
A Literature Review of Agile Practices and Their Effects in
Scientific Software Development

Magnus Thorstein Sletholt
University of Oslo

P.O. Box 1080
N-0316 Oslo, Norway

+47 934 97 004

magnusts@ifi.uio.no

Jo Hannay
Simula Research Laboratory

P.O. Box 134
N-1325 Lysaker, Norway

+47 488 94 138

johannay@simula.no

Dietmar Pfahl
Lund University
P.O. Box 118

SE-221 00 Lund, Sweden
+46 46 222 41 41

dietmar.pfahl@cs.lth.se

Hans Christian Benestad
Simula Research Laboratory

P.O. Box 134
N-1325 Lysaker, Norway

+47 982 57 805

benestad@simula.no

Hans Petter Langtangen
University of Oslo / Simula Research Laboratory

P.O. Box 134
N-1325 Lysaker, Norway

+47 995 32 021

hpl@simula.no

ABSTRACT
The nature of scientific research and the development of scientific
software have similarities with processes that follow the agile
manifesto: responsiveness to change and collaboration are of the
utmost importance. But how well do current scientific software
development processes match the practices found in agile
development methods, and what are the effects of using agile
practices in such processes? In order to investigate this, we
conduct a literature review, focusing on evaluating the agility
present in a selection of scientific software projects. Both projects
with intentionally agile practices and projects with a certain
degree of agile elements are taken into consideration. In the
agility assessment, we define and utilize an agile mapping chart.
The elements of the mapping chart are based on Scrum and XP,
thus covering two of the most prominent agile reference models.
We compared the findings of the literature review to results of a
previously conducted survey. The comparison indicates that
scientific software development projects adopting agile practices
perceive their testing to be better than average. No difference to
average projects was perceived regarding requirements-related
activities. Future work includes an in-depth case study to further
investigate the existence and impact of agility in three large
scientific software projects, ultimately aiming at a better
understanding of the particularities involved in developing
scientific software.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General D.2.9 [Management]:
Software process models, Software quality assurance K.6.3
[Software Management] Software development, Software
process

General Terms
Management, Measurement, Documentation, Experimentation,
Human Factors, Theory

Keywords
Agile software development, Literature review, Scientific
software, SCRUM, XP.

1. INTRODUCTION
Software engineering (SE) research has traditionally focused on
techniques, methods and concepts that are generally applicable.
Scientific software, however, operates in very specialized
domains. Diane Kelly suggested that the domain-specificity of
science might explain why results of research in SE have only
rarely been oriented toward scientific computing [14].

Recently however, researchers both within the SE and scientific
software communities have started investigations into the nature
of scientific software development. Scientists use their software to
do complex calculations or simulations. In some scientific
projects, the software may be used in order to test a scientific
theory. These characteristics of scientific software entail that, in
contrast to the development of, say, administrative or business
enterprise software, the writers of scientific software cannot
determine what the correct output of an application should be in
the traditional sense. Also, the software may evolve through the
combined effort of a number of scientists over the course of many
years, continuously adding new functionality to the system [18].
This poses particular challenges from the software engineering
point of view: First, requirements elicitation and specification will
be highly dynamic. Due to the exploratory nature of many
scientific projects, the elicitation and specification of
requirements is problematic because they may be unclear, or even
unknown, up-front. In fact, to the degree that any specification is
perceived necessary, requirements are typically written near the
completion of the software. Second, since requirements are of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SECSE’11, May 28, 2011, Waikiki, Honolulu, Hawaii, USA.
Copyright 2011 ACM X-XXXXX-XXX-X/XX/XXXX…$XX.00.

such a volatile nature, one should expect that testing the software
with regards to such requirements would be problematic.

Thus, a priori, inherent characteristics of scientific software
would seem to impede requirements handling and testing in the
outset. In fact, the lack of knowledge about requirements and
testing principles has been identified as problem areas in several
studies [4, 10, 17]. In a recent survey conducted by some of the
present authors, we identified that requirements activities are
perceived as problematic in scientific software projects, especially
when the teams are large or when scientists dedicate much time to
developing software [10]. We also identified that the definition of
test cases for validation and verification of the software is
perceived as challenging. For example, it is often not obvious to
stipulate whether an error lies within the scientific theory or in the
implementation (numerical approximation) of that very theory.
Among many of the participants in the survey in [10], testing-
related activities were indeed regarded as an important part of the
project. However, there was a considerable difference between
the number of survey participants having said opinion and the
number of survey participants having good command of such
activities. Consequently, testing skills seems to be a clear weak
point for scientists developing software.

In most aspects of the development of scientific software, the urge
to conduct science is the primary motivation and goal. Scientists
therefore have a different approach to developing software than
software engineers; their mindset is to perform science, not to
write software [7]. The development method one ends up with is
usually one that has emerged as best practices based on local
experience [4]. Also, the variation in domains and motivation
found in scientific software projects are factors that influence
development methods, and one would consequently, expect large
variations in development methods both across and within
domains.

Nevertheless, some common ground may be found, and due to the
challenges with determining requirements up-front and the
subsequent testing, scientific software development may lend
itself more to agile-oriented practices than plan-driven practices.
Sanders supports this notion by stating that most projects under
investigation in her study had an iterative, rather than a plan-
oriented, approach to development [17].

Therefore, our next step towards a better understanding of
scientific software development and in order to propose SE
practices for scientific software development, is to review current
literature reporting on scientific software development having two
goals in mind. First, we aim to investigate the extent to which
agile practices have been used in scientific software projects.
Second, we aim to investigate the impact on testing and
requirements activities in projects with agile practices. We define
two propositions, to be investigated as part of the literature
review:

P1. Projects using agile practices have a better handling of
testing-related activities.

P2. Projects using agile practices have a better handling of
requirements activities.

The rest of the paper is structured as follows. In Section 2, we
present the list of agile practices that will be used as a reference
model for identifying agility in scientific software development

projects. In Section 3, we present the literature review and its
results. In Section 4, we discuss the findings and the limitations of
the study. In Section 5, we describe future work. We conclude in
Section 6.

2. LIST OF AGILE PRACTICES
To examine the use of agile practices in scientific software
projects, we performed a literature review that extracted and
critically appraised the available information on the subject. Both
intentional, explicit use of agile methods and papers reporting
agile-similar practices were included.

Table 1. Agile Mapping Chart

Agile practices

1
Priorities (Product Backlog) maintained by a dedicated role
(Product Owner)

2
Development process and practices facilitated by a dedicated role
(Scrum Master)

3 Sprint planning meeting to create Sprint Backlog

4 Planning poker to estimate tasks during Sprint planning

5 Time-boxed sprints producing potentially shippable output

6
Mutual commitment to Sprint Backlog between Product Owner
and Team

7 Short daily meeting to resolve current issues

8 Team members volunteer for tasks (self organizing team)

9 Burndown chart to monitor sprint progress

10 Sprint review meeting to present completed work

11 Sprint retrospective to learn from previous sprint

12 Release planning to release product increments

13 User stories are written (*)

14 Give the team a dedicated open work space (*)

15 Set a sustainable pace (*)

16 The Project Velocity is measured (*)

17 Move people around (*)

18 The customer is always available (*)

19 Code written to agreed standards (*)

20 Code the unit test first

21 All production code is pair programmed

22 Only one pair integrates code at a time

23 Integrate often

24 Set up a dedicated integration computer

25 Use collective ownership (*)

26 Simplicity in design (*)

27 Choose a system metaphor

28 Use CRC cards for design sessions

29 Create spike solutions to reduce risk (*)

30 No functionality is added early

31 Refactor whenever and wherever possible

32 All code must have unit tests

33 All code must pass all unit tests before it can be released

34 When a bug is found tests are created

35 Acceptance tests are run often and the score is published

The projects described in the papers, were analyzed with respect
to 35 agile practices, as listed in Table 1. The first twelve
practices originate from the Scrum methodology [5], while the
remaining 23 elements are XP practices [20]. We found that six
XP practices from [20] overlapped with the Scrum practices and
were therefore not included in the table. The six practices are:

EP1. Release planning creates the release schedule.

EP2. A stand up meeting starts each day.

EP3. Make frequent small releases.

EP4. The project is divided into iterations.

EP5. Iteration planning starts each iteration.

EP6. Fix XP when it breaks.

The elements marked with an asterisk in Table 1 are XP practices
from [20], but are also recommended practices in the Scrum
methodology [5]. In short, Table 1 covers both XP and Scrum, but
does not duplicate similar concepts.

By merging Scrum and XP practices we do not rely too heavily
on a single methodology. Also, the chosen methodologies are
well-established, they are both accessible and there is general
consensus with regards to their content.

Scrum and XP are complementary in the sense that Scrum focuses
on practices for management and organization, while XP focus
more on technical development practices. The combined set of
practices addresses a large number of concerns in general
software development, while simultaneously capturing the
essence of the agile mindset.

3. LITERATURE REVIEW

3.1 Research Method
The literature review is performed in a similar fashion to the
method described in [8]. Due to the sheer number of research
fields where scientific software development can be found,
multiple literature databases had to be included for a sufficiently
comprehensive result set to be returned.

The search query consisted of the following sub-queries:

SQ1. XP AND scientific AND software,

SQ2. Agile AND scientific AND software,

SQ3. Agile AND scientific AND research,

SQ4. XP AND scientific AND research,

SQ5. Scrum AND scientific,

SQ6. Crystal AND scientific,

The pattern of the complete query was then: Q1 or Q2 or Q3 or
Q4 or Q5 or Q6.

Agile terms like lean development or feature-driven development
could have been included in the search queries. However,
research on less renowned agile methodologies (compared to
Scrum and XP), would likely be included in either Q2 or Q3. The
query yielded a great number of results; in some databases there
was a three-figure number of hits. Most of these papers were
clearly irrelevant; many of them originating from Q6 concerning
chemistry objects of crystal-nature. There were also a large
proportion of clearly irrelevant papers describing the apparent
lack of scientific foundation for agile practices, as well as papers
on how to execute scientific software on the Windows XP
platform.

The papers were collected from the ACM, IEEE Xplore,
ScienceDirect and ISI Web of Science databases. After the search
in the databases, a search for the keywords was performed in
Google Scholar to collect any relevant papers falling short of the
original search. This search identified one additional paper
(number 9 in the list in Section 3.2). In Table 2, the statistics of
the literature search and filtering of results are presented.

A large number of the retrieved papers could be excluded purely
based on the title. This was the case when the focus was on
aspects other than software development; for example when the
science rather than the development was presented, or when the
paper did not portray software development at all. For papers
where this distinction could not be made based on the title, the
abstracts were thoroughly examined. In the IEEE Xplore and ISI
Web of Science databases, some fine-tuning of sub-query 6 was
necessary due to an overwhelming amount of results (due to
chemistry-papers describing objects with crystalline structure).
This refinement was based on publication year (we filtered out
papers published prior to year 2000), as well as on filters for
publication title and subject provided by the respective database
search engines.

Table 2: Summary of search results and filtering

 ACM IEEE ScienceDirect ISI Web

SQ1 5 7 11 11

SQ2 14 21 3 24

SQ3 12 18 4 27

SQ4 3 1 1 7

SQ5 2 3 1 3

SQ6 26 3014 305 1004

SQ6 (refined) 26 114 305 4

Total unique 49 145 320 59

Excluded title 36 133 313 59

Excluded abstract 11 8 6 42

Relevant 2 4 1 6

Total unique relevant 8

3.2 Relevant Papers
The literature search, and subsequent filtering, resulted in the
following list of candidate papers for full review:

1. Engineering the Software for Understanding Climate Change
[9]

2. An empirical characterization of scientific software
development projects according to the Boehm and Turner
model: A progress report [6]

3. Test driven development and the scientific method [15]

4. Chaste: using agile programming techniques to develop
computational biology software [16]

5. Agile methods in biomedical software development: a multi-
site experience report [13]

6. When software engineers met research scientists: A case
study [19]

7. Exploring XP for scientific research [21]

8. Is Scrum and XP suitable for CSE Development? [3]

9. Introducing Agile Development into Bioinformatics: an
Experience Report [12]

After examining the above papers in detail, four of them (number
2, 3, 6 and 8 in the list) could be excluded from any further
review: Paper 2 focuses on a future, planned study where the
objective is to obtain an empirical characterization of scientific
software. One of the aims of performing the study is to assess
how suitable agile and plan-driven approaches are in scientific
software projects, and the study, when completed is relevant to
our current research. In paper 3, the techniques and practices of
XP are compared with the manner of conducting scientific
inquiries. Some similarities are investigated (for instance how
test-driven development resembles theory building and
exploration), but the study is not directly related to scientific
software projects and the applied processes therein. A scientific
software project was described in paper 6, but the applied process
was plan-driven. Due to project issues and largely unsatisfactory
development, the authors discuss whether agile practices could be
introduced and whether these would resolve (at least to some
extent) the problems they encountered. Paper 8, focused on
whether it is possible, or sensible, to use agile in scientific
software projects. They investigate the constituents of agile
methods and assess how each of them aligns with the desiderata
of scientific software development. None of the four above
mentioned papers reported on experiences with agile practices,
and they were therefore excluded from our review.

Summaries of the remaining five relevant papers are presented in
the following sub-sections.

3.2.1 Paper 1 – Engineering the Software for
Understanding Climate Change
In “Engineering the Software for Understanding Climate
Change“, the results of a case study investigating the development
practices exercised by climate researchers at the Met Office
Hadley Centre are presented. The paper is a collaborative effort
between a climate scientist from the research center and a
software engineer from the University of Toronto, Canada. The

empirical evidence collected were twenty-four interviews with
participating scientists, direct observations of meetings and
workshops and quantitative data extraction from the code base.

The aim of the study was to investigate the current practices
employed by the scientists at Met Office Hadley Centre. The high
degree of agility present in the development process was a
surprising result for the software engineer. One of the most
significant differences, when compared to other scientific
software projects, was the emphasis put on verification and
validation activities. The authors also claim that requirements
handling followed a (semi-)agile approach. As there was no
explicit agile method enforced in the project, the high level of
agility identified was an important result.

The authors discuss some of the validity threats, and the actions
undertaken to handle these, in a separate chapter. One of the
threats mentioned by the authors are terminology issues, as some
terms are not easily mapped when discussing with scientists, who
may have different understanding and recognition of software
engineering terms and concepts. Follow-up interviews and
feedback sessions with the interviewees were organized to reduce
such threats.

The research questions for this study were not directly related to
the effects of agile practices. Agile practices were employed, but
no explicit agile method was used, and it is difficult to know
whether it was aspects of agility in the process that caused the
good testing practices. Perhaps the notable testing achievements
present here were caused by other factors, such as the level of
correctness required in the domain of climate change. Also, the
development process had some discrepancies in relation to a
proper agile process model, making it questionable whether
testing activities indeed were executed in an agile manner.

As the authors of paper 1 report, there are some external validity
issues. There was only one project under examination. Although it
might be a representative case for the specific domain of climate
change, it does not necessarily represent scientific software in
general. Some alternative explanations are then plausible, as is
also indicated in the paper; the specific way the project adapted
and tailored agile practices might have been influenced by the
climate change domain’s testing requirements, which may not be
as strict in other domains.

The connection between presented evidence and the claims/results
is not explicit. This can be due to the focus of the paper, which
was to characterize the development practices found in the
project. Its main projective was not to assess the suitability of
agile methods, and even less to emphasize on the effects of an
agile approach. Therefore, the paper is mostly relevant for
analyzing the presence of agile practices, not so much for
examining their effects.

The project is referred to as Project 1 in Table 3.

3.2.2 Paper 2 – Chaste: Using Agile Programming
Techniques to Develop Computational Biology
Software
Chaste is a computational biology project with a large number of
scientists involved. The aim of the project is to provide a library
for cardiac modeling and cardiac electrical activity simulation.
The paper is written by a total of ten researchers, stringing

together efforts from both computer scientists and biologists. A
case study regarding the use of agile methods is the topic of the
paper.

Introduction of XP in the Chaste project was claimed to be a
massive success. They found the basic agile principle of being
responsive to change to be very much in the natural spirit of
general scientific research. Consequently they favored the
responsive ability imposed by adopting XP in the project. The
authors also emphasized that the agile approach to testing was a
valuable asset, both concerning the testing of new functionality
and regression testing of existing functionality.

The evidence is presented in a reasonably comprehensive manner,
although the composition of the teams and organizational aspects
are not described in much detail. The structure within and across
the teams, as well as the number of teams and members within a
team, remain unknown. It is suggested that there was a large
number of scientists involved and it would have been interesting
to know more about the organizational aspects to be better able to
discuss the potentials for generalizing the results from the paper.

The project investigated is referred to as Project 2 in Table 3.

3.2.3 Paper 3 – Agile Methods in Biomedical
Software Development: A Multi-Site Experience
Report
Paper 3 is another study with origins from the field of
bioinformatics. The paper reports on experiences from multiple
sites and projects. A total of six projects, all incorporating key
agile practices, are examined by the authors. The
multidisciplinary group of authors represents different universities
and research centers, all based in the United States.

Agile methods were deemed very suitable for this type of
scientific research and software development. The developers
regarded the agile approach to be a key success factor. In this line
of biomedical software development, the software has to be
responsive to change at two levels. Both progress in the scientific
domain and specific customer demands can enforce changes to
the software.

Subjective experiences are the primary source of evidence in the
paper. The group of projects under examination was selected
during meetings and biomedical conference discussions. To
collect and elicit the tacit knowledge and experience from the
involved parties, the authors initiated a basic mapping survey.
Thereafter they conducted open-ended interviews with key
developers across the projects. To ensure the quality of the
collected data, several rounds of feedback sessions were arranged.
The authors extensively described the evidence and the method
with which it was collected.

A notable strength compared to the other studies in this report is
that data was collected from six different projects. Similar effects
were reported in all cases, which strengthen the claims of positive
effects due to agile practices.

However, the cases under examination have some obvious
similarities, restraining the scope for external validity:

1. They were all of small size (a single team with 2-5 members)

2. They were all in the domain of biomedical software
development.

The first issue is consistent with the notion that small size projects
are more inclined to succeed with agile methods, than larger
projects with multiple teams. It has been suggested in some
studies that XP does not scale well to extensive projects. The
second issue pertains to whether some common attributes present
in biomedical software development make them more prone to
embark on and succeed with agile development methods. It would
be interesting to observe whether a contrast case shared the same
results as the ones investigated.

The six projects described in the paper are referred to as Projects
3.1to 3.6 in Table 3.

3.2.4 Paper 4 - Exploring XP for Scientific Research
In this paper the authors reported from an attempt to apply XP to
a project at a NASA research center. The two authors worked
closely together, and were the only developers on the project.
They aimed at assessing the suitability of XP in a scientific
software project, and reported that XP was successfully adopted
in their project. In particular, they reported that code quality
improved, more bugs were caught, development was more
focused, maintenance was easier and productivity increased.

Although the use of XP was reported as promising, there are some
limitations to the study’s generalizability. First, the software
project was very small, consisting of only two members. Also,
some of the applied practices, such as pair programming, are only
possible to perform when the scientists are co-located and
available concurrently, which is not always the case for scientists.
The paper is still relevant for small scientific project teams, albeit
more valuable on a small-scale team basis than on a managerial
level. The results might not be transferable at all to a scientific
project of larger size.

Another limitation to the relevance for the scientific community at
large is that the developers could work exclusively with this
project during the 2-month life span of the project. For
generalizability, there are two problems with this situation: First,
most scientific software projects have a life span of several years,
sometimes even decades, meaning that any long-term effect of
using XP is not addressed by this study. Second, even though an
increasing part of work time is devoted to writing software, most
scientists are engaged in other research and education activities.
There is seldom opportunity for full-time dedication to software
development for all team members in a large project. Therefore,
the project context reported in paper 4 is somewhat remote from
the regular settings of scientific software projects.

The researchers had no experience with agile methods prior to the
experiment. No software engineers were involved in the planning
or execution of it. The assessment of how well the new
development methodology was implemented is highly subjective.
The authors, being excellent researchers and capable scientific
programmers, still lack software engineering knowledge. The
reader might question the degree to which agile principles were
carried out properly, and thereby question the validity of the
reported results.

Also worth noting is the fact that the effects of applying XP may
be confounded with effects of other new elements brought into the

project. Ruby and object-oriented design represented two
completely unfamiliar concepts. The usual language for the two
researchers, Fortran, is quite different from Ruby. Perhaps Ruby
with its object-orientation and testing frameworks were as
significant to the alleged improvements as the use of XP.
Consequently, the reasons for the team’s apparent preference of
XP to prior practices may have been connected to other elements
introduced, or a combination of these and XP. There is no
substantial evidence presented indicating that the testing
improvements are exclusively caused by the use of XP in the
project.

The project is referred to as Project 4 in Table 3.

3.2.5 Paper 5 - Introducing Agile Development into
Bioinformatics: an Experience Report
One of the authors of Paper 3 [13] also wrote a report on the
experiences of introducing agile techniques in a bioinformatics
project. This project was not among the six in Paper 3. The author
presents an application of an agile method to their process, as an
answer to their need for being more responsive to changing
requirements. Various agile practices, adopted from a
combination of SCRUM and XP, were then incrementally
incorporated into the development process.

The authors report positive experiences with implementing agile
practices in increments, focusing on testing and requirements
activities. They found the agile practices to be beneficial in
dealing with flexible requirements. The agile testing practices also
facilitated the scientific setting where correct and reproducible
results are of the utmost importance.

The evidence consists of the subjectively reported experiences of
the involved project members. The incremental fashion of
introducing the agile method is well documented in the paper,
while the effects of each increment are documented to a lesser
degree. It is therefore difficult to find evidence on the effects of
agile practices from the paper. In conclusion, the findings in this
study cannot be particularly emphasized when conclusions are
made in the synthesis.

The project is referred to as Project 5 in Table 3.

3.3 Mapping of Projects to Agile Practices
Once the final set of relevant papers was defined, we used a
simple yes/no indicator when assessing each reported project
against each individual practice. Table 3 shows the result of this
mapping. Fields are left blank if we were not able to determine
from the available information whether (or not) a practice was
followed. This was the case in particular with papers more
focused on the effects of the agile approach, rather than naming or
describing the employed practices in much detail. Nonetheless,
even with no explicit mentioning that a particular practice was not
used, it was sometimes possible to assign a “No”. For example,
for Project 1 in Table 3, we could assess that practice 1, i.e.,
"Priorities (Product Backlog) maintained by a dedicated role
(Product Owner)", was not used, because the paper stated that all
project members identified, specified and prioritized new features,
hence we could deduce that prioritization was not a centralized
responsibility of a Product Owner.

Table 3: Agile mapping for the examined projects

 Projects

1 2 3.1 3.2 3.3 3.4 3.5 3.6 4 5

1 No No

2 No No

3 No

4 No No

5 Yes Yes Yes Yes Yes Yes Yes Yes Yes

6 No No

7 No Yes Yes Yes Yes Yes Yes Yes

8 Yes Yes Yes No Yes Yes Yes Yes

9 No Yes Yes

10 No

11 Yes

12 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

13 No Yes Yes Yes Yes Yes Yes Yes Yes

14 Yes Yes Yes Yes Yes Yes Yes Yes

15 Yes

16 No Yes Yes Yes Yes Yes Yes Yes Yes Yes

17 No Yes Yes

18 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

19 Yes Yes Yes

20 Yes

21 No No No No No No No Yes

22 Yes

23 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

24

25 Yes Yes Yes Yes Yes Yes Yes Yes Yes

26 Yes

27 Yes

28

29

30 Yes

31 Yes Yes Yes Yes Yes Yes Yes Yes Yes

32 Yes Yes

33

34 Yes

35 Yes Yes Yes

3.4 Synthesis of Findings
The papers all indicated positive effects of agile practices in
scientific software developments. A tentative conclusion is that
agile methods can effectively handle the special characteristics of

requirements and testing in scientific software development. The
evidence in favor of such a conclusion is stronger for small
projects with relatively few team members.

Almost all of the studies reported on improvements to the testing
activity. Testing was performed more extensively, and the
approaches to adding tests of new modules improved [16, 21].
The rigor of the testing approaches seemed to satisfy the need for
having reproducible, correct results [12]. For requirements
activities, a degree of mismatch was identified between scientific
software projects and the agile-assumed context of a clear
customer-developer relationship. However, the responsiveness
and flexibility of agile methods proved valuable for the
requirements activities. Elicitation and specification of tasks were
perceived as easier and more focused with agile methods [16, 21].
Good practices regarding requirements prioritization were also
observed [9].

In conclusion, the literature review supported proposition P1, i.e.,
that projects using agile practices have a better handling of
testing-related activities. The review gives some support for
proposition P2, i.e., that projects using agile practices have better
handling of requirements activities, but the findings are not as
substantial as for P1.

4. DISCUSSION OF FINDINGS AND
LIMITATIONS
The papers were all experience reports. Consequently, the
evidence presented in the papers was personal experience
typically gathered from interviewing key project members. Some
authors also used direct observations and multiple feedback
interview sessions [9, 13]. The authors of the papers were often
participants in the systems development themselves, relying on a
combination of their own expert opinion and personal experience
when arguing for their claims. This may open up for both
researcher and personal bias, especially in papers with few
authors. Some of the studies [9, 12, 13] did not have the effects or
results of applying agile methods as the primary focus. The claim-
evidence relationship is less obvious in these studies than in
studies focusing on applying an explicit agile method and
reporting on the results of doing so [16, 21].

Internal validity issues were most salient in [9, 21], and especially
evident in [21] where they introduced several new elements
besides XP. Only in one study was there any consideration as to
the long-term effects of applying agile methods [16]. It is hard to
make generalized assumptions based on this single study,
particularly when the study only examined a single project. Other
internal validity issues were present in [9, 13], due to not having a
defined agile methodology applied. It is difficult to know how
much of the results can be attributed to the agility in the
processes.

For external validity, we cannot automatically transfer the results
of these studies to the general scientific software community.
First, the settings of the projects and the composition of the teams
were not necessarily representative for scientific software
development. Although there were a considerable number of
projects investigated, nearly all of these were of small size
(generally 2-5 participants). As mentioned in characterization
studies of scientific software [17], there are often a large number
of people contributing to the development, which provide extra

obstacles for such projects. None of the projects were of a
distributed nature, which is also quite common in scientific
software development.

Second, the domain of most of the projects was bioinformatics,
which is tightly connected to general informatics and computer
science. Bioinformaticians may have an adequate understanding
of software engineering concepts incorporated in their formal
education, since a common career path is to take a bachelor
degree in computer science and then proceed with further
education in bioinformatics. It may be that the increased level of
software engineering knowledge makes scientists in such projects
more prone to apply software engineering concepts and practices
and to succeed when doing so.

Limitations to the reviewed papers also limit the degree to which
we can draw conclusions in our literature review. We have made
efforts to take this into account when reporting our findings.
Additional limitations to our review include reliability threats due
to single-reviewer assessment, publication bias due to papers
possibly being submitted and published more readily when they
report positive findings, and selection bias due to reviewer
reliability threats and search engine mechanics. Reliability threats
and selection bias will be lessened by adding multiple reviewers
in the next round of this line of research. Publication bias can be
ameliorated to some extent by also including “gray literature”
(technical reports, unpublished material etc.), but we consider the
cost of retrieving such literature to be high compared to how this
might benefit our goal in this paper, which is to prepare for a
more thorough investigation into agile practices in scientific
software development projects.

5. FUTURE WORK
In continuation of our questionnaire based survey [10] and the
literature review reported in this paper, our next step will be to
conduct a case study [22] that investigates three large scientific
software projects; FEniCS, Dalton and OLGA. The case study
will be exploratory in the first part and confirmatory in the second
part. Research methods will include techniques for eliciting and
externalizing practitioners’ tacit knowledge [1, 2, 11].

The purpose of the case study is to:

1. Analyze and conceptualize core process elements in the
software development processes in the three projects.

2. Investigate to what extent these elements map to elements in
agile methodologies, i.e. evaluation according to the agile
mapping chart in Table 1.

3. Compare the agile mapping charts from the three projects to
the findings of the literature review.

In each project, 3 to 4 key developers will be interviewed. We
have gained access to the projects through the network of one of
the authors of this paper. The projects are all international
collaborations, but the interviewees work in sub-projects located
in Norway.

The first case under investigation is FEniCS, which is a mutual
project joining together participants from several universities and
research institutions in the computational mathematics domain.
The aim is to facilitate automatic solution of differential
equations. Although in a constantly operational state, there is still
no version 1.0 of FEniCS. The program is open source and

available for everyone and even distributed through software
managers in Ubuntu and Debian.

FEniCS is no traditional software application per se, but rather a
collection of (more or less) separate packages that form a
framework for automated solution of differential equations.
Researchers write applications, typically relating to a fairly
specific scientific problem, on top of the FEniCS
framework/interface. The components are written in C++ and
Python. There is an international community of developers who
contribute with coding and documentation, thus implying a fairly
distributed development effort.

The Dalton project is an older scientific software project, in the
molecular electronic structures sub-domain of chemistry, aiming
to automate computation of such molecular properties. The
software was first released in 1997, with several versions in the
years to follow; the latest dating to the first quarter of 2010. Like
FEniCS there is an international community of scientists involved
in the development of the program.

The program is written in FORTRAN.77 and C, and the authors
recommend a UNIX platform. The program consists of seven
components, with more or less independent development cycles.
The program is distributed free of charge, as long as the user signs
a personal license agreement.

The third case is OLGA. Contrary to the other cases, this is a
commercial project, developed by the SPT Group. OLGA is a
simulator tool for accurate flow modeling of oil, water and gas in
wells and pipelines. Being a commercial system that must stay
competitive, OLGA has a more traditional type of developer-
customer relationship.

These cases will complement the projects investigated in the
literature review. They will represent different types of scientific
software than the projects investigated in the review, as they are
much larger in terms of size, life-cycle and participants. By the
selection of cases, we will investigate projects in multiple
domains, and domains other than bioinformatics. In the event of
detecting agile practices in the cases investigated, the combined
analysis of these and the projects examined in the literature
review will enhance the evidence base, and hopefully, increase
the potential for generalizing findings about scientific software
projects employing agile practices.

6. CONCLUSION
Following previous and current investigations into the practice of
scientific software development, we consider it valuable to
analyze and conceptualize the core process elements of such
development, in terms of modern software engineering best
practices.

In this paper, we reported the results of a literature review to
investigate the presence of agile practices in scientific software
development, and to summarize evidence on the effects of such
practices. This is the second study in a three-step research plan,
succeeding a survey on software engineering practices in
scientific software development, and preceding an in-depth case
study on the same topic.

A likely outcome of such investigations will be more explicit and
deliberate scientific software development practices, and also a
timely updating of software engineering methodology to include
domains other than business-administrative software.

Overall, the literature review indicated that agile techniques had
positive effects in the projects investigated. None of the studies
displayed any particular negative side effects. Generally, there are
some validity issues, both internal and external. Hence, in order to
be conclusive on the pros and cons of agile in scientific software,
more research on the matter is needed. Nevertheless, the initial
results from the literature review are indeed promising, so a
preliminary conclusion may be that the agile approach can be
valuable to scientific software development, especially for
smaller-sized teams and projects.

7. ACKNOWLEDGMENTS
Parts of this work were funded by the Excellence Center at
Linköping – Lund in Information Technology (ELLIIT), and by
the Simula School of Research and Innovation.

8. REFERENCES
[1] Argyris, C. 1993. Knowledge for Action. Jossey-Bass

Publishers, San Francisco, CA.

[2] Argyris, C. and Schön, D. A. 1996. Organizational Learning
II. Theory, Method, and Practice. Addison-Wesley
Publishing Company, Reading, MA.

[3] Blom, M. 2010. Is scrum and XP suitable for CSE
development? Procedia Computer Science 1, 1 (May 2010),
1511-1517.

[4] Carver, J. C., Kendall, R. P., Squires, S. E. and Post, D. E.
2007. Software Development Environments for Scientific
and Engineering Software: A Series of Case Studies. In
Proceedings of the 29th International Conference on
Software Engineering (Minneapolis, MN, May 20-26, 2007).
ICSE’07. IEEE Computer Society Washington, DC, USA,
550-559.

[5] Cohn, M. 2009. Succeeding with Agile: Software
Development Using Scrum. Addison-Wesley Professional,
Boston, MA.

[6] Crabtree, C. A., Koru, A. G., Seaman, C., and Erdogmus, H.
2009. An Emprical Characterization of Scientific Software
Development Projects According to the Boehm and Turner
Model: A Progress Report. In Proceedings of the Second
International Workshop on Software Engineering for
Computational Science and Engineering (Vancouver,
Canada, May 23, 2009). SECSE’09. IEEE Computer Society
Washington, DC, USA, 22-27. DOI=
10.1109/SECSE.2009.5069158.

[7] Decyk, V. K., Norton, C. D. and Gardner, H. J. 2007. Why
Fortran? Computing in Science and Engineering 9, 4 (Jul-
Aug. 2007), 68-71. DOI=10.1109/MCSE.2007.89.

[8] Dybå, T., Dingsøyr, T. and Hanssen, G. K. 2007. Applying
Systematic Reviews to Diverse Study Types: An Experience
Report. In Proceedings of the First International Symposium
on Empirical Software Engineering and Measurement
(Madrid, Spain, Sep. 20-21, 2007). ESEM’07. 225-234.
DOI=10.1109/ESEM.2007.59.

[9] Easterbrook, S.M. and Johns, T.C. 2009. Engineering the
Software for Understanding Climate Change. Computing in
Science and Engineering 11 (6), 64-74. DOI=
10.1109/MCSE.2009.193

[10] Hannay, J.E., Langtangen, H.P., MacLeod, C., Pfahl, D.,
Singer, J. and Wilson, G., How Do Scientists Develop and
Use Scientific Software? in Second International Workshop
on Software Engineering for Computational Science and
Engineering (Vancouver, Canada, May 23, 2009).
SECSE’09. IEEE Computer Society Washington, DC, USA,
1-8.

[11] Jarvis, P. 1999. The Practitioner-Researcher. Jossey-Bass
Publishers.

[12] Kane, D. 2003. Introducing Agile Development into
Bioinformatics: An Experience Report. In Proceedings of the
Agile Development Conference (Salt Lake City, USA)
ADC’03, IEEE Computer Society Washington, DC, USA,
132-139.

[13] Kane, D. W., Hohman, M. M., Cerami, E. G., McCormick,
M. W., Kuhlmman, K. F. and Byrd, J. A. 2006. Agile
methods in biomedical software development: a multi-site
experience report. BMS Bioinformatics 7 (273), 1-12.

[14] Kelly, D.F. 2007. A Software Chasm: Software Engineering
and Scientific Computing. IEEE Software 24, 6 (Nov./Dec.
2007), 118-120.

[15] Mugridge, R. 2003. Test Driven Development and the
Scientific Method. In Proceedings of the Agile Development
Conference (Salt Lake City, USA) ADC’03, IEEE Computer
Society Washington, DC, USA, 47-52.

[16] Pitt-Francis, J., Bernabeu, M.O., Cooper, J., Garny, A.,
Momtahan, L., Osborne, J., Pathmanathan, P., Rodriguez, B.,
Whiteley, J.P. and Gavaghan, D.J. 2008. Chaste: using agile
programming techniques to develop computational biology
software. hilosophical Transactions of the Royal Society -
Series A: Mathematical, Physical and Engineering Sciences
366 (1878). 3111-3136.

[17] Sanders, R. 2008. The Development and Use of Scientific
Software, MSc Thesis, Queen's University.

[18] Sanders, R. and Kelly, D. 2008. Dealing with Risk in
Scientific Software Development. IEEE Software 25, 4 (Jul.-
Aug. 2008), 21-28.

[19] Segal, J. 2005. When software engineers met research
scientists: A case study. Empirical Software Engineering 4,
10 (Oct. 2005), 517-536.

[20] Wells, D. 1999. The Rules of Extreme Programming. URL:
http://www.extremeprogramming.org/rules.html. Accessed
on January 19, 2011.

[21] Wood, W. A. and Kleb, W. L. 2003. Exploring XP for
Scientific Research. IEEE Software 20, 3 (May-June 2003),
30-36. DOI=10.1109/MS.2003.1196317.

[22] Yin, R.K. 2003. Case Study Research: Design and Methods.
Sage Publications.

