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Abstract

The pumping function of the heart is driven by an electrical wave
traversing the cardiac muscle in a well-organized manner. Perturbations
to the wave are referred to as arrhythmias. Such arrhythmias can, under
unfortunate circumstances, turn into fibrillation. The only known therapy
for fibrillation is to reset the heart using a strong electrical shock. This
process is referred to as defibrillation and it is routinely used in clinical
practice. Despite the importance of this procedure and the fact that it is
used frequently, the success rate of defibrillation is not fully understood.
For instance, theoretical estimates of the shock strength needed to reset
the heart are much higher than what is used in practice. Several authors
have pointed out that in theoretical models the strength of the shock can
be decreased if the cardiac tissue is allowed to be heterogeneous. In this
paper, we address this issue using the bidomain model combined with the
Courtemanche model, and we also consider a linear approximation of the
Courtemanche model. We present analytical considerations showing that
for the linear model, the necessary shock strength needed to achieve de-
fibrillation (defined in terms of a sufficiently strong change of the resting
state) decreases as a function of an increasing perturbation of the intracel-
lular conductivities. Qualitatively, these theoretical results compare well
with computations based on the Courtemanche model.

1 Introduction

The beating of the human heart is a well-organized operation governed by an
electrical wave which traverses the entire cardiac muscle to initiate contraction.
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This is a robust process, as it continues for about 80 years on average with-
out maintenance, and versatile in the sense that it adapts smoothly to strongly
varying external conditions. However, the heartbeat is not infallible. The reg-
ular electrical signal controlling the synchronous contraction of the heart may
be disturbed. Such rhythm disturbances are known as arrhythmias and may
result in failure to adequately pump blood to the body. Ventricular fibrillation,
an arrhythmia wherein the contraction of the heart muscle is completely asyn-
chronous, is especially dangerous. If not treated within minutes, its ultimate
consequence is sudden cardiac death [1].

Currently, the only effective means for prevention of sudden cardiac death is
defibrillation of the heart by the timely application of a strong electric shock [2,
3, 4]. Significant advances have been made towards an improved understanding
of the basic mechanisms by which a shock defibrillates the heart [5, 6, 7]. How-
ever, several key aspects of the interaction between an electric shock and the
heart remain unclear. Hence, the mechanisms by which shocks terminate ar-
rhythmias are far from fully understood. In recent years, mathematical modeling
and simulation have had increasing importance in efforts to further understand
the biophysical processes that underlie the generation of lethal arrhythmias and
their termination via defibrillation [8, 9]. Simulations have offered not only in-
creased understanding as to the mechanisms underlying defibrillation, but also
valuable estimates of the amount of energy necessary to terminate fibrillation
in a specific context [10, 11, 12].

Cardiac tissue, a functional syncytium, can be modeled mathematically via
a continuum approximation, and fundamental ionic kinetics at the cell level by
corresponding membrane models. However, when cardiac tissue is modeled via
the bidomain approximation as a homogenous substrate having uniform con-
ductivities controlling current flow, simulations may result in an overestimation
of the shock strength required for defibrillation [11]. Indeed, the assumption of
homogeneity represents a simplification, as heterogeneities (whether represented
by alterations of conductivities or via another approach) are realistic in terms
of actual tissue structure. Such a simplification may yield results which are of
questionable physiological relevance and limited clinical utility. In contrast, the
inclusion of heterogeneities provides more realistic and lower estimates of the
energy necessary to successfully defibrillate a particular substrate [13].

In this paper, we analyze the problem initially presented by Plank et al [14,
13, 15] and Morgan et al [16]. These papers examine results obtained from sim-
ulations employing the bidomain model with cell membrane kinetics represented
by the models of Courtemanche et al [17]. As outlined above, of particular in-
terest is the result that the shock strength necessary to defibrillate decreases as
tissue variability increases. Our aim is to contribute to a better understanding
of this effect by providing theoretical estimates in addition to further numerical
experiments.

The Courtemanche ionic model presents significant challenges to mathemat-
ical analysis. We have therefore introduced a linear approximation to the full
model which we employ in its stead. In [18], it was demonstrated that this
linear model provides fairly accurate solutions in the presence of strong shocks.
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In this paper, we first present computational results examining the influence of
random perturbations to the intracellular conductivities using both the linear
and the full Courtemanche models. Secondly, we provide analytical estimates
for the linear model, showing that an increase in the variability of the intracel-
lular conductivities leads to a decrease in the necessary shock strength. This
theoretical result is thus in agreement with the earlier numerical observations.

For the purposes of mathematical analysis, we make certain assumptions
regarding initial conditions. We assume that the tissue is at rest, and then ana-
lyze what shock strength is necessary to effect a sufficiently large change in the
transmembrane potential as compared to a predefined threshold. This starting-
point is motivated by the assumption that the resting state is the most stable
state the system can assume, and therefore the hardest state to significantly
perturb. It follows that an estimate for the necessary energy to defibrillate;
that is, initiate sufficient perturbation of the tissue, based on the resting state
should also apply for any other initial, less stable state.

2 The mathematical models

We consider a 2D version of a problem presented by Morgan et al [16] (see also
[13, 14]). Let the domain be given by Ω = (0, 4)× (0, 2) cm2 with boundary ∂Ω,
t ∈ (0, T ], and consider the bidomain model

vt = ∇· (mi∇ v) +∇· (mi∇u)− I(v, s), (1)

Ie = ∇· (mi∇ v) +∇· (mi+e∇u), (2)

st = F (v, s), (3)

with the boundary conditions

(mi∇ v +mi∇u) · n = 0, (mi∇ v +mi+e∇u) · n = 0 on ∂Ω, (4)

and the initial condition
v(·, ·, 0) = v0.

In the system above v = v(x, y, t) is the transmembrane potential, u =
u(x, y, t) is the extracellular potential, Ie = Ie(x, y) is a prescribed extracellular
current (the defibrillation shock, scaled by (Cmχ)−1), mi = mi(x, y) and me =
me(x, y) are the intra– and extra–cellular conductivities and mi+e = mi +me.
The conductivities are given by:

mi =

(
σix 0
0 σi

)
=

1

Cmχ

(
σ̂ix 0
0 σ̂iy

)
,

me =

(
σex 0
0 σey

)
=

1

Cmχ

(
σ̂ex 0
0 σ̂ey

)
,

where Cm is the membrane capacitance per unit area and χ is the membrane
surface to volume ratio. Furthermore, I denotes the total ionic current density,
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and F represents the electrochemical processes underpinning each action poten-
tial. From a physiological point of view, the natural boundary conditions are
given by no-flow conditions on both the intra- and extracellular potential. The
form given in (4) above is derived from these conditions.

In the present paper, we will use the Courtemanche model [17] as modified
by [13] (we employ B = 0 in their model), and a linear model introduced in [18].
We will assume that (see [16])

χ = 1400 cm−1, Cm = 1.0µF/cm
2
,

and

σ̂ex = 6.25, σ̂ey = 2.36, σ̂ix = 1.46N(x, y), σ̂iy = 0.19N(x, y),

all in mS/cm. Here N is given by

N = 1 + ϕη.

where η is a random number uniformly distributed between −0.9 and 0.9, and
ϕ is a control parameter ranging from 0 to 1.

The full bidomain model coupled to complex and realistic models of cell
electrophysiology is hard to approach via analytical tools. However, we have
established in [18] that a linear model of the total ionic current density provides
good approximations in the context of analyzing defibrillation.

To this end, assume that the initial state v0 is a resting state. The linear
model invokes the approximation

I(v, s) = α(v − v0)

where α will be specified below. Introducing v := v − v0, we then obtain the
system

vt = ∇· (mi∇ v) +∇· (mi∇u)− αv, (5)

Ie = ∇· (mi∇ v) +∇· (mi+e∇u). (6)

We equip the system defined by (5) and (6) with the boundary conditions given
by (4) and the initial condition v(0, ·) = 0.

In order to have a unique solution of the extracellular potential u, we impose
the additional requirement ∫

Ω

u = 0, (7)

and the corresponding compatibility condition for the extracellular current Ie:∫
Ω

Ie = 0.

Moreover, it follows from (4), (5), and the fact that
∫
v(0) = 0 that∫

Ω

v = 0. (8)
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Note that this observation does not hold in the nonlinear case.
We introduce the standard L2(Ω;Rn) inner product and norm:

〈u, v〉 =

∫
Ω

u · v dx, ‖u‖2 = 〈u, u〉.

A natural variational form of the system defined by (5) and (6) reads: find
v(t) ∈ V and u(t) ∈ V such that

〈vt, w〉+ 〈mi∇ v,∇w〉+ 〈mi∇u,∇w〉+ 〈αv,w〉 = 0 ∀w ∈ V, (9)

〈mi∇ v,∇ q〉+ 〈mi+e∇u,∇ q〉 = −〈Ie, q〉 ∀ q ∈ V. (10)

In Figure 1 we have compared the solution at time t = 5ms using the Courte-
manche model and the linear model with α = 0.05. In the computations, we
have used a uniform mesh with ∆x = ∆y = 2mm and ∆t = 0.01ms. We have
used a common random field η, and then varied the strength of the variations
in conductivity by choosing ϕ = 0, 0.3, 0.6, 0.9. Furthermore, we have applied
the electrical shock (scaled by 1/Cmχ) given by:

Ie =

 104mV/ms (x, y) ∈ [0, 0.95]× [0.1, 1.05],
−104mV/ms (x, y) ∈ [3.9, 0.95]× [4, 1.05],

0 for all other (x, y).


We observe that for all choices of ϕ, the results of the linear model and the

Courtemanche model are quite similar. Further comparison of these models are
provided in [18]. The numerical method used to solve the problem is presented
in Section 4.

3 A theoretical requirement on the necessary
strength of Ie

We assume that defibrillation is achieved at time t = t∗ provided that the norm
of v exceeds a certain threshold v∗; i.e. provided that

‖v(t∗)‖ > v∗.

The aim of this section is to provide an upper bound of the norm of v solving (9)
and (10), in terms of the strength of the defibrillation shock Ie. The bound will
take the form

‖v(t)‖ 6 c(t) ‖Ie‖

where the function c(t) is to be estimated. Combining the bound and the
threshold, we can conclude that a necessary condition for defibrillation is given
by

‖Ie‖ >
v∗

c(t∗)
. (11)
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Figure 1: The transmembrane potential at t = 5ms of bidomain computations
using a Courtemanche cell model (left) and linear model (right). (The random
field η was generated using the rand function in Matlab.) The variability of the
medium is increased for ϕ = 0 (upper row) to ϕ = 0.9 (lower row). We observe
that in all cases the linear model provides reasonable approximations.
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Moreover, we want to assess the consequences of this estimate in terms of the
current needed to bring about a successful defibrillation. In particular, we want
to analyze how the necessary strength of the defibrillation current depends on
the variability ϕ of the medium.

We begin by making some observations. From the definitions of mi and me,
there are positive constants a−i , a

+
i , a

−
e , a

+
e such that

a−i 〈∇w,∇w〉 6 〈mi∇w,∇w〉 6 a+
i 〈∇w,∇w〉 (12)

a−e 〈∇w,∇w〉 6 〈me∇w,∇w〉 6 a+
e 〈∇w,∇w〉 (13)

for all w ∈ V = H1(Ω;R2). In particular, we have

a−e 6 σex, σey 6 a+
e , a−i 6 σix, σiy 6 a+

i

with

a−e = 2.36/1400, a+
e = 6.25/1400,

a−i = a−i (ϕ) =
0.19

1400
(1− ϕ), a+

i = a+
i (ϕ) =

1.46

1400
(1 + ϕ).

It follows in particular that for all w ∈ V

〈mi∇w,∇w〉 ≤ β〈mi+e∇w,∇w〉 where β =
a+
i

a−e + a+
i

< 1. (14)

Also observe that because of (7) and (8), Poincaré’s inequality states that there
exists a C > 0 such that for u and v solving (9) and (10),

‖w‖ ≤ C‖∇w‖ for w ∈ {u, v}. (15)

The following lemma gives an upper bound for v and hence an estimate for
the function c in (11).

Lemma 1 Let v(t) and u(t) solve (9) and (10) with v(0) = 0 and prescribed α.
Then

‖v(t)‖ ≤ c(t)‖Ie‖

where

c(t)2 = c1c
−1
0

(
1− e−c0t

)
, c0 = 2(α+ γa−i C

2), c1 =
C2

2γa−i+e
, (16)

Here, C is given by (15), a−i+e = a−i + a−e , a−i and a−e are given by (12),

γ = 1− β1/2, and β is defined by (14).

Proof. Let w = v in (9) and q = u in (10) and add the equations to obtain

〈vt, v〉+ 〈mi∇ v,∇ v〉+ 〈αv, v〉+ 〈mi+e∇u,∇u〉
= −〈Ie, u〉 − 2〈mi∇u,∇ v〉.

(17)
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Recall Cauchy’s inequality with ε, stating that for any inner product a

|a(u, v)| ≤ εa(u, u) +
1

4ε
a(v, v) ∀u, v, ε > 0. (18)

Using (18) for (the absolute value of) the right-hand sides of (17), we have

〈vt, v〉+ 〈mi∇ v,∇ v〉+ 〈αv, v〉+ 〈mi+e∇u,∇u〉

≤ ε〈u, u〉+
1

4ε
〈Ie, Ie〉+ δ〈mi∇ v,∇ v〉+

1

δ
〈mi∇u,∇u〉

(19)

for any ε, δ > 0. Applying (14) to the right-most term of (19) and moving the
terms involving δ across the inequality, we obtain

〈vt, v〉+(1−δ)〈mi∇ v,∇ v〉+〈αv, v〉+(1−β
δ

)〈mi+e∇u,∇u〉 ≤ ε〈u, u〉+
1

4ε
〈Ie, Ie〉.

We can now choose δ and ε. First, let δ = β1/2 and define γ = 1 − β1/2 > 0.
This choice yields

〈vt, v〉+ γ〈mi∇ v,∇ v〉+ 〈αv, v〉+ γ〈mi+e∇u,∇u〉 ≤ ε〈u, u〉+
1

4ε
〈Ie, Ie〉.

Second, using (15) for u, (12), and (13), we find that

〈u, u〉 ≤ C2〈∇u,∇u〉 ≤ C2

a−i+e
〈mi+e∇u,∇u〉,

and thus

〈vt, v〉+ γ〈mi∇ v,∇ v〉+ 〈αv, v〉+ (γ − ε C
2

a−i+e
)〈mi+e∇u,∇u〉 ≤

1

4ε
〈Ie, Ie〉.

Taking ε = γa−i+eC
−2 and using (15) for v, we find that

〈vt, v〉+
(
α+ γa−i C

2
)
〈v, v〉 ≤ C2

4γa−i+e
〈Ie, Ie〉.

Since 2〈vt, v〉 = d
dt ||v||

2, Grönwall gives the stated result.

Remark 2 The same argument holds for the case of homogeneous Dirichlet
boundary conditions.

Remark 3 The same argument holds for spatially discrete solutions vh(t) and
uh(t) solving (9) and (10) for all w ∈ Vh and q ∈ Vh when Vh ⊆ V .

8



0.0 0.2 0.4 0.6 0.8 1.0
ϕ

0.75

0.80

0.85

0.90

0.95

1.00

1.05

g(
ϕ
)/
g(

0)

Figure 2: The figure shows g(ϕ)/g(0), and we observe that the minimal shock
strength decreases as the intracellular variability increases.

3.1 Physiological interpretation of the theoretical estimate

We have proved that
‖v(t)‖ 6 c(t, ϕ) ‖Ie‖ (20)

where c(t, ϕ) is given by (16). By assuming that defibrillation is achived at time
t = t∗ if ‖v(t)‖ > v∗, we see, as above, that we need the strength to satisfy
‖Ie‖ > v∗/c(t∗, ϕ). Let us define this to be the minimum shock strength at time
t = t∗; i.e.

g(ϕ) =
v∗

c(t∗, ϕ)
. (21)

In Figure 2 we plot the function g(ϕ)/g(0) as a function of the variability ϕ in
the case of α = 0.05 and t∗ = 5. Here, we have used the Poincaré constant
C = 4

π ; it is explained in e.g. [19] how this constant can be computed for rect-
angular domains. We observe that the minimal shock strength based on this
theoretical estimate is a decreasing function of the variability ϕ of the intracel-
lular conductivity. This result is in accordance with the numerical experiments
provided by Plank et al [13, 14].
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4 Numerical experiments

4.1 Numerical method

Many numerical methods have been developed for solving the bidomain system
(1, 2, 3); see e.g. [20, 21]. In the present paper we are primarily interested in the
qualitative properties of the solution of the system for the geometry described
above. Since the geometry is simple, we use a finite difference approach to solve
the system. Given a uniform mesh with spacing ∆x and ∆y in the x− and y−
direction respectively, we use standard finite difference approximations of the
form

∂

∂x

(
m(x, y)

∂v(xj , yk)

∂x

)
≈
mj+1/2,k(vj+1,k − vj,k)−mj−1/2,k(vj,k − vj−1,k)

(∆x)2

(22)
where vj,k denotes an approximation of v(xj , yk) and where (xj , yk) denote
nodes in the computational mesh. Similarly, we have mj+1/2,k = m(xj+1/2, yk).
Using these approximations for the spatial derivatives in the bidomain system,
we obtain the following system of differential-algebraic equations

v′ = Aiv +Aiu− I(v, s), (23)

Ie = Aiv +Ai+eu, (24)

s′ = F (v, s). (25)

Here u, v and s carry the nodal approximations of the associated continuous
variables, Ie carries nodal values of the electrical shock and the matrices Ai, Ae
represent terms involving spatial derivatives in the system, with Ai+e = Ai+Ae.
It follows from the system (1, 2, 3) that if (v, u, s) is a solution of the the system,
then also (v, u+α, s) is a solution for any constant α. Hence the matrix Ai+e is
singular. Using an iterative method as described in e.g. [22], the singularity is
not a problem, but here we want to eliminate the extracellular potential u from
the system, and thus we need Ai+e to be non-singular. Theoretically, this can
be achieved by imposing the condition (7), but in computations we achieve this
by adding a small regularization term of the form −εu to the right-hand side of
(2) and introduce the matrix

Ai+e,ε = Ai+e − εJ (26)

where J is the identity matrix and ε > 0 is small number. In the computations
we have used ε = 10−6. Numerical experiments show that the results are robust
with respect to small changes of this parameter.

We now have the system (23, 24, 25) where Ai+e is replaced by Ai+e,ε. From
(24) , we get

u = A−1
i+e,ε (Ie −Aiv) (27)

and thus we have the system,

v′ = (J −AiA−1
i+e,ε)Aiv +AiA

−1
i+e,εIe − I(v, s), (28)

s′ = F (v, s). (29)
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Figure 3: Figures represent shock strength necessary to defibrillate as the vari-
ability ϕ of the intracellular conductivities increases when using the modified
Courtemanche (left) and the linear (right) model. Each line in the computation
corresponds to one realization of the random field η = η(x, y).

This is a system of ordinary differential equations and we solve it using ODE15s
in Matlab.

4.2 Computations

The theoretical estimates presented above indicate that the necessary shock
strength needed to achieve defibrillation decreases as the variability of the in-
tracellular conductivities increases. This effect has also been observed in com-
putations by several authors (see e.g. Plank et al [14, 13]). In Figure 3, we
address this issue computationally using the bidomain model combined with
the modified Courtemanche model and the linear model described above. Each
line in the graphs of Figure 3 corresponds to one realization of the random field
η = η(x, y). We have used the finite difference method described above in the
computations. The mesh parameters are the same as the ones used for Figure 1.
We observe that for both ionic models, the necessary shock strength decreases
as the control parameter ϕ increases. In addition we note that the linear models
provide reasonable approximations of the shock strength needed for the modi-
fied Courtemanche model. The graphs have a form similar to the one obtained
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by our theoretical analysis, but theoretical analysis underestimates the needed
shock strength. It is important to keep in mind that the theoretical analysis
provides a necessary but not sufficient condition for obtaining defibrillation.

5 Conclusion

It has been observed previously that the shock strength needed to achieve de-
fibrillation decreases when the variability of the intracellular conductivities in-
creases. In this paper, we have analyzed a linear model and derived a neces-
sary condition for defibrillation for that model. The theoretical estimate states
that the necessary shock strength decreases as the variability of the medium
increases. This effect is also clearly confirmed by computations presented here.
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