
Making Modern Scientific Software Development 
Explicitly Agile 

Magnus Sletholt 
University of Oslo 
magnusts@ifi.uio.no 
 
 
Jo Erskine Hannay 
Simula Research Laboratory 
johannay@simula.no 
 

Hans Petter Langtangen 
Simula Research Laboratory  
and University of Oslo 
hpl@simula.no 
 
Dietmar Pfahl 
University of Lund 
dietmar.pfahl@cs.lth.se 

 
 
The nature of scientific research and the development of scientific software have similarities 
with processes that follow the agile manifesto: responsiveness to change and collaboration are 
of the utmost importance. But how well do current scientific software development processes 
match the practices found in agile development methods? As a representative for a modern 
scientific software project, we briefly outline the FEniCS project whose objective is to 
automate solution of differential equations. Based on initial investigations, we propose a case-
study where we investigate how the development process in FEniCS can be mapped to agile 
development methods, and whether SCRUM can be suitable to administer such a project. The 
case study will use another project, the more traditional Dalton project, as a contrast.  

Introduction 
 
Scientific software operates in a variety of domains and development, as well as use. 
According to D. Kelly, “a chasm opened between the scientific-computing community and 
the software engineering community” [1]. Her study suggests that these domain-specific 
fields of science may be a contributing factor as to why just a small fraction of research in 
software engineering is oriented toward scientific computing. Software engineering research 
has traditionally focused on techniques, methods and concepts that can be made available in 
an array of domains.  
 
Scientists use their software, and the results of executing the software, to do complex 
calculations or simulations. In some scientific projects, the software may be used in order to 
test a scientific theory. These characteristics of scientific software entail that, in contrast to the 
development of, say, administrative or business enterprise software, the writers of scientific 
software cannot determine what the correct output of an application should be in the 
traditional sense. This poses two particular challenges from the software engineering point of 
view: First, requirements elicitation and specification will be highly dynamic. Due to the 
exploratory nature of many scientific projects, the elicitation and specification of 
requirements is problematic because they may be unclear, or even unknown, up-front. In fact, 
to the degree that any specification is perceived necessary, requirements are written near the 
completion of the software. The requirement activity is a recurring problem in scientific 
software projects, especially when the teams are large or when scientists dedicate much time 
to developing software [2]. Secondly, the definition of test cases for validation and 
verification of the software is extremely challenging. It is often not obvious to stipulate 



whether an error lies within the scientific theory or in the implementation of that very theory. 
Although these aspects of scientific software impede requirements handling and testing in the 
outset, the lack of knowledge about requirements and testing principles and the lack of 
organized activities have been identified as a problem area in several studies [3; 4; 2]. 
  
According to [4], documentation is important amongst scientists that develop software, 
primarily documentation concerning the scientific theory. Other documentation, such as 
software-technical documentation and user documentation, is not as emphasized. These kinds 
of documentation are very rare, sometimes non-existing, in many projects, although there 
often is a partial overlap with the theory documentation. 
 
In most aspects of the development of scientific software, the urge to conduct science is the 
primary motivation and goal. Scientists therefore have a different approach to developing 
software than software engineers; their mindset is to perform science, not to write software 
[5]. The variation in domains and motivation found in scientific software projects are 
naturally factors that need to be taken into account when choosing work and development 
methods. The development method of choice is usually, informally, the “best method” [3], 
and there exist huge differences both across and within the domains as well.  

Mapping Scientific Software Development to Agile Methods 
 
Long development-cycles are common in scientific software projects, where the piece of 
software is the culmination of the combined effort performed by a number of scientists over 
the course of many years [6]. Due to this development model where modules are individually 
added to the application, and due to the challenges with determining requirements up-front, 
the processes tend to be more agile-oriented than process-heavy [3]. Sanders supports this 
notion by stating that most projects under investigation in her study had an iterative, rather 
than a plan-oriented, approach to development [4]. 

The FEniCS Project 
 
FEniCS is a joint project between University of Chicago, Argonne National Laboratory, Delft 
University of Technology, Royal Institute of Technology KTH, Simula Research Laboratory, 
Texas Tech University, and University of Cambridge. The vision of FEniCS is to set a new 
standard in Computational Mathematical Modeling (CMM), which is the Automation of 
CMM (ACMM), towards the goals of generality, efficiency, and simplicity, concerning 
mathematical methodology, implementation, and application.  
 
The software developed in the FEniCS project consists of a dozen software components, 
written in C++ and Python. The project members and an international user community 
participate in the development of FEniCS components, applications, and documentation. 
 
Most FEniCS simulators are written in Python, but the Python program generates C++ code 
tailored to the problem at hand, and links this C++ code to general libraries for finite element 
computations, linear algebra packages, etc. Simula Research Laboratory has the primary 
responsibility for distributing FEniCS as an open source system. Building and testing FEniCS 
components with and all its dependencies, such as PETSc (a portable, extensible toolkit for 
scientific computation) and Trilinos (an object-oriented software framework for the solution 



of large-scale, complex multi-physics engineering and scientific problems), can quickly 
become a nightmare. To tackle these problems successfully, Simula Research Laboratory has 
a dedicated scientific programmer working with a Buildbot system for FEniCS as well as 
packaging FEniCS for Debian and other binary distribution repositories. 

Investigating Agile Practices in the FEniCS Project 
 
Among the most salient agile features of the development process in FEniCS is the high 
degree of self-organisation within the sub-projects and their teams, and the focus on providing 
working software in short iterations (instead of having a long implementation phase before 
anything presentable is available). 
 
A deviation to agile principles is the way developers in FEniCS typically communicate with 
each other. Typical communication channels are public mailing lists and the version control 
tool Launchpad where developers from an international community can check out and commit 
code. Launchpad also provides functionality for bug tracking and issue reporting. Developers 
can create and edit “blueprints”, which is a description or specification of a new feature or the 
alteration of some existing functionality. On the other hand, at one of the major developing 
partner sites of FEniCS, Simula Research Laboratory, there is frequent informal 
communication taking place among co-located scientists involved in the development of 
software for FEniCS. 
 
In FEniCS, the individual developer usually selects a task voluntarily driven by own needs 
and without much discussion or external pressure. Developers are free to solve their tasks in 
the way they find fit. This also applies to testing activities. However, as there is no particular 
focus on testing and no guidance as to what kind of testing is required, the tests are of variable 
quality if they exist at all.  
 
Once a scientist assumes a task, this task is usually not further distributed or delegated, with 
the exception, perhaps, when a scientist assigns the implementation of a feature to a PhD 
student. 
 
In FEniCS, as in many scientific software development projects, the customer and the 
developer are often the same person, as the purpose of picking a development task is often to 
support one’s own research. It is, however, certain that the developers who contribute to 
FEniCS also are the users of the software they develop. This deviates from a developer-
customer collaboration pattern in the traditional sense, but it is evident that this overlap of 
interest means that the developers are highly motivated. 

Case Study 
 
There are fragments of agile elements present in the FEniCS project. There is also, among 
some project members, a desire to have a more defined development process. We will 
therefore conduct an empirical case study [7] on the FEniCS. The purpose of such a case 
study is two-fold: to analyze and conceptualize the core process elements of the software 
development processes in the FEniCS project, and to see to what extend these process 
elements map to core agile techniques and management practices (e.g., Scrum).  The case 
study will be exploratory in the first part and confirmatory in the second part. Research 



methods will include techniques for eliciting and externalizing practitioners’ tacit knowledge 
[8; 9; 10]. 
 
The FEniCS project is one of largest projects of its kind, and therefore gives a rich 
observational base for a case study with our purpose. The case study will not claim 
generalization to other scientific software development efforts per se; it will first and foremost 
be a proof of concept study. However, generalization is possible to the extent one is able to 
identify process elements in other projects similar to those in FEniCS.  
 
In order to further delineate potential agile process elements in the FEniCS project, a contrast 
project will be studied in parallel. The Dalton project represents a more traditional approach 
to scientific software development. The general domain of the program is quantum chemistry, 
with an emphasis on molecular electronic structures. The aim of the program is to automate 
the determination of such molecular properties. Seven separate components, with more or less 
separate development cycles, form the complete program Dalton. Since the beginning of the 
project, many scientists from an international community have contributed to the 
development. The first version of Dalton (1.0) dates back to 1997. There were two additional 
releases in the subsequent years, leading to the current version 2.0, which was released in 
2005. Between these versions, minor patches were issued in order to correct programming 
errors. FORTRAN.77 and C are the programming languages used in Dalton. The program is 
easily installed using a supplied makefile script on a UNIX platform. There exists a test suite 
that the user can run in order to ensure that the program was installed successfully.  

Conclusion 
 
Following earlier and ongoing investigations into the practices of scientific software 
development, we propose that it is valuable to further analyze and conceptualize the core 
process elements of such development, in terms of modern software engineering best 
practices. A likely outcome of such investigations will be more explicit and deliberate 
scientific software development practices, and also a timely updating of software engineering 
methodology to include domains other than business-administrative software.   
 

References 
[1] Kelly, D.F. A Software Chasm: Software Engineering and Scientific Computing. 2007. 
[2] Hannay, J.E., et al. How Do Scientists Develop and Use Scientific Software? 2009. 
[3] Carver, J.C., et al. Software Development Environments for Scientific and Engineering 
Software: A Series of Case Studies. 2007. 
[4] Sanders, R. The Development and Use of Scientific Software. 2008. 
[5] Decyk, V.K., Norton, C.D. and Gardner, H.J. Why Fortran? 2007. 
[6] Sanders, R. and Kelly, D. Dealing with Risk in Scientific Software Development. 2008. 
[7] Yin, R.K. Case Study Research: Design and Methods. Sage Publications, 2003. 
[8] Jarvis, P. The Practitioner-Researcher. Jossey-Bass Publishers, 1999. 
[9] Argyris, C. Knowledge for Action. Jossey-Bass Publishers, 1993. 
[10] Argyris, C. and D.A.Schon. Organizational Learning II. Theory, Method, and Practice. 
Addison-Wesley Publishing Company, 1996. 
 


