
Technical Report, Simula Research Laboratory, number 2011-13

A Hitchhiker’s Guide to Statistical Tests for
Assessing Randomized Algorithms in

Software Engineering1

Andrea Arcuri and Lionel Briand

Simula Research Laboratory, P.O. Box 134, Lysaker, Norway.
Email: {arcuri,briand}@simula.no

Abstract

Randomized algorithms have been used to successfully address many different types of software engi-
neering problems. This type of algorithms entail a significant degree of randomness as part of their logic.
Randomized algorithms are useful to address difficult problems where a precise solution cannot be derived in
a deterministic way within reasonable time. However, randomized algorithms can produce different results
on every run when applied to the same problem instance. It is hence important to assess the effectiveness
of randomized algorithms by collecting data from a large enough number of runs. The rigorous use of sta-
tistical tests is then essential to provide support to the conclusions derived by analyzing such data. In this
paper, we provide a systematic review of the use of randomized algorithms in selected software engineering
venues in 2009/2010. Its goal is not to perform a complete survey but to get a representative and up-to-date
snapshot of current practice in software engineering research. We show that randomized algorithms are
used in a significant percentage of papers but that, in most cases, randomness is not properly accounted
for. This casts doubts on the validity of most empirical results assessing randomized algorithms for various
applications. There are numerous statistical tests, basedon different assumptions, and it is not always clear
when and how to use these tests. We hence provide practical guidelines to support empirical research on
randomized algorithms in software engineering.

Keyword: Statistical difference, effect size, parametric test, non-parametric test,confidence interval, Bon-
ferroni adjustment, systematic review, survey.

1 Introduction

Many problems in software engineering can be alleviated through automated support. For example, automated
techniques exist to generate test cases that satisfy some desired coverage criteria on the system under test, such
as for example branch [48] and path coverage [42]. Because often these problems are undecidable, deterministic
algorithms that are able to provide optimal solutions in reasonable time do not exist. The use of randomized
algorithms [74] is hence necessary to address this type of problems.

The most well-known example of randomized algorithm in software engineering is perhapsrandom testing
[26, 11]. Techniques that use random testing are of course randomized, as for example DART [42] (which com-
bines random testing with symbolic execution). Furthermore, there is a large body of work on the application
of search algorithmsin software engineering [47], as for example Genetic Algorithms. Since all search algo-
rithms are typically randomized and numerous software engineering problemscan be addressed with search
algorithms, randomized algorithms therefore play an increasingly important role. Applications of search al-
gorithms include software testing [69], requirement engineering [16], project planning and cost estimation [2],
bug fixing [12], automated maintenance [72], service-oriented softwareengineering [19], compiler optimisation
[21] and quality assessment [56].

1This paper is an extension of a conference paper [9] published in the International Conference on Software Engineering (ICSE),
2011.

1



A randomized algorithm may be strongly affected by chance. It may find an optimal solution in a very
short time or may never converge towards an acceptable solution. Runninga randomized algorithm twice on
the same instance of a software engineering problem usually produces different results. Hence, researchers in
software engineering that develop novel techniques based on randomized algorithms face the problem of how
to properly evaluate the effectiveness of these techniques.

To analyze the cost and effectiveness of a randomized algorithm, it is important to study theprobability
distributionof its output and various performance metrics [74]. For example, a practitioner might want to know
what is the execution time of those algorithmson average. But randomized algorithms can yield very complex
and high variance probability distributions, and hence looking only at average values can be misleading, as we
will discuss in more details in this paper.

The probability distribution of a randomized algorithm can be analyzed by running such an algorithm
several times in an independent way, and then collecting appropriate data about its results and performance.
For example, consider the case in which we want to find failures in softwareby using random testing (assuming
that an automated oracle is provided). As a way to assess its cost and effectiveness, we can sample test cases
at random until the first failure is detected. For example, in the first experiment, we might find a failure
after sampling24 test cases. We hence repeat this experiment a second time (if a pseudo-random generator is
employed, we need to use a different seed for it) and then, for example, trigger the first failure when executing
the second random test case. If in a third experiment we obtain the first failure after generating274 test cases,
themeanvalue of these three experiments would be100. Using such a mean to characterize the performance
of random testing on a set of programs would clearly be misleading given theextent of its variation.

Since such randomness might hinder the reliability of conclusions when performing the empirical analysis
of randomized algorithms, researchers hence face two problems: (1) how many experiments should be run to
obtain reliable results, and (2) how to assess in a rigorous way whether such results are indeed reliable. The
answer to these questions lies in the use ofstatistical tests[86]. There are many books on various aspects of
statistics (e.g., [86, 20, 60, 45, 102]), and that research field is still growing [102]. Notice that though statistical
testing is used in most if not all scientific domains (e.g., medicine and behavioralscience), each field has its
own set of constraints to work with. Even within a field like software engineering the application context
of statistical testing can vary significantly. When human resources and factors introduce randomness (e.g.,
[28, 52]) in the phenomena under study, the use of statistical tests is also required but the constraints we work
with are quite different from those of randomized algorithms, such as for example the size of data samples and
the types of distributions.

Because of the widely varying situations across domains and the overwhelming number of statistical tests,
each one with its own characteristics and assumptions, many practical guidelines have been provided targeting
different scientific domains, such as biology [77] and medicine [53]. There are also guidelines for running
experiment with human subjects in software engineering [103]. In this paper, we intend to do the same for
randomized algorithms in software engineering, as they entail specific issues and the application of statistical
testing is far from easy, as we will see.

To assess whether the results obtained with randomized algorithms are properly analyzed in software engi-
neering research, and therefore whether precise guidelines are required, we carried out a systematic review. We
limited our analyses to the years2009 and2010, as our goal was not to perform an exhaustive systematic review
but to obtain a recent, representative sample on which to draw conclusionsabout current practices. We focused
on research venues that deal with all aspects of software engineering, such as IEEE Transactions of Software
Engineering (TSE), IEEE/ACM International Conference on SoftwareEngineering (ICSE) and International
Symposium on Search Based Software Engineering (SSBSE). The former two are meant to get an estimate of
the extent to which randomized algorithms are used in software engineering.The latter, more specialized venue
provides us with additional insight into the way randomized algorithms are assessed in software engineering.
The review shows that, in many cases, statistical analyses are either missing,inadequate, or incomplete. For
example, though journal guidelines in medicine require a mandatory use of standardizedeffect sizemeasure-
ments [45] to quantify the effect of treatments, we have found only one case in which a standardized effect size
was used to measure the relative effectiveness of a randomized algorithm[83]. Furthermore, in many of the
surveyed empirical analyses, randomized algorithms were evaluated based on the results of only one run. Only
few empirical studies reported the use of statistical analysis.

Given our survey’s results, we hence found necessary to devisepracticalguidelines for the use of statistical

2



testing in assessing randomized algorithms in software engineering applications. Note that though guidelines
have been provided for other scientific domains [77, 53] and for other types of empirical analyses in software
engineering [28, 52], they are not necessarily applicable in the contextof randomized algorithms. Our objective
is therefore account for the specific properties of randomized algorithmsin software engineering applications.

Notice that Ali et al. [3] have recently carried out a systematic review of search-based software testing
which includes some limited guidelines on the use of statistical testing. This paper builds upon that work by: (1)
analyzing software engineering as whole and not just software testing, (2) considering all types of randomized
algorithms and not just search algorithms, and (3) giving precise, practical, and complete suggestions on many
aspects related to statistical testing that were either not discussed or just briefly mentioned in [3] .

The main contributions of this paper can be summarized as follows:

• We provide a systematic review of the current state of practice of the use ofstatistical testing to analyze
randomized algorithms in software engineering. The review shows that randomness is not properly taken
into account in the research literature.

• We provide practical guidelines on the use of statistical testing that are tailoredto randomized algorithms
in software engineering applications and the specific properties and constraints they entail.

The paper is organized as follows. Section 2 discusses a motivating example. The systematic review
we carried out follows in Section 3. Section 4 presents the concept of statistical difference in the context of
randomized algorithms. Section 5 compares two kinds of statistical tests and discussed their implications in
our context. The problem of censored data and how it applies to randomized algorithms is discussed in Section
6. How to measure effect sizes and therefore the practical impact of randomized algorithms is presented in
Section 7. Section 8 investigates the question of how many times randomized algorithms should be run. The
problems associated with multiple tests is discussed in Section 9, whereas Section 10 deals with the choice of
artifacts, which has usually a significant impact on results. Practical guidelines on how to use statistical tests
in our context are summarized in Section 11. The threats to validity associated with our work are discussed in
Section 12. Finally, Section 13 concludes the paper.

2 Motivating Example

In this section, we provide a motivating example to show why the use of statisticaltests is a necessity in the
analyses of randomized algorithms in software engineering. Assume that twotechniquesA andB are used
in a type of experiment in which the output is binary: eitherpassor fail. For example, in the context of
software testing,A andB could be testing techniques (e.g., random testing [26, 11]), and the experiment would
determine whether they trigger or not any failure given a limited testing budget.The technique with highest
success rate, that is failure rate in the testing example, would be considered to be superior. Further assume
that both techniques are runn times, anda represents the timesA was successful, wheresb is the number of
successes forB. Theestimatedsuccess rates of these two techniques are defined asa/n andb/n, respectively.

Now, consider that such experiment is repeatedn = 10 times, and the results show thatA has a 70%
estimated success rate, whereasB has a 50% estimated success rate. Would it be safe to conclude thatA is
better thanB? Even ifn = 10 and the difference in estimated success rates is quite large (i.e., 20%), it would
actually be unsound to draw any conclusion about the respective performance of the two techniques. Because
this might not be intuitive, we provide below the exact mathematical reasons to explain why that is the case.

A series of repeatedn experiments with binary outcome can be described as abinomial distribution[31],
where each experiment has probabilityp of success, and the mean value of the distribution (i.e., number of
successes) ispn. In the case ofA, we would have an estimated success ratep = a/n and an estimated number
of successespn = a. The probability mass function of a binomial distributionB(n,p) with parametersn andp
is:

P (B(n,p) = k) =

(

n

k

)

pk(1− p)n−k .

P (B(n,p) = k) represents the probability that a binomial distributionB(n,p) would result ink successes.
Exactlyk runs would be successful (probabilitypk) while the othersn− k would fail (probability(1− p)n−k).

3



Suc
ce

ss
 R

at
e 

for
 A

0.2

0.4

0.6

0.8
Success Rate for B 0.2

0.4

0.6

0.8

p

0.00

0.02

0.04

0.06

Suc
ce

ss
 R

at
e 

for
 A

0.2

0.4

0.6

0.8
Success Rate for B 0.2

0.4

0.6

0.8

p

0.000

0.002

0.004

0.006

Figure 1: Probabilities to obtaina = 0.7n andb = 0.5n whenn = 10 (left) andn = 100 (right) for different
success rates of the algorithmsA andB.

Since the order of successful experiments is not important, there are
(

n
k

)

possible orders. Using this probability
function, what is the probability thata equals the expected number of successes? Using our example, having
a technique with anactual 70% success rate, what is the probability of having exactly 7 successes out of 10
experiments? This can be calculated with:

P (B(10,0.7) = 7) =

(

10

7

)

0.77(0.3)3 = 0.26 .

This example shows there is only a 26% chance to have exactlya = 7 successes if the actual success rate
is 70%! This shows a widespread misconception: expected values (e.g., successes) often have a relatively low
probability of occurrence. Similarly, the probability that both techniques have a number of successes equal to
their expected value would be even lower:

P (B(10,0.7) = 7)× P (B(10,0.5) = 5) = 0.06 .

Reversely, even if we obtaina = 7 andb = 5, what would be the probability that both techniques have an
equal actual success rate of 60%? We would have:

P (B(10,0.6) = 7)× P (B(10,0.6) = 5) = 0.04 .

Though0.04 seems a rather “low” probability, it is not much lower than0.06, the probability of the observed
number of successes to be actually equal to their expected values. Therefore, we cannot really say that the
hypothesis of equal actual success rates (60%) is much more implausible than the one with 70% and 50%
actual success rates. But what about the case where the two techniques have exactly the same actual success
rate equal to0.2? Or what about the cases in whichB would actually have a better actual success rate than
A? What would be the probability for these situations to be true? Figure 1 showsall these probabilities, when
a = 0.7n andb = 0.5n, for two different numbers of runs:n = 10 andn = 100. For n = 10, there is a
great deal of variance in the probability distribution of success rates. Inparticular, the cases in whichB has
a higher actual success rate do not have a negligible probability. On the other hand, in the case ofn = 100,
the distribution variance has decreased significantly and high probabilities are all close to the expected average
values (i.e., 70% forA and 50% forB). This clearly shows he importance of using sufficiently large samples,
an issue we will get back to later in the paper.

In our example, withn = 100, the use of statistical tests (e.g., Fisher Exact test) would yield strong evidence
to conclude thatA is better thanB. At an intuitive level, a statistical test would estimate the probability of
mistakenly drawing the conclusion thatA is better thanB, under the form of a so-called p-value, as further
discussed later in the paper. The resultingp-valuewould be quite small forn = 100 (i.e.,0.005), whereas for

4



Table 1: Number of publications grouped by venue, year and type.

Venue Year All Regular Randomized Algorithms
TSE 2009 48 48 3

2010 48 48 12
ICSE 2009 70 50 4

2010 111 54 10
SSBSE 2009 17 9 9

2010 17 14 11
Total 311 223 49

n = 10 it would far much larger (i.e.0.649), thus confirming and quantifying what is graphically visible in
Figure 1. So even for what might appear to be large values ofn, our capability to draw reliable conclusions
could still be weak. Though some readers might find the above example rather basic, the fact of the matter is
that many papers reporting on randomized algorithms overlook the principlesand issues illustrated above.

3 Systematic Review

Systematic reviews are used to gather, in an unbiased and comprehensiveway, published research on a specific
subject and analyze it [54]. Systematic reviews are a useful tool to assess general trends in published research,
and they are becoming increasingly common in software engineering [59, 28, 52].

In our review we want to analyze: (RQ1) how often randomized algorithms are used in software engineer-
ing, (RQ2) how many runs were used to collect data, and (RQ3) which types of statistical analyses were used
to analyze these data.

To answer RQ1, we selected two of the main venues that deal with all aspectsof software engineering:
IEEE Transactions of Software Engineering (TSE) and IEEE/ACM International Conference on Software En-
gineering (ICSE). We also considered the International Symposium on Search-Based Software Engineering
(SSBSE), which is a specialized venue devoted to search algorithms. Because our goal is not to perform an
exhaustive survey of existing works, but simply to get an up-to-date snapshot of current practice regarding the
application of randomized algorithms in software engineering research, weonly considered 2009 and 2010
publications.

We only retained full length research papers and, as a result,77 papers at ICSE and11 at SSBSE were
excluded. A total of223 papers were considered:96 in TSE,104 in ICSE and23 in SSBSE. These papers
were manually checked to verify whether they made use of randomized algorithms, thus leading to a total of49
papers. Table 1 summarizes the details of these publications divided by venue and year.

Notice that we excluded papers in which it was not clear whether randomized algorithms were used. For
example, the techniques described in [50, 95] use external SAT solvers, and those might be based on randomized
algorithms, though we cannot say for sure. Furthermore, we do not consider papers that involvemachine
learningalgorithms that are randomized since they require different types of analysis [73]. On the other hand,
if a paper focused on presenting a deterministic, novel technique, we included it when randomized algorithms
were used for comparison purposes (e.g., fuzz testing [36]). Table 2 (for the year 2009) and Table 3 (for
the year 2010) summarize the results of this systematic review for the final selection of 49 papers. The first
clearly visible result is that randomized algorithms are widely used in softwareengineering (RQ1): we found
them in15% of the regular articles in TSE and ICSE, which are general-purpose andrepresentative software
engineering venues.

To answer RQ2, the data in Table 2 and Table 3 shows the number of times a technique was run to collect
data regarding its performance on each artifact in the case study. Only25 cases out of49 show at least10 runs.
In many cases, data are collected from only one run of the randomized algorithms. Furthermore, notice that
the case in which randomized algorithms are evaluated based ononly one run per case study artifactis quite
common in the literature. Even very influential papers such as DART [42] suffers of this problem, which poses
a serious threat to the validity of those empirical analyses.

5



In the literature, there are empirical analyses in which randomized algorithms are run only once per case
study artifact, but a large case study was generated at random (e.g., [78, 101]). The validity of such empirical
analyses is questionable. However, the choice of a case study that is statistical relevant, and its relations with
the needed number of runs for evaluating a randomized algorithm, needs proper care, and it will be discussed
in more detail in Section 10.

Regarding RQ3, only18 out of49 articles include empirical analyses supported by some kind of statistical
testing. More specifically, we can seet-tests, Welch and U-tests for when algorithms are compared in a pairwise
fashion, whereas ANOVA and Kruskal-Wallis for multiple comparisons. Furthermore, in some cases linear
regression is employed to build prediction models from a set of algorithm runs. However, in only one article
[83] standardizedeffect sizemeasures (see Section 7) are reported to quantify the relative effectiveness of
algorithms.

Results in Table 2 and 3 clearly show that, when randomized algorithms are employed, empirical analyses in
software engineering do not properly account for their random nature. Many of the novel proposed techniques
may indeed be useful, but the results in Table 2 and 3 cast serious doubts on the validity of most existing results.

Notice that some of empirical analyses in Table 2 and 3 do not use statistical tests since they do not perform
any comparison of the technique they propose with alternatives. For example, in the award winning paper at
ICSE 2009, a search algorithm (i.e., Genetic Programming) was used and was run100 times on each artifact
in the case study [100]. However this algorithm was not compared againstsimpler alternatives or even random
search. If we look more closely at the reported results in order to assessthe implications of that lack of
comparison, we see that the total number of fitness evaluations was400 (a population size of40 individuals
that is evolved for10 generations). This is an extremely low number (for example, for test data generation
in branch coverage it is often the case of using100,000 fitness evaluations foreachbranch [48]) and we can
therefore conclude that there is very limited search taking place, which impliesthat a random search would have
likely yielded similar results. This is directly confirmed in the reported results in [100], in which in half of the
subject artifacts in the case study, the average number of fitness evaluations per run is at most41, thus implying
that, on average, appropriate patches are found in the random initializationof the first population before the
actual evolutionary search even starts. This should not be surprising as the search operators were tailored to the
specific, small set of bugs of the case study, which then led to an easy search problem. As discussed in [3], a
search algorithm should always be compared against at least random search in order to check that the algorithm
is not simply successful because the search problem is easy.

Since comparisons with simpler alternatives (at a very minimum random search) is a necessity when one
proposes a novel randomized algorithm or addresses a new software engineering problem [3], statistical testing
should be part of all publications reporting such empirical studies. In this paper we provide specific guidelines
on how to use statistical tests to support comparisons among randomized algorithms.

4 Statistical Difference

When a novel randomized algorithmA is developed to address a software engineering problem, it is common
practice to compare it against existing techniques, in particular simpler alternatives. For simplicity, let us
consider just one alternative randomized algorithm, and let us call itB. For example,B can be random testing,
andA can be a search algorithm such as Genetic Algorithms or an hybrid techniquethat combines symbolic
execution with random testing (e.g., DART [42]).

To compareA versusB, we first need to decide which criteria are used in the comparisons. Many different
measures (M ), either attempting to capture the effectiveness or the cost of algorithms, can be selected depend-
ing on the problem at hand and contextual assumptions, e.g., source codecoverage, execution time. Depending
on our choice, we may want to either minimize or maximizeM , for example maximize coverage and minimize
execution time.

To enable statistical analysis, we should run bothA andB a large enough number (n) of times, in an
independent way, to collect information on the probability distribution ofM for each algorithm. Astatistical
testshould then be used to assess whether there is enough empirical evidenceto claim, with a high level of
confidence, that there is a difference between the two algorithms (e.g.,A is better thanB). A null hypothesis
H0 is typically defined to state that there is no difference betweenA andB. A statistical test is used to verify
whether we should reject the null hypothesisH0. However, what aspect of the probability distribution ofM

6



Table 2: Results of systematic review for the year 2009.

Reference Venue Repetitions Statistical Tests
[1] TSE 1/5 U-test
[68] TSE 1 None
[78] TSE 1 None
[71] ICSE 100 t-test, U-test
[100] ICSE 100 None
[36] ICSE 1 None
[57] ICSE 1 None
[7] SSBSE 1000 Linear regression
[40] SSBSE 30/500 None
[27] SSBSE 100 U-test
[39] SSBSE 50 None
[61] SSBSE 10 Linear regression
[55] SSBSE 10 None
[67] SSBSE 1 None
[58] SSBSE 1 None
[92] SSBSE 1 None

is being compared depends on the used statistical test. For example, at-test compares the mean values of two
distributions whereas others tests focus on the median or proportions, as discussed in Section 5.

There are two possible types of error when performing statistical testing: (I) we reject the null hypothesis
when it is true (we are claiming that there is a difference between two algorithmswhen actually there is none),
and (II) we acceptH0 when it is false (there is a difference but we claim the two algorithms to be equivalent).
Thep-valueof a statistical test denotes the probability of a Type I error. Thesignificant levelα of a test is the
highest p-value we accept for rejectingH0. A typical value, inherited from widespread practice in natural and
social sciences, isα = 0.05.

Notice that the two types of error are conflicting; minimizing the probability of oneof them necessarily
tends to increase the probability of the other. But traditionally there is more emphasis on not committing a
Type I error, a practice inherited from natural sciences where the goal is often to establish the existence of a
natural phenomenon in a conservative manner. In our context we wouldonly conclude that an algorithmA
is better thanB when the probability of a Type I error is belowα. The price to pay for a smallα value is
that, when the data sample is small, the probability of a Type II error can be high. The concept of statistical
power[20] refers to the probability of rejectingH0 when it is false (i.e., the probability of claiming statistical
difference when there is actually a difference).

Getting back to our comparison of techniquesA andB , let us assume we obtain a p-value equal to0.06.
Even if one technique seems significantly better than the other in terms of effect size (Section 7), we would then
conclude that there is no difference when using the traditionalα = 0.05 threshold. In software engineering,
or in the context ofdecision-makingin general, this type of reasoning can be counter-productive. The tradition
of usingα = 0.05, discussed by Cowles [22], has been established in the early part of thelast century, in the
context of natural sciences, and is still applied by many across scientific fields. It has, however, an increasing
number of detractors [43, 44] who believe that such thresholds are arbitrary, and that researchers should simply
reportp-valuesand let the readers decide in context what risks they are willing to take in theirdecision-making
process.

When we need to make a choice between techniquesA andB, we would like to use the one that is more
likely to outperform the other. Whether we get a p-value lower thanα bears little consequence from a practical
standpoint, as in the end wemustselect an alternative, e.g., we must select a testing technique to verify the
system. However, as we will show in Section 8, obtaining p-values lower thanα = 0.05 should not be a
problem when experimenting with randomized algorithms. The focus of such experiments should rather be
on whether a given technique brings any practically significant advantage, usually measured in terms of an
estimated effect size and its confidence interval, an important concept addressed in Section 7.

7



Table 3: Results of systematic review for the year 2010.

Reference Venue Repetitions Statistical Tests
[38] TSE 1000 None
[108] TSE 100 t-test
[48] TSE 60 U-test
[83] TSE 32 U-test,Â12

[25] TSE 30 Kruskal-Wallis, undefined pairwise
[94] TSE 20 None
[18] TSE 10 U-test,t-test, ANOVA
[29] TSE 3 U-test
[6] TSE 1 None
[14] TSE 1 None
[17] TSE 1 None
[101] TSE 1 None
[62] ICSE 100 None
[109] ICSE 50 None
[41] ICSE 5 None
[75] ICSE 5 None
[35] ICSE 1 None
[46] ICSE 1 None
[51] ICSE 1 None
[106] ICSE 1 None
[80] ICSE 1 None
[90] ICSE 1 None
[23] SSBSE 100 t-test
[24] SSBSE 100 None
[66] SSBSE 50 t-test
[70] SSBSE 50 U-test
[105] SSBSE 30 U-test
[107] SSBSE 30 t-test
[63] SSBSE 30 Welch
[98] SSBSE 30 ANOVA
[15] SSBSE 3/5 None
[65] SSBSE 3 None
[110] SSBSE 1 None

8



In practice, the selection of an algorithm would depend on the p-value of effectiveness comparisons, the
effectiveness effect size, and the cost difference among algorithms (e.g., in terms of user-provided inputs or
execution time). Given a context-specific decision model, the reader, usingsuch information, could then decide
which technique is more likely to maximize benefits and minimizes risk. In the simplest case where compared
techniques would have comparable costs, we would simply select the technique with the highest effectiveness
regardless of the p-values of comparisons, even if as a result there is anon-negligible probability that it will
bring no particular advantage.

When one has to carry out a statistical test, one must choose betweenone-tailedand atwo-tailed test.
Briefly, in a two-tailed test, one would rejectH0 if the performance ofA andB are different no matter of which
one is the best. On the other hand, in a one-tailed test, one is making assumptionsabout the relative performance
of the algorithms. For example, one could expect that a new sophisticated algorithmA is better than a naive
algorithmB used in the literature. In such a case, one would detect statistically significant difference whenA
is indeed better thanB, but ignoring the “unlikely” case ofB being better thanA. An historical example in the
literature of statistics is the test to check whether there is the right percent ofgold (carats) in coins. One could
expect that a dishonest coiner might produce coins with lower percent of gold than declared, and so a one-tailed
test would be used rather than a two-tailed. Such a test could be used if onewants to verify whether the coiner
is actually dishonest, whereas giving more gold than declared would be very unlikely. Using a one-tailed test
has the advantage, compared to a two-tailed test, that the resulting p-value is lower (so it is easier to detect
statistically significant differences).

Are there cases in which a one-tailed test could be advisable in the analysis of randomized algorithms in
software engineering? As a rule of thumb, we say no: two-tailed tests shouldbe used. One should use a one-
tailed test only if (s)he has strong arguments to support such a decision. In fact, most of the time we cannot
make any assumption on the relative performance of randomized algorithms. Even naive testing techniques
such as random testing can be better than more sophisticated techniques on some classes of problems (e.g.,
see [91]). If one wants to lower the p-values, it is recommended to increase the number of runs (see Section 8)
rather than using an arguable one-tailed test.

5 Parametric vs Non-Parametric Tests

In our context, the two most used statistical tests are thet-test and the Mann-Whitney U-test. These tests are in
general used to compare two data samples (e.g., the results of runningn times algorithmA compared toB ).
Thet-test isparametric, whereas the U-test isnon-parametric.

A parametric test makes assumptions on the underlining distribution of the data. For example, thet-test as-
sumes normality and equal variance of the two data samples. A non-parametrictest makes no assumption about
the distribution of the data.Whyis there the need for two different types of statistical tests? A simple answer is
that, in general, non-parametric tests are less powerful than parametric ones when the latter’s assumptions are
fulfilled. When, due to cost or time constraints, only small data samples can be collected, one would like to use
the most powerful test available if its assumptions are satisfied.

There is a large body of work regarding which of the two types of tests should be used [30]. The assumptions
of the t-test are in general not met. Considering that the variance of the two data samples is most of the time
different, a Welch test should be used instead of at-test. But the problem of the normality assumption remains.

An approach would be to use a statistical test to assess whether the data is normal, and, if the test is
successful, then use a Welch test. This approach increases the probability of Type I error but is often not
necessary. In fact, the Central Limit theorem tells us that, for large samples, thet-test and Welch test are robust
even when there is strong departure from a normal distribution [86, 89].But in general we cannot know how
many data points (n) we need to reach reliable results. A rule of thumb is to have at leastn = 30 for each data
sample [86].

There are three main problems with such an approach: (1) if we need to have a largen for handling
departures from normality, then it might be advisable to use a non-parametrictest since, for a largen, it is
likely to be powerful enough; (2) the rule of thumbn = 30 stems from analyses in behavioral science, and, to
the best of our knowledge, there is no supporting evidence of its efficacy for randomized algorithms in software
engineering; (3) the Central Limit theorem has its own set of assumptions, which are too often ignored. We
now discuss points (2) and (3) in more details by accounting for the specificproperties of the application of

9



0 50 100 150 200

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0

Test Cases

P
ro

ba
bi

lit
y

Random Testing
Normal Distribution

Figure 2: Density functions of random testing and normal distribution givensame meanµ = 1/θ and variance
σ2 = (1− θ)/θ2, whereθ = 0.01.

randomized algorithms in software engineering, using software testing examples. This choice was motivated
by the fact that half the publications in search-based software engineering are on software testing [47].

Random testing, when used to find a test case for a specific testing target (e.g., a test case that triggers
a failure or covers a particular branch/path) follows a geometric distribution. When there is more than one
testing target, e.g., full structural coverage, it follows a coupon’s collector problem distribution [11]. Given
θ the probability of sampling a test case that covers the desired testing target, then the expectation of random
testing isµ = 1/θ and its variance isδ2 = (1− θ)/θ2 [31]. Figure 2 plots the density function of a geometric
distribution withθ = 0.01 and a normal distribution with sameµ andδ2. In this context, the density function
represents the probability that, for a given number of sampled test casesl, we cover the target after sampling
exactlyl test cases. For random testing, the most likely outcome isl = 1, whereas for a normal distribution it
is l = µ. Notice that the geometric distribution is discrete (i.e., it is defined only on integervalues), whereas
a normal distribution is continuous. Furthermore, the density function of the normal distribution is always
positive for any value, whereas for the geometric distribution it is equal to0 for negative values, where in this
context the values are the number of sampled test cases. Therefore, a testing technique cannever follow a
normal distribution in a strict way, although it might be a reasonable approximation.

As it is easily visible from Figure 2, the geometric distribution has a very strongdeparture from normality!
Comparisons of novel techniques versus random testing (and this is the practice when search algorithms are
evaluated [47]) usingt-tests are hence very arguable. In general, in contrast to many physical and behavioral
phenomena, in terms of their effectiveness, the probability distributions forsearch algorithms may strongly
depart from normality. A common example is when the search landscape of theaddressed problem has trap-
like regions [79].

The Central Limit theorem states that thesumof n random variables converges to a normal distribution
[31] asn increases. For example, consider the result of throwing a dice. There are only six possible outcomes,
each one with probability1/6. If we consider thesumof two dice (i.e.,n = 2), we have11 possible outcomes,
from value2 to 12. Figure 3 shows that withn = 2, in the case of dice, we already obtain a distribution that
resembles the normal one, even though withn = 1 it is very far from normality. In our context, these random
variables are the results of then runs of the analyzed algorithm. This theorem has three assumptions: then
variables should be independent and their meanµ and varianceδ2 should exist (i.e., they should be different
from infinity). When using randomized algorithms, havingn independent runs is usually trivial to achieve
(we just need to use different seeds for the pseudo-random generators). But the existence of the mean and
variance requires more scrutiny. As shown before, those valuesµ andδ2 exist for random testing. A well
known “paradox” in statistics in which mean and variance do not exist is the Petersburg Game [31]. Similarly,
the existence of mean and variance in search algorithms is not always guaranteed, as discussed next.

To put this discussion on a more solid ground, let us briefly describe the Petersburg Game. Assume a player
tosses an unbiased coin until a head is obtained. The player first gives an amount of money to the opponent
which needs to negotiated, and then she receives from the opponent anamount of money (Kroner) equal to
k = 2t, wheret is the number of times the coin was tossed. For example, if the player obtains two tails and

10



1 2 3 4 5 6

Dice Values

P
ro

ba
bi

lit
y

0.
00

0.
05

0.
10

0.
15

0.
20

2 3 4 5 6 7 8 9 10 11 12

Sum of Two Dice Values

P
ro

ba
bi

lit
y

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 3: Density functions of the outputs of one dice and the sum of two dice.

then a head, then she would receive from the opponentk = 23 = 8 Kroner. On average, how many Kroner
k will she receive from the opponent in a single match? The probability of having k = 2x is equivalent to
get firstx − 1 tails and then one head, sop(2x) = 2−(x−1) × 2−1 = 2−x. Therefore, the average reward is
µ = E[k] =

∑

k kp(k) =
∑

t 2
tp(2t) =

∑

t 2
t× 2−t =

∑

t 1 = ∞. Unless the player gives aninfiniteamount
of money to the opponent before starting tossing the coin, then the game wouldnot be fairon averagefor the
opponent! This a classical example of a random variable where it is not intuitive to see that it has no finite mean
value. For example, obtainingt > 10 is very unlikely, and if one tries to repeat the gamen times, the average
value fork would be quite low and would be a very wrong estimate of the actual, theoreticalaverage (infinity).

Putting the issue illustrated by the Petersburg Game principle in our context, if theperformance of a random-
ized algorithm is bounded within a predefined range, then the mean and variance always exist. For example, if
an algorithm is run for a predefined amount of time to achieve structural testcoverage, and there arez structural
targets, then the performance of the algorithm would be measured with a valuebetween0 andz. Therefore, we
would haveµ ≤ z andδ2 ≤ z2, thus making the use of at-test valid.

The problems arise if no bound is given on how the performance is measured. A randomized algorithm
could be run until it finds an optimal solution to the addressed problem. For example, random testing could be
run until the first failure is triggered (assuming an automated oracle is provided). In this case, the performance
of the algorithm would be measured in the number of test cases that are sampled before triggering the failure
and there would be no upper limit for a run. If we run a search algorithm onthe same problemn times, and we
haven variablesXi representing the number of test cases sampled in each run before triggering the first failure,
we would estimate the mean witĥµ = 1

n

∑n
i=1Xi, and hence conclude that the mean exists. As the Petersburg

Game shows, this can be wrong, becauseµ̂ is only anestimationof µ, which might not exist.
For most search algorithms convergence in finite time is proven under some conditions (e.g., [87]), and

hence mean and variance exist. But in software engineering, when new problems are addressed, standard search
algorithms with standard search operators may not be usable. For example,when testing for object-oriented
software using search algorithms (e.g., [97]), complex non-standard search operators are required. Without
formal proofs, it is not safe to speak about the existence of the mean in those cases.

However, the non-existence of the mean is usually not a problem from a practical standpoint. In practice,
usually there are upper limits to the amount of computational resources a randomized algorithm can use. For
example, a search algorithm can be prematurely stopped when reaching a timelimit. Random testing could
be stopped after100,000 sampled test cases (for example) if it has found no failure so far. But in these cases,
we are actually dealing withcensoreddata [60] (in particular, right-censorship) and this requires proper care in
terms of statistical testing and the interpretation of results, as discussed in Section 6.

Even under proper conditions for using a parametric test, one aspect that is often ignored is thatt-test and
U-test are two different approaches to analyze two different properties. Let us use a random testing example in
which we count the number of test cases run before triggering a failure.Considering a failure rateθ, the mean
value of test cases sampled by random testing is henceµ = 1/θ. Let us assume that a novel testing techniqueA
yields a normal distribution of the required number of test cases to trigger a failure. If we further consider the
same variance as random testing and a mean that is85% of that of random testing, which one is better? Random

11



testing with meanµ orA with mean0.85µ? Assuming a large number of runs (e.g.,n is equal to one million),
a t-test would state thatA is better, whereas a Mann-Whitney U-test would state exactly the opposite. How
come? This is not an error but the two tests are measuring different things:Thet-test measures the difference in
mean values whereas the Mann-Whitney U-test deals with their stochastic ranking, i.e., whether observations
in one data sample are more likely to be larger than observations in the other sample. Notice that this latter
concept is technically different from detecting difference inmedianvalues (which can be stated only if the two
distributions have same shape). In a normal distribution, the median value is equal to the mean, whereas in a
geometric distribution the median is roughly70% of the mean [31]. On one hand, half of the data points for
random testing would be lower than0.7µ. On the other hand, withA we have half of the data points above
0.85µ, and a significant proportion between0.7µ and0.85µ. This explains the apparent contradiction in results:
though the average is higher for random testing, its median is lower than that of A.

From a practical point of view, which statistical test should be used? Based on the discussions in this
section, and in line with [64], we suggest to use Mann-Whitney U-test (to assess difference in stochastic order)
rather than thet-test and Welch test (to asses difference in mean values). However, thefull motivation will
become clearer once we discuss censored data, effect size, and the choice ofn in the next sections.

At any rate, there is an important aspect that needs to considered: data can be “transformed” before given
as input to a statistical test. As discussed in [88], a Welch test can be used instead of a U-test if the data are
replaced by their rank. For example, consider the data set{24, 2, 274} discussed in the introduction regarding
random testing. Those values could be transformed into their ranks{2, 1, 3} before given as input to a statistical
test. What would be the motivation of doing so? The U-test might be negativelyaffected if the two compared
distributions have “significantly” different variance, and in such case aWelch test on ranked data might be better
(in the sense that it would have lower probability of Type I and II errors). However, the Welch test would still
be negatively affected by violations of normality assumption (ranked data might not be normal). Ruxton [88]
reports on some cases in which a Welch test on ranked data is better than a U-test, but the results of those
empiricalanalyses might not generalize to the case of randomized algorithms applied to software engineering
problems.

For simplicity and because it has widespread applications, we recommend to use a U-test rather than a
Welch test on ranked data. There might be cases in which this latter test couldbe preferable, but it might be
difficult, for a non-expert in statistics, to clearly identify those cases. Nevertheless, it is important to clarify
that a Welch test on ranked data does not assess any more whether thereis a statistical difference among the
mean values of the two compared distributions. It assesses differences inmean values of the ranks and therefore
determine whether there is any difference in stochastic ordering in the two distributions. For example, assume
the two data setsX = {1, 2, 3, 4, 5, 6, 49} andY = {7, 8, 9, 10, 11, 12, 13}. If it were not for the “outlier”
49 in X, then all the values inY would be greater than the values inX. Both data sets have mean value10. A
Welch test on the raw values would result in p-value equal to1, which is not surprising considering that the two
data sets have same mean. However, if we do a rank transformation, then theoutlier 49 would be replaced by
the value14 (all the other values inX andY remain the same). In this case, the resulting p-value of the Welch
test would be0.02, which suggests a strong difference in the stochastic ordering (i.e., ranks) between the two
distributions.

In the discussion above, we have assumed that bothA andB are randomized. If one of them is deterministic
(e.g.,B), it is still important to use statistical testing. Consistent with the above recommendation, the non-
parametricOne-Sample Wilcoxontest should be used. GivenmB the performance measure of the deterministic
algorithm, a one-sample Wilcoxon test would verify whether the performanceof A is symmetric aboutmB,
i.e., whether by usingA one is as likely to obtain a value lower thanmB as otherwise.

6 Censored Data

Assume that the result of an experiment is dichotomous: either we find a solution to solve the software engi-
neering problem at hand (success), or we do not (failure). For example, in software testing, if our goal is to
cover a particular target (e.g., a specific branch), we can run a randomized algorithm with a time limitL. We
will stop the algorithm as soon as we find a solution, otherwise we stop it after timeL. The choice ofL depends
on the available computational resources. Another example is bug fixing [100] where we find a patch within
timeL, or we do not.

12



These types of experiments are dealing withright-censoreddata, and their properties are equivalent to
survival/failure time analysis [60, 34]. LetX be the random variable representing the time a randomized
algorithm takes to solve a software engineering problem, and let us consider n experiments in which we collect
Xi values. We are dealing with right-censorship since, assuming a time limitL, we will not have observations
Xi for the casesX > L. There are several ways to deal with this problem [60] and we will limit our discussion
to simple solutions.

One interesting special case is when we cannot say for sure whether wehave achieved our target, e.g.,
generation of test cases that achieve code branch coverage. Putting aside trivial cases, there are usually in-
feasible targets (e.g., unreachable code) and their number is unknown. As a result, such experiments are not
dichotomous because we cannot know whether we have covered all feasible targets. Even when using a time
limit L, in these cases we are not tackling censored data. However, if in the experiments the comparisons are
made reusing artifacts from published studies in the literature, and if we wantto know whether or not, within a
given time, we can obtain better coverage than these reported studies, thensuch experiments can be considered
dichotomous despite infeasible targets.

Let us consider the case in which we need to compare two randomized algorithmsA andB on a software
engineering problem with dichotomous outcome. LetX be the random variable representing the timeA takes
to find a valid solution, and letY be the same type of variable forB. Let us assume that we runA n times
collecting observationsXi, and we do the same forB. Using a time limitL, to evaluate which of the two
algorithms is better, we can consider theirsuccess rateγ = k/n, i.e., the proportion of number of timesk out
of then runs in which they find a valid solution. To evaluate whether there is statistical difference between the
success rates ofA andB, a test for differences in proportions is then appropriate, such as the Fisher exact test
[60].

The Fisher exact test is a parametric test, which assumes that the analyzed data follows a binomial distri-
bution. In contrast to other parametric tests (e.g., thet-test), its assumptions are always valid: the experiments
are independent, then the success rate of a series of randomized experiments would always follow a binomial
distribution, whereγ represents the estimated probability of success. Furthermore, for valuesof n until roughly
100, the test is “exact”, because all the assumptions of the Fisher test are met. This means that the resulting
p-values are precise, and not estimates based on how close the data is from satisfying the conditions of a test
(e.g., normality and equal variance in at-test). However, for larger values ofn, the computational cost of the
test would start to be too prohibitive, and approximations are then used to calculate the p-values.

Assume that out ofn = 100 runs the success rate ofA is γA = 1%, whereas forB we haveγB = 5%.
A Fisher exact test has a resulting p-value equal to0.21, which might be considered high, i.e., there is a21%
probability that the success rates of the two algorithms are actually equal. In such cases, one can run more
experiments (i.e., increasen) to obtain higher statistical power (i.e., decrease the p-value). Alternatively, if
there is no statistically or practically significant difference between the success rates ofA andB, a practical
question is then to determine which technique useslesstime. This is particularly relevant if the success rates
of both techniques are high. There can be different ways to analyze such cases, such as considering artificial
censorships at different times beforeL. For example, we can consider censorship atL/2, i.e., the success rate
with half the time, and determine which technique still fares better and and at an acceptable level. Note that such
analysis does not require to run any further experiments as success rates can be computed atL/2 from existing
runs. Another alternative to compare execution times is to apply a Mann-Whitney U-test, recommended above,
using only the times of successful runs, which haveXi andYi values lower or equal toL.

A more complex situation is when one algorithm shows a significantly higher success rate, but takes more
time to produce valid solutions than the other. This is a typical situation, that is notso uncommon, where
a choice needs to be made. For example, on one hand, alocal search[69] might be very fast in generating
appropriate testing data if it starts from the right area of the search landscape. But, at the same time, it could
yield a low success rate if most of the search landscape has gradient toward local optima, and if the number of
these local optima is low. (Notice that this is just an example: it is not in the scope of the paper to give lengthy
explanations of why that would be a problem for local search, see [8] for further details on this topic.) On the
other hand, a population-based search algorithm, such as Genetic Algorithms, could avoid the problem of local
optima, which in turn would result in higherγ than a local search. However, because an entire population is
evolved at the same time, depending on the selection pressure of the algorithm(e.g., the value of the tournament
size in tournament selection) and the population size, a Genetic Algorithm might take much longer than a local

13



search in its successful runs.

7 Effect Size

When comparing a randomized algorithmA against anotherB, given a large enough number of runsn, it is
most of the time possible to obtain statistically significant results with at-test or U-test. Indeed, two different
algorithms are extremely unlikely to have exactly the same probability distribution. Inother words, with large
enoughn we can obtain statistically difference even if that difference is so small as to be of no practical value.

Though it is important to assess whether an algorithm fares statistically better than another, it is in addition
crucial to assess the magnitude of the improvement. To analyze such a property, effect sizemeasures are needed
[45, 52, 77]. In their systematic review of empirical analyses in software engineering, Kampeneset al. [52]
found out that standardized effect sizes were reported in only29% of the cases. In our review, we found only
one [83], which uses the Vargha and Delaney’sÂ12 statistics (which will be described later in this section).

Effect sizes can be divided in two groups: standardized and unstandardized. Unstandardized effect sizes
are dependent from the unit of measurement used in the experiments. Letus consider the difference in mean
between two algorithms∆ = µA − µB. This value∆ has a measurement unit, that ofA andB. For example,
in software testing,µ can be the expected number of test executions to find the first failure. On one testing
artifact we might have∆1 = µA − µB = 100 − 1 = 99, whereas on another testing artifact we might have
∆2 = µA − µB = 100,000 − 200,000 = −100,000. Deciding based on∆1 and∆2 which algorithm is better
is difficult to determine since the two scales of measurement are different.∆1 is very low compared to∆2, but
in that caseA is 100 times worse thanB, whereas it is only twice as fast in the case∆2. Empirical analyses
of randomized algorithms, if they are to be reliable and generalizable, require the use of large numbers of
artifacts (e.g., programs). The complexity of these artifacts is likely to widely vary, such as the number of test
cases required to fulfill a coverage criterion on various programs. Theuse of standardized effect sizes, that are
independent from the evaluation criteria measurement unit, is therefore necessary to be able to compare results
across artifacts and experiments.

In this section we first describe which is the most known standardized effect size measure and why it should
not be used. We then describe two other standardized effect sizes, and how to apply them in practice. The most
known effect size is the so calledd family which, in the general form, it isd = (µA − µB)/σ. In other words,
the difference in mean is scaled over the standard deviation (several corrections exists to this formula, but for
more details please see [45]). Though we obtain a measure that has no measurement unit, the problem is that it
assumes normality of the data, and strong departures can make it meaningless[45]. For example, in a normal
distribution, roughly64% of the points lie withinµ ± σ [31], i.e., they are at mostσ away from the meanµ.
But for distributions with high skewness (as in the geometric distribution and asit is often the case for search
algorithms), the results of scaling the mean difference by the standard deviation “would not be valid”, because
“standard deviations can be very sensitive to a distribution’s shape” [45]. In this case, a non-parametric effect
size should be preferred. Existing guidelines in [52, 77] briefly discussthe use of non-parametric effect sizes.

The Vargha and Delaney’ŝA12 statistic is a non-parametric effect size measure [99, 45]. Its use has been
advocated in [64], and one example of its use in software engineering in which randomized algorithms are
involved can be found in [83]. In our context, given a performance measureM , Â12 measures the probability
that running algorithmA yields higherM values than running another algorithmB. If the two algorithms are
equivalent, thenÂ12 = 0.5. This effect size is easier to interpret compared to thed family. For example,
Â12 = 0.7 entails we would obtain higher results70% of the time withA. Though this type of non-parametric
effect size is not common in statistical tools, it can be very easily computed [64, 45]. The following formula is
reported in [99]:

Â12 = (R1/m− (m+ 1)/2)/n (1)

whereR1 is the rank sum of the first data group we are comparing. For example, assume the dataX =
{42, 11, 7} andY = {1, 20, 5}. The data setX would have ranks{6, 4, 3}, whose sum is13. The rank sum
is a basic component in the Mann-Whitney U-test, and most statistical tools provide it. In Equation 1,m is the
number of observations in the first data sample, whereasn is the number of observations in the second data
sample. In most experiments, we would run two randomized algorithms the same number of times:m = n.

14



When dealing with dichotomous results (as discussed in Section 6), severaltypes of effect size measures
[45] can be considered. Theodds ratiois the most used and “is a measure of how many times greater the odds
are that a member of a certain population will fall into a certain category than theodds are that a member of
another population will fall into that category” [45]. Givena the number of times algorithmA finds an optimal
solution, andb for algorithmB, the odds ratio is calculated asψ = a+ρ

n+ρ−a
/ b+ρ
n+ρ−b

, whereρ is any arbitrary
positive constant (e.g.,ρ = 0.5) used to avoid problems with zero occurrences [45]. There is no difference
between the two algorithms whenψ = 1. The cases in whichψ > 1 imply that algorithmA has higher chances
of success.

Both Â12 andψ are standardized effect size measures. But because their calculation isbased on a finite
number of observations (e.g.,n for each algorithm, so2n when we compare two algorithms), they are only
estimates of the real̂A∗

12 andψ∗. If n is low, these estimations might be very inaccurate. One way to deal with
this problem is to calculateconfidence intervals(CI) for them [45]. A(1− α) CI is a a set of values for which
there is(1−α) probability that the value of the effect size lies in that range. For example, ifwe haveÂ12 = 0.54
and a(1− α) CI with range[0.49,59], then with probability(1− α) the real valueÂ∗

12 lies in [0.49,59] (where
Â12 = 0.54 is its most likely estimation). Such effect size confidence intervals can facilitatedecision making
as they enable the comparison of the costs of alternative algorithms while accounting for uncertainty in their
estimates. To see how confidence intervals can be calculated, please see [45] and [99].

Notice that a confidence interval can replace a test of statistical difference (e.g.,t-test and U-test). If the
null hypothesisH0 lies within the confidence interval, then there is insufficient evidence to claim there is a
statistically significant difference. In the previous example, because0.5 is inside the(1−α) CI [0.49,59], then
there is no statistical difference at the selected significance levelα. For a dichotomous result,H0 would be
ψ = 1.

8 Number of Runs

How many runs do we need when we analyze and compare randomized algorithms? As many as necessary to
show with high confidence that the obtained results are statistically significantand to obtain a small enough
confidence interval for effect size estimates. In many fields of science (e.g., medicine and behavioral science),
a common rule of thumb is to use at leastn = 30 observations. In the many fields where experiments are
very expensive and time consuming, it is in general not feasible to work withhigh values forn. Several new
statistical tests have been proposed and discussed to cope with the problemof lack of power and violation of
assumptions (e.g., normality of data) when smaller numbers of observations are available [102].

Empirical studies of randomized algorithms do not involve human subjects and the number ofruns(i.e.,n)
is only limited by computational resources. When there is access to clusters ofcomputers as this is the case for
many research institutes and universities, and when there is no need for expensive, specialized hardware (e.g.,
in hardware-in-the-loop testing), then large numbers of runs can be carried out to properly analyze the behavior
of randomized algorithms. Many software engineering problems are furthermore not highly computationally
expensive, as for example code coverage at the unit testing level, and can therefore involve very large numbers
of executions. There are however exceptions, such as the system testing of embedded systems (e.g., [10]) where
each test case can be very expensive to run.

Whenever possible, in most cases, it is therefore recommended to use a very high number of runs. For
most problems in software engineering, thousands of runs should not bea problem and would solve most of the
problems related to the power and accuracy of statistical tests. For example,as illustrated in [71, 27] in Table
2, even when100 runs are used the U-test might be not powerful enough to confirm a statistical difference at a
0.05 significance level, even when the data seems to suggest such a difference.

Most discussions in the literature about statistical tests focus on situations withsmall numbers of observa-
tions (e.g., as in [88]). However, with thousands of runs, one would detect statistically significant differences
on practically any experiment (Section 4). It is hence essential to complement such analyses with a study of the
effect size as discussed in Section 7. Even when having large numbers of runs is not necessary for a setα level
(e.g.,0.05) if differences are large enough to show p-values less thanα, additional runs would help tighten the
confidence intervals for effect size estimates and would be of practical value.

In Section 4, we suggested to use U-test instead oft-test. For very large samples, such asn = 1,000, there
would be no practical difference between them regarding power and accuracy. However, the choice of a non-

15



parametric test would be driven by its effect size measure. In Section 7 weargued that effect size measures based
on the mean (i.e., thed family) were not appropriate for randomized algorithms in software engineering due to
violations in distribution assumptions. It would then be inconsistent to investigatethe statistical difference of
mean values with at-test if we cannot use a reliable measure for its effect size. In other words, it is advisable
to use size measures that are consistent with the differences being tested by the selected statistical test.

9 Multiple Tests

In most situations, we need to compare several alternative algorithms. Furthermore, if we are comparing
different algorithm settings (e.g., population size in a Genetic Algorithm), then each setting technically defines
a different algorithm. This often leads to a large number of statistical comparisons. It is possible to use statistical
tests that deal with multiple techniques (treatments, experiments) at the same time (e.g., Factorial ANOVA), and
effect size has been defined for those cases [45]. There are several types of statistical tests regarding multiple
comparisons, and the choice depends on which research question one isaddressing. In this paper we only deal
with the two most common research questions in our context, since several books are dedicated to this topic,
and an exhaustive analysis would not be possible in this paper:

• Does the choice of a particular parameter affect the performance of a randomized algorithm?

• Among a set of randomized algorithms, which one is the best in solving the addressed problem?

Assume a parameter that can assume several different valuesj ∈ J , and that we have carried out a series of
experiments for a set of parameter values{j1, j2, . . . , jk} ⊆ J . For example, in a Genetic Algorithm, we might
want to study whether applying different cross-over rates has any effect on the effectiveness of the algorithm.
One could consider the values{0, 0.25, 0.5 0.75, 1}, and haven = 1,000 independent experiments for each
of these five rate values. If we are only interested to evaluate whether the choice of this rate has any effect on
the effectiveness of a Genetic Algorithm, then anomnibustest such as ANOVA can be employed. The null
hypothesis is that the choice of the parameter value has no effect on the mean effectiveness of the algorithm.
However, ANOVA suffers of the same problems as thet-test, i.e., assumption about normality of the data and
equal variance. A non-parametric equivalent is the so called Kruskal-Wallis test.

Assume that a Kruskal-Wallis test states that the choice of that crossover rate has a statistically significant
effect (i.e., the resulting p-value is low, so we can reject the null hypothesis). A relevant question might then
be which crossover rate should be used (i.e., which one gives the best performance?). An omnibus test is not
able to answer such a research question. This situation is exactly equivalent to the case of identifying the best
algorithm amongK = 5 algorithms/variants. In this case, we would like to compare the performance ofeach
algorithm against all other alternatives individually. Given a set of algorithms, we would not be interested in
simply determining whether all of them have the same mean values. Rather, given K algorithms, we want to
performZ = K(K − 1)/2 pairwise tests and measure effect size in each case.

However, using several statistical tests inflates the probability of Type I error. If we have only one com-
parison, the probability of Type I error is equal to the obtained p-value. If we have many comparisons, even
when all the p-values are low, there is usually a high probability that at leastin one of the comparisons the
null hypothesis is true as all these probabilities somehow add up. In other words, if in all the comparisons the
p-values are lower thanα, then we would normally reject all the null hypotheses. But the probability that at
least one null hypothesis is true could be as high as1− (1− α)Z for Z comparisons, which converges to1 as
Z increases.

One way to address this problem is to use the so calledBonferroni adjustment[82, 76]. Instead of applying
each test assuming a significance levelα, we would use an adjusted levelα/Z. For example, if we want at
most a0.05 probability of Type I error and we have two comparisons, we would need touse two statistical
tests withα = 0.025 , and then check whether both differences are significant (i.e., if both p-values are lower
than 0.025). However, the Bonferroni adjustment has been repeatedly criticized inthe literature [82, 76],
and we largely agree with those critiques. For example, let us assume that for both those tests we obtain p-
values equal to0.04. If a Bonferroni adjustment is used, then both tests will not be statistically significant
at α = 0.05 level. A researcher could be tempted to publish the results of only one of themand claiming
statistical significance because0.04 < 0.05. Such a practice can therefore hinder scientific progress by reducing

16



the number of published results [82, 76]. This would be particularly true in our application context in which
many randomized algorithms can be compared to address the same software engineering problem: it would
be very tempting to leave out the results of some of the poorly performing algorithms. Notice that there are
other adjustment techniques that are equivalent to Bonferroni but thatare less conservative [37]. However,
the statistical significance of a single comparison would still depend on the number of performed and reported
comparisons. Though we do not recommend the Bonferroni adjustment, it isimportant to always report the
obtained p-values, not just whether a difference is significant or not at an arbitrarily chosenα level. If for some
reasons the readers want to evaluate the results using a Bonferroni adjustment or any of its (less conservative)
variants, then it is possible to do so. For a full list of other problems related tothe Bonferroni adjustment, the
reader is referred to [82, 76].

Instead of pairwise tests using Bonferroni-like corrections, another (less popular) approach is to use the so
calledpost-hocmethods, such as the Tukey’s range test. This test is applied on each of theZ pairs, and it is
very similar to at-test. Similar to the Bonferroni method, it employs a p-value correction to handle possible
inflation of probability of Type I error.

Alpha level adjustments can be very important when assessing the validity of behavioral/physical phenom-
ena with high confidence. For example, the leading international journalNaturehas the followingrequirement2

for published research papers regarding multiple tests:

• Multiple comparisons: When making multiple statistical comparisons on a single data set, authors should
explain how they adjusted the alpha level to avoid an inflated Type I error rate, or they should select
statistical tests appropriate for multiple groups (such as ANOVA rather than aseries of t-tests).

However, in Section 4 we stated that in software engineering in general, and for randomized algorithms in
particular, we mostly deal with decision-making problems. For example, if we musttest software, then we must
choose one alternative amongK different techniques. In this case, even if the p-values are higher thanα, we
need to test the software anyhow and we must make a choice. In this context,Bonferroni-like adjustments make
even less sense. Just choosing one alternative at random because there is no statistically significant difference
is not optimal as it ignores available information.

Assume that we have analyzed the performance ofK algorithms using pairwise tests and effect sizes. How
to visualize the results of such analyses to grasp the relations among their performance? There can be different
ways, and here we just describe a simple but practical one, that for example was used by Fraser and Arcuri
in [32]. In that work [32], the effects of six parameters of a search algorithm were investigated in the context
of automated unit testing of object-oriented software. Five parameters arebinary (Bo, Xo, Ra, Pa andBe)
and one ternary (W), for a total of25 × 3 = 96 configurations. Each configuration was compared against all
the other95 (i.e., a total of96 × 95 comparisons, which can be divided by two due to the symmetric property
of the comparisons). Pairwise comparisons were made using a U-test, where theα level was arbitrarily set to
0.05. Initially, a score zero is assigned to each configuration. For each comparison in which a configuration is
statistically better, its score is increased by one, whereas it is reduced by one in case it is statistically worse.
Therefore, in the end each configuration has a score between -95 and95. The higher the score, the better the
configuration is. After this first phase, these scores are ranked suchthat the highest score has the best rank,
where better ranks have lower values. In case of ties, the ranks are averaged. For example, if we have five
configurations with scores{10, 0, 0, 20, − 30}, then their ranks will be{2, 3.5, 3.5, 1, 5}. In [32], this
procedure was repeated for each artifact in the case study (i.e., for allthe 100 branches used in that empirical
study), and the average of these ranks over all artifacts were calculated for each configuration, for a total of
100 × 96 × 95/2 = 456,000 statistical comparisons. After collecting all of these data, a table was made in
which the configurations were ordered based on their average rank from top (best) to bottom (worst). The same
table from [32] is reported in Table 4. From this table, not only it is clear which are the best configurations, but
it also possible to visualize some trends in the data (e.g., configurations withRa are always better andXo does
not seem particularly useful).

2http://www.nature.com/nature/authors/gta/index.html#a5.9, accessed February 2011.

17



Table 4: Results of empirical analysis performed in [32]. The table shows the performance of the the 96
configurations, ordered from top (best performance) to bottom (worst performance). Symbols are used to
indicate whether a particular boolean parameter is activated.

Bo Xo Ra Pa Be W Av. Rank Av. Success Rate
20 50 80

△ ⊕ ▽ ⊞ W 31.475 0.464
△ ⊕ ▽ W 31.840 0.456
△ ⊕ ⊞ W 32.595 0.482

⊕ ▽ ⊞ W 32.670 0.456
⊕ ▽ W 34.725 0.447

△ ⊕ W 35.415 0.448
⊕ ⊞ W 36.070 0.442

△ ⊕ ⊞ W 37.335 0.423
△ ⊠ ⊕ ▽ ⊞ W 37.430 0.430
△ ⊕ ⊞ W 37.605 0.459

⊠ ⊕ ⊞ W 37.615 0.418
△ ⊠ ⊕ ⊞ W 38.080 0.422

⊠ ⊕ ▽ ⊞ W 39.325 0.419
⊠ ⊕ ⊞ W 39.455 0.423
⊠ ⊕ ▽ W 39.580 0.413

△ ⊕ W 39.790 0.431
⊕ ⊞ W 39.815 0.431

⊠ ⊕ W 40.050 0.414
△ ⊕ ▽ W 40.140 0.420
△ ⊠ ⊕ ▽ W 40.330 0.425
△ ⊕ ▽ ⊞ W 40.670 0.413
△ ⊕ ▽ ⊞ W 40.700 0.432
△ ⊠ ⊕ ⊞ W 40.835 0.405

⊕ ⊞ W 40.940 0.438
△ ⊕ ▽ W 41.200 0.455
△ ⊠ ⊕ W 41.350 0.410

⊕ ▽ ⊞ W 41.695 0.423
⊕ ▽ ⊞ W 41.890 0.405
⊕ ▽ W 41.925 0.413

⊠ ⊕ ▽ W 42.150 0.399
⊠ ⊕ ▽ ⊞ W 42.195 0.401
⊠ ⊕ ▽ ⊞ W 42.470 0.388

△ ⊠ ⊕ ▽ W 42.500 0.395
⊠ ⊕ ⊞ W 42.800 0.422

⊕ W 43.075 0.407
⊠ ⊕ W 43.095 0.421

△ ⊠ ⊕ W 43.255 0.420
△ ⊠ ⊕ ▽ ⊞ W 43.635 0.377

⊕ W 45.160 0.398
⊠ ⊕ ▽ W 45.205 0.393

⊕ ▽ W 45.285 0.412
△ ⊠ ⊕ ▽ W 45.450 0.392
△ ⊕ W 45.850 0.418

⊕ W 46.460 0.401
△ ⊠ ⊕ W 46.625 0.388
△ ⊠ ⊕ ⊞ W 46.700 0.409
△ ⊠ ⊕ ▽ ⊞ W 47.760 0.379

⊠ ⊕ W 47.850 0.384
△ ▽ ⊞ W 48.985 0.342

▽ W 49.585 0.329
▽ ⊞ W 49.705 0.334

△ ▽ ⊞ W 49.995 0.369
△ ⊠ ▽ ⊞ W 50.290 0.313
△ ▽ W 50.740 0.356
△ ⊠ ▽ W 51.295 0.313
△ ▽ W 51.350 0.340
△ ⊞ W 51.570 0.327
△ ▽ ⊞ W 52.215 0.326
△ ⊞ W 52.800 0.330

▽ ⊞ W 53.260 0.330
⊠ ▽ ⊞ W 53.610 0.309

△ ▽ W 53.845 0.321
⊠ ▽ ⊞ W 54.040 0.310
⊠ ▽ W 54.475 0.312

▽ ⊞ W 54.835 0.296
▽ W 55.080 0.306

⊞ W 55.290 0.317
⊠ ▽ W 55.390 0.313
⊠ ▽ ⊞ W 55.605 0.304

△ W 55.635 0.305
▽ W 55.695 0.324

△ ⊠ ▽ W 56.065 0.310
△ W 56.160 0.309

⊠ ⊞ W 56.200 0.304
△ ⊠ ▽ ⊞ W 56.255 0.301

⊠ ▽ W 56.295 0.312
△ ⊠ ▽ ⊞ W 56.655 0.312
△ ⊠ ▽ W 56.835 0.291
△ ⊠ W 57.095 0.279
△ ⊠ ⊞ W 57.135 0.291
△ ⊞ W 57.180 0.319

⊞ W 57.390 0.306
W 58.955 0.285

△ ⊠ ⊞ W 59.085 0.297
⊞ W 59.190 0.297

△ ⊠ ⊞ W 59.270 0.285
⊠ W 59.595 0.279

△ W 59.995 0.300
⊠ ⊞ W 60.145 0.281
⊠ W 60.150 0.289

△ ⊠ W 60.675 0.278
⊠ ⊞ W 60.705 0.289

△ ⊠ W 60.975 0.292
W 61.655 0.267

⊠ W 65.220 0.238
W 71.765 0.190

18



10 Choice of Artifacts

When assessing randomized algorithms, the choice of artifacts to which thesealgorithms are applied (e.g.,
source code or executable programs) is of paramount importance as it usually has a strong bearing on the eval-
uation results. When analyzing empirical analyses in the software engineering literature evaluating randomized
algorithms, many of the studies are carried out on artificial and small artifacts. Empirical analyses on real indus-
trial systems are rare, thus raising questions about the credibility of resultsand the usefulness of the proposed
algorithms. However, achieving realism by using representative industrial systems is particularly challenging.
We usually cannot precisely characterize the population of artifacts we are targeting in our studies. Even if we
could, we usually do not have access to large collections of industrial artifacts that are readily available to be
sampled. And even if that were the case, studies are necessarily limited in termsof resources and time, and the
number of artifacts studied is typically much more restricted than one would like. As a result, studies about
randomized algorithms in software engineering typically present threats to external validity, making it difficult
to generalize the results to other systems than the ones under study. In this paper, because the focus is on how
to apply statistical tests, we do not emphasize the details of how one should choose artifacts from a general
standpoint. We rather concentrate on how this choice affects the statistical tests procedures and the number of
runs required.

The first question one faces is whether the selected artifacts arerepresentativeof the type of problem that
is being addressed. For example, assume one wants to evaluate a new tool for automatically generating unit
tests for object-oriented software (e.g., Pex [96], Randoop [81] or EvoSuite [33]). Which (types of) classes
should be selected for experimenting? Following common practice in many empirical studies (e.g., [5, 85, 13]),
is only using “container classes” acceptable? Well, it all depends on whatis the target set of classes for the
evaluation. If the proposed testing techniques are aimedonly at container classes (e.g., [13]), then this would
likely be acceptable. On the other hand, if the goal is to propose ageneraltool for generating unit tests, then
using only container classes would lead toseriousthreats to external validity. But then the question is which
classes should ideally be used? Again, we do not have well defined populations of classes that we can target and
sample. But one possible simple heuristic is to try to maximize the diversity in terms of the type of classes, their
size and complexity, and various other properties that are deemed relevant given the objective of the randomized
algorithm, e.g., number of tasks accessing a lock when investigating deadlocks or data races [93]. For example
we could rely on a sample containing a mix of container classes, numerical applications and others coming
from common benchmarks?

As a practical alternative, one could use open source repositories such as SourceForge3, and randomly select
a subset of projects for experimenting among the260,000 that are currently hosted. If one wants to evaluate the
applicability of a general tool for unit testing, this would be much better than using only container classes or
arbitrarily choosing some programs in a non-systematic way (as it is often the case in the literature). However,
even if one randomly samples projects from SourceForge, the empirical analyses would likely have some sort
of bias. For example, open source projects in general may not be representative of programs developed in
industry. Embedded systems and financial applications, for example, are unlikely to be well represented among
these open source projects.

Regarding randomized algorithms (in particular search and optimization algorithms), there are specific
and rigorous theoretical reasons for which the choice of artifacts is extremely important. TheNo Free Lunch
theorem states that, on average across all possible problems (artifacts in our case), all search algorithms have
the same performance [104]. If one does not clearly define which is thespaceof artifacts being targeted, then
any comparison among randomized algorithms is doomed to be arbitrary. For example, let us consider again the
example of unit testing of object-oriented software. Assume that a case study involves 10 classes, and algorithm
A is statistically better on seven of them, whereas algorithmB is statistically better on the other three. One
could naively claim that algorithmA is on averagebetter thanB. But maybe, those seven classes for whichA
is better are all container classes, whereas the other three classes are related to string manipulations (e.g., [4]).
If one had chosen for the case study more classes of this latter type, then the conclusions could be different
(i.e.,B would be consideredon averagebetter thanA). Though the problem of choosingappropriateartifacts
is intrinsically difficult, it is important for researchers to define their target artifacts as well as possible and
carefully attempt to provide plausible reasons for differences in results across artifacts, such as classes, based

3http://sourceforge.net/, accessed February 2011.

19



on a thorough analysis of their characteristics.
If for the addressed research question the considered artifacts can be considered representative of the target,

it is meaningful to then use statistical tests for evaluating whether algorithmA is significantly better thanB on
all selected artifact instances. However, as we see below, which type oftest is used of of the highest importance.
Using again the same example, assume six classes have been selected for investigating the unit testing of object-
oriented software. Each algorithm is run on each of these six classesn times (e.g.,n = 30), and average values
out of these runs are collected for each class. This makes up a total of2 × 6 × 30 = 360 runs. Assume that
the algorithms are evaluated based on how many test cases they generate before reaching full coverage. For the
first algorithm, we obtain the following average valuesX = {10k, 20k, 30k, 40k, 50k, 60k}, whereas for the
second algorithm we obtainY = {12k, 21k, 34k, 41k, 53k, 68k}. The average values are ordered by problem
instance wherek = 1000, i.e., inX, out ofn = 30 runs on the first artifact the average number of test cases run
equals10,000. Further assume that the problem instances are ordered by difficulty (i.e.,solving the first problem
is much easier than solving the fifth, because on average it requires to generate/run less test cases). If one wants
to evaluate whether there is any statistical difference betweenX andY , an unpaired test, such as Mann-
Whitney U-test, would yield a p-value equal to0.699 (e.g., by using the R [84] command “wilcox.test(X,Y)”),
thus suggesting the difference is not statistically significant. However, this would be technically incorrect since
different artifacts present different levels of difficulty, and considering all data together at the same time would
blur the relative performance of the compared algorithms. In other words,a run of an inefficient algorithm on an
easyproblem would likely result in a better value than a run of a more efficient algorithm that is run instead on
a difficult problem. If the case study involves artifacts of different levels of difficulty (as it is usually the case,
either by design or due to random sampling) then it might be challenging to detect any statistical difference
with an unpaired test.

Alternatively,paired testssuch as Wilcoxon T test can be used (e.g., “wilcox.test(X,Y, paired=TRUE)” in
R [84]). In a paired T test, what is evaluated is whether the differencesZi = Yi − Xi are centered around0,
i.e., the null hypothesis isZ = 0. In that example, we haveZ = {2k, 1k, 4k, 1k, 3k, 8k}, i.e, on average the
second algorithm is always better than the first. A Wilcoxon T test here gives p-value=0.035, which suggests
a statistically significant difference among the performance of the two algorithms, a result in sharp contrast
with the unpaired test results above. This highlights why it is extremely importantto use paired tests when
comparing randomized algorithms on a set of selected artifacts. In the aboveexample, the second algorithm
is better in six out of six cases, which is a clear case. But typically results are not that consistent, and several
of the compared algorithms may perform best on different artifacts. For example, if we assume a case study
involving 100 artifacts, if an algorithm fares better on 51 of these, then the difference among the two would
not be statistically significant when using a paired test. Using the example where an algorithmA is better than
anotherB on some artifacts and worse on other artifacts, a T test evaluates whether one algorithm is statistically
better on a higher number of artifacts.

The above discussion on the use of appropriate statistical tests is incomplete as it considers the evaluation
of a randomized algorithm as ternary, i.e. it is either better, equivalent or worse than another one. Consider the
following example: algorithmA is better on 60% of the case study, but only by a very limited amount. On the
other hand, on the other 40% of the case study, it is much worse than algorithmB. In this case, blindly applying
a Wilcoxon T test would lead to the conclusion thatA is preferable, whereas a practitioner might prefer to use
B. Another option could be to collect standardized effect sizes for each problem instance, and then average
them over all of problems instances. This would provide additional information, but it would not solve the
problem of fully describing the relative performance of two randomized algorithms. Consider a case with five
artifacts and the followinĝA12 measures{0.6, 0.6, 0.6, 0.6, 0.1}. One algorithm is better than the other on four
artifacts (Â12 = 0.6), but worse on the last one (Â12 = 0.1). If we average those values on the entire case study,
we would obtainÂ12 = 0.5, thus suggesting there is no difference among the two algorithms! This example
illustrates the fact that aggregate statistics on a set of artifacts are usefulto summarize the comparisons of two
(or more) algorithms, but that particular care needs to be taken to handle cases where sharp differences can be
observed among artifacts. In general, one should report the performance of the algorithms on each problem
instance separately and attempt, as discussed above, to explain differences. One useful way to show the relative
performance of randomized algorithms on a set of artifacts is to use box-plots of the effect sizes, especially
when dealing with many artifacts

Ideally, when realistic artifacts for a certain type of problems are difficult tofind, one would like to be

20



able to generate large numbers of them automatically in a realistic fashion. However, this requires that the
artifacts have a clear and predictable structure, that there exist heuristics to generate correct and meaningful
instances of such artifacts. If this is possible, one strong advantage is that one can control and vary interesting
properties of the artifacts (e.g., class size, number of test cases) to enable interesting sensitivity analyses and
assess the performance of randomized algorithms as a function of these properties. For example, in our work
with Hemmati [49], we analyzed different test suite reduction techniques for model-based testing of large
systems. Obtaining real models from industry is difficult, and UML models of real systems are not common in
open source repositories. Although our case study was based on two real industrial systems (e.g., one provided
by Cisco Systems), to cope with possible threats to external validity, we also used a large set of artificially
generated test suites following some specific rules and a randomized construction algorithm. For example, we
wanted to vary the number of test cases in the test suites and the fault detection rate, in order to assess their
impact on the effectiveness of the resulting selection technique. We wantedto do so while retaining as much as
possible the realism of the test suites in the case studies. Such studies may be considered a type of simulation
and may not generate fully realistic artifacts. But they may provide useful insights into the impact of some
artifact properties on the effectiveness of a randomized algorithm.

For some types of software engineering problems, a large number of artifacts can be selected or generated
(e.g., randomly selecting classes to investigate the unit testing of open sourcesoftware). When evaluating
randomized algorithms in this context one has to make the following decision: Assume a budget for experiments
b = n× z for each algorithm, wheren represents the times a randomized algorithm is run on each artifact, and
z is the number of these artifacts. If we considerb to be fixed (e.g., depending on how long it takes to runb
experiments), then a practical and important question is how to choosen andz? Two extreme cases would be
(n = 1,z = b) and(n = b,z = 1), but they would clearly lead to problems in terms of statistical testing and
external validity, respectively. We have to strike a balance between two objectives: we want to analyze as many
artifacts as possible to improve external validity and wish at the same time to retain enough runs (i.e.,n) to
check whether there is a statistically significant difference on any single artifact when applying and comparing
two randomized algorithms. This would, for obvious reasons, not be possible if n = 1. Though in Section 8
we suggested as a rule of thumb to usen = 1,000 when possible, in certain circumstances this may not be an
option. If one has the possibility to analyze a large numberz of artifacts but has practical constraints regarding
the number of experiments to be run (e.g., having experiments running on a PCfor a couple of years would
not be very practical), then it may be more appropriate to execute less runs, perhaps as low asn = 30 or even
n = 10. But going lower than such values would make the use of standard statisticaltests very difficult and
very likely, depending on the actual effect size, bring statistical power tounacceptable low levels.

As we discussed in Section 3, there are cases in the literature (e.g., [78, 101]) in which a random instance
generator is used, but then the algorithms are run only once (i.e.,n = 1) on each artifact. For all the reasons
discussed in this section, we do not consider those empirical studies as appropriate.

11 Practical Guidelines

Based on the above discussions, we propose a set of practical guidelines for the use of statistical tests in ex-
periments comparing randomized algorithms. Though we expect exceptions,given the current state of practice
(Section 3 and [3, 52]), we believe that it is important to provide practical guidance that will be valid in most
cases and enable higher quality studies to be reported. We recommend that practitioners follow these guidelines
and justify any necessary deviation.

There are many statistical tools that are available. In the following we will provide examples based onR
[84], because it is a powerful tool that is freely available and supported by many statisticians. But any other
professional tool would provide similar capabilities.

Practical guidelines are summarized as follows. Notice that often, for reasons of space, it is not possible to
report all the data of the statistical tests. Based on the circumstances, authors need to make careful choices on
what to report.

• When randomized algorithms are analyzed, clearly specify the number of runs and employed statistical
tests. For example, they can be summarized in a threats to validity section, in whichhow randomness has
been taken into account should be discussed and justified.

21



• On each artifact in the case study, run each randomized algorithm at leastn = 1,000 times. If this is not
possible, explain the reasons and report the total amount of time it took to runthe entire case study. If for
example30 runs were performed and the total execution time was just one hour, then it israther difficult
to justify why a higher number of runs was not used to gain statistical power,lower p-values, and narrow
the confidence interval of effect size estimates (Section 8).

• When a large number of artifacts can be used in the case study (e.g., for unit testing of open source
software) but there are constraints in terms of execution time, then it is advisable to execute less runs
per artifact (though at leastn = 10) and use more artifacts (rather than havingn = 1,000 but only
few artifacts, see Section 10). The objective is to strike a balance betweengeneralization and statistical
power.

• For detecting statistical differences, use the two-tailed non-parametric Mann-Whitney U-test for interval-
scale results and the Fisher exact test for dichotomous results (i.e., in the cases of censored data as
discussed in Section 6). For the former case, inR you can use the function “w=wilcox.test(X,Y)” where
X andY are the data sets with the observations of the two compared randomized algorithms. If you are
comparing a randomized algorithm against a deterministic one, use “w=wilcox.test(X,mu=D)”, whereD
is the resulting performance measure for the deterministic algorithm. When we have number of successes
a for the first algorithm andb for the second, you can use “f=fisher.test(m)”, wherem is a matrix derived
in this way: “m =matrix(c(a,n-a,b,n-b),2,2)”. A constantρ = 0.5 could be added to each cell of the
matrix to address zero occurrence cases.

• Report all the obtained p-values, whether they are smaller thanα or not, and not just whether differences
are significant. The motivation is for the reader to choose the level of risk that is suitable in her application
context. When reporting all p-values is not possible, one could report the proportion of significant test
results: “x out ofy tests were significant atα level . . . ”.

• Always report standardized effect size measures. For dichotomous results, the odds ratioψ (and its con-
fidence interval) is automatically calculated with “f=fisher.test(m)”. For interval-scale results and thêA12

effect size, the rank sumR1 used in Equation 1 can be calculated with “R1=sum(rank(c(X,Y))[seqalong(X)])”.
It is also strongly advised to report effect size confidence intervals (but the support forÂ12 is unfortu-
nately limited). This is much easier to use than p-values for decision making as potential benefits can be
compared to costs while accounting for uncertainty.

• To help the meta-analyses of published results across studies, report means and standard deviations (in
case readers for some reasons want to calculate effect sizes in thed family). For dichotomous experi-
ments, always report the valuesa andb (so that other types of effect sizes can be computed [45]).

• If space permits, provide full statistics for the collected data, as for examplemean, median, variance,
min/max values, skewness, median and absolute deviation. Box-plots are alsouseful to visualize them.

• When analyzing more than two randomized algorithms, use pairwise comparisons including pairwise
statistical tests and effect size measures.

• Always state the employed statistical tool (there can be subtle differences on how the tests are computed).

12 Threats to Validity

The systematic review in Section 3 is based on only three sources, from which only49 out of223 papers were
selected. A larger review might lead to different results, although we can safely argue that TSE and ICSE are
representative of research trends in software engineering. Furthermore, that review is only used as a motivation
for providing practical guidelines, and its results are in line with other largersystematic reviews [3, 52]. Last,
papers sometimes lack precision and interpretation errors are always possible.

As already discussed in Section 11, our practical guidelines may not be applicable to all contexts. Therefore,
in every specific context, one should always carefully assess them. Forsome specific cases, other statistical
procedures could be preferable, especially when only few runs are possible.

22



13 Conclusion

In this paper we report on a systematic review to evaluate how the results of randomized algorithms in soft-
ware engineering are analyzed. This type of algorithms (e.g., Genetic Algorithms) are widely used to address
many software engineering problems, such as test case selection. Similar to previous systematic reviews on
related topics [3, 52], we conclude that the use of rigorous statistical methodologies are somehow lacking when
investigating randomized algorithms in software engineering.

To cope with this problem, we provide, discuss, and justify a set ofpracticalguidelines targeting researchers
in software engineering. In contrast to other guidelines in the literature forother scientific fields (e.g., [77] and
[53]), the guidelines in this paper are tailored to the specific properties of randomized algorithms when applied
to software engineering problems. The use of these guidelines is important inorder to develop a reliable body
of empirical results over time, by enabling comparisons across studies so asto converge towards generalizable
results of practical importance. Otherwise, as in many other aspects of software engineering, unreliable results
will prevent effective technology transfer and will inevitably limit the impact of research on practice.

Acknowledgments

We would like to thanks Lydie du Bousquet and Zohaib Iqbal for useful comments on an early draft of this
paper. The work described in this paper was supported by the Norwegian Research Council. This paper was
produced as part of the ITEA-2 project called VERDE.

References

[1] R. Abraham and M. Erwig. Mutation Operators for Spreadsheets.IEEE Transactions on Software
Engineering (TSE), 35(1), 2009.

[2] J. Aguilar-Ruiz, I. Ramos, J. C. Riquelme, and M. Toro. An evolutionary approach to estimating software
development projects.Information and Software Technology, 43:875–882, 2001.

[3] S. Ali, L. Briand, H. Hemmati, and R. Panesar-Walawege. A systematic review of the application and
empirical investigation of search-based test-case generation.IEEE Transactions on Software Engineer-
ing (TSE), 36(6):742–762, 2010.

[4] M. Alshraideh and L. Bottaci. Search-based software test data generation for string data using program-
specific search operators.Software Testing, Verification and Reliability (STVR), 16(3):175–203, 2006.

[5] J. H. Andrews, T. Menzies, and F. C. Li. Genetic algorithms for randomized unit testing.IEEE Transac-
tions on Software Engineering (TSE), 37(1), 2011.

[6] J. Antunes, N. Neves, M. Correia, P. Verissimo, and R. Neves. Vulnerability discovery with attack
injection. IEEE Transactions on Software Engineering (TSE), 36(3):357–370, 2010.

[7] A. Arcuri. Full theoretical runtime analysis of alternating variable methodon the triangle classification
problem. InInternational Symposium on Search Based Software Engineering (SSBSE), pages 113–121,
2009.

[8] A. Arcuri. Theoretical analysis of local search in software testing.In Symposium on Stochastic Algo-
rithms, Foundations and Applications (SAGA), pages 156–168, 2009.

[9] A. Arcuri and L. Briand. A practical guide for using statistical tests toassess randomized algorithms in
software engineering. InACM/IEEE International Conference on Software Engineering (ICSE), 2011.

[10] A. Arcuri, M. Z. Iqbal, and L. Briand. Black-box system testing ofreal-time embedded systems using
random and search-based testing. InIFIP International Conference on Testing Software and Systems
(ICTSS), pages 95–110, 2010.

23



[11] A. Arcuri, M. Z. Iqbal, and L. Briand. Formal analysis of the effectiveness and predictability of random
testing. InACM International Symposium on Software Testing and Analysis (ISSTA), pages 219–229,
2010.

[12] A. Arcuri and X. Yao. A novel co-evolutionary approach to automatic software bug fixing. InIEEE
Congress on Evolutionary Computation (CEC), pages 162–168, 2008.

[13] A. Arcuri and X. Yao. Search based software testing of object-oriented containers.Information Sciences,
178(15):3075–3095, 2008.

[14] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M.D. Ernst. Finding bugs in web
applications using dynamic test generation and explicit-state model checking.IEEE Transactions on
Software Engineering (TSE), 36(4):474–494, 2010.

[15] F. Asadi, G. Antoniol, and Y. Gueheneuc. Concept Location with Genetic Algorithms: A Comparison
of Four Distributed Architectures. InInternational Symposium on Search Based Software Engineering
(SSBSE), pages 153–162, 2010.

[16] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. The next release problem.Information and
Software Technology, 43(14):883–890, 2001.

[17] N. E. Beckman, A. V. Nori, S. K. Rajamani, R. J. Simmons, S. D. Tetali, and A. V. Thakur. Proofs from
tests.IEEE Transactions on Software Engineering (TSE), 36(4):495–508, 2010.

[18] M. Bowman, L. C. Briand, and Y. Labiche. Solving the class responsibility assignment problem in
object-oriented analysis with multi-objective genetic algorithms.IEEE Transactions on Software Engi-
neering (TSE), 36(6):817–837, 2010.

[19] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An approach for qos-aware service composition
based on genetic algorithms. InGenetic and Evolutionary Computation Conference (GECCO), pages
1069–1075, 2005.

[20] J. Cohen. Statistical power analysis for the behavioral sciences,1988.

[21] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing for reduced code space using genetic
algorithms. InProceedings of the ACM SIGPLAN workshop on Languages, compilers, and tools for
embedded systems, pages 1–9, 1999.

[22] M. Cowles and C. Davis. On the origins of the .05 level of statistical significance.American Psychologist,
37(5):553–558, 1982.

[23] J. T. de Souza, C. L. Maia, F. G. de Freitas, and D. P. Coutinho. The Human Competitiveness of
Search Based Software Engineering. InInternational Symposium on Search Based Software Engineering
(SSBSE), pages 143–152, 2010.

[24] J. del Sagrado, I. M. del Aguila, and F. J. Orellana. Ant ColonyOptimization for the Next Release
Problem. InInternational Symposium on Search Based Software Engineering (SSBSE), pages 67–76,
2010.

[25] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. The effects oftime constraints on test case pri-
oritization: A series of controlled experiments.IEEE Transactions on Software Engineering (TSE),
36(5):593–617, 2010.

[26] J. W. Duran and S. C. Ntafos. An evaluation of random testing.IEEE Transactions on Software Engi-
neering (TSE), 10(4):438–444, 1984.

[27] J. Durillo, Y. Zhang, E. Alba, and A. Nebro. A Study of the Multi-objective Next Release Problem. In
International Symposium on Search Based Software Engineering (SSBSE), pages 49–58, 2009.

24



[28] T. Dybå, V. Kampenes, and D. Sjøberg. A systematic review of statistical power in software engineering
experiments.Information and Software Technology (IST), 48(8):745–755, 2006.

[29] P. Emberson and I. Bate. Stressing search with scenarios for flexible solutions to real-time task allocation
problems.IEEE Transactions on Software Engineering (TSE), 36(5):704–718, 2010.

[30] M. Fay and M. Proschan. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and
multiple interpretations of decision rules.Statistics Surveys, 4:1–39, 2010.

[31] W. Feller.An Introduction to Probability Theory and Its Applications, Vol. 1. Wiley, 3 edition, 1968.

[32] G. Fraser and A. Arcuri. It is not the length that matters, it is how youcontrol it. In IEEE International
Conference on Software Testing, Verification and Validation (ICST), 2011.

[33] G. Fraser and A. Arcuri. Whole test suite generation. Technical report, Chair of Software Engineering,
Saarland University, 2011.

[34] G. Freitag, S. Lange, and A. Munk. Non-parametric assessment of non-inferiority with censored data.
Statistics in medicine, 25(7):1201, 2006.

[35] M. Gabel and Z. Su. Online inference and enforcement of temporal properties. InACM/IEEE Interna-
tional Conference on Software Engineering (ICSE), pages 15–24, 2010.

[36] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed whitebox fuzzing. InACM/IEEE International
Conference on Software Engineering (ICSE), pages 474–484, 2009.

[37] L. Garćıa. Escaping the Bonferroni iron claw in ecological studies.Oikos, 105(3):657–663, 2004.

[38] V. Garousi. A genetic algorithm-based stress test requirements generator tool and its empirical evalua-
tion. IEEE Transactions on Software Engineering (TSE), 36(6):778–797, 2010.

[39] B. Garvin, M. Cohen, and M. Dwyer. An improved meta-heuristic search for constrained interaction
testing. InInternational Symposium on Search Based Software Engineering (SSBSE), pages 13–22,
2009.

[40] K. Ghani, J. Clark, and Y. Heslington. Widening the Goal Posts: Program Stretching to Aid Search
Based Software Testing. InInternational Symposium on Search Based Software Engineering (SSBSE),
pages 122–131, 2009.

[41] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and D. Marinov. Test generation through
programming in udita. InACM/IEEE International Conference on Software Engineering (ICSE), pages
225–234, 2010.

[42] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random testing. InACM Conference
on Programming language design and implementation (PLDI), pages 213–223, 2005.

[43] S. Goodman. P values, hypothesis tests, and likelihood: implications forepidemiology of a neglected
historical debate.American Journal of Epidemiology, 137(5):485–496, 1993.

[44] S. Goodman. Toward evidence-based medical statistics. 1: The P value fallacy. Annals of Internal
Medicine, 130(12):995–1004, 1999.

[45] R. Grissom and J. Kim.Effect sizes for research: A broad practical approach. Lawrence Erlbaum, 2005.

[46] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su. Has the bug really beenfixed? InACM/IEEE International
Conference on Software Engineering (ICSE), pages 55–64, 2010.

[47] M. Harman, S. A. Mansouri, and Y. Zhang. Search based software engineering: A comprehensive
analysis and review of trends techniques and applications. Technical Report TR-09-03, King’s College,
2009.

25



[48] M. Harman and P. McMinn. A theoretical and empirical study of search based testing: Local, global and
hybrid search.IEEE Transactions on Software Engineering (TSE), 36(2):226–247, 2010.

[49] H. Hemmati, A. Arcuri, and L. Briand. Empirical investigation of the effects of test suite properties on
similarity-based test case selection. InIEEE International Conference on Software Testing, Verification
and Validation (ICST), 2011.

[50] H. Hsu and A. Orso. MINTS: A general framework and tool for supporting test-suite minimization. In
ACM/IEEE International Conference on Software Engineering (ICSE), pages 419–429, 2009.

[51] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based program synthesis. In
ACM/IEEE International Conference on Software Engineering (ICSE), pages 215–224, 2010.

[52] V. Kampenes, T. Dyb̊a, J. Hannay, and D. Sjøberg. A systematic review of effect size in software
engineering experiments.Information and Software Technology (IST), 49(11-12):1073–1086, 2007.

[53] M. Katz. Multivariable analysis: a practical guide for clinicians. Cambridge Univ Pr, 2006.

[54] K. Khan, R. Kunz, J. Kleijnen, and G. Antes.Systematic reviews to support evidence-based medicine:
how to review and apply findings of healthcare research. RSM Press, 2004.

[55] U. Khan and I. Bate. WCET analysis of modern processors using multi-criteria optimisation. InInter-
national Symposium on Search Based Software Engineering (SSBSE), pages 103–112, 2009.

[56] T. Khoshgoftaar, L. Yi, and N. Seliya. A multiobjective module-ordermodel for software quality en-
hancement.IEEE Transactions on Evolutionary Computation (TEC), 8(6):593–608, 2004.

[57] A. Kieyzun, P. Guo, K. Jayaraman, and M. Ernst. Automatic creationof SQL injection and cross-site
scripting attacks. InACM/IEEE International Conference on Software Engineering (ICSE), pages 199–
209, 2009.

[58] D. Kim and S. Park. Dynamic Architectural Selection: A Genetic Algorithm Based Approach. In
International Symposium on Search Based Software Engineering (SSBSE), pages 59–68, 2009.

[59] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman. Systematic litera-
ture reviews in software engineering-A systematic literature review.Information and Software Technol-
ogy (IST), 51(1):7–15, 2009.

[60] J. Klein and M. Moeschberger.Survival analysis: techniques for censored and truncated data. Springer
Verlag, 2003.

[61] S. Kpodjedo, F. Ricca, G. Antoniol, and P. Galinier. Evolution and Search Based Metrics to Improve
Defects Prediction. InInternational Symposium on Search Based Software Engineering (SSBSE), pages
23–32, 2009.

[62] Z. Lai, S. Cheung, and W. Chan. Detecting atomic-set serializability violations in multithreaded pro-
grams through active randomized testing. InACM/IEEE International Conference on Software Engi-
neering (ICSE), pages 235–244, 2010.

[63] K. Lakhotia, M. Harman, and H. Gross. AUSTIN: A tool for Search Based Software Testing for the C
Language and its Evaluation on Deployed Automotive Systems. InInternational Symposium on Search
Based Software Engineering (SSBSE), pages 101–110, 2010.

[64] N. Leech and A. Onwuegbuzie. A Call for Greater Use of Nonparametric Statistics. Technical report,
US Dept. Education, 2002.

[65] F. Lindlar and A. Windisch. A Search-Based Approach to Functional Hardware-in-the-Loop Testing. In
International Symposium on Search Based Software Engineering (SSBSE), pages 111–119, 2010.

26



[66] G. Lu, R. Bahsoon, and X. Yao. Applying Elementary Landscape Analysis to Search-Based Software
Engineering. InInternational Symposium on Search Based Software Engineering (SSBSE), pages 3–8,
2010.

[67] A. Marchetto and P. Tonella. Search-based testing of Ajax web applications. InInternational Symposium
on Search Based Software Engineering (SSBSE), pages 3–12, 2009.

[68] A. Masood, R. Bhatti, A. Ghafoor, and A. Mathur. Scalable and Effective Test Generation for Role-
Based Access Control Systems.IEEE Transactions on Software Engineering (TSE), pages 654–668,
2009.

[69] P. McMinn. Search-based software test data generation: A survey. Software Testing, Verification and
Reliability, 14(2):105–156, 2004.

[70] P. McMinn. How Does Program Structure Impact the Effectiveness of the Crossover Operator in Evo-
lutionary Testing? InInternational Symposium on Search Based Software Engineering (SSBSE), pages
9–18, 2010.

[71] T. Menzies, S. Williams, B. Boehm, and J. Hihn. How to avoid drastic software process change (using
stochastic stability). InACM/IEEE International Conference on Software Engineering (ICSE), pages
540–550, 2009.

[72] B. S. Mitchell and S. Mancoridis. On the automatic modularization of software systems using the bunch
tool. IEEE Transactions on Software Engineering (TSE), 32(3):193–208, 2006.

[73] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[74] M. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, 1995.

[75] P. A. Nainar and B. Liblit. Adaptive bug isolation. InACM/IEEE International Conference on Software
Engineering (ICSE), pages 255–264, 2010.

[76] S. Nakagawa. A farewell to Bonferroni: the problems of low statistical power and publication bias.
Behavioral Ecology, 15(6):1044–1045, 2004.

[77] S. Nakagawa and I. Cuthill. Effect size, confidence interval andstatistical significance: a practical guide
for biologists.Biological Reviews, 82(4):591–605, 2007.

[78] A. Ngo-The and G. Ruhe. Optimized Resource Allocation for Software Release Planning.IEEE Trans-
actions on Software Engineering (TSE), 35(1):109–123, 2009.

[79] S. Nijssen and T. Back. An analysis of the behavior of simplified evolutionary algorithms on trap func-
tions. IEEE Transactions on Evolutionary Computation (TEC), 7(1):11–22, 2003.

[80] A. Nori and S. K. Rajamani. An empirical study of optimizations in yogi. InACM/IEEE International
Conference on Software Engineering (ICSE), pages 355–364, 2010.

[81] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random test generation. In
ACM/IEEE International Conference on Software Engineering (ICSE), pages 75–84, 2007.

[82] T. Perneger. What’s wrong with Bonferroni adjustments.British Medical Journal, 316:1236–1238,
1998.

[83] S. Poulding and J. Clark. Efficient Software Verification: StatisticalTesting Using Automated Search.
IEEE Transactions on Software Engineering (TSE), 36(6):763–777.

[84] R Development Core Team.R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.

27



[85] J. C. B. Ribeiro, M. A. Zenha-Rela, and F. F. de Vega. Test case evaluation and input domain reduction
strategies for the evolutionary testing of object-oriented software.Information and Software Technology,
51(11):1534–1548, 2009.

[86] J. A. Rice.Mathematical Statistics and Data Analysis. Duxbury Press, 2 edition, 1994.

[87] G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE transactions on Neural Net-
works, 5(1):96–101, 1994.

[88] G. Ruxton. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-
Whitney U test.Behavioral Ecology, 17(4):688–690, 2006.

[89] S. Sawilowsky and R. Blair. A more realistic look at the robustness andtype II error properties of the t
test to departures from population normality.Psychological Bulletin, 111(2):352–360, 1992.

[90] C. A. Schaefer, V. Pankratius, and W. F. Tichy. Engineering parallel applications with tunable architec-
tures. InACM/IEEE International Conference on Software Engineering (ICSE), pages 405–414, 2010.

[91] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Marinov. Testing container classes: Random or
systematic? InFundamental Approaches to Software Engineering (FASE), 2011.

[92] M. Shevertalov, J. Kothari, E. Stehle, and S. Mancoridis. On the Use of Discretized Source Code Metrics
for Author Identification. InInternational Symposium on Search Based Software Engineering (SSBSE),
pages 69–78, 2009.

[93] M. Shousha, L. Briand, and Y. Labiche. A uml/marte model analysis method for uncovering scenarios
leading to starvation and deadlocks in concurrent systems.IEEE Transactions on Software Engineering
(TSE), 2010. 10.1109/TSE.2010.107.

[94] C. L. Simons, I. C. Parmee, and R. Gwynllyw. Interactive, evolutionary search in upstream object-
oriented class design.IEEE Transactions on Software Engineering (TSE), 36(6):798–816, 2010.

[95] T. Thum, D. Batory, and C. Kastner. Reasoning about edits to feature models. InACM/IEEE Interna-
tional Conference on Software Engineering (ICSE), pages 254–264, 2009.

[96] N. Tillmann and N. J. de Halleux. Pex — white box test generation for .NET. In International Conference
on Tests And Proofs (TAP), pages 134–253, 2008.

[97] P. Tonella. Evolutionary testing of classes. InACM International Symposium on Software Testing and
Analysis (ISSTA), pages 119–128, 2004.

[98] P. Tonella, A. Susi, and F. Palma. Using Interactive GA for Requirements Prioritization. InInternational
Symposium on Search Based Software Engineering (SSBSE), pages 57–66, 2010.

[99] A. Vargha and H. D. Delaney. A critique and improvement of the CL common language effect size
statistics of McGraw and Wong.Journal of Educational and Behavioral Statistics, 25(2):101–132, 2000.

[100] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest. Automatically finding patches using genetic pro-
gramming. InACM/IEEE International Conference on Software Engineering (ICSE), pages 364–374,
2009.

[101] J. White, B. Doughtery, and D. Schmidt. Ascent: An algorithmic technique for designing hardware and
software in tandem.IEEE Transactions on Software Engineering (TSE), 36(6), 2010.

[102] R. Wilcox. Fundamentals of modern statistical methods: Substantially improving powerand accuracy.
Springer Verlag, 2001.

[103] C. Wohlin. Experimentation in software engineering: an introduction, volume 6. Springer Netherlands,
2000.

28



[104] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, 1997.

[105] J. Xiao and W. Afzal. Search-based resource scheduling forbug fixing tasks. InInternational Symposium
on Search Based Software Engineering (SSBSE), pages 133–142, 2010.

[106] Q. Yang and M. Li. A cut-off approach for bounded verificationof parameterized systems. InACM/IEEE
International Conference on Software Engineering (ICSE), pages 345–354, 2010.

[107] S. Yoo. A Novel Mask-Coding Representation for Set Cover Problems with Applications in Test Suite
Minimisation. InInternational Symposium on Search Based Software Engineering (SSBSE), pages 19–
28, 2010.

[108] X. Yuan and A. M. Memon. Generating event sequence-based test cases using gui runtime state feedback.
IEEE Transactions on Software Engineering (TSE), 36(1):81–95, 2010.

[109] L. Zhang, S. Hou, J. Hu, T. Xie, and H. Mei. Is operator-based mutant selection superior to random
mutant selection? InACM/IEEE International Conference on Software Engineering (ICSE), pages 435–
444, 2010.

[110] Y. Zhang and M. Harman. Search Based Optimization of RequirementsInteraction Management. In
International Symposium on Search Based Software Engineering (SSBSE), pages 47–56, 2010.

29


