for the group modeling crosscutting behaviors using

aspect state machines (Aspect). Each answer sheet was

designed such that subjects can provide their solution one

after another and provide the time required to model each

crosscutting behavior.

D. Dependent Variables

In this section, we present the dependent variables and

their justification.

1) State machine completeness (Completeness): This

variable measures the completeness of a subject‘s state

machine by comparing it with a reference state machine. It

is determined by the completeness of states and transitions-

two main modeling elements of a state machine. Note that,

since we have two sets of results with respect to two

different treatments: standard state machines and aspect

state machines, two sets of measures were designed to

evaluate the completeness of two different types of state

machines derived by the subjects given different treatments.

The formula for CompletenessT (completeness of

transitions) is shown in Table II, which calculates the

transition completeness of a subject‘s state machine by

looking at the matched transitions of a subject‘s solution

with the reference solution (this holds for each group). The

measures needed for deriving the quality measures in Table

II are presented in Table III. Matching of transitions is

determined by looking at whether the source and target

states of a transition match to the source and target states of

any transition in the reference model. Three model elements

constituting a transition (i.e., guard, trigger, and effect) are

further assessed to evaluate the completeness of a matched

transition. Matching of the trigger, guard, and effect of a

transition is determined whether their names are the same or

similar to the corresponding elements of the matched

transition in the reference state machine. The completeness

of a matched transition is calculated based on the proportion

of the matched trigger, guard, and effect of the transition.

For instance, if only the guard and trigger of a transition

matches with a transition in the reference solution, then this

means that the transition matches 66% (2/3) of the reference

transition. For standard state machines, we compare only the

guard, trigger, and effect of a transition; while for aspect

state machines, we also check whether required stereotypes

are applied to transitions. This is so because AspectSM

Simula Research Laboratory, Technical Report 2011-06 October 2011

5

requires applying stereotypes on states and transitions in

aspect state machines (Section II). For each matched

transition k in a subject‘s solution, we check if its guard,

trigger, or effect is missing with respect to the matched

transition in the reference solution (Table III). For each

missing guard, trigger, and effect, we assign value 1 to the

corresponding variable (MTguard_k, MTtrigger_k or MTeffect_k),

otherwise 0.

Similarly, we calculate CompletenessS (completeness

of states) as shown in Table II. The overall completeness

(Completeness) of the state machine is therefore calculated

based on the completeness of states and transitions. A

simpler way to do so is to simply take the average of

CompletenessT and CompletenessS. However, since the

numbers of states and transitions in a solution might be

different, taking the average might not be appropriate.

Table II. Quality measures for a state machine diagram

Category Measure Formula Formula

Completeness CompletenessS 1-MS

CompletenessT 1-MT

Correctness CorrectnessS CompletenessS*(1-IS)

CorrectnessT CompletenessT*(1-IT)

Redundancy RedundancyS Nextras_s/Ns_s

 RedundancyT Nextrat_s/Nt_s

Table III. Measures to derive quality measures in Table II

Measure Specification

1 MSname_k Missing name of the kth state in a subject‘s state machine diagram

2 MSstereotype_k Missing stereotype of the kth state in a subject ‘s aspect state machine diagram

3 MTguard_k Missing guard of the kth transition in a subject ‘s state machine diagram

4 MTtrigger_k Missing trigger of the kth transition in a subject ‘s state machine diagram

5 MTeffect_k Missing effect of the kth transition in a subject‘s state machine diagram

6 MTstereotype_k Missing stereotype of the kth transition in a subject‘s aspect state machine diagram

7 MS

For standard state machine:

For aspect state machine:

8 MT

For standard state machine:

For aspect state machine:

9 ISname_k Incorrect name of the kth state in a subject‘s state machine diagram

10 ISstereotype_k Incorrect stereotype of the kth state in a subject‘s aspect state machine diagram

11 ITguard_k Incorrect guard of the kth transition in a subject‘s state machine diagram

12 ITtrigger_k Incorrect trigger of the kth transition in a subject‘s state machine diagram

13 ITeffect_k Incorrect effect of the kth transition in a subject‘s state machine diagram

14 ITstereotype_k Incorrect stereotype of the kth transition in a subject‘s aspect state machine diagram

15 IS

For standard UML state machine:

For aspect state machine:

16 IT

For standard state machine:

For aspect state machine:

17 Ns_s # of states in a subject‘s state machine diagram

18 Nt_s # of transitions in a subject‘s state machine diagram

19 Nextras_s # of extra states in a subject‘s state machine diagram

20 Nextrat_s # of extra transitions in a subject‘s state machine diagram

21 Ns_r # of states in the reference state machine diagram

22 Nt_r # of transitions in the reference state machine diagram
MSname_k, MSstereotype_k , Mguard_k, Mtrigger_k, Meffect_k, MTstereotype_k ,Iname_k, ISstereotype_k, Iguard_k, Itrigger_k, Ieffect_k , and ITstereotype_k are Boolean variables that take value 0 and 1 only. ‘n’ refers to the number of

matched states or transitions.

Simula Research Laboratory, Technical Report 2011-06 October 2011

6

Considering each modeling element (state or transition)

having the same weight, we calculate the overall

completeness based on the proportions of states and

transitions in a state machines. To achieve this, first we

obtain the overall completeness of transitions by

multiplying CompletenessT with the total number of the

transitions in the reference model (Nt_r). Similarly, we

calculate overall completeness of states by multiplying

CompletenessS with the total number of states Ns_r. Finally,

we take sum of both and divide it with the sum of the

numbers of states and transitions in the reference state

machine. Notice that our metrics give equal weights to each

type of model elements of state machines (e.g., states and

transitions). The metrics for each individual type of model

elements are combined together to indicate the overall

completeness and correctness of state machines. At this

stage of research, it is difficult to precisely devise a different

weight pattern.

2) State machine correctness (Correctness):

Correctness of a state machine is determined based on

correctness of states and transitions. CorrectnessT (i.e.,

correctness of matched transitions) is calculated by the

formula shown in Table II. In this formula, we compare a

subject‘s solution with the reference solution and for each

matched transition, we determine if its contained modeling

elements are correct. Modeling elements contained by a

transition include guard, trigger, and effect. For aspect state

machines, additionally, we check whether stereotypes and

their attributes applied on each matched transition is correct.

For instance, if only the stereotype is incorrect, then the

correctness of the transition will be 75% (3/4). Finally,

because correctness partly depends on completeness, the

overall correctness of transitions (CorrectnessT) is obtained

by multiplying CorrectnessT with CompletenessT as we

assume missing transitions to be incorrect. For instance, if

completeness is 60% for a subject‘s solution, then we

calculate correctness only for the matched 60% transitions

and the remaining unmatched transitions (40%) are also

considered incorrect. Total correctness (Correctness) is

calculated in the similar way as we do for Completeness.

3) Redundancy in state machines (Redundancy):

Redundant states and transitions are the ones in a subject‘s

solution that do not match with any model elements in the

reference solution. Redundancy is calculated based on

redundancy in states (RedundancyS) and transitions

(RedundancyT). Redundant states are measured with

RedundancyS calculated as Nextra_s /Ns_s , where Nextras_s is

the number of extra states identified by a subject and Ns_s is

the number of states identified by a subject. Similarly, we

calculate RedundancyT as shown in Table II and Table III.

Finally, the overall redundancy (Redundancy) in state

machines is calculated in a similar fashion as Completeness

and Correctness.

Since our goal is to devise a set of objective metrics to

measure the quality of state machines constructed by

subjects, we compare them with reference state machines,

so that subjective evaluation can be reduced to a minimum.

We therefore make possible the comparison of models

derived by different subjects in such a way that identical

results would be obtained by different persons measuring a

model. In addition, these metrics are not specific to this

experiment and the profile under evaluation (AspectSM)

and hence they are reusable and can be applied to other

experiments that involve measuring the quality of UML

state machines.

4) Required modeling effort (Effort): It is the time

(minutes) taken by a subject to model each crosscutting

behavior. It was simply measured as Completion time –

Starting time.

E. Design

The design of our experiment is summarized in Table

IV. We used a between-subjects design [12] due to the

limited number of tasks we could run within time

constraints. During the training sessions (Section III.0), each

subject was equally trained to understand the two different

types of state machines: aspect state machines (Aspect) and

standard state machines (Standard). After the training

sessions but before the actual experiment tasks, the subjects

were also given an assignment to practice designing state

machines. This assignment was marked by the first author

of this paper and grades were used to form blocks (i.e.,

groups of students of equivalent skills). The experiment

groups were then formed through randomization and

blocking to obtain two comparable groups of 10 students

each (Group 1 and Group 2) with similar proportions of

students from each block. Each group was provided with the

base state machine of ATM (Section III.C) and Group 1 was

asked to model crosscutting behaviors with aspect state

machines, whereas Group 2 was asked to model

crosscutting behaviors directly on the base state machine.

We decided to provide the base state machine to the subjects

instead of asking them to model the behavior of the ATM

system from scratch based on the textual requirement

specifications due to the following two reasons: 1)

AspectSM was specifically designed to model crosscutting

behaviors and we were only interested in studying the

quality of state machines when modeling crosscutting

behaviors, 2) Due to time constraints, modeling a complete

system from scratch wasn‘t practically feasible. Note that in

the experiment, we ordered the crosscutting behaviors based

on their complexity (Table IV) from simple to complex, to

enable the subjects to tackle increasingly more complex

crosscutting behaviors.
Table IV. Design for the experiment

Crosscutting behavior Group 1 Group 2

Cancel Transaction Aspect Standard

Network Failure Aspect Standard

Power Failure Aspect Standard

Simula Research Laboratory, Technical Report 2011-06 October 2011

7

F. Training

Subjects were trained by the first author of this paper.

Two three-hour sessions were given on the following topics:

1) Recap of UML state machines since subjects were

already familiar with this topic preceding the training, 2)

Introduction to the Object Constraint Language (OCL), 3)

Introduction to aspect-oriented software development

(AOSD), and 4) Aspect-oriented modeling (AOM) using the

AspectSM profile. Each topic was accompanied with

several examples and interactive class assignments. As

previously discussed, the subjects were given a home

assignment after the training sessions to practice the three

state machine modeling approaches and groups were later

formed based on the grades of this assignment.

G. Data collection

The solutions were collected from the participants and

were marked by the first author of this paper. The data was

encoded into a JMP [13] data file to perform the statistical

analysis. For the experiment, data integrity was checked

using the following rule: for the same subjects and for each

step, the starting time should precede the completion time,

and the completion time of the current task must precede the

starting time of the next task. In addition, to avoid mistakes

in marking the solutions, the first two authors double-

checked the solutions marked by the other. Moreover, for a

sample of randomly selected solutions, the first two authors

also checked the consistency of the entries in the JMP file

with the marks on the answer sheets and no inconsistencies

were detected.

H. Selection of Statistical Tests

Using statistical testing, we check whether the differences

between modeling approaches are statistically significant to

determine if we can reject the null hypotheses stated in

Section III.A. To check for significant differences between

the two approaches under investigation, we performed the

non-parametric Wilcoxon rank-sum test [14]. For all

statistical tests reported in this section, we used a

significance level of =0.05. We employed this test because

our data set meets all the criteria required by this test, which

are: 1) observations in the Aspect and Standard state

machine groups are independent of each other, 2) sample

size of both groups are equal, and 3) distributions of

dependent variables strongly depart from normality, based

on the results of the Shapiro–Wilk W test [14] we

performed.

IV. RESULTS AND DISCUSSION

In this section, we present results and discussions for

each individual research question (Sections IV.A-IV.D),

followed by an overall discussion in Section IV.E. Note that

in the next sections, we only provide mean values for the

dependent variables. However, detailed descriptive statistics

are provided in Appendix B.

A. Completeness of Aspect State Machines (RQ 1)

Table V shows average percentages of completeness for

the three crosscutting behaviors: Cancel Transaction,

Network Failure, and Power Failure, respectively, in terms

of completeness of transitions (CmT), completeness of

states (CmS), and overall completeness (Cm).

We observed from Table V that overall, for Cancel

Transaction, AspectSM achieved around 9% higher

completeness (from 69% to 78%) than the standard state

machines modeling approach. The results of the Wilcoxon

rank-sum test for Cancel Transaction are also presented in

Table V, where none of the results are significant as all p-

values for completeness measures for Cancel Transaction

are above 0.05. To further interpret the non-significant

results, we conducted power analysis [14]. The result of Cm

yielded an estimated effect size of 0.15 (20% of average) to

achieve 80% power (see Table X in Appendix C). The

observed effect size is 0.05, which is lower than this

estimated effect size (0.15), thus explaining the lack of

significance. This suggests that we need to collect more

Table V. Results of the Wilcoxon test for all quality measures*

CB Measure Mean

(Aspect)

Mean

(Standard)

Mean Diff.

(Aspect-Standard)

p-

value
C

a
n

ce
l

T
r
a

n
sa

c
ti

o
n

CmT 0.81 0.69 0.12 0.06

CmS 0.78 - - -

Cm 0.78 0.69 0.09 0.20

CrT 0.81 0.69 0.12 0.06

CrS 0.78 - - -

Cr 0.78 0.69 0.09 0.20

ReT 0 0.33 -0.33 0.008

ReS 0.06 0.38 -0.32 0.17

Re 0.02 0.37 -0.35 0.02

Effort 22 8 14 0.0009

N
e
tw

o
r
k

 F
a

il
u

r
e

CmT 0.62 0.47 0.15 0.20

CmS 0.78 0.88 -0.10 0.11

Cm 0.69 0.51 0.18 0.16

CrT 0.62 0.47 0.15 0.20

CrS 0.75 0.88 -0.13 0.053

Cr 0.68 0.51 0.17 0.156

ReT 0.25 0.15 0.10 0.57

ReS 0.28 0.19 0.09 0.35

Re 0.27 0.17 0.1 0.48

Effort 15 9 6 0.364

P
o
w

e
r
 F

a
il

u
r
e

CmT 0.88 0.72 0.16 0.65

CmS 0.86 0.88 -0.02 0.15

Cm 0.87 0.74 0.13 0.96

CrT 0.88 0.72 0.16 0.96

CrS 0.83 0.88 -0.05 0.65

Cr 0.84 0.74 0.10 0.08

ReT 0.03 0.27 -0.24 0.02

ReS 0.09 0.38 -0.29 0.06

Re 0.06 0.30 -0.24 0.01

Effort 16 7 9 0.01

All CmT 0.77 0.63 0.14 0.02

CmS 0.81 0.88 -0.07 0.01

Cm 0.78 0.64 0.14 0.03

CrT 0.77 0.63 0.14 0.02

CrS 0.78 0.88 -0.10 0.004

Cr 0.77 0.64 0.13 0.04

ReT 0.08 0.25 -0.17 0.008

ReS 0.14 0.31 -0.17 0.166

Re 0.23 0.39 -0.16 0.02

Effort 18 8 10 0.0001

* CB: Crosscutting Behavior, Cm: Completeness, Cr: Correctness, Re: Redundancy, CmT:

CompletenessT, CmS: CompletenessS, CrT: CorrectnessT, CrS: CorrectnessS, ReT:

RedundancyT, and ReS: RedundancyS.

Simula Research Laboratory, Technical Report 2011-06 October 2011

8

observations, if we want to draw conclusions with

confidence for effect sizes below 20% of the average.

For Network Failure, overall, aspect state machines are

69% complete, that is 18% more complete than standard

state machines. The results of the Wilcoxon rank-sum test

for Network Failure are shown in Table V, where once

again we didn‘t observe any significant differences as p-

values for completeness measures are above 0.05. For

Power Failure, overall, aspect state machines are 87%

complete, that is around 13% more complete than standard

state machines. As for the first two crosscutting behaviors,

there were no significant differences observed due to small

sample sizes as shown by the results of power analysis

which are provided in Appendix C.

When we combined observations from all crosscutting

behaviors for completeness measures, aspect state machines

obtained an average completeness of 78 %, whereas that of

standard state machines is 64% (Table V). Due to larger

sample sizes, we now observed significant differences

between both groups as shown by bold p-values in Table V.

For all three completeness measures (CmT, CmS, and Cm),

the p-values are this time below 0.05. Overall, for Cm, the

p-value is 0.03 and the mean difference is positive hence

leading to the conclusion that aspect state machines are

significantly more complete when compared to standard

UML state machines for modeling crosscutting behaviors.

The most plausible cause for such a difference is that the

aspect state machines are less complex in terms of number

of modeling elements than the standard state machines when

modeling crosscutting behaviors (Table I). Though the

complexity brought by pointcuts could be a hindrance to the

application of aspect state machines, results suggest it does

not seem to be the case.

B. Correctness of Aspect State Machines (RQ 2)

For Cancel Transaction, we observe from Table V that

the overall correctness (Cr) of aspect state machines is 9%

higher than standard UML state machines. However, the

results of the Wilcoxon rank-sum test reported in Table V

show that the differences are not significant. For Network

Failure, aspect state machines have 17% more correctness

than standard state machines, whereas for Power Failure,

aspect state machines have 10% more correctness than

standard state machines. However, the results of the

Wilcoxon rank-sum test in Table V show that the

differences between aspect and standard UML state

machines for Network Failure and Power Failure are not

significant as p-values are above 0.05 for all correctness

measures for these two crosscutting behaviors. As for

Completeness, the non-significant results of Correctness

for individual crosscutting behaviors are probably due to

small sample sizes yielding low statistical power as shown

by the results of power analysis provided in Appendix C.

When the observations are combined for all three

crosscutting behaviors for correctness, we observe

significant differences with p-values for correctness

measures that are all below 0.05 (Table V). The p-value for

overall correctness is 0.04 and the positive mean difference

suggests that the aspect state machines yield higher

correctness than standard UML state machines. This result

is consistent with the result of completeness and is likely

due to the lower complexity of aspect state machines when

compared to standard UML state machines for modeling

crosscutting behaviors (Table I).

C. Redundancy in Aspect State Machines (RQ 3)

In terms of redundancy, one can observe from Table V

that overall for Cancel Transaction, redundancy of the

aspect state machines is 35% less than the standard state

machines. For Network Failure, we observe 10% more

redundancy in the aspect state machines. For Power Failure,

the aspect state machines yield 24% less redundancy than

standard state machines. For all three crosscutting behaviors

together, aspect state machines result in 16% less

redundancy. The results of the Wilcoxon rank-sum test

(Table V) show significant differences between aspect and

standard UML state machines for redundancy. For overall

redundancy (Re), the p-value is 0.02 and the negative mean

difference implies that aspect state machines have

significantly lower redundancy when compared to standard

UML state machines.

D. Effort for Modeling Aspect State Machines (RQ 4)

From Table V, we can observe that the subjects took

more time for modeling all crosscutting behaviors using

AspectSM. For example, the subjects took on average 14

more minutes for Cancel Transaction, six more minutes for

Network Failure and nine more minutes for Power Failure.

The results of the Wilcoxon rank-sum test on the effort of

modeling individual crosscutting behaviors (Table V) show

that significant differences were observed for Cancel

Transaction and Power Failure, where the subjects took

significantly more time to model aspect state machines, as

indicated by p-values below 0.05. However, there were no

significant differences observed for Network Failure. When

the observations were combined from all crosscutting

behaviors, we observed that the subjects took significantly

more time to model aspect state machines as compared to

standard UML state machines for modeling crosscutting

behaviors (p-value=0.0001). This could be due to a relative

lack of experience in modeling aspect state machines using

AspectSM when compared to standard UML state

machines.

E. Overall Discussion and Concluding Remarks

Based on the experiment results discussed above, we

conclude that overall, the completeness and correctness of

the aspect state machines derived by the subjects are

significantly better than the standard ones for modeling the

same set of crosscutting behaviors. In addition, we also

observed that the redundancy of the aspect state machines is

significantly less than the standard state machines. This is

most likely due to the fact that the aspect state machines are

Simula Research Laboratory, Technical Report 2011-06 October 2011

9

less complex in terms of number of modeling elements than

the standard state machines for modeling crosscutting

behaviors, as visible in Table I.

Regarding modeling effort, we observed that the

subjects took significantly more time to design aspect state

machines than the ones who designed standard state

machines. This may be explained by the limited experience

of the subjects regarding AspectSM. We also collected

statistics about the most common mistakes subjects did

while modeling aspect state machines and observed that

most mistakes were either in applying stereotypes or their

associated values for attributes. We found that 27% of

transitions modeled by subjects have missing stereotypes,

missing attributes of stereotypes, incorrect stereotypes, or

incorrect attribute values. Such percentage was observed for

states as well. This leads to the conclusion that subjects

found it difficult to apply the stereotypes required by the

AspectSM profile. This suggests that in the future, we

probably need to put more attention on the application of

stereotypes during training and thus perhaps expect a

reduced modeling time and improved modeling quality

when using AspectSM.

In conclusion, even though AspectSM took significantly

more time, it resulted into higher quality models:

significantly better completeness and correctness, and less

redundancy than the standard UML state machine modeling

approach. More training with AspectSM is expected to

further reduce modeling effort and improve the quality of

aspect state machines. Based on the above analysis, we

recommend using AspectSM for modeling crosscutting

behavior to achieve higher quality models.

V. THREATS TO VALIDITY

Below, we discuss the threats to validity of our

controlled experiment based on the concepts discussed in

[12]. Conclusion validity threats are concerned with factors

that can influence the conclusion that can be drawn from the

results of the experiments. As with most controlled

experiments in software engineering, our main conclusion

validity threat is related to the sample size on which we base

our analysis. To deal with this, our experiment design

required modeling three crosscutting behaviors to maximize

the number of observations within time constraints. The

other concern is that the quality of state machines can be

interpreted in various ways, depending on one‘s subjective

opinion. However we made an effort to minimize subjective

judgments and be objective as much as possible by

proposing a set of objective metrics to measure quality of

state machines by comparing them with their corresponding

reference models. By doing so, subjective perceptions can

be reduced to minimum and the comparison of models

derived by different subjects becomes possible.

Additionally, these metrics are general and are therefore

reusable, can be applied to multiple experiments and help

prevent bias in the evaluation results.

Internal validity threats exist when the outcome of

results are influenced by external factors and are not

necessarily due to the application of the treatment being

studied. Through our experiment design (between-subjects

design), we have tried to minimize the chances of other

factors being confounded with our primary independent

variable: the use of aspect state machines. We avoided any

biased assignment of subjects to groups by using blocking

based on assignment marks. The main threat of construct

validity is that we were not able to investigate all features of

aspect-orientation (such as all types of basic advice) in this

experiment due to the nature of our crosscutting behaviors.

Two main threats to external validity are related to our

experiment and are typical to controlled experiments in

artificial settings: 1) Are the subjects representative of

software professionals? 2) Is the experiment material

representative of industrial practice, in terms of the size of

the artifacts we used? Regarding the former, many

practitioners have very little knowledge of AOP or AOM in

general, and hence require significant training. This is why

we chose a group of experienced graduate students with a

suitable educational background (Section III.B). In addition,

some studies in [15-17] reported on the performance of

trained software engineering students for various tasks when

compared with professional developers. These differences

were not statistically significant when compared to junior

and intermediate developers, thus suggesting that there is no

evidence that students trained for the tasks at hand may not

be used as subjects in place of professionals. In terms of the

second threat small case studies and tasks often tends to

minimize the differences among treatments. As we see in

Table I, for example, for crosscutting behavior Network

Failure, the standard UML state machine has seven states

and 22 transitions. Such numbers are representative of the

state machines of classes and small components. However,

because crosscutting concerns are expected to have an even

higher impact on large models, we expect the use of

AspectSM to be even more beneficial in such cases.

VI. RELATED WORK

Most experimentation in Aspect-Oriented Software

Development (AOSD) has been conducted to evaluate

Aspect-oriented Programming (AOP) when compared to

object-oriented programming in terms of development time,

errors in development, and performing maintenance tasks. A

controlled experiment [18] was performed in industry

settings to measure effort and errors using AOP for applying

different maintenance tasks related to tracing crosscutting

concerns, i.e., the use of logging to record execution of a

program. The results showed that aspect-orientation resulted

in reducing both development effort and number of errors.

Another experiment is reported in [19], which compares

aspect-orientation (AspectJ) with a more traditional

approach (Java) in terms of development time for

crosscutting concerns. A similar experiment is reported in

[20] focusing on development time to perform debugging

and change activities on object-oriented programs using

Simula Research Laboratory, Technical Report 2011-06 October 2011

10

AspectJ. Both of these experiments revealed mixed results,

i.e., aspect-orientation has positive impact on development

time only for certain tasks. For instance, AOP seems to be

more beneficial when the crosscutting concern is more

separable from the core behavior.

An experiment is reported in [21], where two software

development processes based on a same aspect modeling

approach (i.e., the Theme approach) are compared to

determine their impacts on maintenance tasks such as

adding new functionality or improving existing

functionality. The first process (aspectual process) involves

generating AO code in AspectJ from Theme AO models,

whereas the second process (hybrid process) involves

generating object-oriented code in Java from Theme

models. Maintenance tasks are measured based on metrics

such as size, coupling, cohesion, and separation of concerns.

The results showed that on average the aspectual process

took lesser time than the hybrid process.

An exploratory study is reported in [22] to assess if AOP

has any impact on software maintenance tasks. Eleven

software professionals were asked to perform different

maintenance tasks using Java and AspectJ. The results of

the experiment revealed that AOP performed slightly better

than Object-oriented Programming (OOP), but there were

no statistically significant results observed. Another

exploratory study is reported in [23] to measure fault-

proneness with AOP. Three evolving AOP programs were

used and data about different faults made during their

development were collected. The experiment revealed two

major findings: 1) Most of the faults were due to lack of

compatibility between aspect and base code, 2) The

presence of faults in AOP features such as Pointcuts,

Advice, and inter-type declarations was as likely as for

normal programming features. The results turned out to be

statistically significant. Another exploratory study is

reported in [23], which aims to assess if aspects can help

reducing effort on resolving conflicts that can occur during

model compositions. To do so, they compared AOM with

non-AOM in terms of effort to resolve conflicts and number

of conflicts resolved on six releases of a software product

line. The results of the study showed that aspects improved

modularization and hence helped better localize conflicts,

which in turn resulted in reducing the effort involved in

resolving conflicts.

Our experiment is different from these experiments from

several perspectives. First, our experiment focused on the

design of the software development life cycle and AOM.

Most of the experiments in the literature have focused on

comparing AOP with OOP. We evaluated the

―applicability‖ (in terms of completeness, correctness, and

redundancy) of crosscutting behaviors modeled as aspect

state machines and compared to standard UML state

machines. We further compared the effort of modeling

crosscutting behaviors using AspectSM and standard UML

state machines. In addition, in our recent controlled

experiments [24], we evaluated the readability of

AspectSM, which is indirectly measured through defect

identification and fixing rates in state machines, and the

scores obtained when answering a comprehension

questionnaire about the system behavior. Results showed

that defect identification and fixing rates are significantly

better with AspectSM than with both flat and hierarchical

state machines. However, in terms of comprehension scores

and inspection effort, no significant difference was observed

between any of the approaches.

VII. CONCLUSION AND FUTURE WORK

Aspect-oriented Modeling (AOM) has been the subject

of intense research in the past decade as it is expected to

provide several benefits when modeling complex software

systems, including enhanced separation of concerns,

improved readability, easier model evolution, increased

reusability, and reduced modeling effort. However, there is

limited empirical evidence regarding such benefits in the

AOM research literature.

In this paper, we reported the first controlled experiment

that was conducted to evaluate the ―applicability‖ of an

AOM state machine modeling approach. We looked at

applicability from two aspects: the quality of derived state

machines in terms of completeness, correctness, and

redundancy, and modeling effort. The specific AOM

approach under evaluation is a UML profile (AspectSM)

which was specifically designed to model crosscutting

behavior (e.g., robustness behavior) using standard UML 2

state machines with a light weight extension for aspect-

oriented features. The AspectSM profile was previously

applied to an industrial case study for automated state-based

robustness testing in Cisco Systems Inc, Norway and is

described in [4]. The applicability of state machines

modeling crosscutting behavior using AspectSM (aspect

state machines) is compared with that of standard UML 2

state machines.

Results showed that the completeness and correctness of

aspect state machines is significantly higher than for

standard state machines modeling on the same set of

crosscutting behaviors (from 64% to 78% and 64% to 77%,

respectively). Furthermore, the redundancy in aspect state

machines is significantly less than that for standard UML

state machines (from 39% to 23%). The most plausible

explanation is that aspect state machines are less complex

than standard UML state machines in terms of number of

modeling elements. We further observed that aspect state

machines took significantly more effort to build than

standard UML state machines for modeling crosscutting

behaviors. However, given the familiarity of subjects with

standard state machines and the fact that AspectSM is a new

technology for them, we expect that with more AspectSM

training and experience this difference might fade away.

Based on the results of the experiment, we recommend

using aspect state machines for modeling crosscutting

concerns, but only on the condition that modelers receive

sufficient training. In the future, we are planning to replicate

Simula Research Laboratory, Technical Report 2011-06 October 2011

11

the experiment to obtain larger sample sizes and increase the

analysis statistical power.

REFERENCES

[1] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-

Oriented Software Development: Addison-Wesley

Professional, 2004.

[2] R. Yedduladoddi, Aspect Oriented Software

Development: An Approach to Composing UML Design

Models: VDM Verlag Dr. Müller, 2009.

[3] R. V. Binder, Testing object-oriented systems: models,

patterns, and tools: Addison-Wesley Longman

Publishing Co., Inc., 1999.

[4] S. Ali, L. C. Briand, and H. Hemmati, "Modeling

Robustness Behavior Using Aspect-Oriented Modeling

to Support Robustness Testing of Industrial Systems,"

Accepted for publication in the Systems and Software

Modeling (SOSYM) Journal 2011.

[5] D. Drusinsky, Modeling and Verification using UML

Statecharts: A Working Guide to Reactive System

Design, Runtime Monitoring and Execution-based

Model Checking, 1st ed.: Newnes, 2006.

[6] J. Zhang, T. Cottenier, A. V. D. Berg, and J. Gray,

"Aspect Composition in the Motorola Aspect-Oriented

Modeling Weaver," Journal of Object Technology, vol.

6, 2007.

[7] G. Zhang, M. M. Hölzl, and A. Knapp, "Enhancing

UML State Machines with Aspects," in In Proceedings

of the 10th International Conference on Model Driven

Engineering Languages and Systems (MoDELS), 2007.

[8] G. Zhang, "Towards Aspect-Oriented State Machines,"

in 2nd Asian Workshop on Aspect-Oriented Software

Development (AOASIA'06) Tokyo, 2006.

[9] D. Xu, W. Xu, and K. Nygard, "A State-Based Approach

to Testing Aspect-Oriented Programs," in 17th

International Conference on Software Engineering and

Knowledge Engineering Taiwan, 2005.

[10] H. Gomaa, Designing Concurrent, Distributed, and

Real-Time Applications with UML: Addison-Wesley

Professional, 2000.

[11] S. Ali, L. C. Briand, and H. Hemmati, "Modeling

Robustness Behavior Using Aspect-Oriented Modeling

to Support Robustness Testing of Industrial Systems,"

Accepted for publication in the Systems and Software

Modeling (SOSYM) Journal2011.

[12] C. Wohlin, P. Runeson, and M. Höst, Experimentation

in Software Engineering: An Introduction: Springer,

1999.

[13] JMP, http://www.jmp.com/, 2010

[14] D. J. Sheskin, Handbook of Parametric and

Nonparametric Statistical Procedures: Chapman and

Hall/CRC, 2007.

[15] M. Höst, B. Regnell, and C. Wohlin, "Using Students

as Subjects—A Comparative Study of Students and

Professionals in Lead-Time Impact Assessment,"

Empirical Software Engineering, vol. 5, pp. pp. 201-214,

2000

[16] E. Arisholm and D. I. K. Sjoberg, "Evaluating the

Effect of a Delegated versus Centralized Control Style

on the Maintainability of Object-Oriented Software,"

IEEE Transactions on Software Engineering, vol. 30,

pp. pp. 521-534, 2004.

[17] R. W. Holt, D. A. Boehm-Davis, and A. C. Shultz,

"Mental Representations of Programs for Student and

Professional Programmers," in Empirical Studies of

Programmers: Second Workshop, M. O. Gary, S. Sylvia,

and S. Elliot, Eds.: Ablex Publishing Corp., 1987, pp.

33-46.

[18] P. Durr, L. Bergmans, and M. Aksit, "A Controlled

Experiment for the Assessment of Aspects - Tracing in

an Industrial Context," Enschede: University of Twente,

CTIT, 2008.

[19] S. Hanenberg, S. Kleinschmager, and M. Josupeit-

Walter, "Does aspect-oriented programming increase the

development speed for crosscutting code? An empirical

study," in 2009 3rd International Symposium on

Empirical Software Engineering and Measurement:

IEEE Computer Society, 2009.

[20] R. J. Walker, E. L. A. Baniassad, and G. C. Murphy,

"An initial assessment of aspect-oriented programming,"

in 21st international conference on Software

engineering Los Angeles, California, United States:

ACM, 1999.

[21] K. Farias, A. Garcia, and J. Whittle, "Assessing the

impact of aspects on model composition effort," in

Proceedings of the 9th International Conference on

Aspect-Oriented Software Development Rennes and

Saint-Malo, France: ACM, 2010.

[22] M. Bartsch and R. Harrison, "An exploratory study of

the effect of aspect-oriented programming on

maintainability," Software Quality Control, vol. 16, pp.

23-44, 2008.

[23] F. Ferrari, R. Burrows, v. Lemos, A. Garcia, E.

Figueiredo, N. Cacho, F. Lopes, N. Temudo, L. Silva, S.

Soares, A. Rashid, P. Masiero, T. Batista, and J.

Maldonado, "An exploratory study of fault-proneness in

evolving aspect-oriented programs," in Proceedings of

the 32nd ACM/IEEE International Conference on

Software Engineering - Volume 1 Cape Town, South

Africa: ACM, 2010.

[24] S. Ali, T. Yue, L. C. Briand, and Z. I. Malik, "Does

Aspect-Oriented Modeling Help Improve the

Readability of UML State Machines?," Under

consideration for a publication in a Journal, 2011.

[25] L. Thomas, "Retrospective Power Analysis,"

Conservation Biology, vol. 11, pp. pp. 276-280, 1997.

[26] T. Dyba, V. B. Kampenes, J. E. Hannay, and D. I. K.

Sjøberg, "Systematic review: A systematic review of

effect size in software engineering experiments,"

Information and Software Technology, vol. 49, pp. pp.

1073-1086, 2007.

http://www.jmp.com/

Simula Research Laboratory, Technical Report 2011-06 October 2011

12

APPENDIX A: SPECIFICATION AND BASE STATE MACHINE

FOR THE ATM SYSTEM

The complete specification of ATM as adopted from

[11] is shown below followed by its state machine in Figure

2.

“A bank has several automated teller machines (ATMs),

which are geographically distributed and connected via a

wide area network to a central server. Each ATM machine

has a card reader, a cash dispenser, a keyboard/display,

and a receipt printer. By using the ATM machine, a

customer can withdraw cash from either a checking or a

saving account, query the balance of an account, or transfer

funds from one account to another. A transaction is initiated

when a customer inserts an ATM card into the card reader.

Encoded on the magnetic strip on the back of the card is

recognized, the system validates the ATM card to determine

that the expiration date has not passed, that the user-

entered PIN matches the PIN maintained by the system, and

that the card is not lost or stolen. The customer is allowed

three attempts to enter the correct PIN; the card is

confiscated if the third attempt fails.

If the PIN is validated satisfactorily, the customer is

prompted for a withdrawal, query, or transfer transaction.

Before a withdrawal transaction can be approved, the

system determines that sufficient funds exist in the requested

account, that the maximum daily limit will not be exceeded,

and that there are sufficient funds at the local cash

dispenser. If the transaction is approved, the requested

amount of cash is dispensed; a receipt is printed containing

information about the transaction, and the card is ejected.

Before a transfer transaction can be approved, the system

determines that the customer has at least two accounts and

that there are sufficient funds in the account to be debited.

For approved query and transfer requests, a receipt is

printed and the card is ejected. Customer records, account

records, and debit card records are all maintained at the

server.

An ATM operator may start up and close down the ATM

to replenish the ATM cash dispenser and for routine

maintenance. It is assumed that functionality to open and

close accounts and to create, update, and delete customer

and debit card records is provided by an existing system

and is not part of this problem. “

The base state machine for the ATM system is shown in

Figure 2.

Figure 2. Base state machine for ECS

Simula Research Laboratory, Technical Report 2011-06 October 2011

13

APPENDIX B: DESCRIPTIVE STATISTICS FOR DEPENDENT

VARIABLES

This appendix provides detailed descriptive statistics,

i.e., minimum (min), median, maximum (max), mean, and

standard deviation (std) for each dependent variable. Table

VI, Table VII, and Table VIII provide detailed descriptive

statistics for Cancel Transaction, Network Failure, and

Power Failure respectively. Table IX provides descriptive

statistics for dependent variables, when observations from

all crosscutting behaviors are combined together.

Table VI. Descriptive statistics for various measures for Cancel Transaction

Descriptive Statistics Min Median Max Mean Std

Measure Approach

CompletenessT Aspect 0 1 1 0.8 0.33

Standard 0.33 0.67 1 0.69 0.19

CompletenessS Aspect 0.5 0.75 1 0.77 0.2

Standard - - - - -

Completeness Aspect 0.33 0.83 1 0.79 0.22

Standard 0.33 0.67 1 0.69 0.19

CorrectnessT Aspect 0 1 1 0.80 0.33

Standard 0.33 0.67 1 0.69 0.19

CorrectnessS Aspect 0.5 0.75 1 0.77 0.20

Standard - - - - -

Correctness Aspect 0.33 0.83 1 0.79 0.22

Standard 0.33 0.67 1 0.69 0.19

RedundancyT Aspect 0 0 0 0 0

Standard 0 0.5 0.67 0.33 0.28

RedundancyS Aspect 0 0 0.5 0.05 0.17

Standard 0 0 1 0.38 0.52

Redundancy Aspect 0 0 0.17 0.02 0.06

Standard 0 0.5 0.75 0.37 0.32

Effort (Minutes) Aspect 15 20 50 23 11

Standard 5 9 15 8.5 3.5

Table VII. Descriptive statistics for various measures for Network Failure

Descriptive Statistics Min Median Max Mean Std

Measure Approach

CompletenessT Aspect 0 0.75 1 0.62 0.33

Standard 0.11 0.47 0.75 0.47 0.20

CompletenessS Aspect 0.5 0.75 1 0.78 0.2

Standard 0 1 1 0.88 0.35

Completeness Aspect 0.2 0.8 1 0.69 0.26

Standard 0.2 0.5 0.78 0.51 0.18

CorrectnessT Aspect 0 0.75 1 0.62 0.33

Standard 0.11 0.47 0.75 0.47 0.20

CorrectnessS Aspect 0.5 0.75 1 0.75 0.19

Standard 0 1 1 0.88 0.35

Correctness Aspect 0.2 0.8 0.9 0.67 0.25

Standard 0.2 0.5 0.78 0.51 0.18

RedundancyT Aspect 0 0 1 0.25 0.38

Standard 0 0 0.75 0.15 0.29

RedundancyS Aspect 0 0.33 0.75 0.28 0.27

Standard 0 0 1 0.19 0.37

Redundancy Aspect 0.2 0.8 0.9 0.67 0.25

Standard 0.2 0.5 0.78 0.51 0.18

Effort (Minutes) Aspect 5 16.5 30 9.8 15

Standard 5 9 15 9.1 3.87

Table VIII. Descriptive statistics for various measures for Power Failure

Descriptive Statistics Min Median Max Mean Std

Measure Approach

CompletenessT Aspect 0.38 0.88 1 0.88 0.20

Standard 0 0.88 1 0.72 0.36

CompletenessS Aspect 0.75 0.75 1 0.86 0.13

Standard 0 1 1 0.88 0.35

Completeness Aspect 0.56 0.88 1 0.87 0.13

Standard 0.11 0.831 1 0.74 0.32

CorrectnessT Aspect 0.38 0.88 1 0.88 0.2

Standard 0 0.88 1 0.72 0.36

CorrectnessS Aspect 0.56 0.75 1 0.81 0.15

Standard 0 1 1 0.88 0.35

Correctness Aspect 0.56 0.88 1 0.84 0.13

Standard 0.11 0.83 1 0.74 0.32

RedundancyT Aspect 0 0 0.33 0.04 0.11

Standard 0 0.2 1 0.27 0.32

RedundancyS Aspect 0 0 0.5 0.09 0.19

Standard 0 0.5 1 0.37 0.35

Redundancy Aspect 0 0 0.4 0.06 0.14

Standard 0.1 0.24 0.9 0.30 0.26

Effort (Minutes) Aspect 5 10 35 16 10

Standard 5 5 15 7 4

Table IX. Descriptive statistics for various measures

Descriptive Statistics Min Median Max Mean Std

Measure Approach

CompletenessT Aspect 0 0.88 1 0.77 0.3

Standard 0 0.67 1 0.64 0.28

CompletenessS Aspect 0.5 0.75 1 0.81 0.18

Standard 0 1 1 0.88 0.34

Completeness Aspect 0.2 0.85 1 0.78 0.21

Standard 0.11 0.67 1 0.64 0.25

CorrectnessT Aspect 0 0.88 1 0.77 0.3

Standard 0 0.67 1 0.63 0.28

CorrectnessS Aspect 0.5 0.75 1 0.78 0.17

Standard 0 1 1 0.72 0.21

Correctness Aspect 0.2 0.84 1 0.7 0.21
Standard 0.11 0.67 1 0.64 0.25

RedundancyT Aspect 0 0 1 0.09 0.24
Standard 0 0.16 1 0.25 0.29

RedundancyS Aspect 0 0 0.75 0.14 0.24

Standard 0 0 1 0.31 0.41

Redundancy Aspect 0 0 0.9 0.23 0.34

Standard 0 0.43 0.9 0.39 0.26

Effort (Minutes) Aspect 5 19 50 18 11

Standard 5 7 15 8 4

Simula Research Laboratory, Technical Report 2011-06 October 2011

14

APPENDIX C: RESULTS OF POWER ANALYSIS FOR NON-

SIGNIFICANT RESULTS

Power analysis can be used during the design stage of an

experiment to determine how many subjects are likely to be

needed, or after the fact to help interpret non-significant

results. The latter may be due to small samples sizes and

effect sizes that are smaller than expected. Power analysis is

particularly important for controlled experiments in

software engineering that involve human subjects, as they

normally suffer from small sample sizes because of the

limited availability of trained subjects and the high cost of

conducting experiments. In our context, like in most

software engineering experiments, the number of subjects is

imposed by external constraints and a retrospective power

analysis, as suggested in [25], helps interpret non-significant

results in such conditions. For each statistical test

considered, such an analysis estimates the minimum effect

size at which we can observe an acceptable level of power

(typically 80%). This means that above that minimum, we

can probably interpret a non-significant result as an absence

of effect. Below this threshold the effect might be present

but remain undetected.

In our experiment, we are interested in comparing the

aspect state machines with standard UML state machines.

We perform power analysis for the dependent variables that

did not yield significant results and followed the method of

calculating power as reported in [25], which requires a fixed

sample size, a set significance level (0.05) and power level

(80%), and uses the observed variance to calculate the

corresponding, minimum effect size. We didn‘t use

standardized effect sizes as suggested by Cohen [26] since

those cannot be easily interpreted in a software engineering

context.

Table X summarizes the results of power analysis. The

table shows the estimated effects size thresholds

corresponding to 80% power for measures that yielded non-

significant results (Minimum effect size). This means that for

effect sizes less than these thresholds, power is less than

80% thus entailing a significant risk of error (type II) in not

rejecting the null hypotheses. In other words, for effect sizes

below these thresholds, we cannot draw conclusions with

confidence from the statistical test results presented in Table

V. The Average column in Table X shows the average

values for the dependent variables, when combining all the

observations being compared from both approaches. The

last column shows the percentage of Average that

corresponds to the minimum effect size. For example, in

Table X, the result of Completeness for Network Failure

yielded an estimated effect size of 0.17 (28% of average) to

achieve 80% power. The observed effect size is 0.09, which

is lower than this estimated effect size (0.17), thus

explaining the lack of significance. This suggests that we

need to collect more observations, if we want to draw

conclusions with confidence for effect sizes below 28% of

the average. Similar results are observed for other measures

for individual crosscutting behaviors, which are summarized

in Table X.

Table X. Results of power analysis

Crosscutting Behavior Measure p-value Observed Effect Size Minimum Effect Size Average Minimum Effect Size/Average

Cancel Transaction Completeness 0.20 0.05 0.15 0.74 0.20

Correctness 0.20 0.05 0.15 0.74 0.20

Network Failure Completeness 0.16 0.09 0.17 0.6 0.28

Correctness 0.156 0.08 0.16 0.59 0.27

Redundancy 0.48 0.08 0.16 0.59 0.27

Power Failure Completeness 0.96 0.07 0.18 0.81 0.22

Correctness 0.08 0.05 0.18 0.79 0.23

