View Merging in the Presence of Incompleteness and Inconsistency

Mehrdad Sabetzadeh

Steve Easterbrook

Department of Computer Science, University of Toronto
Toronto, ON M5S 3G4, Canada.
Email: {mehrdad, sme}ecs.toronto.edu

Abstract

View merging, also called view integration, is a key prob-
lem in conceptual modeling. Large models are often con-
structed and accessed by manipulating individual views, but
it is important to be able to consolidate a set of views to
gain a unified perspective, to understand interactions be-
tween views, or to perform various types of analysis. View
merging is complicated by incompleteness and inconsis-
tency: Stakeholders often have varying degrees of confi-
dence about their statements. Their views capture different
but overlapping aspects of a problem, and may have dis-
crepancies over the terminology being used, the concepts
being modeled, or how these concepts should be structured.
Once views are merged, it is important to be able to trace
the elements of the merged view back to their sources and
to the merge assumptions related to them. In this paper,
we present a framework for merging incomplete and in-
consistent graph-based views. We introduce a formalism,
called annotated graphs, with a built-in annotation scheme
for modeling incompleteness and inconsistency. We show
how structure-preserving maps can be employed to express
the relationships between disparate views modeled as anno-
tated graphs, and provide a general algorithm for merging
views with arbitrary interconnections. We provide a system-
atic way to generate and represent the traceability informa-
tion required for tracing the merged view elements back to
their sources, and to the merge assumptions giving rise to
the elements.

Keywords: Model Management, View-Based Develop-
ment, View Merging, Inconsistency Management

1 Introduction

Models play a key role in many aspects of requirements
analysis and design. Developers build models of the prob-
lem domain, to understand the relationships between stake-
holders and their goals, and they build models of the sys-
tem under development, to reason about its structure, be-

havior, and function. For complex systems, these models
are constructed and manipulated by distributed teams, each
working on a partial view of the overall system. Building a
consistent, unified view is a major challenge [1].

Individual views may represent information from differ-
ent sources, or information relevant to different develop-
ment concerns. Developers analyze these views in various
ways, and use the results of their analyses to refine their
ideas about the system being modeled. Hence, views may
evolve over time. Multiple versions of some views may be
created to explore competing alternatives, or to respond to
changing requirements. Therefore, most of the time, the
current set of views are likely to be incomplete and incon-
sistent [2].

The term model management describes the set of ac-
tivities concerned with keeping track of the relationships
between these views, and managing consistency as they
evolve. Bernstein [3] identifies a number of useful opera-
tors on views, including Match (to find mappings between
models), Diff (to find the differences between models), and
Merge (to compute the union of a set of models, according
to known mappings between them).

In this paper, we concentrate on view merging. View
merging is useful in any conceptual modeling language as
a way of consolidating a set of views to gain a unified per-
spective, to understand interactions among views, or to per-
form various types of end-to-end analysis.

A number of approaches for view merging have been
proposed [4, 5, 6, 7, 8]. However, these approaches assume
the set of views are consistent prior to merging. This is
fine if the views were carefully designed to work together;
however, for most interesting applications, the views are not
likely to be consistent a priori. A set of views are incon-
sistent if some relationship that should hold between them
does not hold [9]. In the literature on view merging, the na-
ture of such consistency relationships is often left implicit,
and so the problem of inconsistent views is ignored. In gen-
eral, existing approaches to view merging can only be used
if considerable effort is put into detecting and repairing in-
consistencies first.

Recent work on inconsistency management tools [10]
helps in this respect but does not entirely address the prob-
lem because, as we will argue, it is not possible to deter-
mine whether a set of views are entirely consistent until all
the decisions are made about exactly how they are to be
merged. The intended relationships between the views must
be stated precisely.

In this paper, we present a framework for merging mul-
tiple views that tolerates inconsistency between the views.
The framework can be adapted to any graph-based mod-
eling language, as it treats the mappings between views
in terms of mappings between nodes and edges in the un-
derlying graphs. We will demonstrate the application of
the framework to the early requirements modeling language
2* [11] and to entity-relationship models. In ongoing work
we are exploring application to the various modeling nota-
tions of UML.

Our approach to view merging is based on the observa-
tion that in exploratory modeling, one can never be entirely
sure how concepts expressed in different views should re-
late to one another. Each attempt to merge a set of views
can be seen as a hypothesis about how to put the views to-
gether, in which choices have to be made about which con-
cepts overlap, and how the terms used in different views are
related. If a particular set of choices yields an unaccept-
able result, it may be because we misunderstood the nature
of the relationships between the views, or because there is
a real disagreement between the views over either the con-
cepts being modeled, or how they are best represented. In
any of these cases, it is better to perform the merge and an-
alyze the resulting inconsistencies, rather than restrict the
available merge choices.

We use category theory [12] as a theoretical basis for our
merge framework. We treat views as structured objects,
and the intended relationships between them as structure-
preserving mappings. To model incompleteness and in-
consistency, we annotate view elements with labels denot-
ing the amount of knowledge available about them. To
ensure proper evolution of annotations, we constrain how
these labels can be treated in the mappings that interrelate
views. We provide a mathematically rigorous merge algo-
rithm based on an algebraic concept called colimit. This
treatment offers both scalability to arbitrary numbers of
views, and adaptability to different conceptual modeling
languages.

After computing a merge, we may need to know how
the original views and the defined mappings between them
participated in producing the result. Our framework pro-
vides the ability to trace the elements of the merged view
back to the originating views, to the contributing stakehold-
ers, and to the view interrelationship assumptions related to
the elements. We discuss how the information required for
addressing each of these traceability concerns can be gener-

Schedule w Plan
meeting meeting
+

Email requests\ (Available dates \(Agreeable Responses) /Consolidate
to participants be oblained) Qot be 10un; {end request letters > gg(hered results’
Mary Bob
(i) (ii)

Schedule

meeting
Meeting requests) (Available dates) (Agreeable
be sent be obtained / \slot be found

~

end requests Send requests’ onsolidate
by snail mail by email results
Merged View
(iii)

Figure 1. Merging :* views

ated and represented in our framework.

Parts of this paper have previously been published in a
research paper at the 13th IEEE International Requirements
Engineering Conference (RE’05) [13], in a demo paper at
the same conference [14], and in a workshop paper at the
3rd International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE *05) [15]. This pa-
per brings together the ideas described in these earlier pa-
pers, to provide a definitive treatment of our merge frame-
work.

2 Motivating Examples

We will use two working examples throughout the paper,
one involving goal models represented in the ¢* notation,
and another involving database schemata captured by en-
tity relationship diagrams. Through these applications, we
demonstrate how the ideas presented in this paper can be
used for the management of requirements elicitation arti-
facts, and to support the exploratory view merging process.
This section briefly explains these examples, and uses them
to illustrate the main challenges in view merging.

2.1 Merging i* Models

A requirements analyst, Sam, is developing a goal model
for a meeting scheduler [16], based on interviews with two
stakeholders, Bob and Mary. To ensure he adequately
captures both contributions, Sam first models each stake-
holder’s view separately, using the ¢* notation. He then
merges the views to study how well their goals fit together.

Figures 1(i) and 1(ii) show the initial views of Mary
and Bob. At first sight, there appears to be no overlap, as
Mary and Bob use different terminologies. However, Sam
suspects there are some straight-forward correspondences:

Schedule meeting in Mary’s view is probably the same task
as Plan meeting in Bob’s. Mary’s Available dates be obtained
may be the same goal as Bob’s Responses be gathered. Sam
also thinks it makes sense to treat Mary’s Email requests to
participants and Bob’s Send request letters as alternative ways
of satisfying an unstated goal, Meeting requests be sent. Bob’s
Consolidate results task appears to make sense as a subtask of
Mary’s Agreeable slot be found goal. Finally, after seeing both
views, Mary points out that Bob’s positive contribution link
from Send request letters to the Efficient soft-goal is inappro-
priate, although she believes the Efficient soft-goal itself is
important.

For a problem of this size, Sam would likely just do an
ad-hoc merge with a result such as Figure 1(iii), and show
this to Bob and Mary for validation. This (ad-hoc) merge
has a number of drawbacks:

e There is no separation between hypothesizing a rela-
tionship between the original views, and generating a
merged version based on that relationship. Hence, it
is hard for Sam to test out alternative hypotheses, and
it will be very hard for Bob and Mary to check Sam’s
assumptions individually.

e In an ad-hoc merge, Sam will naturally tend to repair
inconsistencies implicitly and align the stakeholders’
views with his own vision of the merge. Hence, we
lose the opportunities to analyze inconsistencies that
arise with a particular choice of merge.

e We have lost the ability to trace conceptual contribu-
tions. If it is important to capture stakeholders’ con-
tributions in individual views, then it must be equally
important to keep track of how these contributions get
adapted into the merged view.

2.2 Merging Entity Relationship Models

In the 2* view merging example in Section 2.1, the
merged view (Figure 1(iii)) would most likely turn out to be
agreeable to both Bob and Mary. However, in a more realis-
tic elicitation problem, arriving at a viable consolidation is
seldom as easy: View merging is an iterative and evolution-
ary process where stakeholders constantly refine their per-
spectives as a result of gaining more knowledge about the
problem, and looking back at previous merges and studying
how their views affect and are affected by other parties’ in-
tentions. To illustrate this, consider the following example:
Suppose Sam, the analyst, now wants to develop a database
schema for a payroll system based on Bob’s and Mary’s per-
spectives. Views are described using Entity Relationship
Diagrams (ERDs).

After sketching Mary’s and Bob’s initial views (Fig-
ure 2), Sam will merge them to produce a unified schema.

Bob

Person

) (i)

Department

| Merged View I

Figure 3. First merge attempt

He identifies the following correspondences between the
two views: Employee in Mary’s view is likely to be the same
entity as Person in Bob’s; and consequently, their name at-
tributes are probably the same. Merging Mary’s and Bob’s
views w.r.t. these correspondences results in a schema like
the one shown Figure 3. For naming the elements of the
merged schema, Sam favored Mary’s naming choices over
Bob’s.

When this merge is presented to Mary, she notices Com-
pany, an entity she had not included in her original view.
She finds the entity to be important; however, she prefers
to call it Corporation. She also decides to add an aggrega-
tion link from Corporation to Department. Further, she deems
Bob’s employed by relationship to be redundant in the light of
the works for relationship and the aggregation link from Cor-
poration to Department. The new merged schema addressing
Mary’s concerns is shown in Figure 4.

When this new schema is shown to Bob, he finds out
that the employed by relationship has been dropped from the

O

Merged View

Figure 4. Second merge attempt

merge; however, he argues that there is no redundancy, as
it is possible for some employees not to be attached to a
particular department. Therefore, he insists that the rela-
tionship be added back to the merge!

An ad-hoc merge, or even a structured one computed in a
classical framework would fail in at least two respects when
faced with a problem such as the one described above:

e It is not possible to describe how sure stakeholders are
about elements of their views, and how their beliefs
evolve over time. If we later need to know how flexible
a stakeholder is w.r.t. a certain functionality, we have
no way of discovering how strongly the stakeholder
argued for (or against) the functionality.

e Disagreements between stakeholders would need to be
resolved immediately after being identified because we
have no means to model such disagreements explicitly.
This is unsatisfactory — previous work suggests that
toleration of inconsistencies and disagreements, and
being able to delay their resolution is basis for flexi-
ble development [9].

The view merging framework that we present in this pa-
per addresses all the problems motivated by the examples in
Sections 2.1 and 2.2.

3 View Merging as an Abstract Operation

The view merging framework presented in this paper is
based on a category-theoretic concept called colimit [12].
In this paper, we will not provide a formal introduction to
colimits, but rather will explain the intuitions that motivate
our use of category theory. A formal treatment of the main
constructs of our approach can be found in [17].

Intuitively, a category is an algebraic structure consisting
of a collection of objects together with a collection of map-
pings (also known as arrows or morphisms). Each mapping
connects a pair of objects, known as its source and destina-
tion. Typically, the objects will have some internal struc-
ture, and the mappings express ways in which the structure
of one object maps onto that of another. For example, if
the objects are geometric shapes, then the mappings could
be transformations that preserve shape, such as rotation and
scaling. This gives rise to a number of familiar constructs
— for example, if a mapping between two objects has an in-
verse, then we say the two objects are isomorphic, i.e. the
objects have the same structure.

The appeal of category theory is that it provides a for-
mal foundation for manipulating collections of objects and
their mappings. In our case, the objects are views, and the
mappings are known or hypothesized relationships between
them. We can express a hypothesis about how a group of
objects are related using an interconnection diagram. An

interconnection diagram is a set of objects of a particular
category and a subset of possible mappings between them'.

The colimit of an interconnection diagram is a new ob-
ject, called the colimiting object, together with a family of
mappings, one from each object in the diagram onto the
colimiting object?. Since each mapping expresses how the
internal structure of its source object is mapped onto that
of its destination object, the colimit expresses the merge of
all the objects in the interconnection diagram. Furthermore,
the colimit respects the mappings in the diagram: The intu-
ition here is that the image of each object in the colimit is
the same, no matter which path through the mappings in the
diagram you follow. By definition, the colimit is also min-
imal — it merges the objects in the diagram without adding
anything essentially new [18].

To merge a set of views, we first express how they are
related in an interconnection diagram, and then compute the
colimit. For example, if we want to merge two views, A and
B, that overlap in some way, we can express the overlap as
a third view, C, with mappings from C to each of A and B:

A B

A

C

In this interconnection diagram, the two mappings f and
g specify how the common part, C, is represented in each
of A and B. The colimit of this diagram is a new view, P,
expressing the union of A and B, such that their overlap, C,
is included only once. This simple interconnection pattern
is known as a three-way merge.

The reason why we hypothesize merges explicitly and
define the merge operation in terms of specific intercon-
nection diagrams, rather than in terms of all given views
and mappings is because, from time to time, we may want
to create merges using only a subset of the existing views.
We therefore need to be able to specify which views are
involved in each merge. Further, we may have several com-
peting versions of mappings between any two participating
views making it necessary also to specify which mappings
are to be used for computing a particular merge.

In practice, interconnection diagrams often have more
complex patterns than that of three-way merge. Figure 5
shows two examples used later in this paper: 5(i) is used
for capturing the relationships between the ¢* meta-model
fragments in Figure 10, and 5(ii) is used for capturing the
relationships between the views in Figure 13.

IThe notion of interconnection diagram in category theory is more general
than this (cf. e.g. [12]), but the extra generality is unnecessary here.

2In the remainder of the paper, with a slight abuse of terminology, we use the
term “colimit” to refer to the colimiting object for a given interconnection
diagram.

R N « T T
e —> o <« o \L
¥ ¥ e

—
=
—

=:

Figure 5. Examples of interconnection patterns

It can be shown that each of the merge algorithms given
in this paper corresponds to colimit computation in an ap-
propriate category. Further details about the correspon-
dence between colimits and the algorithms given herein can
be found in a technical report [19] where the mathematical
underpinnings of our work have been documented.

4 Interconnecting and Merging Graphs

In our framework, we assume that the underlying syn-
tactic structure of each view can be treated as a graph. This
section introduces graphs, and describes how they can be
interconnected and merged. Further, it explains how graphs
can be equipped with a typing mechanism. The merge al-
gorithm for graphs is built upon that for sets; therefore, we
begin with a discussion of how sets can be merged.

4.1 Merging Sets

A system of interconnected sets is given by an intercon-
nection diagram whose objects are sets and whose map-
pings are (total) functions. Rather than treating functions
as general mapping rules between arbitrary sets, we con-
sider each function to be a map with a unique domain and
a unique codomain. Each function can be thought of as an
embedding: each element of the domain set is mapped to a
corresponding element in the codomain set. For example,
in a three-way merge, the mappings would show how the
set C' is embedded in each of A and B.

To describe the algorithm for merging sets, we need
to introduce the concept of disjoint union: The disjoint
union of a given family of sets Si,95%,...,S5,, denoted
S1 W Sy W ... WS, is (isomorphic to) the following:
Sy x {1} U Sy x {2} U ... US, x{n}. For concise-
ness, we construct the disjoint union by subscripting the
elements of each given set with the name of the set and
then taking the union. For example, if S; = {x,y} and
Sy = {x,t}, we write S1 W .Sy as {zg,,ys,,Ts,,ts,} in-
stead of {(z, 1), (y,1), (z,2), (¢,2)}.

To merge a system of interconnected sets, we start with
the disjoint union as the largest possible merged set, and
refine it by grouping together elements that get unified by

SET-MERGE (S1,..., 5, f1,.--, fr):

> Let U be an initially discrete graph with node-set S; &... & S,;
> For every function f; (1 <i <k):
> For every element a in the domain of f;:
> Add to U an undirected edge between the elements
corresponding to a and f;(a);

> Let P be the set of the connected components of U;
> Return P as the result of the merge operation.

Figure 6. Algorithm for merging sets

P = {{IAvyBuzC}v{l/A}’{wAvtBﬂUC}?{zB}}

(iii)

Figure 7. Three-way merge example for sets

the interconnections. To identify which elements should be
unified, we construct a unification graph U, a graphical rep-
resentation of the symmetric binary relation induced on the
elements of the disjoint union by the interconnections. We
then combine the elements that fall in the same connected
component of U. Figure 6 shows the merge algorithm for an
interconnection diagram whose objects are sets S1, ..., S,
and whose mappings are functions fi, ..., fx.

Figure 7 shows an example of three-way merge for sets:
7(i) shows the interconnection diagram; 7(ii) shows the in-
duced unification graph and its connected components; and
7(iii) shows the merged set. The example shows that simply
taking the union of two sets A and B might not be the right
way to merge them as this may cause name-clashes (e.g. ac-
cording to the interconnections, the y elements in A and B
are not the same although they share the same name), or du-
plicates for equivalent but distinctly-named elements (e.g.
according to the interconnections, w in A and ¢ in B are the
same despite having distinct names).

In the above set-merging example, the elements of each
set were uniquely identifiable by their names within the set.
This is not necessarily the case in general because we may
have unnamed or identically-named, but distinct elements.
For example, in Sections 2.1 and 2.2, most edges in the
views were unnamed; and in Section 2.2, the name node ap-
peared more than once in Bob’s and Mary’s views as well
as the merges. To avoid ambiguity, our implementation of
the merge framework (discussed in Section 7) uses Global
Identifiers (GId’s) instead of names to distinguish between
view elements.

Name Mapping

To assign a name to each element of the merged set in Fig-
ure 7, we combined the names of all the elements in A, B,
and C' that are mapped to it. For example, “{z 4, y5,2c}”
indicates an element that represents x of A, y of B, and z
of C'. A better way to name the elements of the merged
set is assigning naming priorities to the input sets. For ex-
ample, in three-way merge, it makes sense to give prior-
ity to the element names in the connector, C, and write the
merged set in our example as P = {z¢,ya, wo,zp}. In
this particular example, there are no name-clashes in the
merged set, so we could drop the element subscripts and
write P = {z,y,w, z}; however, in general, the subscripts
are needed to avoid name clashes that arise when stakehold-
ers use the same terms to describe different concepts.

This naming convention is of no theoretical significance,
but it provides a natural solution to the name mapping prob-
lem: in most cases, we would like the choice of names in
connector objects, i.e. objects solely used to describe the
relationships between other objects, to have precedence in
determining the element names in the merged object. We
will use this convention in the rest of this paper.

4.2 Graphs and Graph Merging

The notion of graph as introduced below is a specific
kind of directed graph used in algebraic approaches to
graph-based modeling and transformation [20], and has
been successfully applied to capture various graphical for-
malisms including UML, Entity-Relationship Diagrams,
and Petri Nets [21].

Definition 4.1 (graph) A (directed) graph is a tuple
G = (N, E,src,tgt) where N is a set of nodes, E is a set
of edges, and src,tgt : E — N are functions respectively
giving the source and the target of each edge.

To interconnect graphs, a notion of mapping needs to
be defined. A natural choice of mapping between graphs
is homomorphism — a structure-preserving map describing
how a graph is embedded into another:

Definition 4.2 (homomorphism) Let G = (N, E, src, tgt)
and G’ = (N',E',src’,tgt’) be graphs. A (graph)
homomorphism h:G — G’ is a pair of functions
(hnode : N — N’ hedge : E — E’) such that for all
edges e € E, if hedge maps e to €’ then hpode respectively
maps the source and the target of e to the source and
the target of €’; that is: src’(hedge(€)) = hnode(src(e))
and tgt' (hedge(€)) = hnode(tgt(e)). We call hpode the
node-map function, and hedge the edge-map function of h.

A system of interconnected graphs is given by an
interconnection diagram whose objects are graphs and
whose mappings are homomorphisms. Merging is done
component-wise for nodes and edges. For a graph inter-
connection diagram with objects G4, . . . , G, and mappings
hi,...,hg, the merged object P is computed as follows:
The node-set (resp. edge-set) of P is the result of merg-
ing the node-sets (resp. edge-sets) of Gy, ..., G,, w.r.t. the
node-map (resp. edge-map) functions of hq, ..., hg.

To determine the source (resp. target) of each edge e
in the edge-set of the merged graph P, we pick, among
Gi,...,Gp, some graph G; that has an edge ¢ which is
represented by e. Let s (resp. t) denote the source (resp.
target) of ¢ in G;; and let s’ (resp. t) denote the node that
represents s (resp. t) in the node-set of P. We set the source
(resp. target) of e in P to s’ (resp. t). Notice that an edge
in the merged graph may represent edges from several in-
put graphs. In a category-theoretic setting, it can be shown
that the source and the target of each edge in the merged
graph are uniquely determined irrespective of which G; we
pick [22].

Figure 8 shows an example of three-way merge for
graphs. In the figure, each homomorphism has been visu-
alized by a set of directed dashed lines. In addition to the
homomorphisms of the interconnection diagram, i.e. f and
g, we have shown the homomorphisms d4 and dp specify-
ing how A and B are represented in P. The homomorphism
from C to P is implied and has not been shown.

To compute the graph P in Figure 8, we first separately
merged the node-sets and the edge-sets of A, B, C. That is,
we merged sets {x1,z2, 23}, {n1,n2,n3}, {ur,u2} wrt.
to functions fnode = {1 — X1, U2 — T2}, gnode = {U1 —
ny,ug—ny}; and merged {p1, p2}, {e1, €2, e3}, {v1} wort.
t0 fedge = {V1 — D1}, Gedge = {v1 +— e1}. This yielded
two sets N = {uy, us, x3,n3}, E={v1,p2,e2,e3} consti-
tuting the node-set and the edge-set of P respectively. For
naming the elements of N and E, we gave priority to the
choice of names used in graph C' (name mapping was al-
ready discussed in Section 4.1). After computing N and E,
we assigned to each edge in E a source and a target node
from NNV using the method described earlier. We illustrate
this with two examples: 1) To determine the source and tar-
getof vy in E, we need to pick, among A, B, C, a graph that
has an edge represented by v;. In this case, any of the three

Figure 8. Three-way merge example for graphs

graphs will do because v; has a pre-image in each of them
— the edge represents p; of A, ey of B, and v; of C. Re-
gardless of which graph we pick, the computed source and
target will be the same. Suppose we pick A. Edge p; has x;
as source and x» as target. The two nodes are represented in
N by u; and us respectively; therefore, v; is assigned u; as
source and o as target. 2) Now, consider e3 in £/, The edge
has a pre-image in graph B only. Thus, we pick B. Edge
e3 in B has n9 as source and ng as target. Nodes nq and ng
are respectively represented by us and ng in N. Thus, e3 in
F is assigned us as source and ng as target.

Enforcement of Types

Graph-based modeling languages typically have typed
nodes and edges. The definitions of graph and homomor-
phism given earlier do not support types; therefore, we need
to extend them for typed graphs. We can then restrict the
admissible mappings to those that preserve types.

In [23], a powerful typing mechanism for graphs has
been proposed using the relation between the models and
the meta-model for the language. Assuming that the meta-
model for the language of interest is given by a graph M,
every model is described by a pair (G,t : G — M) where
G is a graph and ¢ is a homomorphism, called the fyping
map, assigning a type to every element in G. Notice that
a typing map is a homomorphism, offering more structure
than an arbitrary pair of functions assigning types to nodes

Interfacel }<1’ "{ Class1 }4—{ Class2 ‘

(i

Figure 9. Example of typed graphs

and edges. A typed homomorphism b : (G, t) — (G',t') is
simply a homomorphism h : G — G’ that preserves types,
ie. t(h(x)) =t(x) for every element x in G. This typ-
ing mechanism is illustrated in Figure 9: 9(i) shows a Java
class diagram in UML notation and 9(ii) shows how it can
be represented using a typed graph. The graph M in 9(ii) is
the extends—implements fragment of the meta-model for
Java class diagrams.

The meta-model for a graph-based language can be much
more complex than that of Figure 9. Figure 10 shows
some fragments of the ¢* meta-model extracted from the
visual syntax description of 2*’s successor GRL [24]. In-
stead of showing the whole meta-model in one graph, we
have broken it into a number of views, each of which rep-
resents a particular type of relationship (means-ends, de-
composition, etc.). Our graph merging framework allows
us to describe the meta-model without having to show it
monolithically: the ¢* meta-model, Mi*’ is the result of
merging the interconnection diagram in Figure 10. To de-
scribe the relations between the meta-model fragments, a
number of connector graphs (shaded gray) have been used.
Each mapping (shown by a thick solid line) is a homomor-
phism giving the obvious mapping. Notice that the con-
nector graphs are discrete (i.e. do not have any edges) as
no two meta-model fragments share common edges of the
same type. The A- and V-contribution structures in ¢* con-
vey a relationship between a group of edges. To capture
this, we introduced helper nodes (shown as small rectangu-
lar boxes) in the meta-model to group edges that should be
related by A or V. Figure 11(i) shows how we normally
draw an V-contribution structure in an #* model and Fig-
ure 11(ii) shows the adaptation of the structure to typed
graphs. Structures conveying relationships between a com-
bination of nodes and edges can be modeled similarly.

The merge operation for typed graphs is the same as that
for untyped graphs. The only additional step required is
assigning types to the elements of the merged graph: each
element in the merged graph inherits its type from the ele-
ments it represents. In a category-theoretic setting, it can be
proven that every element of the merged graph is assigned
a unique type in this way and that a typing map can be es-

Decomposition

+, -
Contributions

\S

Vv, A
Contributions

Figure 10. Some meta-model fragments of i*

A A

(i) (ii)

Dependency

Figure 11. Adaptation of \V-contribution

tablished from the merged graph to the meta-model [23].

S Merging Requirements Views

The merge framework of the previous section provides
sufficient machinery for merging graph-based views that are
free from incompleteness and inconsistency. However, as
we argued earlier, for most interesting applications that in-
volve multiple stakeholders, the views are unlikely to be
either conclusive or consistent. Therefore, it is crucial to be
able to tolerate incompleteness and inconsistency. In this
section, we show how incompleteness and inconsistency
can be modeled by an appropriate choice of annotation for
view elements. Using the motivating examples in Section 2,
we demonstrate how incomplete and inconsistent views can
be represented, interconnected, and merged.

X \ /'/
!
Figure 12. Belnap’s knowledge order variant

5.1 Annotated Views

The classical approach discussed in Section 4 is capa-
ble of describing view correspondences; however, it pro-
vides no means to express the stakeholders’ beliefs about
the fitness of view elements, and the possible ways in which
these beliefs can evolve. Consequently, we cannot describe
how sure stakeholders are about each of the decisions they
make. Further, we cannot express inconsistencies and dis-
agreements that arise due to discrepancies between stake-
holders’ decisions about either the structure or the contents
of views.

To model stakeholders’ beliefs, we attach to each view
element an annotation denoting the degree of knowledge
available about the element. We formalize knowledge de-
grees using knowledge orders. A knowledge order is a
partially ordered set [25] specifying the different levels of
knowledge that can be associated to view elements, and the
possible ways in which this knowledge can grow. The idea
of knowledge orders was first introduced by Belnap [26],
and later generalized by Ginsberg [27].

One of the simplest and most useful knowledge orders is
Belnap’s four-valued knowledge order [26]. The knowledge
order /C shown in Figure 12 is a variant of this: assigning
! to an element means that the element has been proposed
but it is not known if the element is indeed well-conceived;
X means that the element is known to be ill-conceived and
hence repudiated; ¢/ means that the element is known to
be well-conceived and hence affirmed; and % means there
is conflict as to whether the element is well-conceived, i.e.
the element is disputed>.

An upward move in a knowledge order denotes a growth
in the amount of knowledge, i.e. an evolution of speci-
ficity. In IC, the value ! denotes uncertainty; X and ¢ de-
note the conclusive amounts of knowledge; and %4 denotes
a disagreement, i.e. too much knowledge — we can infer
something is both ill-conceived and well-conceived.

To augment graph-based views with the above-described
annotation scheme, the definitions of graph and homomor-
phism are extended as follows. Let K be a knowledge order:

3Belnap’s original lattice refers to ! as maybe, X as false, ¢ as true, and
ﬁ' as disagreement.

Definition 5.1 (annotated graph) A K-annotated graph
G is a graph each of whose nodes and edges has been anno-
tated with an element drawn from K.

Definition 5.2 (annotation-respecting homomorphism)
Let G and G’ be K-annotated graphs. A K-respecting
homomorphism h: G — G’ is a homomorphism subject
to the following condition: For every element (i.e. node or
edge) x in G, the image of = under h has an annotation
which is larger than or equal to the annotation of x.

The condition in Definition 5.2 ensures that knowledge
is preserved as we traverse a mapping between annotated
views. For example, if we have already decided an element
in a view is affirmed, it cannot be embedded in another view
such that it is reduced to just proposed, or is changed to a
value not comparable to affirmed (i.e. repudiated).

For a fixed knowledge order K, the merge operation over
an interconnection diagram whose objects Gy, ..., G, are
K-annotated graphs and whose mappings hy,... hy are
K -respecting homomorphisms, yields a merged object P
computed as follows: First, disregard the annotations of
G1,...,G, and merge the resulting graphs w.r.t. hy, ... hy
to get a graph P. Then, to construct P, attach an annotation
to every element x in P by taking the least upper bound [25]
of the annotations of all the elements that x represents.

Intuitively, the least upper bound of a set of knowledge
degrees S C K is the least specific knowledge degree that
refines (i.e. is more specific than) all the members of S. To
ensure that the least upper bound exists for any subset of K,
we assume K to be a complete lattice [25]. The knowledge
order /C in Figure 12 is an example of a complete lattice.

As an example, suppose the graphs in Figure 8 were
annotated with /C in such a way that the homomorphisms
f and g satisfied the condition in Definition 5.2. Assum-
ing that the nodes w; of C, x; of A, ny of B are respec-
tively annotated with !, ¢/, and X, the annotation for the
node u; of P, which represents the aforementioned three
nodes, is calculated by taking the least upper bound of the
set S = {!, ¢, X} resulting in the value %.

Incorporating types into annotated graphs is independent
of the annotations and is done in exactly the same manner
as described in Section 4. In [19], we provide a complete
version of the definitions for typed annotated graphs.

5.2 Example I: Merging :* Views

We can now demonstrate how to merge the ¢* views of
Figure 1. We assume views are typed using the ¢* meta-
model M;* (cf. Section 4), and will use the lattice C (Fig-
ure 12) for annotating view elements. We therefore express
relationships between views by (M «-typed) KC-respecting
homomorphisms. Figure 13 depicts one way to express the
relationships between the views in Figures 1(i) and 1(ii).

Schedule
_X_meeting

{ Available dates \I
| be obtained

Connectorl \
C1-To-Mary <— >

Schedule
meeting
7 3 T Ny
: 5 i (Res onses) Consolidate
Email requests\ {Available dates _Agreeable {end request letters be ggthered results
to participants k be obtained slot be found ? I

Mary :
e]

Revisions-M

~— C1-To-Bob

Revisions-B

Send requests’
by email

Meeting requests
be sent .

1 7
Available dates \ (- Agreeable end requests 3
k be obtained /aslot be found, by snail mail g

?
Responses
{ be gathered,
Meeting requiests
be sent
>

Agreeable
P lot be found

Mary Revised | - - Bob Revised] s
C2-To-Mary-Rev :3 _ - L C2-To-Bob-Rev

/ScheduleX

meeting /' -
Meeting requests) (* Agreeable
be sent slot be found

Connector2

Figure 13. ¢* example: Interconnections

For convenience, we treat ‘proposed’ (!) as a default anno-
tation for all nodes and edges, and only show annotations
for the remaining values. For example, some edges in the
revised versions of Bob’s and Mary’s views are annotated
with X to indicate they are repudiated.

The interconnections in Figure 13 were arrived at as fol-
lows. First, Sam creates a connector view Connectorl to
identify synonymous elements in Bob’s and Mary’s views.
Notice that even if Bob and Mary happened to use the same
terminology in their views, defining a connector would still
be necessary because our merge framework does not rely
on naming conventions to describe the desired unifications
— all correspondences must be identified explicitly prior to
the merge operation.

To build Connectorl, Sam merely needs to declare
which nodes in the two views are equivalent. Because 2*
does not allow parallel edges of the same type between any
pair of nodes, the edge interconnections are identified auto-
matically once the node interconnections are declared. For
example, when Mary’s Schedule meeting and Available dates
be obtained are respectively unified with Bob’s Plan meeting

—/Schedule
meeting

Available dates Agreeable
be obtained slot be found

Send requests
by email

Meeting requests
n be sent

Send requests
by snail mail

Merged View

Consolidate
results

Figure 14. :* example: The merged view

and Responses be gathered, the decomposition links between
them in the two views should also be unified.

Next, Sam elaborates each of Bob’s and Mary’s views
to obtain Mary Revised and Bob Revised. In these views,
Sam has repudiated the elements he wants to replace, and
proposed additional elements that he needs to complete the
merge. Sam could, of course, affirm all the remaining el-
ements of the original views, but he preferred not to do so
because the models are in very early stages of elicitation.
Finally, Sam keeps track of cases where the same element
was added to more than one view using another connector
view, Connector2.

With these interconnections, the views in Figure 13 can
be automatically merged, to obtain the view shown in Fig-
ure 14. To name the elements of the merged view priority
has been given to Sam’s choice of names. For presentation,
we may want to mask the elements annotated with X. This
would result in the view shown in Figure 1(iii).

In the above scenario, we treated the original elements
of Mary’s and Bob’s views as being at the proposed level,
allowing further decisions to be freely made about any of
the corresponding elements in the revised views. At any
time, Mary or Bob may wish to insist upon or change their
minds about any elements in their views. They can do this
by elaborating their original views, affirming (or repudiat-
ing) some elements. In this case, we simply add the new
elaborated views to the merge hypothesis with the appropri-
ate mappings from Mary’s or Bob’s original views. When
we recompute the merge, the new annotations may result in
disagreements. We illustrate this in Section 5.3.

5.3 Example II: Merging ER Views

To merge the ER views of Figure 2, we assume them
to be typed by a meta-model Mggr. We chose to omit this
meta-model in the paper because the process of constructing
it is similar to that described in Section 4 for constructing
M;+. Asin the previous example, the lattice IC (Figure 12)
will be used to annotate view elements, and ‘proposed’ (!)

Bob |

Mary |

Department

Employee
El

C1-To-Bob ¢> @ Cl1-To-Mary

= = ' v
| Employee /

| Connectorl I

Figure 15. ER example: Interconnections

(Part 1)

Mary Evolved

C2-To-Mary-Evol

Connector2 T
Corporation |~
<

Employee

C2-ToBob <———————

Bob

i 3 i
[CcompanyHgrpioed- e |
Cname> Cob> Game>

10

Figure 16. ER example: Interconnections

(Part 1)

will be treated as a default annotation. Relationships be-
tween views will be expressed by /C-respecting homomor-
phisms.

First attempt: In the first iteration, Sam describes the cor-
respondences between Bob’s and Mary’s views using a con-
nector view, Connectorl (Figure 15), and two mappings
C1-To-Bob and C1-To-Mary. Merging the interconnec-
tion diagram made up of views Bob, Mary and Connec-
torl, and mappings C1-To-Bob and C1-To-Mary yields
the schema shown in Figure 3.

Second attempt: In the second iteration, Mary evolves her
original view, to obtain Mary Evolved (Figure 16), address-
ing the concerns that occurred to her after the first merge at-
tempt. With Sam’s help, she establishes the required inter-
relationships between her evolved view and Bob’s original
view through a new connector, Connector2 (Figure 16). If

Bob Evolved

Figure 17. ER example: Interconnections

(Part IlI)

Fa

Employee Department

| Merged View |

Figure 18. ER example: The merged view

we add these new views and mappings to the interconnec-
tion diagram for the first merge attempt and then recompute
the merge, we get a schema (not shown) in which the em-
ployed by relationship has been repudiated and an aggrega-
tion link has been introduced between Corporation and De-
partment. Masking the repudiated elements of this merge
will give us the schema in Figure 4.

Third attempt: Finally, in the last iteration, Bob evolves
his view (Figure 17), capturing his refined beliefs about
the employed by relationship. Adding this new view and
mapping leads to the full interconnection diagram shown in
Figure 24. Merging according to this interconnection dia-
gram yields the schema shown in Figure 18. In this schema,
the annotation computed for the employed by relationship is
‘disputed’ (%) because Bob and Mary have respectively af-
firmed and repudiated the corresponding elements in their
evolved views.

Since we now have a placeholder in the merge to repre-
sent the disagreement between Bob and Mary, there is no
need for an immediate resolution — we can delay resolving

11

the conflict, or if it later turns out that the problem is unim-
portant, we may even elect to ignore it all together.

6 Support for Traceability

After a merge is completed, it is often desirable to know
how the input artifacts to the merge process, namely views
and mappings, influenced the result. Particularly, it is im-
portant to be able to trace the elements of the merged view
back to the originating views, and to track the correspon-
dence assumptions behind each unification. We call the
former notion origin traceability and the latter assumption
traceability [15]. A third traceability notion, which we refer
to as stakeholder traceability, arises when multiple stake-
holders are allowed to work on individual views. To be able
to trace decisions back to their human sources in this set-
ting, we need to differentiate between the conceptual con-
tributions of different stakeholders in individual views.

6.1 Origin and Assumption Traceability

The merges in Section 5 lack the traceability information
required for determining where each of their elements orig-
inate from. To keep track of the origins of the elements in
a merge, the merge operator must store proper traceability
links in the merged view.

It turns out that unification graphs, as introduced in Sec-
tion 4.1, immediately provide the information needed for
supporting origin traceability: For a given merge problem,
the set of nodes in each connected component of the unifi-
cation graph constitutes the origin information for the cor-
responding merged element. For example, the Available dates
be obtained goal in Figure 14 should be traceable to Available
dates be obtained in Connectorl, Mary and Mary Revised,
as well as to Responses be gathered in Bob and Bob Revised.

To trace the correspondence assumptions involved in a
unification, we need to know the details of the interrelations
among the input view elements that are unified to form an
element of the merged view. In a simple scenario such as
the first merge attempt in Section 5.3, identifying the corre-
spondence assumptions is trivial because all these assump-
tions are localized to the mappings C1-To-Mary and C1-
To-Bob. Therefore, if we later need to check why, for exam-
ple, Person in Bob was unified with Employee in Mary, we
can easily find the chain of correspondences that brought
about the unification: Person(Bob) = Employee(Connector1)
by C1-To-Bob, and Employee(Connector1) = Employee(Mary)
by C1-To-Mary.

However, as merge scenarios get more complex, finding
the correspondence assumptions becomes harder. As an ex-
ample, consider the interconnection diagrams in Figures 15-
17: the assumptions about correspondences between views
are scattered among several mappings. For example, the

Mary Evolved

C2-To-Mary-Evol

m!m
by

employed By—

2-To-Mary-Evol

?

[Connectgr2]

C2-To-Mary-Evol

Employee

Employee

@ Department

-
\rame
q \?/
o] » e NS
N 3 nN T
¢ e d s 3 5 s FE
g g 3 le; 3R 3|3
g g I - A 3
Bob sk 2R g
§ 5 1F & §
e R E E
!
:
o|!
émployed B B |1 o
AL
TN G G
) o[w @ - -
gl g &% TINCh
2 of oz % 2 RS
S <A -3 ° s \e
g gl g2\ % Nz
3 g g 3 [\\A]
3 3 3 > 4
8, N X 714
Joa Lomore],
[Gompan Rt
Company N ’
i Saame
Ci g 1
Bob Evolved

Figure 19. Extended unification graph for the
node-sets in Figures 15-17

unification of Company in Bob Evolved and Corporation in
Mary Evolved involves Bob-Evolution, C2-To-Bob and
C2-To-Mary-Evol; and the unification of Person’s name at-
tribute in Bob Evolved and Employee’s name attribute in
Mary Evolved involves Bob-Evolution, C1-To-Bob, C1-
To-Mary and Mary-Evolution. More interestingly, the
unification of Employee in Bob Evolved and Employee in
Mary Evolved can be traced to two different correspon-
dence chains, one involving Bob-Evolution, C1-To-Bob,
C1-To-Mary and Mary-Evolution; and another involving
Bob-Evolution, C2-To-Bob and C2-To-Mary-Evol.

The current notion of unification graph is not readily ap-
plicable to finding the correspondence chain(s) involved in
creating the elements of the merged view. This is because
we do not keep track of which mapping induces each of the
edges in a unification graph. To address this, we label each
edge in a unification graph with the name of the mapping
that induces the edge. Figure 19 shows the extended unifi-
cation graph for merging the node-sets of the views in Fig-
ures 15-17. Each connected component of this graph corre-
sponds to one node in the merged view shown in Figure 18.
As an example, we have explicitly shown in Figure 19 the
connected component corresponding to the Employee’s name
attribute.

To support both origin and assumption traceability, we
store in each element of the merged view a reference to the
corresponding connected component of the extended uni-
fication graph. Figures 20(i)—(iii) respectively show the
stored traceability information for three representative el-

12

Corporation
(Mary Evolved)

2-To-Mary-Evol
Corporation
2-To-Bob

Company
(Bob)

Beb-Evolution

Company

Employee
(Connector2) (cConnector2)

C2-To-Mary-Evol

C2-Te-Bob Mary-Eyolution

Person
(Bob Evolved)

Employee

Employee
(Connector1)

(Mal:;’ E’volved)

name
(Bob Evolved)

name
(Mary Evolved)

Mary-Evolutign

name
(Connector1)

(Bob Evolved)

(i)

(ii)

Figure 20. Examples of traceability links

(iif)

ements of the merged view in Figure 18: Corporation, Em-
ployee, and Employee’s name. In each case, the traceabil-
ity information makes it possible to trace the respective
element back to its origins, and to the related assump-
tions in the unification. If we want to see why, for exam-
ple, Employee in Mary Evolved was unified with Person in
Bob Evolved, we find the (non-looping) paths between Em-
ployee (Mary Evolved) and Person (Bob) in Figure 20(ii).

To avoid clutter, we chose not to show the element GId’s
in Figure 20; however, we should emphasize that GId’s need
to be kept in the traceability links in order to avoid ambigu-
ity, because an element may not be uniquely identifiable by
its name.

6.2 Stakeholder Traceability

When collaborative work is allowed on an individual
view, we can no longer assume that all contributions in a
given view come from a single human source. The frame-
work developed in Section 5 does not support collaborative
work on views because the knowledge labels do not indicate
whose knowledge is being captured; therefore, we have to
assume all contributions in a given view belong to a single
stakeholder.

To support tracing contributions back to their human
sources when individual views are collaboratively devel-
oped, we introduce a more elaborate annotation scheme:
Rather than annotating view elements with single annota-
tions, we attach an annotation-set to each element. Each
annotation in the annotation-set has a qualifier denoting the
stakeholder whose belief is captured by that annotation.

To ensure that the annotation-set X, attached to a view
element e evolves sanely along a mapping h, the following
condition must hold: Every stakeholder who has an anno-
tation in X, must have an annotation in the annotation-set
of e’s image under h, and this annotation must be at least
as specific as that in X.. Notice that this condition does
not prevent h from introducing annotations for stakehold-
ers who do not already have an annotation in X, — what is
required is that the evolution of already-existing annotations
along h must respect the knowledge order.

Meeting requests Avai IabledateVJ Agreeable ﬂ -
besent 7 k oblamed lot be found

Connector

'Send requests;
by email

Mary + Revisions

Bob + Revisions

Figure 21. New view interconnections

Meeting requests
be sent

S:

Send requ
by sna

Merged Vieﬂ

[S:1Y
ests Send requests
|I

onsolidate
results

M:!

Figure 22. Merged view with detailed annotations

To illustrate the new annotation scheme consider the #*
merging example: Sam, Mary, and Bob can now manipu-
late each others’ views without compromising traceability.
This is because the annotations can keep track of the con-
tributions of individual parties. The new system of inter-
connected views is shown in Figure 21. We use a concise
notation to represent the annotation-set for each element.
For example, M:!;B:! means that both Mary and Bob pro-
posed the element; B:!;S:X means Bob proposed the ele-
ment and Sam repudiated it. Note that in the Connector
view in Figure 21, the elements have no stakeholder anno-
tations, indicated using). If we were interested in tracking
the revisions Sam makes to Bob’s and Mary’s vocabularies,
we would need to use the same interconnection pattern as
that in Figure 13, but the view elements would be annotated
with annotation-sets instead of single knowledge degrees.

Merging the interconnected views in Figure 21 yields the
view shown in Figure 22. The annotation-set for each view
element e in the figure is computed by first unioning the
stakeholders that have contributed to the elements repre-

13

sented by e; and then, for every stakeholder s in the union,
taking the least upper bound of s’s contributions to these el-
ements. In [19], we provide a lattice-theoretic characteriza-
tion of the computation of annotation-sets using the concept
of annotated powerset lattices.

The annotation for each element of the merged view in
Figure 22 reflects the decisions made about the element by
the involved stakeholders. Note that when stakeholders do
not work on input views collaboratively, origin traceability
subsumes stakeholder traceability; that is, we can produce
merges with annotations like those in Figure 22 based on
origin traceability information.

7 Tool Support

We have implemented a Java tool, iVuBlender [14], for
merging requirements views. The tool consists of two com-
ponents: (1) a generic merge library for annotated graphs;
and (2) a Swing-based front-end that allows users to graphi-
cally express their views, specify the view relationships, and
hypothesize and compute merges. We have used the merge
library for merging ¢* models, ERDs, and state-machines.
Currently, the front-end only supports ERDs and simple
state-machines, and is restricted to just the knowledge or-
der in Figure 12 for annotating view elements. For future
versions, we plan to develop a larger collection of graphi-
cal widgets to capture the visual syntax of richer modeling
formalisms such as ¢*, and provide support for defining ar-
bitrary knowledge orders.

iVuBlender is not bound to a particular process model for
merging. Views, mappings, and interconnection diagrams
can be conceived and declared in any order with the obvi-
ous constraint that a mapping cannot be specified fully un-
less its source and target views have been fully elaborated.
Since our tool can work with partial mappings, this con-
straint does not mean that a mapping cannot be specified
piece-by-piece or that it cannot co-evolve with its two ends.
In fact, it is only when we want to compute the merge of an
interconnection diagram that it becomes necessary to ensure
the mappings referenced in the diagram are fully specified.

Although iVuBlender may be used in many different
ways for merging views, we have found the process model
in Figure 23 to be very effective for exploratory modeling
problems. In such problems, we usually start by defining
a set of disparate views capturing the initial perspectives of
the stakeholders. We then declare a merge hypothesis using
an interconnection diagram. The hypothesis may reference
a number of connector views for describing the correspon-
dences between the stakeholders’ views. We define these
connectors and follow it by specifying the mappings refer-
enced in the hypothesis. When we compute the merge for
the hypothesis, we get a view combining the set of views
referenced in the hypothesis w.r.t. their (hypothesized) re-

Capture Initial Views

[(Re)hypothesize a Merge}—

Evolve Views

[Identify New Interrelationships}

Figure 23. An exploratory merge process

lationships. We may analyze this merged view in various
ways. Our analyses often trigger the evolution of views and
lead to the discovery of new interrelationships. To incor-
porate these refinements, we initiate a new iteration of the
process by first revising our existing merge hypothesis (or
creating a new one) and following the subsequent activities.

Figures 24 and 25 show two screenshots of iVuBlender:
The former is a screenshot of the interconnection diagram
from Figures 15-17, and the latter is a screenshot of the
merged view in Figure 18. To ensure that computed merges
are laid out properly, the tool applies a fully automatic lay-
out algorithm to them before presenting them to the user. To
represent the annotations, we have used a color scheme in
the tool: The default color represents proposed (!), blue and
magenta respectively represent affirmed (v/) and repudiated
(X), and red represents disputed (%).

8 Discussion

In this section, we discuss some practical considerations
concerning our merge framework.

8.1 Sanity Checks

The typing mechanism discussed in Section 4 can cap-
ture many classes of constraints which we may need to en-
force; however, it has some limitations. Most notably, it
cannot capture constraints whose articulation involves the

14

“iVuBlender

File Edit View [Tools| Help
= n S
@" ‘ k] | Layout . Ctrl-L 7!!7@‘ || a ‘
Compute Merge Ctrl-M ?71
=
m Go Into... cirl-g i'i‘
“* ERD Demo 7] €1-To-Mary | Bob-Evolution [Hypothesis |
¢ [views C2-To-Mary-Eval | c2ToBob | C1-To Bob
Mary Connectorl | Bob-Evolved f Mary-Evolution
:I‘:::y{vulved Mary r Bob r Mary-Evolved r Connector?
Connector2
Connectorl
Eoh=Evolved Connector?
¢ [Mappings
Mary- Evolution
C2-To-Mary-Evol 0-Mary- Evol

C2-To-Eob

C1-To-Eob

C1-To-Mary

Bob-Evolution
¢ 1 Diagrams

Bob/Evolution
==
=3

|

[UF=I0-13 T
[05-10-05 11:22:22]

Connectorl

Bob-Ewolved

Dol

Opening mapping C1-To-Bob.

[05-10-05 11:22:23]
[05-10-05 11:22:24]:
[05-10-05 11:22:25]

Opening mapping C1-To-Mary
Opening mapping Bob-Evolutian...
Opening diagram Hypothesis.

<[l

Figure 24. Screenshot of an interconnection
diagram

“iVuBlender

Eile Edit %ﬂ” Tools Help -
HENEIENEITIED
[l ofofo[—[o]+][]

“* ERD Demo :

¢ 1 Views
Mary
Eob
Mary- Evolved
Connector2
Connectorl
Bob-Evolved

¢ 1 Mappings
Mary- Evolution
C2-To-Mary-Evol
C2-To-Bob
C1-To-Bob
C1-To-Mary
Eob-Evolution

¢ | Diagrams
Hypothesis

Bob-Evolution rHypu(hesis rMerged—View \
C2-To-Bob " C1-To-Bob [C1-To-Mary
Bob-Evolved r Mary- Evolution ‘ C2-To-Mary-Evol
Mary Bob Mary-Evolved r Connector? ‘ Connectorl

Department

= _ s e
[05-10-05 11:28:03]: Reading and werifving mapping Bok-Ewvalutian...
[05-10-05 11:28:03]: Binding wiews and mappings

[05-10-05 11:28:03]: Computing and visualizing the merge

[05-10-05 11:28:03]: Creating view Mergecl-Yiew. E‘

Figure 25. Screenshot of a (merged) view

semantics of the modeling language being used. In the class
diagram example in Figure 9, we could not express the con-
straint that a Java class is not allowed to have multiple par-

ent classes, or that a class cannot extend its subclasses: in
both cases, a typing map could be established even though
the resulting class diagrams were unsound. To express the
former constraint, we would have to require that the class
inheritance hierarchy be a many-to-one relation; and to ex-
press the latter, we would have to require that the inheri-
tance hierarchy be acyclic.

Since such constraints cannot be expressed in our frame-
work, a number of sanity checks may be needed both on
the input views and on the merge to ensure their soundness
w.r.t. a desired set of semantics. Even if the input views
are sound w.r.t. these semantics, this does not imply that
the merge is sound too, because the interconnections do not
necessarily preserve semantics. Semantics-dependent san-
ity checks are formalism-specific. An exposition of such
checks for database schema merging can be found in [28].

Another facet to sanity checks in our framework is de-
tecting the potential anomalies caused by annotations. For
example, in Section 5, it was possible for a view to have a
non-repudiated edge with a repudiated end. In such a case,
we would be left with dangling edges if we mask repudiated
elements. The detection of such anomalies depends on the
interpretation of the annotations being used.

8.2 Identification of Interconnections

Our focus in this paper was devising a framework for de-
scribing the relationships between incomplete and inconsis-
tent views and merging them once the interconnections are
specified. In the examples of Section 5, the interconnections
were identified manually by an analyst. The natural ques-
tion to ask now is to what extent we can automate the role
that the analyst plays in establishing the interconnections.
The answer to this question has a significant impact on how
our framework scales to realistically large problems.

To our knowledge, little work has been done in Re-
quirements Engineering on automating the identification of
view interconnections, even in cases where inconsistency
has not been an issue. However, the subject has attracted
considerable attention in the Database community for ex-
ploring relationships between schemata. There, the identifi-
cation of interconnections is referred to as schema match-
ing [29, 30, 31]. We are performing a number of case-
studies on some popular graph-based formalisms includ-
ing conceptual modeling languages such as ¢* and (the
declaration-level graphical syntax of) KAOS [32], state-
machines, and UML to investigate how schema matching
techniques can be generalized to graph-based structures
other than ERDs.

—) L Al 8]
ONOA RO 0]

(i) (ii)

Figure 26. Connectors vs. Direct Mappings

8.3 Specifying Interconnections: Connectors vs.
Direct Mappings

In our framework, correspondences between indepen-
dent views are captured using explicit connector views. For
example, to describe the overlap of a pair of views A and B,
we create a connector view C' that captures just the common
parts between A and B, and then specify how C' is repre-
sented in each of the two views using the mappings C' — A
and C' — B, as illustrated in Figure 26(i).

Our use of connector views was motivated by theoretical
concerns. Briefly, this approach allows us to build the map-
pings between views using graph homomorphisms — each
mapping shows how one view is embedded in another. This
in turn allows us to treat views and view mappings as a cat-
egory, giving us a straightforward way to construct view
merges (as colimits), along with standard proofs (e.g. the
proof that for this category, the merge always exists and is
unique for any set of interconnected views).

One could argue that this approach is less appealing than
specifying correspondences between A and B by linking
their shared elements directly. Such a scheme could handle
naming preferences by encoding the names in labeled bi-
nary relations, as illustrated in Figure 26(ii). Note that the
mapping in this example is not a graph homomorphism.

It would be possible to hide the use of connector views
from the user in iVuBlender by presenting them as direct
links instead. However, the use of explicit connector views
offers several methodological advantages:

e [t allows us to clearly distinguish distinct areas of over-
lap for a set of views, by using a separate connector
view for each area of overlap.

e It generalizes elegantly for cases where more than two
views share an overlap, and for cases where we want to
indicate overlaps between the connector views them-
selves.

e It provides a more flexible platform for incorporating
various types of preferences into the merge process
[7]. A simple example are layout preferences: we may
want to choose a certain layout for the parts that are in
common between a set of views and preserve that lay-
out in the merge. Layout preferences require explicit
models for the shared parts.

e Connectors can be used as requirements baselines
when the scope of the elicitation process widens. For
example, if the elicitation process starts with two
stakeholders and a new stakeholder emerges later on,
it is natural for the third stakeholder to use the connec-
tors between the views of the first two stakeholders as
baselines for further elaboration of his/her own views.

8.4 Beyond Equality Relationships

To have a flexible view exploration process, we may
need to express certain kinds of non-equality relationships
between view elements. A notable example of such re-
lationships is similarity stating that two or more elements
are similar in some respects but not equivalent. Express-
ing non-equality relationships can be made possible by ex-
tending the formalism of interest with new modeling con-
structs. ERDs, for example, have been extended with a spe-
cial notation for denoting similarities between schema ele-
ments [7]. Incorporating such constructs into merge scenar-
ios is straight-forward. For example, in Figure 13, we could
elect to introduce a similarity node instead of the Meeting
request be sent goal node to state that Send request by email
and Send request by snail mail are conceptually similar with-
out providing details about the nature of the similarity.

9 Related Work

Over the years, the term “view” (or “viewpoint”) has
appeared in the literature with several different mean-
ings. Views have been used to mean different classes of
users [33], the contexts in which different roles are per-
formed [34], to distinguish between stakeholder terminolo-
gies [35], and to encapsulate knowledge about a system into
loosely-coupled objects [36]. A survey and comparison of
the existing view-based approaches can be found in [37].
Our interpretation of views falls closely in line with the
emerging trends in model management where views are em-
ployed to capture conceptual data gathered from disparate
sources into independent but interrelated units. To describe
view interrelationships, explicit mappings must be defined
between them [3].

Inconsistency management has become an important
topic in Requirements Engineering due to its central role
in model management. A number of approaches to incon-
sistency management have been proposed, in general based

16

on the success of the ViewPoints framework [2, 9, 10]. The
main questions in this work center on appropriate notations
for expressing consistency rules, and automated support for
resolving inconsistencies. In much of this work, view merg-
ing is treated as an entirely separate problem, because of the
desire to maintain views as loosely-coupled distributed ob-
jects [2].

The use of multi-valued logics for merging incomplete
and inconsistent views was first proposed in [38] and was
later generalized in [17]. The latter work, which serves as
a precursor to this paper, suggested category theory as a
unified means for formalizing incompleteness and inconsis-
tency and characterizing the merge operation. However, the
work was conceived primarily as part of a framework for
supporting automated reasoning over state-machines. This
paper instead focuses on using the same algebraic principles
for devising a model management framework for require-
ments elicitation.

Schema merging [4, 7, 8] is an important operation in
database design for combining disparate schemata, and has
been identified as one of the core activities in metadata
management [3, 39]. Our framework extends the syntac-
tic aspects of the state-of-the-art on schema merging in
several respects: Firstly, the existing schema merging ap-
proaches only support the three-way merge pattern whereas
our framework can handle arbitrary interconnection pat-
terns. Secondly, our framework can explicitly model in-
consistencies and allows for the deferral of their resolution.
This is in contrast to the above-cited work where inconsis-
tencies are not tolerated and need to be resolved as soon
as discovered. Thirdly, our framework is parameterized by
a meta-model and can hence be applied to various model-
ing formalisms; but, schema merging is, to a great extent,
tailored to entity relationship diagrams or similar schema
modeling notations.

In [40], a combination of natural language processing
and formal concept analysis techniques has been employed
for formalizing and visualizing requirements extracted from
multiple use case descriptions. Reconciliation is done
through defining a thesaurus for unifying the vocabularies
of the extracted concepts. The work also attempts to strate-
gize handling of inconsistencies; but, it does not support
explicit modeling of stakeholders’ beliefs; and further, falls
short of accounting for requirements evolution and describ-
ing its impacts on the management of inconsistencies.

The closest work to ours in the area of Requirements En-
gineering is the merging framework of [5]. In this work,
views are described by graph transformation systems and
colimits are used to merge them. However, the work cannot
handle inconsistent views.

Recently, a framework has been proposed for merging
partial behavioral models [41]. There, stakeholders’ mod-
els are described by partial state transition systems and are

merged based on the process-algebraic refinement relations
between them. The work supports incompleteness and can
also detect inconsistencies; however, the merge operation
fails when the models are inconsistent. Another differ-
ence between our approach and the work is that they do
not explicitly describe view correspondences and rely on
bi-similarity relations to give the relationships between the
states of different views. This can make it difficult for re-
quirements analysts to guide the merge process as they can-
not directly hypothesize the merge alternatives.

Annotated graphs bear similarity to fuzzy graphs [42].
The work on fuzzy graphs is focused on the analysis of iso-
lated models using graph-theoretic techniques, whereas in
our work, the focus is on describing the structural relation-
ships between models using algebraic techniques.

The ability to trace requirements back to their human
sources is cited as one of the most important traceability
concerns in software development [43]. To this end, contri-
bution structures [44] have been proposed as a way to facil-
itate cooperative work among teams and to ensure that the
contributions of involved parties are properly accounted for
throughout the entire development life-cycle. The notions
of origin and stakeholder traceability in our work try to ad-
dress a similar problem in the context of view merging.

The importance of establishing traceability links be-
tween artifacts and the assumptions involved in creating
them has been emphasized in design rationale [45, 46] and
design traceability [47]. However, the focus of that work
has been mainly on assumptions that relate upstream and
downstream artifacts. Our work, instead, focuses on re-
quirements elicitation which is an entirely upstream activity.
We discuss the nature of the relationships between views
produced during elicitation, and provide an approach for
keeping track of how each assumption made about view in-
terrelations affects the merge.

10 Conclusions and Future Work

We have presented a flexible and mathematically rig-
orous framework for merging incomplete and inconsistent
views. Our merge framework is general and can be applied
to a variety of graphical modeling languages. In this paper,
we presented the core algorithms for computing merges,
showed how the framework can handle typing constraints,
and how to trace contributions in the merged view back to
their sources and to the relevant merge assumptions. We
have implemented the algorithms described in the paper,
and used the implementation to merge views in a number
of different notations.

An advantage of our framework is the explicit identifica-
tion of interconnections between views prior to the merge
operation rather than relying on naming conventions to give
the desired unification. We believe this offers a powerful

17

tool for exploring inconsistency during exploratory model-
ing, as it allows an analyst to hypothesize possible intercon-
nections for a set of views, compute the resulting merged
views, and trace between the source views and the merged
views to analyze these results.

The work reported here can be continued in many direc-
tions. Automating the identification of potential intercon-
nections between views is a major part of our ongoing work
and is a step toward applying the work to large-scale con-
ceptual modeling. We are also investigating possible ways
for adding a semantics-aware component to the framework
for sanity-checking the merges. Another interesting venue
is studying whether our framework can be used for relating
the behaviors of models. The interconnections used in our
approach are based on homomorphisms and the fact that
homomorphisms have been employed in various abstrac-
tion frameworks [48] for relating behaviors of models poses
many interesting questions as to what logical properties can
be preserved when models are merged. Adding support for
hierarchical structures is yet another thing that can be stud-
ied. We also plan to develop a more usable version of the
tool to investigate how well it supports cooperative concep-
tual modeling, and especially stakeholder negotiation dur-
ing requirements analysis.

Acknowledgments. We thank John Mylopoulos, Renée
Miller, Pamela Zave, Sotirios Liaskos, Yijun Yu, Linda Liu,
Faye Baron, and Shiva Nejati for helpful discussions. We
thank the members of the Formal Methods, Database, and
EarlyRE groups at the University of Toronto, as well as the
anonymous reviewers of the RE’05 Conference and the RE
Journal for their insightful comments. Financial support
was provided by NSERC, MITACS, and BUL.

References

[1] S. Easterbrook, E. Yu, J. Aranda, Y. Fan, J. Horkoff,
M. Leica, and R. Qadir. Do viewpoints lead to better
conceptual models? an exploratory case study. In Pro-
ceedings of the 13th International Requirements Engi-
neering Conference, pages 199-208, 2005.

[2] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer,

and B. Nuseibeh. Inconsistency handling in multi-

perspective specifications. IEEE Transactions on Soft-

ware Engineering, 20(8):569-578, 1994.

P. Bernstein. Applying model management to clas-
sical meta data problems. In Proceedings of the Ist
Biennial Conference on Innovative Data Systems Re-
search, pages 209-220, 2003.

[4] P. Buneman, S. Davidson, and A. Kosky. Theoreti-
cal aspects of schema merging. In Proceedings of the

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

3rd International Conference on Extending Database
Technology, pages 152—-167, 1992.

H. Ehrig, G. Engels, R. Heckel, and G. Taentzer.
A combined reference model- and view-based ap-
proach to system specification. International Journal
of Software Engineering and Knowledge Engineering,
7(4):457-471, 1997.

S. Castano and V. De Antonellis. Deriving global con-
ceptual views from multiple information sources. In
Conceptual Modeling — Current Issues and Future Di-
rections, volume 1565 of Lecture Notes in Computer
Science, pages 44-55. Springer, 1999.

R. Pottinger and P. Bernstein. Merging models based
on given correspondences. In Proceedings of 29th
International Conference on Very Large Data Bases,
pages 862—-873., 2003.

S. Melnik, E. Rahm, and P. Bernstein. Rondo: a pro-
gramming platform for generic model management. In
SIGMOD Conference, pages 193-204, 2003.

S. Easterbrook and B. Nuseibeh. Using viewpoints
for inconsistency management. Software Engineering
Journal, 11(1):31-43, 1996.

C. Nentwich, W. Emmerich, A. Finkelstein, and
E. Ellmer. Flexible consistency checking. ACM Trans-

actions on Software Engineering and Methodology,
12(1):28-63, 2003.

E. Yu. Towards modeling and reasoning support for
early-phase requirements engineering. In Proceedings
of the 3rd International Symposium on Requirements
Engineering, pages 226-235, 1997.

M. Barr and C. Wells. Category Theory for Computing
Science. Les Publications CRM Montréal, Montreal,
Canada, third edition, 1999.

M. Sabetzadeh and S. Easterbrook. An algebraic
framework for merging incomplete and inconsistent
views. In Proceedings of the 13th International Re-

quirements Engineering Conference, pages 306-315,
2005.

M. Sabetzadeh and S. Easterbrook. iVuBlender: A
tool for merging incomplete and inconsistent views.
In Proceedings of the 13th International Requirements
Engineering Conference, pages 453-454, 2005. Tool
Demo Paper.

M. Sabetzadeh and S. Easterbrook. Traceability in
viewpoint merging: A model management perspec-
tive. In Proceedings of the 3rd International Work-
shop on Traceability in Emerging Forms of Software
Engineering, November 2005. To appear.

18

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

A. van Lamsweerde, R. Darimont, and P. Massonet.
The meeting scheduler system — problem statement.
ftp://ftp.info.ucl.ac.be/pub/publi/92.

M. Sabetzadeh and S. Easterbrook. Analysis of in-
consistency in graph-based viewpoints: A category-
theoretic approach. In Proceedings of the 18th In-
ternational Conference on Automated Software Engi-
neering, pages 12-21, 2003.

J. Goguen. A categorical manifesto. Mathematical
Structures in Computer Science, 1(1):49-67, 1991.

M. Sabetzadeh and S. Easterbrook. An algebraic
framework for merging incomplete and inconsistent
views. Technical Report CSRG-496, University of
Toronto, 2004.

H. Ehrig and G. Taentzer. Computing by graph
transformation, a survey and annotated bibliography.
Bulletin of the European Association for Theoretical
Computer Science, 59:182-226, 1996.

G. Rozenberg, editor. Handbook of graph gram-
mars and computing by graph transformation: Foun-
dations, volume 1. World Scientific, River Edge, NJ,
USA, 1997.

D. Rydeheard and R. Burstall. Computational Cate-
gory Theory. Prentice Hall, Hertfordshire, UK, 1988.

A. Corradini, U. Montanari, and F. Rossi. Graph pro-
cesses. Fundamenta Informaticae, 26(3—4):241-265,
1996.

The goal-oriented requirement language (GRL).
http://www.cs.toronto.edu/km/GRL.

B. Davey and H. Priestley. [Introduction to Lattices
and Order. Cambridge University Press, Cambridge,
UK, second edition, 2002.

N. Belnap. A useful four-valued logic. In G. Epstein
and J. Dunn, editors, Modern Uses of Multiple-Valued
Logic, pages 5-37. Reidel, Dordrecht, Netherlands,
1977.

M. Ginsberg. Bilattices and modal operators. In Pro-
ceedings of the 3rd Conference on Theoretical Aspects
of Reasoning about Knowledge, pages 273-287, 1990.

C. Batini, M. Lenzerini, and S. Navathe. A compar-
ative analysis of methodologies for database schema
integration. ACM Computing Surveys, 18(4):323-364,
1986.

E. Rahm and P. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal,
10(4):334-350, 2001.

(30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

J. Madhavan, P. Bernstein, and E. Rahm. Generic
schema matching with cupid. In Proceedings of 27th
International Conference on Very Large Data Bases,
pages 49-58, 2001.

S. Melnik, H. Garcia-Molina, and Erhard Rahm. Sim-
ilarity flooding: A versatile graph matching algorithm
and its application to schema matching. In Proceed-
ings of the 18th International Conference on Data En-
gineering, pages 117-128, 2002.

A. van Lamsweerde, R. Darimont, and P. Massonet.
Goal-directed elaboration of requirements for a meet-
ing scheduler: Problems and lessons learnt. In Pro-
ceedings of the 2nd International Symposium on Re-
quirements Engineering, pages 194-203, 1995.

D. Ross. Applications and extensions of SADT. IEEE
Computer, 18(4):25-34, 1985.

S. Easterbrook. Domain modeling with hierarchies of
alternative viewpoints. In Proceedings of the Ist In-
ternational Symposium on Requirements Engineering,

pages 65-72, 1993.

R. Stamper. Social norms in requirements analysis: an
outline of MEASUR. In M. Jirotka and J. Goguen, ed-
itors, Requirements engineering: social and technical
issues, pages 107-139. Academic Press, London, UK,
1994.

A. Finkelsetin, J. Kramer, B. Nuseibeh, L. Finkel-
stein, and M. Goedicke. Viewpoints: A framework for
integrating multiple perspectives in system develop-
ment. International Journal of Software Engineering
and Knowledge Engineering, 2(1):31-58, 1992.

P. Darke and G. Shanks. Stakeholder viewpoints in
requirements definition: A framework for understand-
ing viewpoint development approaches. Requirements
Engineering, 1(2):88-105, 1996.

S. Easterbrook and M. Chechik. A framework for
multi-valued reasoning over inconsistent viewpoints.
In Proceedings of the 23rd International Conference
on Software Engineering, pages 411-420, 2001.

S. Melnik. Generic Model Management: Concepts
and Algorithms, volume 2967 of LNCS. Springer,
Berlin, Germany, 2004.

D. Richards. Merging individual conceptual models of
requirements. Requirements Engineering, 8(4):195—
205, 2003.

19

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

S. Uchitel and M. Chechik. Merging partial be-
havioural models. In Proceedings of the 12th Inter-
national Symposium on Foundations of Software En-
gineering, pages 43-52, 2004.

J. Mordeson and P. Nair. Fuzzy Graphs and Fuzzy
Hypergraphs. Physica-Verlag, Heidelberg, Germany,
2000.

O. Gotel and A. Finkelstein. Extended requirements
traceability: results of an industrial case study. In Pro-
ceedings of the 3rd International Symposium on Re-
quirements Engineering, pages 169-178, 1997.

O. Gotel and A. Finkelstein. Contribution structures
(requirements artifacts). In Proceedings of the 2nd In-
ternational Symposium on Requirements Engineering,

pages 100-107, 1995.

G. Fischer, A. Lemke, R. McCall, and A. Morch.
Making argumentation serve design. In T. Moran and
J. Carroll, editors, Design rationale: concepts, tech-
niques, and use, pages 267-293. Lawrence Erlbaum
Associates, Mahwah, NJ, USA, 1996.

T. Gruber and D. Russell. Generative design rationale:
beyond the record and replay paradigm. In T. Moran
and J. Carroll, editors, Design rationale: concepts,
techniques, and use, pages 323-349. Lawrence Erl-
baum Associates, Mahwah, NJ, USA, 1996.

A. Egyed. A scenario-driven approach to traceability.
In Proceedings of the 23rd International Conference
on Software Engineering, pages 123-132, 2001.

Edmund M. Clarke, Orna Grumberg, and David E.
Long. Model checking and abstraction. ACM Trans-
actions on Programming Languages and Systems,
19(2):1512-1542, 1994.

