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ABSTRACT
Consumer broadband services are increasingly a mix of TCP-
based and UDP-based applications, often with quite distinct
requirements for interactivity and network performance. Con-
sumers can experience degraded service when application
traffic collides at a congestion point between home LANs,
service provider edge networks and fractional-Mbit/sec ‘broad-
band’ links. We illustrate two key issues that arise from
the impact of TCP-based data transfers on real-time traffic
(such as VoIP or online games) sharing a broadband link.
First, well-intentioned modifications to traditional TCP con-
gestion control can noticeably increase the latencies experi-
enced by VoIP or online games. Second, superficially-similar
packet dropping rules in broadband gateways can induce dis-
tinctly different packet loss rates in VoIP and online game
traffic. Our observations provide cautionary guidance to re-
searchers who model such traffic mixes, and to vendors im-
plementing equipment at either end of consumer links.

1. INTRODUCTION
Most home Internet users connect to their Internet Ser-

vice Provider (ISP) through asymmetric consumer broad-
band links. These links experience a mixture of traffic gen-
erated by latency-tolerant applications (such as web brows-
ing, streaming multimedia, and peer-to-peer content trans-
fer) and latency-sensitive applications (such as voice over IP
(VoIP) and online interactive games). For latency-sensitive
applications, transmissions are usually triggered by inter-
actions between users (or users and a system). The result
of such interaction patterns is that many streams produced
by interactive applications show very small packet sizes and
(relatively) high interarrival times between packets. Table 1
shows examples of such thin-stream applications and how
their packet size and interarrival times compare.

Greedy traffic sources tend to probe and utilise as much
path capacity as they can get away with. Consequently
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their behaviour “on the wire” can involve wide variations in
inter-arrival times, even down to sequences of back to back
packets, and packet sizes are often distributed bi-modally
between pathMTU and smallest IP packet size.

Loss of packets will in many cases reduce the experience of
the interactive application e.g. introduce noise into a VoIP
conversation [1]. In other applications, like online games,
congestion-induced latency can delay response time for the
game enough to significantly reduce game performance1.

Many consumer modems provide minimal configuration
controls for upstream quality of service (QoS) at the home
end, and non-existent end-user control of QoS in the down-
stream (as the bottleneck queuing occurs in the service provider’s
equipment, such as a Digital Subscriber Line Access Multi-
plexer, DSLAM).

Latency-tolerant applications often utilise the Transmis-
sion Control Protocol (TCP) to provide a reliable end-to-end
data transport that adapts to available network capacity
between sender and receiver [3]. TCP’s congestion control
(CC) algorithms have evolved over time, usually to provide
improved performance in terms of usable throughput (or
goodput) for high speed network connections; one notable
example of a new, experimental TCP variant is CUBIC [4],
which is the default mechanism in Linux at the time of writ-
ing. What all currently deployed TCP CC algorithms have
in common is that they cause a cyclical filling and draining
of the queues at the path’s bottleneck link. This in turn
induces fluctuating latency and periodic packet loss to all
traffic sharing the link.

Consumers with fractional- and multiple-Mbps “broad-
band” links to the Internet often find their home broadband
connection is the bottleneck link for individual communi-
cation sessions (for example, the data rates of ADSL 1 or
ADSL 2 are dwarfed by today’s 100Mbps and 1Gbps home
LANs and service providers’ edge network speeds). It would
then seem natural to give users full control over what hap-
pens on their home connection — but in reality, such con-
trol is quite limited, and where it is available, there is a lack
of guidance. By showing the impact of a normally “invisi-
ble” parameter (a detail in the drop behavior of the simple,
and most commonly used, FIFO queue), and comparing the
likely collateral damage caused by NewReno [5] and CUBIC

1Latencies of 100ms, 500ms and 1000ms are enough to de-
grade the experience for first person shooters, massively mul-
tiplayer online games and real-time strategy games, respec-
tively [2].



Application

Payload size Interarrival time Average

(bytes) (ms) bandwidth

avg min max avg med min max 1% 99% (pps) (bps)

Windows remote desktop 111 8 1417 318 159 1 12254 2 3892 3.145 4497

VNC (from client) 8 1 106 34 8 < 1 5451 < 1 517 29.412 17K

G.711 RTP VoIP 180 180 180 20 20 19 21 19 21 50 64K

Skype (2 users) (UDP) 111 11 316 30 24 < 1 20015 18 44 33.333 37K

Skype (2 users) (TCP) 236 14 1267 34 40 < 1 1671 4 80 29.412 69K

World of Warcraft 26 6 1228 314 133 < 1 14855 < 1 3785 3.185 2046

Quake 3 (from server) 80 40 300 50 50 30 70 35 65 20 25K

Table 1: Examples of thin stream traffic characteristics from time-dependent applications. All traces are
one-way (no ACKs are recorded) packet traffic.

on interactive real-time traffic like VoIP, we intend to fill this
gap. Our observations also provide cautionary guidance to
researchers who model such traffic mixes, and to vendors
implementing equipment at either end of consumer links.

Section 2 introduces the relevant parts of TCP behav-
ior, and lists three superficially-similar packet dropping rules
that may be encountered in live and testbed networks. Our
technique for simulating and experimentally verifying some
typical home broadband scenarios is described in Section 3.
Section 4 presents the impact on latency of choosing CUBIC
versus NewReno, and the dramatic impact on packet loss
rates caused by particular definitions of ‘queue full’ events.
Our paper concludes with Section 5.

2. BACKGROUND
In this section we review TCP congestion control, the

types of packet drop rules one might encounter, and the
importance of testing the collateral impact of TCP flows on
latency-sensitive non-TCP flows.

2.1 TCP Congestion Control
The Internet’s IP-based network and underlying infras-

tructure has grown beyond initial architectural design as-
sumptions and expectations in a number of areas. Since
TCP congestion control (CC) was first proposed [6] and sub-
sequently mandated [7], there has been significant ongoing
research to ensure CC addressed these changes, efficiently
utilising the available capacity and protecting the network
from congestion collapse.

TCP dynamically adjusts its transmission speed to bal-
ance multiple competing goals – maximise the use of avail-
able network capacity, share network capacity with other
users, and do not overrun the receiver with packets. A
TCP sender constrains the number of unacknowledged pack-
ets in flight to the smaller of the receiver’s advertised win-
dow (rwnd) and the congestion window (cwnd). TCP re-
ceivers keep senders informed of rwnd by placing a copy in
each TCP ACK (acknowledgment) packet. Assuming the re-
ceiver’s buffer is large enough, the TCP flow control window
is usually constrained by cwnd.

Typically cwnd will start at a small value and grow incre-
mentally (additive increase) as packets are successfully ac-
knowledged, effectively increasing the sender’s transmission
rate over time. This will also tend to increase the number
of packets buffered in any bottleneck queue between sender

and receiver. When a packet is detected as lost, the sender
responds by reducing cwnd to some fraction of its previous
value (multiplicative decrease) before restarting the growth
cycle. TCP presumes that packet loss means a queue over-
flowed somewhere between sender and receiver. Dropping
cwnd causes a reduction in the sender’s average transmis-
sion rate, protecting the network from congestion collapse
(and allowing packets belonging to other flows to utilise the
bottleneck link).

Most TCP CC schemes differ in their specific algorithms
for additive increase multiplicative decrease (AIMD) con-
trol of cwnd and their detection of congestion. Traditional
NewReno flows have trouble with wireless links (where packet
losses are frequently unrelated to congestion) and paths with
large bandwidth-delay product (BDP) (it can take multiple
minutes to re-probe network capacity after a single packet
loss [8]).

Using a simulated ADSL1 link with a 20 000 byte bot-
tleneck queue and 100ms baseline round trip time (RTT),
Figure 1 illustrates how a single downstream flow’s cwnd
fluctuation over time is cyclical and yet can be quite differ-
ent depending on one’s choice of CC algorithm.

Figure 1(a) and 1(b) show a ten second sample of cwnd
and induced queuing delay associated with a single NewReno
and CUBIC flow respectively. The one way delay (OWD)
experienced by a constant bit rate VoIP-like traffic source
sharing the bottleneck link is intuitively proportional to and
driven by the fluctuation of cwnd.

CUBIC’s aggressiveness compared to NewReno is clearly
visible, both in terms of growing cwnd at a faster rate and
backing off less on congestion. The lower-bound base OWD
of 50ms (100ms path RTT divided by two) grows by up
to 107ms to a maximum of 157ms when the queue is full.
By backing off less on congestion, CUBIC does not give the
queue time to drain as much as with NewReno, and therefore
the queuing delay is consistently higher. Regardless of the
TCP algorithm, a real VoIP session sharing this link with
a TCP session would clearly experience substantial fluctua-
tions of OWD above the path’s 50ms minimum.

2.2 Choosing when to drop packets
Buffering at bottleneck links is often implemented (and

modeled in research papers) as a first-in first-out (FIFO)
drop-tail queue – a newly arrived packet is dropped rather
than queued if it arrives when the queue is full. Although
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Figure 1: TCP congestion window oscillation coupled with the induced queueing delay. ADSL1 type link:
1.5Mbps/256 kbps, with a minimum 100ms RTT and 20 000 byte queue.

the notion of ‘being full’ might seem obvious, we identify
three superficially-similar ways to define when a queue is
full:

• PS: The queue is packet (slot) based, and the maxi-
mum queue length is specified as an integer number of
packets:
if (NumPktsInQ ≥ PktQueueLength)

drop incoming packet

• FB-strict: A fixed length byte-based queue where the
current queue length + new packet length must not
exceed a specified number of bytes:
if ((NumBytesInQ + InPktLength)

> ByteQueueLength)
drop incoming packet

• FB-loose: A fixed length byte-based queue where the
current queue length must not exceed a fixed number
of bytes before adding the new packet:
if (NumBytesInQ > ByteQueueLength)

drop incoming packet

Network devices, simulators and emulators may implement
one or more of the preceding packet drop rules, without
necessarily making the actual rule clear to their users. For
example, FreeBSD’s dummynet [9] (a tool used by many
researchers to emulate various network conditions in small
testbeds2) uses PS by default but silently switches to FB-
loose if the queue size is configured in bytes. Commercial
equipment and network simulators (such as ns-2 [10]) often
implement PS or FB-strict.

Our experiments reveal that one’s choice of PS, FB-strict
or FB-loose packet drop rule can have significantly different
impacts on what we predict or expect to see when TCP and
non-reactive flows share a bottleneck.

2.3 Interactions between application flows
Community evaluation of new TCP CC schemes has tended

to focus on aspects such as intra-protocol fairness, inter-
protocol fairness with NewReno, maximising throughput and

2http://citeseerx.ist.psu.edu/ lists 311 citations (accessed 13
April 2010) of [9] for dummynet

speeding convergence to a fair transmission rate [11]. Al-
though broad consensus has yet to be reached, NewReno
has already been replaced by CUBIC as the default CC algo-
rithm in recent releases of Linux, and Microsoft is migrating
to the use of CompoundTCP [12].

However, most consumers will experience a mixture of
entertainment, information access and communication ser-
vices over a single (often asymmetric) broadband IP service
to their homes. To date, we have found very little prior
work [13, 14, 15] investigating home broadband scenarios
and the behaviour of emerging TCPs, or TCPs interacting
with non-congestion reactive, latency-sensitive traffic in this
environment. The continuing convergence towards IP based
entertainment, information access and communication ser-
vice delivery ensures this is an area of increasing importance.
Consequently it is crucial to properly model and understand
the likely behavior of different TCP CC schemes when inter-
acting with non-congestion reactive, latency-sensitive traffic
in such a consumer environment.

Online multiplayer games and VoIP are two examples of
latency-sensitive consumer applications that do not typically
react to congestion in the network. Online multiplayer com-
puter games, and the popular first person shooter genre in
particular, have well known latency sensitivity requirements
for effective game play [16]. Voice telephony is another real-
time service with well characterised latency tolerances (see
[17, 18]). Markopoulou et al. [19] look at these performance
issues over IP backbone. Such applications typically gener-
ate relatively constant streams of UDP packets in the 80 to
300+ byte range (small in comparison to typical TCP data
packets).

In the rest of this paper we explore how such applications
are likely to be impacted by sharing a home broadband link
with NewReno and CUBIC TCP flows. In particular we
focus on the case where TCP-based content is being deliv-
ered into a home, cyclically congesting the downstream link
shared with a VoIP-like flow.

3. EVALUATION METHODOLOGY
Our evaluation follows on from our previous work in [15]

by exploring a significantly wider range of more realistic sce-
narios including asymmetric bandwidth and variable queue



size. We utilise both an experimental testbed (Figure 2)
and ns-2 [10] simulating the same network topology. The
testbed’s FreeBSD router uses dummynet [9] to emulate the
bottleneck drop-tail queues and RTT/2 of delay in each di-
rection3. Hosts A (TCP sender) and C (TCP receiver) run
Debian Linux4. The other communicating endpoints (hosts
B and D) run FreeBSD 7.0.

While not topologically equivalent to real network paths,
our simple dumbbell testbed focuses on emulating a con-
sumer’s asymmetric ADSL-style bottleneck link combined
with realistic end-to-end RTT characteristics.

Host A

Host B

Router

Host C

Host D

Endace DAG 3.7GF

drop-tail
queue

drop-tail
queue

RTT/2
delay

RTT/2
delay

upstream

downstream

Figure 2: Testbed for investigation of TCP interac-
tion with non-reactive CBR traffic

For clarity we evaluated the interaction between a sin-
gle downstream TCP flow and a bi-directional non-reactive
constant bit rate (CBR) flow under the following scenarios:

• Typical consumer ADSL1 and high-end ADSL2 speeds
of 1500/256 kbps and 24/1Mbps respectively.

• Byte-based queues of length 10 000, 20 000, 40 000, 60 000,
and 100 000 bytes5

• Slot-based queues of length 7, 14, 20, 27, 34, 40, 47,
54, 60 and 67 slots

3Configured latency is accurate to within 0.5ms as the
router’s kernel was set to tick at 2000Hz (kern.hz = 2000).
FreeBSD 7.0-RC1 on a 2.80GHz Intel Celeron D (256K L2
Cache), 512MB PC3200 DDR-400 RAM, with two Intel
PRO/1000 GT 82541PI PCI gigabit Ethernet cards as for-
warding interfaces
4A 2.6.25 kernel ticking at 1000Hz, each one a 1.86GHz In-
tel Core2 Duo E6320 (4MB L2 Cache) CPU, 1GB PC5300
DDR2 RAM and Intel PRO/1000 GT 82541PI PCI giga-
bit Ethernet NIC. Load-time tunable variables of the Linux
CUBIC implementation were left at their default values.
5Sizes are based on previously published estimations of
buffering in consumer routers [20, 21]

• Round trip time (RTT) delays of 24, 50, 100, and
200ms.

• PS and FB-loose packet dropping in the testbed

• PS, FB-strict and FB-loose in ns-26.

For PS packet dropping the slot-based queue limit was
calculated as the number of 1500 byte packets that fit into
the equivalent byte-based queue lengths, rounded up to the
nearest slot.

3.1 Testbed traffic generation
Bulk TCP traffic was generated using Iperf [22], with data

flowing from Host A to C and ACKs from Host C to A. Non-
reactive CBR UDP traffic was emulated using tcpreplay[23]
to send two uni-directional streams of 186 byte UDP packets
from Hosts B to D and D to B. The UDP packets are sent
on average every 20ms, with a normally distributed jitter
with a standard deviation of 1ms.

3.2 Measurements
Trials were run five times for each combination of TCP

algorithm, ADSL speed, queue size, and RTT. Trials lasted
for at least five minutes. Where applicable, graphs plot the
median with error bars spanning the range of results from
the repeated trials.

We used Web100 [24] on testbed Hosts A and C to enable
polling of cwnd every 1ms over the lifetime of each TCP
session. Two Endace DAG 3.7GF gigabit Ethernet capture
ports were used for precision traffic capture to calculate de-
lays through the router.

4. RESULTS
For home users, TCP performance is not substantially

impacted by the choice of NewReno or CUBIC. However,
CUBIC induces noticably higher additional latency than
NewReno, and the FB-loose packet drop scheme creates
much higher packet losses than PS or FB-strict.

4.1 TCP Goodput
A useful indication of TCP performance is goodput – the

usable throughput experienced by an application (i.e. not
counting retransmitted packets). As noted in Figure 1, cwnd
cycles as TCP probes for available capacity and regularly
hits a bottleneck queue’s limit. Larger queues lead to more
time with larger cwnd, and hence higher goodput.

Figure 3(a) shows TCP goodput for various bottleneck
queue sizes (in units of 1500 byte packets) for a 1.5Mbps/256kbps
link and 100ms base RTT. CUBIC was able to fully utilise
the bandwidth with the smallest tested queue size of 7 pack-
ets, while NewReno required 20 packets.

Figure 3(b) shows goodput for a 24/1Mbps link and 100ms
base RTT. CUBIC and NewReno both fail to fully utilise
the bandwidth at queue sizes below 40 packets. NewReno
was unable to drive the link at full capacity even with the
largest queue size we tested with. It follows in the subse-
quent sections that the marginally better goodput achieved
by CUBIC comes at a price. In our view, that cost outweighs
the benefit in a home environment, where absolute perfor-
mance is less important than the full range of services in

6ns-2, version 2.33 had to be modified slightly to ensure the
FB-strict implementation properly accounted for the length
of the packet in the front of the queue.
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Figure 3: Downstream TCP goodput vs PS queue length – measured (testbed) and simulated (ns-2) for a
1.5Mbps/256 kbps link and 24/1Mbps link, 100ms minimum RTT.

use working adequately “out of the box” without specialised
configuration.

The testbed and ns-2 simulations compare well, except
when the buffer size is very small. Small buffer sizes tend to
magnify the discrepancies between the ns-2 model and the
real Linux TCP stack, with the cwnd increase and backoff
oscillations occuring more rapidly on the testbed (see section
4.2.1 for more discussion).

4.2 CBR packet loss: results of trial runs
The proportion of CBR packets lost due to bottleneck

queue congestion is very sensitive to the choice of queue full
packet drop mechanism (Section 2.2). Figure 4(a) shows
the proportion of CBR packets lost on the downstream of
a 1500/256 kbps bottleneck link, assuming the TCP flow
experiences a minimum RTT of 100ms.

4.2.1 FB-loose
FB-loose allows overfilling by at most one packet. Since

TCP data packets are typically much larger than a VoIP
packet and arrive at the queue more frequently, the TCP
data packet is more likely to overfill the queue (and when this
happens the queue remains full for longer). Figure 4(a) il-
lustrates that FB-loose consequently introduces much higher
CBR loss rate than PS or FB-strict.

Figure 4(b) shows that our NewReno simulation and testbed
results are very close, although the simulation results tend
to underestimate real CBR packet loss for CUBIC. (Wei and
Cao [25] find that the ns-2 CUBIC cwnd oscillation and con-
gestion epochs differ in their own Linux/dummynet testbed
trials. The ns-2 CUBIC model has less congestion epochs
than the real Linux implementation, resulting in a smaller
number of CBR packets being lost.)

Although the general CBR loss rate trends down as the
queue size increases, it also depends on how the actual packet
sizes fit into the queue. Both the testbed and ns-2 simula-
tions highlight this especially for CUBIC in Figure 4(b) for
queue sizes which are multiples of TCP’s 1500 byte packets.

There is a stark difference in the proportion of CBR pack-
ets lost between FB-loose and FB-strict (explained in section
4.3). This should be of interest to researchers using dum-
mynet to emulate typical in-network queues, as dummynet’s
use of FB-loose may not be representative of FB-strict im-
plementations in deployed equipment.

4.2.2 FB-strict
When a FB-strict queue approaches full there can be room

at the end for one or more of our 186 byte CBR packets even
when there is no room for a 1500 byte TCP data packet. This
leads to a bias toward accepting smaller packets when the
link’s capacity is primarily being consumed by large TCP
packets. As shown in Figure 4(a), FB-strict saw almost 0 %
loss of CBR packets. ISPs who configure their down link
queues to be byte based with the FB-strict drop policy can
expect to provide their customers with better VoIP or online
game play experience in terms of minimising packet loss.

4.2.3 PS
PS treats all packets equally, regardless of size, resulting

in a moderate CBR packet loss. This queue drop mech-
anism also provides a degree of robustness to the overall
fairness between reactive and non-reactive flows when the
non-reactive flows have much smaller packets than the reac-
tive flows (though this may well be a non-goal).

4.2.4 ADSL 2
Our equivalents of Figures 4(a) and 4(b) using a 24/1Mbps

link revealed that relative CBR loss rates were similarly im-
pacted by the choice of FB-loose, PS or FB-strict packet
drop scheme. However, we have not included a graph as
the absolute CBR loss rates were exceedingly low (about
1% and 0.4% for CUBIC and NewReno respectively with
FB-loose) and relatively insensitive to queue size.

4.2.5 CUBIC’s Fast Convergence Heuristic
During TCP’s congestion avoidance phase, CUBIC uses

its fast convergence heuristic to detect competition for bot-
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Figure 4: Proportion of CBR packets lost on the downstream for different packet drop mechanisms –
1500/256 kbps link, 100ms minimum RTT.

tleneck resources and more aggressively backoff to allow new
flows to gain their share of the available bandwidth [4].
When a congestion event occurs, the heuristic compares the
value of cwnd from the previous congestion event against the
current cwnd and backs off more aggressively if the current
cwnd is smaller. The reasoning for this behaviour is that if
a new flow begins competing for buffer space, the buffer will
fill sooner and our flow’s cwnd will not have grown as much
when the next congestion event occurs.
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Figure 5: Comparison of CUBIC flows from sep-
arate but identical trials showing the effect of the
fast convergence heuristic – single CUBIC TCP vs
single CBR flow, 50ms RTT, 1.5Mbps/256kbps link,
60000 byte queue.

We frequently observed single flow CUBIC trials operat-
ing in either fast convergence or regular congestion avoid-
ance mode exclusively. All other parameters being the same,
operating exclusively in the fast convergence mode results
in fewer congestion epochs compared to operating exclu-
sively in regular congestion avoidance mode. Figure 5 shows
the phenomenon using representative twenty second samples

from two otherwise identical, three minute long trials. The
“FC Active” flow became synchronised with the CBR flow
after the first congestion event in such a way that it contin-
ually triggered the fast convergence heuristic. In contrast,
the “FC Inactive” flow reached the same cwnd value every
congestion event and never triggered the heuristic.

Fewer congestion epochs induces lower CBR loss rates,
making comparison of data between such tests misleading.
By jittering the interarrival times of the CBR UDP packets
using a normal distribution (mean: 20ms, stddev: 1ms), we
reduced the probability of the phenomenon occurring to the
point where we did not observe it in any of our subsequent
tests.

It is unlikely that this phenomenon would be induced by
flows interacting in the wider Internet where jitter is natu-
rally added by shared networking devices along a path. How-
ever, the potential for it to occur in home networks where
there is often very little cross-traffic and small numbers of
TCP flows sharing a bottleneck link requires further inves-
tigation.

4.3 CBR packet loss: analysis
The significant difference in loss between the PS queue

and either of the byte-based queues in the previous section
is to be expected because of the difference in TCP and CBR
packet sizes. What is surprising is the large difference in
loss produced by the two different byte based queue drop
rules and counter-intuitive relationship between loss rate
and queue size (the peaks around queue sizes 30, 60 and
90 kbyte in Figure 4(b)).

When a queue is close to full, a 1500 byte TCP packet will
have a significantly smaller chance to fit in than a 186 byte
CBR packet. CBR packets arrive at the queue relatively
infrequently (based on the VoIP encoding clock), while the
TCP packets dominate the queue at times of congestion be-
cause of TCP’s bandwidth probing behaviour. For the fol-
lowing discussion, we therefore assume that there are only
TCP packets and no CBR packets in the queue (the exis-
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Figure 7: Additional downstream CBR queuing delay experienced on a link shared with a CUBIC or NewReno
TCP flow – measured (testbed) and simulated (ns-2), 40 000 byte FB-loose queue.



tence of CBR packets in the queue, the probability of which
depends on the queue length, would modulate the numbers
discussed below but leave the described effect intact).

In an almost full FB-strict queue, TCP packets will be
dropped most of the time, while there will usually be room
for a CBR packet, e.g. a queue of size (n×1500+1499) bytes
would always leave room for int(1499/186) = 8 CBR pack-
ets, irrespective of the value of n and the amount of greedy
traffic which arrives. This behaviour makes the FB-strict
queue friendlier towards the CBR traffic in most configura-
tions of queue size. Based on the dynamics and parameters
of a particular test, we expect there to be a range of queue
sizes that, when unable to accept additional TCP packets,
will also have insufficient room to accommodate any extra
CBR packets. We would expect the range to be about 186
bytes (size of a CBR packet) and expect a queue of such size
to induce higher CBR losses than usual.

In an almost full FB-loose queue, the ability to overfill the
queue shifts the friendliness of the scheme towards the TCP
sender. Since TCP packets flow at a much faster rate than
CBR packets, the chance that a TCP packet will overfill
the queue is greater. The increased probability of a large
TCP packet overfilling the queue results in higher CBR loss
waiting for the queue to drain. By allowing the queue to
overflow by an entire packet, the behaviour of an FB-loose
queue is very dependent on the exact contents of the queue
and timing between flows. The interaction of CBR and TCP
interarrival times with the path RTT determines if the queue
overflows by a small or large amount.

We performed an additional set of simulations to explore
these queue effects more closely. Thirty, 180 second tri-
als were run for each permutation of TCP (CUBIC and
NewReno), FB queue-drop type (FB-loose and FB-strict)
and queue size (52500 to 67500 bytes in 30 byte increments).

Figure 6 plots the results, with each point on each line
representing the median of all thirty trials for that permu-
tation. The 5% and 95% confidence intervals are given by
the dashed line envelope around the median value plot. Fig-
ure 6 is effectively zooming in on Figure 4(a) and providing
more visibility between the coarsely-grained data points.

Starting with the FB-strict plot, the periodic peaks cor-
respond with queue sizes in the 186 byte “sweet spot” that
cause significantly increased CBR loss. For this set of trial
parameters, the peaks occur at queue sizes just below an
integer multiple of 1500 byte packets (e.g. 57000, 58500,
60000 bytes).

In contrast, the FB-loose plot’s minima are complex and
not amenable to being described by a simple mathematical
model. Under the conditions shown in Figure 6, the queue
overfills by a large (1500 bytes worst case) amount at queue
sizes slightly larger than an integer multiple of the TCP
packet size. This observation directly relates to the CBR
vs TCP occupancy of the queue at the time of congestion.
Changing the RTT or intearrival times would shift the plot
along the x-axis, changing the locations of the loss minima.

The behaviour demonstrated in Figure 6 clearly accounts
for the counter-intuitive FB-loose CBR loss figures seen in
Figure 4.

4.4 CBR latency
The latency experienced by CBR packets is important

for real-time applications such as VoIP and online games.
Figure 7 uses box-and-whisker plots to summarise the ad-

ditional queuing delay experienced by CBR packets on the
downstream (total one way delay is queuing delay plus RTT/2).
Box-and-whisker plots are shown for CUBIC and NewReno
(ns-2 simulation and testbed) for each minimum RTT/2
(minimum one way delay) used in the experiments, with
a queue size of 40× 103 bytes.

The spread of delays experienced by CBR packets is driven
by the TCP CC sawtooth, which in turn depends on the
RTT – how fast it can probe, and how long it takes for
TCP to react to congestion. As the propagation delay in-
creases, TCP’s probing and response to congestion becomes
slower, and the variation in delay increases. Notice that CU-
BIC’s aggressive congestion control ensures that the bottle-
neck queue stays fuller, resulting in a higher median latency
and tighter variance than NewReno.

At 24/1Mbps link speed the total additional latency is
lower, but CUBIC still induces noticeably higher latency
than NewReno. The maximum additional queuing delay
is about 13ms. Median delay introduced by CUBIC and
NewReno is about 11ms and 5ms respectively when RTT/2
is 12ms, and 9ms and 1ms respectively when RTT/2 is
25ms. (As RTT increases further neither CUBIC nor NewReno
could saturate the link, resulting in median additional delays
under 2ms for both.)

5. CONCLUSION
We have specifically considered the impact of reactive

TCP-based data transfers on non-reactive real-time traffic
(such as VoIP) sharing the downstream of an asymmetric
consumer broadband link. Modifications to the traditional
NewReno TCP congestion control algorithm to better utilise
high bandwidth links can noticeably increase the typical la-
tencies experienced by other traffic (particularly at common
ADSL1 link speeds). Second, superficially-similar packet
dropping rules on the consumer and ISP sides of a home In-
ternet connection can induce distinctly different packet loss
rates in non-reactive real-time type traffic. These increases
in loss and latency significantly degrade the quality of ser-
vice of non-reactive real-time services.

Our observations suggest that a less aggressive form of
TCP, such as NewReno, may be a better choice for deliv-
ering content toward consumers than CUBIC if one wishes
to minimise additional latency induced by TCP traffic. We
also observe that both researchers and implementors must
pay close attention to how their simulation of a network
device defines a queue being ‘full’. In particular, fixed byte-
length queues that allow themselves to overfill by ‘one more
packet’ can induce substantially higher packet loss rates than
queues bounded (regardless of packet lengths) by strict byte
lengths or integer numbers of packets. Finally, we believe
our observations may be applied to selection of packet drop
mechanisms on both the upstream and downstream sides of
consumer broadband modems.
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