Technical Report, Simula Research Laboratory, number 2011-13

A Hitchhiker’s Guideto Statistical Tests for
Assessing Randomized Algorithmsin
Softwar e Engineering?!

Andrea Arcuri and Lionel Briand

Simula Research Laboratory, P.O. Box 134, Lysaker, Norway.
Email: {arcuri,briand @simula.no

Abstract

Randomized algorithms have been used to successfully egldrany different types of software engi-
neering problems. This type of algorithms entail a significdegree of randomness as part of their logic.
Randomized algorithms are useful to address difficult gnmislwhere a precise solution cannot be derived in
a deterministic way within reasonable time. However, ramided algorithms can produce different results
on every run when applied to the same problem instance. Bngéimportant to assess the effectiveness
of randomized algorithms by collecting data from a largeugfionumber of runs. The rigorous use of sta-
tistical tests is then essential to provide support to theekmsions derived by analyzing such data. In this
paper, we provide a systematic review of the use of randairafgorithms in selected software engineering
venues in 2009/2010. Its goal is not to perform a completeesuout to get a representative and up-to-date
shapshot of current practice in software engineering rekeaWe show that randomized algorithms are
used in a significant percentage of papers but that, in mastscaandomness is not properly accounted
for. This casts doubts on the validity of most empirical issassessing randomized algorithms for various
applications. There are numerous statistical tests, baselifferent assumptions, and it is not always clear
when and how to use these tests. We hence provide practichdliges to support empirical research on
randomized algorithms in software engineering.

Keyword: Statistical difference, effect size, parametric test, non-parametrictedtdence interval, Bon-
ferroni adjustment, systematic review, survey.

1 Introduction

Many problems in software engineering can be alleviated through automgipdrs For example, automated
techniques exist to generate test cases that satisfy some desiredjemritexia on the system under test, such
as for example branch [48] and path coverage [42]. Because oftea itoblems are undecidable, deterministic
algorithms that are able to provide optimal solutions in reasonable time do not €Ris use of randomized
algorithms [74] is hence necessary to address this type of problems.

The most well-known example of randomized algorithm in software engirgeeriperhapsandom testing
[26, 11]. Techniques that use random testing are of course randbrazér example DART [42] (which com-
bines random testing with symbolic execution). Furthermore, there is a ladyedd work on the application
of search algorithmgn software engineering [47], as for example Genetic Algorithms. Sincesatth algo-
rithms are typically randomized and numerous software engineering probkmise addressed with search
algorithms, randomized algorithms therefore play an increasingly importknt Applications of search al-
gorithms include software testing [69], requirement engineering [16]jept planning and cost estimation [2],
bug fixing [12], automated maintenance [72], service-oriented softeragimeering [19], compiler optimisation
[21] and quality assessment [56].

1This paper is an extension of a conference paper [9] published in tn#tional Conference on Software Engineering (ICSE),
2011.

A randomized algorithm may be strongly affected by chance. It may findpimal solution in a very
short time or may never converge towards an acceptable solution. Rusnémglomized algorithm twice on
the same instance of a software engineering problem usually produferemifresults. Hence, researchers in
software engineering that develop novel techniques based on raratbalgorithms face the problem of how
to properly evaluate the effectiveness of these techniques.

To analyze the cost and effectiveness of a randomized algorithm, it is tampdo study theprobability
distributionof its output and various performance metrics [74]. For example, a praeitiaight want to know
what is the execution time of those algorithorsaverage But randomized algorithms can yield very complex
and high variance probability distributions, and hence looking only abgesvalues can be misleading, as we
will discuss in more details in this paper.

The probability distribution of a randomized algorithm can be analyzed bgimgnsuch an algorithm
several times in an independent way, and then collecting appropriatetataies results and performance.
For example, consider the case in which we want to find failures in softwyansing random testing (assuming
that an automated oracle is provided). As a way to assess its cost atti/effess, we can sample test cases
at random until the first failure is detected. For example, in the first exeet, we might find a failure
after sampling24 test cases. We hence repeat this experiment a second time (if a ps@ddoargenerator is
employed, we need to use a different seed for it) and then, for examglgertthe first failure when executing
the second random test case. If in a third experiment we obtain the fitssefafter generating74 test cases,
the meanvalue of these three experiments wouldlis®. Using such a mean to characterize the performance
of random testing on a set of programs would clearly be misleading givesxthet of its variation.

Since such randomness might hinder the reliability of conclusions wheaorpenig the empirical analysis
of randomized algorithms, researchers hence face two problems: wWinhay experiments should be run to
obtain reliable results, and (2) how to assess in a rigorous way whettteresults are indeed reliable. The
answer to these questions lies in the usstafistical test§86]. There are many books on various aspects of
statistics (e.qg., [86, 20, 60, 45, 102]), and that research field is stilliggy102]. Notice that though statistical
testing is used in most if not all scientific domains (e.g., medicine and behas®eaice), each field has its
own set of constraints to work with. Even within a field like software engingethe application context
of statistical testing can vary significantly. When human resources atorgaatroduce randomness (e.g.,
[28, 52]) in the phenomena under study, the use of statistical tests is glgoeebut the constraints we work
with are quite different from those of randomized algorithms, such as<enple the size of data samples and
the types of distributions.

Because of the widely varying situations across domains and the overwheiomnber of statistical tests,
each one with its own characteristics and assumptions, many practical gegdetine been provided targeting
different scientific domains, such as biology [77] and medicine [53]. r8laee also guidelines for running
experiment with human subjects in software engineering [103]. In thisrpeeintend to do the same for
randomized algorithms in software engineering, as they entail specificiasgethe application of statistical
testing is far from easy, as we will see.

To assess whether the results obtained with randomized algorithms ardyes@dyzed in software engi-
neering research, and therefore whether precise guidelines areerkgve carried out a systematic review. We
limited our analyses to the yea809 and2010, as our goal was not to perform an exhaustive systematic review
but to obtain a recent, representative sample on which to draw conclaonscurrent practices. We focused
on research venues that deal with all aspects of software enginesuittyas IEEE Transactions of Software
Engineering (TSE), IEEE/ACM International Conference on Softwamgineering (ICSE) and International
Symposium on Search Based Software Engineering (SSBSE). Therfovmare meant to get an estimate of
the extent to which randomized algorithms are used in software engine€hadatter, more specialized venue
provides us with additional insight into the way randomized algorithms arsse$én software engineering.
The review shows that, in many cases, statistical analyses are either misathgguate, or incomplete. For
example, though journal guidelines in medicine require a mandatory usendfastizedeffect sizeaneasure-
ments [45] to quantify the effect of treatments, we have found only oreeinaghich a standardized effect size
was used to measure the relative effectiveness of a randomized algfBhnturthermore, in many of the
surveyed empirical analyses, randomized algorithms were evaluatedidraiee results of only one run. Only
few empirical studies reported the use of statistical analysis.

Given our survey’s results, we hence found necessary to desdastical guidelines for the use of statistical

testing in assessing randomized algorithms in software engineering appkcatote that though guidelines
have been provided for other scientific domains [77, 53] and for otlpastpf empirical analyses in software
engineering [28, 52], they are not necessarily applicable in the carfteattdomized algorithms. Our objective
is therefore account for the specific properties of randomized algorithswftware engineering applications.

Notice that Ali et al. [3] have recently carried out a systematic review of search-basédaseftesting
which includes some limited guidelines on the use of statistical testing. This pafuks tppon that work by: (1)
analyzing software engineering as whole and not just software testihgoiisidering all types of randomized
algorithms and not just search algorithms, and (3) giving precise, pah@itd complete suggestions on many
aspects related to statistical testing that were either not discussed oliéfistinentioned in [3] .

The main contributions of this paper can be summarized as follows:

e We provide a systematic review of the current state of practice of the (satitical testing to analyze
randomized algorithms in software engineering. The review shows thdamamess is not properly taken
into account in the research literature.

e We provide practical guidelines on the use of statistical testing that are taitoraddomized algorithms
in software engineering applications and the specific properties antt@otsthey entail.

The paper is organized as follows. Section 2 discusses a motivating exaifipéesystematic review
we carried out follows in Section 3. Section 4 presents the concept otistdtdifference in the context of
randomized algorithms. Section 5 compares two kinds of statistical tests andgtidctheir implications in
our context. The problem of censored data and how it applies to randbaigerithms is discussed in Section
6. How to measure effect sizes and therefore the practical impact dbmained algorithms is presented in
Section 7. Section 8 investigates the question of how many times randomizeithatgoshould be run. The
problems associated with multiple tests is discussed in Section 9, whereas S8diesid with the choice of
artifacts, which has usually a significant impact on results. Practical ljnédeon how to use statistical tests
in our context are summarized in Section 11. The threats to validity associdtedurwork are discussed in
Section 12. Finally, Section 13 concludes the paper.

2 Maotivating Example

In this section, we provide a motivating example to show why the use of statis#gtalis a necessity in the
analyses of randomized algorithms in software engineering. Assume thaediwiques4 and B are used
in a type of experiment in which the output is binary: eitlpaissor fail. For example, in the context of
software testingd4 and’3 could be testing techniques (e.g., random testing [26, 11]), and themegnemwould
determine whether they trigger or not any failure given a limited testing buddmet.technique with highest
success ratethat is failure rate in the testing example, would be considered to be supEticther assume
that both techniques are runtimes, andz represents the timed4 was successful, whereéss the number of
successes fdB. Theestimatedsuccess rates of these two techniques are definetheandb/n, respectively.

Now, consider that such experiment is repeatee 10 times, and the results show thdthas a 70%
estimated success rate, wheréahas a 50% estimated success rate. Would it be safe to concludd that
better than3? Even ifn = 10 and the difference in estimated success rates is quite large (i.e., 20%)Jdt wou
actually be unsound to draw any conclusion about the respectiveparice of the two techniques. Because
this might not be intuitive, we provide below the exact mathematical reasomplairewhy that is the case.

A series of repeated experiments with binary outcome can be described lBis@mial distribution[31],
where each experiment has probabilitypf success, and the mean value of the distribution (i.e., number of
successes) ign. In the case ofd, we would have an estimated success patea/n and an estimated number
of successegn = a. The probability mass function of a binomial distributi®in,p) with parameters andp
is:

P(B(p) =) = ()1 p .

P(B(n,p) = k) represents the probability that a binomial distributifr,p) would result ink successes.
Exactly k£ runs would be successful (probabilit§) while the others: — k& would fail (probability(1 — p)»—*).

Figure 1: Probabilities to obtaim = 0.7n andb = 0.5n whenn = 10 (left) andn = 100 (right) for different
success rates of the algorithrdsand 5.

Since the order of successful experiments is not important, thel(@am)ssible orders. Using this probability
function, what is the probability that equals the expected number of successes? Using our example, having
a technique with amactual 70% success rate, what is the probability of having exactly 7 successe$ 10
experiments? This can be calculated with:

P(B(10,0.7) =7) = <170> 0.77(0.3)> = 0.26 .

This example shows there is only a 26% chance to have exaetyr successes if the actual success rate
is 70%! This shows a widespread misconception: expected values (egessas) often have a relatively low
probability of occurrence. Similarly, the probability that both technique lsarumber of successes equal to
their expected value would be even lower:

P(B(10,0.7) = 7) x P(B(10,0.5) = 5) = 0.06 .

Reversely, even if we obtain = 7 andb = 5, what would be the probability that both techniques have an
equal actual success rate of 60%? We would have:

P(B(10,0.6) = 7) x P(B(10,0.6) = 5) = 0.04 .

Though0.04 seems a rather “low” probability, it is not much lower tHaf6, the probability of the observed
number of successes to be actually equal to their expected values.foFbeme cannot really say that the
hypothesis of equal actual success rates (60%) is much more implausibléhéhane with 70% and 50%
actual success rates. But what about the case where the two techhayseexactly the same actual success
rate equal t@.2? Or what about the cases in whighwould actually have a better actual success rate than
A? What would be the probability for these situations to be true? Figure 1 shibthiese probabilities, when
a = 0.7n andb = 0.5n, for two different numbers of runsz = 10 andn = 100. Forn = 10, there is a
great deal of variance in the probability distribution of success ratepattiicular, the cases in whidh has
a higher actual success rate do not have a negligible probability. On thehathd, in the case of = 100,
the distribution variance has decreased significantly and high probabili¢ied| @lose to the expected average
values (i.e., 70% foyd and 50% for3). This clearly shows he importance of using sufficiently large samples,
an issue we will get back to later in the paper.

In our example, witlh = 100, the use of statistical tests (e.g., Fisher Exact test) would yield strong eeiden
to conclude thatd is better than3. At an intuitive level, a statistical test would estimate the probability of
mistakenly drawing the conclusion thdtis better than3, under the form of a so-called p-value, as further
discussed later in the paper. The resulfingaluewould be quite small fon = 100 (i.e., 0.005), whereas for

4

Table 1: Number of publications grouped by venue, year and type.

Venue Year All Regular Randomized Algorithms

TSE 2009 48 48 3
2010 48 48 12
ICSE 2009 70 50 4
2010 111 54 10
SSBSE 2009 17 9 9
2010 17 14 11
Total 311 223 49

n = 10 it would far much larger (i.e0.649), thus confirming and quantifying what is graphically visible in
Figure 1. So even for what might appear to be large values our capability to draw reliable conclusions
could still be weak. Though some readers might find the above example batsie, the fact of the matter is

that many papers reporting on randomized algorithms overlook the prineipteissues illustrated above.

3 Systematic Review

Systematic reviews are used to gather, in an unbiased and compreheagiyeiblished research on a specific
subject and analyze it [54]. Systematic reviews are a useful tool tesagseeral trends in published research,
and they are becoming increasingly common in software engineering [592R8

In our review we want to analyze: (RQ1) how often randomized algorithmemsised in software engineer-
ing, (RQ2) how many runs were used to collect data, and (RQ3) whicls tyfostatistical analyses were used
to analyze these data.

To answer RQ1, we selected two of the main venues that deal with all agfesifiware engineering:
IEEE Transactions of Software Engineering (TSE) and IEEE/ACM hatiéonal Conference on Software En-
gineering (ICSE). We also considered the International Symposium arcts8ased Software Engineering
(SSBSE), which is a specialized venue devoted to search algorithmsudgecar goal is not to perform an
exhaustive survey of existing works, but simply to get an up-to-dates$rwd of current practice regarding the
application of randomized algorithms in software engineering researclonlyeconsidered 2009 and 2010
publications.

We only retained full length research papers and, as a ré§ufiapers at ICSE antll at SSBSE were
excluded. A total o223 papers were considered6 in TSE, 104 in ICSE and23 in SSBSE. These papers
were manually checked to verify whether they made use of randomizedthigsythus leading to a total df
papers. Table 1 summarizes the details of these publications divided by &adwyear.

Notice that we excluded papers in which it was not clear whether randdralgerithms were used. For
example, the technigues described in [50, 95] use external SAT sawetrthose might be based on randomized
algorithms, though we cannot say for sure. Furthermore, we do naidmnpapers that involvenachine
learningalgorithms that are randomized since they require different types ofsaa@ii]. On the other hand,
if a paper focused on presenting a deterministic, novel technique, waattitiwhen randomized algorithms
were used for comparison purposes (e.g., fuzz testing [36]). Tabler 2he year 2009) and Table 3 (for
the year 2010) summarize the results of this systematic review for the finatiselef 49 papers. The first
clearly visible result is that randomized algorithms are widely used in softaragmeering (RQ1): we found
them in15% of the regular articles in TSE and ICSE, which are general-purposeegpnesentative software
engineering venues.

To answer RQ2, the data in Table 2 and Table 3 shows the number of timegatectvas run to collect
data regarding its performance on each artifact in the case study2@ofses out 049 show at least0 runs.

In many cases, data are collected from only one run of the randomizeudttahge. Furthermore, notice that
the case in which randomized algorithms are evaluated basedlpmne run per case study artifaist quite
common in the literature. Even very influential papers such as DART [4frswof this problem, which poses
a serious threat to the validity of those empirical analyses.

In the literature, there are empirical analyses in which randomized algorittensimonly once per case
study artifact, but a large case study was generated at random (8,dLOf[]). The validity of such empirical
analyses is questionable. However, the choice of a case study that igcstiatédevant, and its relations with
the needed number of runs for evaluating a randomized algorithm, nemukr mare, and it will be discussed
in more detail in Section 10.

Regarding RQ3, only8 out of49 articles include empirical analyses supported by some kind of statistical
testing. More specifically, we can setests, Welch and U-tests for when algorithms are compared in a pairwise
fashion, whereas ANOVA and Kruskal-Wallis for multiple comparisons.tii@rmore, in some cases linear
regression is employed to build prediction models from a set of algorithm tdoaever, in only one article
[83] standardizeckffect sizemeasures (see Section 7) are reported to quantify the relative effextivef
algorithms.

Results in Table 2 and 3 clearly show that, when randomized algorithms areyempdonpirical analyses in
software engineering do not properly account for their random eatdany of the novel proposed techniques
may indeed be useful, but the results in Table 2 and 3 cast serious daubh&s\alidity of most existing results.

Notice that some of empirical analyses in Table 2 and 3 do not use statistisaitee they do not perform
any comparison of the technique they propose with alternatives. For éxamphe award winning paper at
ICSE 2009, a search algorithm (i.e., Genetic Programming) was used andimve)0 times on each artifact
in the case study [100]. However this algorithm was not compared agaimgker alternatives or even random
search. If we look more closely at the reported results in order to atfsesmplications of that lack of
comparison, we see that the total number of fithess evaluationd®@a& population size of0 individuals
that is evolved forl0 generations). This is an extremely low number (for example, for test datrajeon
in branch coverage it is often the case of usli0g,000 fitness evaluations fazachbranch [48]) and we can
therefore conclude that there is very limited search taking place, which intipéiea random search would have
likely yielded similar results. This is directly confirmed in the reported results@0]lin which in half of the
subject artifacts in the case study, the average number of fithess evadyagiorun is at mositl, thus implying
that, on average, appropriate patches are found in the random initializdittbe first population before the
actual evolutionary search even starts. This should not be surpristhg aearch operators were tailored to the
specific, small set of bugs of the case study, which then led to an eash geablem. As discussed in [3], a
search algorithm should always be compared against at least raedoch ¢n order to check that the algorithm
is not simply successful because the search problem is easy.

Since comparisons with simpler alternatives (at a very minimum random $ésueimecessity when one
proposes a novel randomized algorithm or addresses a new softwganeering problem [3], statistical testing
should be part of all publications reporting such empirical studies. In #psmpwe provide specific guidelines
on how to use statistical tests to support comparisons among randomizethaigor

4 Statistical Difference

When a novel randomized algorithriis developed to address a software engineering problem, it is common
practice to compare it against existing techniques, in particular simpler ditesa For simplicity, let us
consider just one alternative randomized algorithm, and let us dallfor example3 can be random testing,
and.4 can be a search algorithm such as Genetic Algorithms or an hybrid techth@ugombines symbolic
execution with random testing (e.g., DART [42]).

To compareA versusi3, we first need to decide which criteria are used in the comparisons. Mifenedt
measuresi/), either attempting to capture the effectiveness or the cost of algorithmbecselected depend-
ing on the problem at hand and contextual assumptions, e.g., sourcecs@tage, execution time. Depending
on our choice, we may want to either minimize or maximiZefor example maximize coverage and minimize
execution time.

To enable statistical analysis, we should run bdttand B a large enough number) of times, in an
independent way, to collect information on the probability distributiodbfor each algorithm. Astatistical
testshould then be used to assess whether there is enough empirical eviolefaien, with a high level of
confidence, that there is a difference between the two algorithms £ig.better thar3). A null hypothesis
H, is typically defined to state that there is no difference betwéemd3. A statistical test is used to verify
whether we should reject the null hypothegls. However, what aspect of the probability distribution/df

Table 2: Results of systematic review for the year 2009.

Reference Venue Repetitions Statistical Tests

[1] TSE 1/5 U-test
[68] TSE 1 None
[78] TSE 1 None
[71] ICSE 100 t-test, U-test
[100] ICSE 100 None
[36] ICSE 1 None
[57] ICSE 1 None
[7] SSBSE 1000 Linear regression
[40] SSBSE 30/500 None
[27] SSBSE 100 U-test
[39] SSBSE 50 None
[61] SSBSE 10 Linear regression
[55] SSBSE 10 None
[67] SSBSE 1 None
[58] SSBSE 1 None
[92] SSBSE 1 None

is being compared depends on the used statistical test. For exanybst@ompares the mean values of two
distributions whereas others tests focus on the median or proportioriscassid in Section 5.

There are two possible types of error when performing statistical testinge(reject the null hypothesis
when it is true (we are claiming that there is a difference between two algoniiras actually there is none),
and (II) we acceptiy when it is false (there is a difference but we claim the two algorithms to beaqut).
The p-valueof a statistical test denotes the probability of a Type | error. Jigeificant levek of a test is the
highest p-value we accept for rejectinfy. A typical value, inherited from widespread practice in natural and
social sciences, is = 0.05.

Notice that the two types of error are conflicting; minimizing the probability of ohthem necessarily
tends to increase the probability of the other. But traditionally there is more asigpbn not committing a
Type | error, a practice inherited from natural sciences where theigoéten to establish the existence of a
natural phenomenon in a conservative manner. In our context we waoljdconclude that an algorithd
is better than5 when the probability of a Type | error is below The price to pay for a smadl value is
that, when the data sample is small, the probability of a Type Il error can be Higk concept of statistical
power[20] refers to the probability of rejectinfy when it is false (i.e., the probability of claiming statistical
difference when there is actually a difference).

Getting back to our comparison of techniquésind B , let us assume we obtain a p-value equd.tis.
Even if one technique seems significantly better than the other in terms dfeffe¢Section 7), we would then
conclude that there is no difference when using the traditional 0.05 threshold. In software engineering,
or in the context oflecision-makingn general, this type of reasoning can be counter-productive. Thiéidrad
of usinga: = 0.05, discussed by Cowles [22], has been established in the early part lastreentury, in the
context of natural sciences, and is still applied by many across scierdlfis filt has, however, an increasing
number of detractors [43, 44] who believe that such thresholds aiteaayband that researchers should simply
reportp-valuesand let the readers decide in context what risks they are willing to take indibagion-making
process.

When we need to make a choice between techniglasd 3, we would like to use the one that is more
likely to outperform the other. Whether we get a p-value lower théears little consequence from a practical
standpoint, as in the end weustselect an alternative, e.g., we must select a testing technique to verify the
system. However, as we will show in Section 8, obtaining p-values lower dhan 0.05 should not be a
problem when experimenting with randomized algorithms. The focus of sxmérienents should rather be
on whether a given technique brings any practically significant advantasyally measured in terms of an
estimated effect size and its confidence interval, an important concetsaéd in Section 7.

Table 3: Results of systematic review for the year 2010.

Reference Venue Repetitions Statistical Tests
[38] TSE 1000 None
[108] TSE 100 t-test
[48] TSE 60 U-test
[83] TSE 32 U-testA;,
[25] TSE 30 Kruskal-Wallis, undefined pairwise
[94] TSE 20 None
[18] TSE 10 U-testi-test, ANOVA
[29] TSE 3 U-test
[6] TSE 1 None
[14] TSE 1 None
[17] TSE 1 None
[101] TSE 1 None
[62] ICSE 100 None
[109] ICSE 50 None
[41] ICSE 5 None
[75] ICSE 5 None
[35] ICSE 1 None
[46] ICSE 1 None
[51] ICSE 1 None
[106] ICSE 1 None
[80] ICSE 1 None
[90] ICSE 1 None
[23] SSBSE 100 t-test
[24] SSBSE 100 None
[66] SSBSE 50 t-test
[70] SSBSE 50 U-test
[105] SSBSE 30 U-test
[107] SSBSE 30 t-test
[63] SSBSE 30 Welch
[98] SSBSE 30 ANOVA
[15] SSBSE 3/5 None
[65] SSBSE 3 None
[110] SSBSE 1 None

In practice, the selection of an algorithm would depend on the p-valudeaiftiebEness comparisons, the
effectiveness effect size, and the cost difference among algorithigs (n terms of user-provided inputs or
execution time). Given a context-specific decision model, the reader, sisthgnformation, could then decide
which technique is more likely to maximize benefits and minimizes risk. In the simplestdaere compared
techniques would have comparable costs, we would simply select the teehwiitpthe highest effectiveness
regardless of the p-values of comparisons, even if as a result themois-aegligible probability that it will
bring no particular advantage.

When one has to carry out a statistical test, one must choose bebtmeeiiledand atwo-tailed test.
Briefly, in a two-tailed test, one would rejeH, if the performance ofd andB are different no matter of which
one is the best. On the other hand, in a one-tailed test, one is making assuraptiotthe relative performance
of the algorithms. For example, one could expect that a new sophisticatittaly.A is better than a naive
algorithmB used in the literature. In such a case, one would detect statistically sighififf@nence when4d
is indeed better thad, but ignoring the “unlikely” case oB being better thapd. An historical example in the
literature of statistics is the test to check whether there is the right percgotdbfcarats) in coins. One could
expect that a dishonest coiner might produce coins with lower per€gotathan declared, and so a one-tailed
test would be used rather than a two-tailed. Such a test could be usedvboi®to verify whether the coiner
is actually dishonest, whereas giving more gold than declared would peintkely. Using a one-tailed test
has the advantage, compared to a two-tailed test, that the resulting p-valueig$o it is easier to detect
statistically significant differences).

Are there cases in which a one-tailed test could be advisable in the andlyaimdlomized algorithms in
software engineering? As a rule of thumb, we say no: two-tailed tests sheulded. One should use a one-
tailed test only if (s)he has strong arguments to support such a decisidact] most of the time we cannot
make any assumption on the relative performance of randomized algorithwes. naive testing techniques
such as random testing can be better than more sophisticated techniqueaenlasses of problems (e.g.,
see [91]). If one wants to lower the p-values, it is recommended to irethasiumber of runs (see Section 8)
rather than using an arguable one-tailed test.

5 Parametric vs Non-Parametric Tests

In our context, the two most used statistical tests aré-thet and the Mann-Whitney U-test. These tests are in
general used to compare two data samples (e.g., the results of runtimgs algorithmA4 compared td3).
Thet-test isparametrig whereas the U-test ison-parametric

A parametric test makes assumptions on the underlining distribution of the datexdample, thé-test as-
sumes normality and equal variance of the two data samples. A non-paramestriakes no assumption about
the distribution of the datalVhyis there the need for two different types of statistical tests? A simple answer is
that, in general, non-parametric tests are less powerful than parametsicvbien the latter’'s assumptions are
fulfilled. When, due to cost or time constraints, only small data samples cavllbeted, one would like to use
the most powerful test available if its assumptions are satisfied.

There is a large body of work regarding which of the two types of testsldl@ used [30]. The assumptions
of thet-test are in general not met. Considering that the variance of the two aafales is most of the time
different, a Welch test should be used instead Bfest. But the problem of the normality assumption remains.

An approach would be to use a statistical test to assess whether the datend, rend, if the test is
successful, then use a Welch test. This approach increases theifiplodtType | error but is often not
necessary. In fact, the Central Limit theorem tells us that, for large santipddstest and Welch test are robust
even when there is strong departure from a normal distribution [86,B%]in general we cannot know how
many data pointsi) we need to reach reliable results. A rule of thumb is to have atteas80 for each data
sample [86].

There are three main problems with such an approach: (1) if we need #&oahkargen for handling
departures from normality, then it might be advisable to use a non-parartegtisince, for a large, it is
likely to be powerful enough; (2) the rule of thumb= 30 stems from analyses in behavioral science, and, to
the best of our knowledge, there is no supporting evidence of its efffoacandomized algorithms in software
engineering; (3) the Central Limit theorem has its own set of assumptidnishware too often ignored. We
now discuss points (2) and (3) in more details by accounting for the sppoifierties of the application of

0.006 0.008 0.010

Probability

0.004

0.002

Figure 2: Density functions of random testing and normal distribution gsegne meap = 1/60 and variance
0% = (1-60)/6% where = 0.01.

randomized algorithms in software engineering, using software testing ée@nihis choice was motivated
by the fact that half the publications in search-based software engigese on software testing [47].

Random testing, when used to find a test case for a specific testing teugeta test case that triggers
a failure or covers a particular branch/path) follows a geometric distribut@hen there is more than one
testing target, e.g., full structural coverage, it follows a coupon’s doltgaroblem distribution [11]. Given
the probability of sampling a test case that covers the desired testing tasgethéhexpectation of random
testing isy = 1/60 and its variance i§2 = (1 —) /6% [31]. Figure 2 plots the density function of a geometric
distribution withd = 0.01 and a normal distribution with sameand4d?. In this context, the density function
represents the probability that, for a given number of sampled test Lagsesover the target after sampling
exactly!l test cases. For random testing, the most likely outcone=id, whereas for a normal distribution it
isl = p. Notice that the geometric distribution is discrete (i.e., it is defined only on intedees), whereas
a normal distribution is continuous. Furthermore, the density function of dnmal distribution is always
positive for any value, whereas for the geometric distribution it is equalifte negative values, where in this
context the values are the number of sampled test cases. Therefoséing technique caneverfollow a
normal distribution in a strict way, although it might be a reasonable apprdigima

As it is easily visible from Figure 2, the geometric distribution has a very stdepgrture from normality!
Comparisons of novel techniques versus random testing (and this isati@cprwhen search algorithms are
evaluated [47]) usingr-tests are hence very arguable. In general, in contrast to many phgsicaehavioral
phenomena, in terms of their effectiveness, the probability distributionsefarch algorithms may strongly
depart from normality. A common example is when the search landscape adidnessed problem has trap-
like regions [79].

The Central Limit theorem states that th@mof n random variables converges to a normal distribution
[31] asn increases. For example, consider the result of throwing a dice. Tremnly six possible outcomes,
each one with probability /6. If we consider thesumof two dice (i.e.,n = 2), we havell possible outcomes,
from value2 to 12. Figure 3 shows that with = 2, in the case of dice, we already obtain a distribution that
resembles the normal one, even though with: 1 it is very far from normality. In our context, these random
variables are the results of theruns of the analyzed algorithm. This theorem has three assumptions: the
variables should be independent and their meamd variance$? should exist (i.e., they should be different
from infinity). When using randomized algorithms, havingndependent runs is usually trivial to achieve
(we just need to use different seeds for the pseudo-random gerspraBut the existence of the mean and
variance requires more scrutiny. As shown before, those valussd 62 exist for random testing. A well
known “paradox” in statistics in which mean and variance do not exist iseber$burg Game [31]. Similarly,
the existence of mean and variance in search algorithms is not alwaytped, as discussed next.

To put this discussion on a more solid ground, let us briefly describe teesBarg Game. Assume a player
tosses an unbiased coin until a head is obtained. The player first give®@unt of money to the opponent
which needs to negotiated, and then she receives from the opponantamt of money (Kroner) equal to
k = 2t, wheret is the number of times the coin was tossed. For example, if the player obtainsitsianth

10

Probabilty
0.10 0.15 0.20
0.15 0.20

Probability
010

0.05
0.05

S

1 2 3 4 5 6 2 3 4 5 6 7 8 9 10 11 12

0.00

0.00

Dice Values Sum of Two Dice Values

Figure 3: Density functions of the outputs of one dice and the sum of two dice

then a head, then she would receive from the oppoheat2? = 8 Kroner. On average how many Kroner

k will she receive from the opponent in a single match? The probability ahbay = 2% is equivalent to
get firstz — 1 tails and then one head, g(2*) = 9—(z=1) « 9=1 — 9-2 Therefore, the average reward is
p=FE[k] =Y, kpk)=3,2'p(2") = 3,2 x 27t = 3", 1 = co. Unless the player gives amfinite amount
of money to the opponent before starting tossing the coin, then the game maiuid fairon averageor the
opponent! This a classical example of a random variable where it is ndhiatto see that it has no finite mean
value. For example, obtainirgg> 10 is very unlikely, and if one tries to repeat the gamgmes, the average
value fork would be quite low and would be a very wrong estimate of the actual, theorateesdge (infinity).

Putting the issue illustrated by the Petersburg Game principle in our contextpétftmance of a random-
ized algorithm is bounded within a predefined range, then the mean andossalvays exist. For example, if
an algorithm is run for a predefined amount of time to achieve structuraldestage, and there arestructural
targets, then the performance of the algorithm would be measured with abetiueer) andz. Therefore, we
would havey < z andé? < 22, thus making the use oftatest valid.

The problems arise if no bound is given on how the performance is melasAreandomized algorithm
could be run until it finds an optimal solution to the addressed problem. onge, random testing could be
run until the first failure is triggered (assuming an automated oracle is ma)yith this case, the performance
of the algorithm would be measured in the number of test cases that are ddefiee triggering the failure
and there would be no upper limit for a run. If we run a search algorithth@same problem times, and we
haven variablesX; representing the number of test cases sampled in each run beforeimggherfirst failure,
we would estimate the mean with= % >+, X;, and hence conclude that the mean exists. As the Petersburg
Game shows, this can be wrong, becafuse only anestimationof x, which might not exist.

For most search algorithms convergence in finite time is proven under samddicos (e.g., [87]), and
hence mean and variance exist. But in software engineering, whernroblgms are addressed, standard search
algorithms with standard search operators may not be usable. For exavhple testing for object-oriented
software using search algorithms (e.g., [97]), complex non-standardliseperators are required. Without
formal proofs, it is not safe to speak about the existence of the meanse tases.

However, the non-existence of the mean is usually not a problem froracéigal standpoint. In practice,
usually there are upper limits to the amount of computational resources @méaedl algorithm can use. For
example, a search algorithm can be prematurely stopped when reaching lanitm&andom testing could
be stopped aftet00,000 sampled test cases (for example) if it has found no failure so far. Buesethases,
we are actually dealing witbensoreddata [60] (in particular, right-censorship) and this requires properica
terms of statistical testing and the interpretation of results, as discussedionSec

Even under proper conditions for using a parametric test, one aspei titen ignored is thattest and
U-test are two different approaches to analyze two different ptiggel_et us use a random testing example in
which we count the number of test cases run before triggering a falloesidering a failure rat, the mean
value of test cases sampled by random testing is henred /6. Let us assume that a novel testing technigue
yields a normal distribution of the required number of test cases to triggaiuaef. If we further consider the
same variance as random testing and a mean tRatif that of random testing, which one is better? Random

11

testing with meam or A with mean0.85u7? Assuming a large number of runs (esgis equal to one million),
at-test would state tha# is better, whereas a Mann-Whitney U-test would state exactly the opposite. H
come? This is not an error but the two tests are measuring different tAihgs:test measures the difference in
mean values whereas the Mann-Whitney U-test deals with their stochadticgaie., whether observations
in one data sample are more likely to be larger than observations in the othdesaopice that this latter
concept is technically different from detecting differencenedianvalues (which can be stated only if the two
distributions have same shape). In a normal distribution, the median valueaktedhe mean, whereas in a
geometric distribution the median is roughi9% of the mean [31]. On one hand, half of the data points for
random testing would be lower than7;.. On the other hand, wittd we have half of the data points above
0.85u, and a significant proportion betweerT, and0.85.. This explains the apparent contradiction in results:
though the average is higher for random testing, its median is lower tharftidat o

From a practical point of view, which statistical test should be used? dBBasehe discussions in this
section, and in line with [64], we suggest to use Mann-Whitney U-test fesasdifference in stochastic order)
rather than the-test and Welch test (to asses difference in mean values). Howevdulltngotivation will
become clearer once we discuss censored data, effect size, alditeafn in the next sections.

At any rate, there is an important aspect that needs to considered:addbe ¢transformed” before given
as input to a statistical test. As discussed in [88], a Welch test can be weddrof a U-test if the data are
replaced by their rank. For example, consider the datéket2, 274} discussed in the introduction regarding
random testing. Those values could be transformed into their @2ks 3} before given as input to a statistical
test. What would be the motivation of doing so? The U-test might be negatiffelgted if the two compared
distributions have “significantly” different variance, and in such cagkekh test on ranked data might be better
(in the sense that it would have lower probability of Type | and Il ertar)wever, the Welch test would still
be negatively affected by violations of normality assumption (ranked datat mighbe normal). Ruxton [88]
reports on some cases in which a Welch test on ranked data is better thagsg but the results of those
empiricalanalyses might not generalize to the case of randomized algorithms appl@titare engineering
problems.

For simplicity and because it has widespread applications, we recommend toWidest rather than a
Welch test on ranked data. There might be cases in which this latter testlmpieferable, but it might be
difficult, for a non-expert in statistics, to clearly identify those cases.eNbeless, it is important to clarify
that a Welch test on ranked data does not assess any more whethds thstatistical difference among the
mean values of the two compared distributions. It assesses differemeainvalues of the ranks and therefore
determine whether there is any difference in stochastic ordering in the tivibbdi®ons. For example, assume
the two data setX’ = {1, 2, 3,4, 5, 6,49} andY = {7, 8, 9, 10, 11, 12, 13}. If it were not for the “outlier”

49 in X, then all the values ify would be greater than the valuesih Both data sets have mean valige A
Welch test on the raw values would result in p-value equa/ Which is not surprising considering that the two
data sets have same mean. However, if we do a rank transformation, theaustliee49 would be replaced by
the valuel4 (all the other values ik andY remain the same). In this case, the resulting p-value of the Welch
test would be).02, which suggests a strong difference in the stochastic ordering (i.es)rbaiwveen the two
distributions.

In the discussion above, we have assumed thatHathd5 are randomized. If one of them is deterministic
(e.g.,B), it is still important to use statistical testing. Consistent with the above reconatiendthe non-
parametridOne-Sample Wilcoxaest should be used. Giveng the performance measure of the deterministic
algorithm, a one-sample Wilcoxon test would verify whether the performahgéis symmetric aboutn,
i.e., whether by usingl one is as likely to obtain a value lower thari as otherwise.

6 Censored Data

Assume that the result of an experiment is dichotomous: either we find a solatgmlve the software engi-
neering problem at handgccesk or we do not failure). For example, in software testing, if our goal is to
cover a particular target (e.g., a specific branch), we can run amared algorithm with a time limit.. We
will stop the algorithm as soon as we find a solution, otherwise we stop it afteftimike choice of. depends
on the available computational resources. Another example is bug fixifj \tere we find a patch within
time L, or we do not.

12

These types of experiments are dealing witiht-censoreddata, and their properties are equivalent to
survival/failure time analysis [60, 34]. LeX be the random variable representing the time a randomized
algorithm takes to solve a software engineering problem, and let us conséaperiments in which we collect
X; values. We are dealing with right-censorship since, assuming a timellimié will not have observations
X, for the casesX > L. There are several ways to deal with this problem [60] and we will limit éscudssion
to simple solutions.

One interesting special case is when we cannot say for sure whetheaweeachieved our target, e.g.,
generation of test cases that achieve code branch coverage. Psttiegrivial cases, there are usually in-
feasible targets (e.g., unreachable code) and their number is unknawva.result, such experiments are not
dichotomous because we cannot know whether we have coveredsililéetargets. Even when using a time
limit L, in these cases we are not tackling censored data. However, if in theragnts the comparisons are
made reusing artifacts from published studies in the literature, and if wetavainbw whether or not, within a
given time, we can obtain better coverage than these reported studiesytiesxperiments can be considered
dichotomous despite infeasible targets.

Let us consider the case in which we need to compare two randomized algordtiand 5 on a software
engineering problem with dichotomous outcome. Kebe the random variable representing the tish&akes
to find a valid solution, and leY” be the same type of variable f& Let us assume that we ru# n times
collecting observation;, and we do the same f@&. Using a time limit, to evaluate which of the two
algorithms is better, we can consider thailccess rate = k/n, i.e., the proportion of number of timésout
of then runs in which they find a valid solution. To evaluate whether there is statistftelathce between the
success rates o andB, a test for differences in proportions is then appropriate, such assherfexact test
[60].

The Fisher exact test is a parametric test, which assumes that the anadyaddlldws a binomial distri-
bution. In contrast to other parametric tests (e.g. titest), its assumptions are always valid: the experiments
are independent, then the success rate of a series of randomizeiinexpiemvould always follow a binomial
distribution, wherey represents the estimated probability of success. Furthermore, for ehluemtil roughly
100, the test is “exact”, because all the assumptions of the Fisher test are hgtn@ans that the resulting
p-values are precise, and not estimates based on how close the data safisfying the conditions of a test
(e.g., normality and equal variance iri-gest). However, for larger values of the computational cost of the
test would start to be too prohibitive, and approximations are then usetttdata the p-values.

Assume that out ofi = 100 runs the success rate g is v4 = 1%, whereas fo3 we haveyz = 5%.

A Fisher exact test has a resulting p-value equdl.2d, which might be considered high, i.e., there i81&
probability that the success rates of the two algorithms are actually equalictincases, one can run more
experiments (i.e., increase to obtain higher statistical power (i.e., decrease the p-value). Alterhatife
there is no statistically or practically significant difference between theesga@ates ofd and 3, a practical
guestion is then to determine which technique desstime. This is particularly relevant if the success rates
of both techniques are high. There can be different ways to analgrecaises, such as considering artificial
censorships at different times befdte For example, we can consider censorship A, i.e., the success rate
with half the time, and determine which technique still fares better and and ataptable level. Note that such
analysis does not require to run any further experiments as suctessaa be computed &Y 2 from existing
runs. Another alternative to compare execution times is to apply a Mann-Witiest, recommended above,
using only the times of successful runs, which hayeandY; values lower or equal td.

A more complex situation is when one algorithm shows a significantly higheesscate, but takes more
time to produce valid solutions than the other. This is a typical situation, that iscnahcommon, where
a choice needs to be made. For example, on one halogabsearch[69] might be very fast in generating
appropriate testing data if it starts from the right area of the search lapels8ut, at the same time, it could
yield a low success rate if most of the search landscape has gradiend foaa optima, and if the number of
these local optima is low. (Notice that this is just an example: it is not in the sddhe paper to give lengthy
explanations of why that would be a problem for local search, se@{8lfther details on this topic.) On the
other hand, a population-based search algorithm, such as Genetic Alggrabuld avoid the problem of local
optima, which in turn would result in higherthan a local search. However, because an entire population is
evolved at the same time, depending on the selection pressure of the algerighrthe value of the tournament
size in tournament selection) and the population size, a Genetic Algorithm mightiach longer than a local

13

search in its successful runs.

7 Effect Size

When comparing a randomized algorith#nagainst anotheB, given a large enough number of runsit is
most of the time possible to obtain statistically significant results wittest or U-test. Indeed, two different
algorithms are extremely unlikely to have exactly the same probability distributicsthér words, with large
enoughn we can obtain statistically difference even if that difference is so small as ¢ o practical value.

Though it is important to assess whether an algorithm fares statistically betteaiother, it is in addition
crucial to assess the magnitude of the improvement. To analyze such ayrefbect sizeneasures are needed
[45, 52, 77]. In their systematic review of empirical analyses in softwaggneering, Kampenest al. [52]
found out that standardized effect sizes were reported in 20y of the cases. In our review, we found only
one [83], which uses the Vargha and Delane¥;s statistics (which will be described later in this section).

Effect sizes can be divided in two groups: standardized and unsthreld. Unstandardized effect sizes
are dependent from the unit of measurement used in the experimentss tensider the difference in mean
between two algorithma = 4 — 1B, This valueA has a measurement unit, thatéfand 8. For example,
in software testingy can be the expected number of test executions to find the first failure.n®resting
artifact we might have\; = p4 — 48 = 100 — 1 = 99, whereas on another testing artifact we might have
Ay = p? — 1B = 100,000 — 200,000 = —100,000. Deciding based orh; andA, which algorithm is better
is difficult to determine since the two scales of measurement are diffekerns very low compared td\o, but
in that caseA is 100 times worse that8, whereas it is only twice as fast in the case. Empirical analyses
of randomized algorithms, if they are to be reliable and generalizable, eethgruse of large numbers of
artifacts (e.g., programs). The complexity of these artifacts is likely to widely, gach as the number of test
cases required to fulfill a coverage criterion on various programsugeef standardized effect sizes, that are
independent from the evaluation criteria measurement unit, is therefoeesay to be able to compare results
across artifacts and experiments.

In this section we first describe which is the most known standardizect effee measure and why it should
notbe used. We then describe two other standardized effect sizes,arid Apply them in practice. The most
known effect size is the so calletfamily which, in the general form, it ig = (u* — 1%) /0. In other words,
the difference in mean is scaled over the standard deviation (severattons exists to this formula, but for
more details please see [45]). Though we obtain a measure that has noenead unit, the problem is that it
assumes normality of the data, and strong departures can make it meanigles®r example, in a normal
distribution, roughly64% of the points lie withinu 4+ o [31], i.e., they are at most away from the meap.
But for distributions with high skewness (as in the geometric distribution aitdsasften the case for search
algorithms), the results of scaling the mean difference by the standardideviaould not be valid”, because
“standard deviations can be very sensitive to a distribution’s shapg” [d%his case, a non-parametric effect
size should be preferred. Existing guidelines in [52, 77] briefly disthessise of non-parametric effect sizes.

The Vargha and Delaney’d;, statistic is a non-parametric effect size measure [99, 45]. Its use has bee
advocated in [64], and one example of its use in software engineeringichwéndomized algorithms are
involved can be found in [83]. In our context, given a performancesmes/, A,, measures the probability
that running algorithmA yields higherM values than running another algoritts If the two algorithms are
equivalent, thend;» = 0.5. This effect size is easier to interpret compared todtfamily. For example,
Ay5 = 0.7 entails we would obtain higher resuft8% of the time with.4. Though this type of non-parametric
effect size is not common in statistical tools, it can be very easily computed$4The following formula is
reported in [99]:

Ay = (Ry/m — (m+1)/2)/n @)

where R; is the rank sum of the first data group we are comparing. For examplenadbe dataX =
{42, 11, 7} andY = {1, 20, 5}. The data seX would have rankg6, 4, 3}, whose sum i43. The rank sum
is a basic component in the Mann-Whitney U-test, and most statistical toolgleribvin Equation 1m is the
number of observations in the first data sample, wheneissthe number of observations in the second data
sample. In most experiments, we would run two randomized algorithms the santenaf times:m = n.

14

When dealing with dichotomous results (as discussed in Section 6), sgymralof effect size measures
[45] can be considered. Thuelds ratiois the most used and “is a measure of how many times greater the odds
are that a member of a certain population will fall into a certain category thaodtie are that a member of
another population will fall into that category” [45]. Giverthe number of times algorithtd finds an optimal
solution, andb for algorithm 3, the odds ratio is calculated @s= nfgfa nff;ﬁb, wherep is any arbitrary
positive constant (e.gg = 0.5) used to avoid problems with zero occurrences [45]. There is no eliféer
between the two algorithms when= 1. The cases in whicly > 1 imply that algorithmA has higher chances
of success.

Both A and+ are standardized effect size measures. But because their calculatiaseis on a finite
number of observations (e.q:,for each algorithm, s@n when we compare two algorithms), they are only
estimates of the reafl’{2 andy*. If n is low, these estimations might be very inaccurate. One way to deal with
this problem is to calculateonfidence interval€Cl) for them [45]. A(1 — «) Cl is a a set of values for which
there is(1—«) probability that the value of the effect size lies in that range. For example, fiiaved » = 0.54
and a(1 —) Cl with range[0.49,59], then with probability(1 — «) the real valued?, lies in[0.49,59] (where
Ay = 0.54 is its most likely estimation). Such effect size confidence intervals can facilieatision making
as they enable the comparison of the costs of alternative algorithms whilerdicgpfor uncertainty in their
estimates. To see how confidence intervals can be calculated, pleadé]sasd [99].

Notice that a confidence interval can replace a test of statistical differ@ng. t-test and U-test). If the
null hypothesisH, lies within the confidence interval, then there is insufficient evidence to claine tis a
statistically significant difference. In the previous example, becéuss inside thg(1 — a) Cl [0.49,59], then
there is no statistical difference at the selected significance tevélor a dichotomous resulff, would be

b =1.

8 Number of Runs

How many runs do we need when we analyze and compare randomizeithaigér As many as necessary to
show with high confidence that the obtained results are statistically significaihto obtain a small enough
confidence interval for effect size estimates. In many fields of scienge (nedicine and behavioral science),
a common rule of thumb is to use at least= 30 observations. In the many fields where experiments are
very expensive and time consuming, it is in general not feasible to workhigth values fom. Several new
statistical tests have been proposed and discussed to cope with the poblidek of power and violation of
assumptions (e.g., normality of data) when smaller numbers of observat@asadlable [102].

Empirical studies of randomized algorithms do not involve human subjects amdithber ofuns(i.e.,n)
is only limited by computational resources. When there is access to clustampiiters as this is the case for
many research institutes and universities, and when there is no neegbémsese, specialized hardware (e.g.,
in hardware-in-the-loop testing), then large numbers of runs can bdeataut to properly analyze the behavior
of randomized algorithms. Many software engineering problems are fartite not highly computationally
expensive, as for example code coverage at the unit testing levelaariderefore involve very large numbers
of executions. There are however exceptions, such as the systerg tdgmbedded systems (e.g., [10]) where
each test case can be very expensive to run.

Whenever possible, in most cases, it is therefore recommended to usg ldigke number of runs. For
most problems in software engineering, thousands of runs should agifoblem and would solve most of the
problems related to the power and accuracy of statistical tests. For exawmjllastrated in [71, 27] in Table
2, even wheri00 runs are used the U-test might be not powerful enough to confirm aisttiifference at a
0.05 significance level, even when the data seems to suggest such a diferenc

Most discussions in the literature about statistical tests focus on situationsmathnumbers of observa-
tions (e.g., as in [88]). However, with thousands of runs, one wouldctstatistically significant differences
on practically any experiment (Section 4). It is hence essential to complesmemnanalyses with a study of the
effect size as discussed in Section 7. Even when having large nunfliarsas not necessary for a setevel
(e.g.,0.05) if differences are large enough to show p-values less éhaaditional runs would help tighten the
confidence intervals for effect size estimates and would be of practitiz v

In Section 4, we suggested to use U-test instedetedt. For very large samples, suchias: 1,000, there
would be no practical difference between them regarding power andawy. However, the choice of a non-

15

parametric test would be driven by its effect size measure. In Sectiorargued that effect size measures based
on the mean (i.e., thé family) were not appropriate for randomized algorithms in software engimgdue to
violations in distribution assumptions. It would then be inconsistent to investilgatstatistical difference of
mean values with &test if we cannot use a reliable measure for its effect size. In othatsyitris advisable

to use size measures that are consistent with the differences being tethedsblected statistical test.

9 Multiple Tests

In most situations, we need to compare several alternative algorithms. efudte, if we are comparing
different algorithm settings (e.g., population size in a Genetic Algorithm), taeh setting technically defines
a different algorithm. This often leads to a large number of statistical conmpari#t is possible to use statistical
tests that deal with multiple techniques (treatments, experiments) at the same tinfea@ayial ANOVA), and
effect size has been defined for those cases [45]. There amakiyEes of statistical tests regarding multiple
comparisons, and the choice depends on which research questioraolaedssing. In this paper we only deal
with the two most common research questions in our context, since seveks e dedicated to this topic,
and an exhaustive analysis would not be possible in this paper:

e Does the choice of a particular parameter affect the performance nflamazed algorithm?

e Among a set of randomized algorithms, which one is the best in solving thessigt problem?

Assume a parameter that can assume several different vatigs and that we have carried out a series of
experiments for a set of parameter val{gs jo, ..., jx} C J. Forexample, in a Genetic Algorithm, we might
want to study whether applying different cross-over rates has degteh the effectiveness of the algorithm.
One could consider the valugs, 0.25, 0.5 0.75, 1}, and have: = 1,000 independent experiments for each
of these five rate values. If we are only interested to evaluate whethehdieeof this rate has any effect on
the effectiveness of a Genetic Algorithm, then@nnibustest such as ANOVA can be employed. The null
hypothesis is that the choice of the parameter value has no effect on theeffeaiveness of the algorithm.
However, ANOVA suffers of the same problems as thest, i.e., assumption about normality of the data and
equal variance. A non-parametric equivalent is the so called Krusk#llswést.

Assume that a Kruskal-Wallis test states that the choice of that crosstedras a statistically significant
effect (i.e., the resulting p-value is low, so we can reject the null hypisthes relevant question might then
be which crossover rate should be used (i.e., which one gives thedréstrpance?). An omnibus test is not
able to answer such a research question. This situation is exactly equigathe case of identifying the best
algorithm amongk’ = 5 algorithms/variants. In this case, we would like to compare the performarezchf
algorithm against all other alternatives individually. Given a set of &lgms, we would not be interested in
simply determining whether all of them have the same mean values. Rather /gigégorithms, we want to
performZ = K(K — 1)/2 pairwise tests and measure effect size in each case.

However, using several statistical tests inflates the probability of Typeoti.elf we have only one com-
parison, the probability of Type | error is equal to the obtained p-valiieielhave many comparisons, even
when all the p-values are low, there is usually a high probability that at ieaste of the comparisons the
null hypothesis is true as all these probabilities somehow add up. In otlidswbin all the comparisons the
p-values are lower than, then we would normally reject all the null hypotheses. But the probabilityaha
least one null hypothesis is true could be as high as(1 — «)Z for Z comparisons, which convergest@s
Z increases.

One way to address this problem is to use the so c8ltederroni adjustmer82, 76]. Instead of applying
each test assuming a significance lewele would use an adjusted levefZ. For example, if we want at
most a0.05 probability of Type | error and we have two comparisons, we would neetséotwo statistical
tests witha = 0.025 , and then check whether both differences are significant (i.e., if batiyss are lower
than 0.025). However, the Bonferroni adjustment has been repeatedly criticizéldeititerature [82, 76],
and we largely agree with those critiques. For example, let us assume tthoatiiothose tests we obtain p-
values equal t@.04. If a Bonferroni adjustment is used, then both tests will not be statisticalfyfisignt
ata = 0.05 level. A researcher could be tempted to publish the results of only one of dnhenclaiming
statistical significance becaus®4 < 0.05. Such a practice can therefore hinder scientific progress by reducing

16

the number of published results [82, 76]. This would be particularly truauirapplication context in which
many randomized algorithms can be compared to address the same softgiaseeng problem: it would
be very tempting to leave out the results of some of the poorly performingithiga:. Notice that there are
other adjustment techniques that are equivalent to Bonferroni butithdess conservative [37]. However,
the statistical significance of a single comparison would still depend on thearwhperformed and reported
comparisons. Though we do not recommend the Bonferroni adjustmentmpdgtant to always report the
obtained p-values, not just whether a difference is significant ortraot arbitrarily chosern level. If for some
reasons the readers want to evaluate the results using a Bonferjustnaght or any of its (less conservative)
variants, then it is possible to do so. For a full list of other problems relatdtet8onferroni adjustment, the
reader is referred to [82, 76].

Instead of pairwise tests using Bonferroni-like corrections, anothes (lepular) approach is to use the so
calledpost-hocmethods, such as the Tukey’s range test. This test is applied on eachfphies, and it is
very similar to at-test. Similar to the Bonferroni method, it employs a p-value correction tolagussible
inflation of probability of Type | error.

Alpha level adjustments can be very important when assessing the validighavioral/physical phenom-
ena with high confidence. For example, the leading international joMatakehas the followingequirement
for published research papers regarding multiple tests:

e Multiple comparisons: When making multiple statistical comparisons on a singleadatauthors should
explain how they adjusted the alpha level to avoid an inflated Type | errgroathey should select
statistical tests appropriate for multiple groups (such as ANOVA rather teares of t-tests).

However, in Section 4 we stated that in software engineering in genedsfparandomized algorithms in
particular, we mostly deal with decision-making problems. For example, if we teststoftware, then we must
choose one alternative amoigdifferent techniques. In this case, even if the p-values are higherthae
need to test the software anyhow and we must make a choice. In this c@usferroni-like adjustments make
even less sense. Just choosing one alternative at random becearesis tio statistically significant difference
is not optimal as it ignores available information.

Assume that we have analyzed the performandg elgorithms using pairwise tests and effect sizes. How
to visualize the results of such analyses to grasp the relations among tlieimaerce? There can be different
ways, and here we just describe a simple but practical one, that forpdgavas used by Fraser and Arcuri
in [32]. In that work [32], the effects of six parameters of a searcbrélyn were investigated in the context
of automated unit testing of object-oriented software. Five parametetsiraagy Bo, X0, Ra, Pa and Be)
and one ternanW/), for a total of2° x 3 = 96 configurations. Each configuration was compared against all
the otherd5 (i.e., a total 0f96 x 95 comparisons, which can be divided by two due to the symmetric property
of the comparisons). Pairwise comparisons were made using a U-tesg thikerlevel was arbitrarily set to
0.05. Initially, a score zero is assigned to each configuration. For each etmmpan which a configuration is
statistically better, its score is increased by one, whereas it is reduceakchin case it is statistically worse.
Therefore, in the end each configuration has a score between -3barithe higher the score, the better the
configuration is. After this first phase, these scores are rankedtlatkhe highest score has the best rank,
where better ranks have lower values. In case of ties, the ranks en@gad. For example, if we have five
configurations with score§l0, 0, 0, 20, — 30}, then their ranks will b2, 3.5, 3.5, 1, 5}. In [32], this
procedure was repeated for each artifact in the case study (i.e., tbedDO branches used in that empirical
study), and the average of these ranks over all artifacts were caltdtateach configuration, for a total of
100 x 96 x 95/2 = 456,000 statistical comparisons. After collecting all of these data, a table was made in
which the configurations were ordered based on their average @nkdp (best) to bottom (worst). The same
table from [32] is reported in Table 4. From this table, not only it is clear tvhaie the best configurations, but
it also possible to visualize some trends in the data (e.g., configurationRwihe always better ando does
not seem particularly useful).

2http:/iwww.nature.com/nature/authors/gta/index.html#a5.9, accesbethFg2011.

17

Table 4: Results of empirical analysis performed in [32]. The table shoepdinformance of the the 96
configurations, ordered from top (best performance) to bottom {wmmormance). Symbols are used to
indicate whether a particular boolean parameter is activated.

Bo Xo Ra Pa Be

=

Av. Rank Av. Success Rate
20 50 80

® v w 31.475 0.464

® v w 31.840 0.456

® 2 w 32.595 0.482

o v B w 32.670 0.456

® v w 34.725 0.447

A ® w 35.415 0.448
® 2 w 36.070 0.442

A ® B w 37.335 0.423
A R o v B w 37.430 0.430
A ® ® w 37.605 0.459
[OS B w 37.615 0.418
A R | w 38.080 0.422
X o v B w 39.325 0.419

X o | w 39.455 0.423

X & v w 39.580 0.413

A ® w 39.790 0.431
® B w 39.815 0.431

X o w 40.050 0.414

A ® v w 40.140 0.420
A B e v w 40.330 0.425
A e v B 9w 40.670 0.413
A o v B w 40.700 0.432
A R @ B w 40.835 0.405
® 2 w 40.940 0.438

A ® v w 41.200 0.455
A R @ w 41.350 0.410
o v B w 41.695 0.423

e v B 9w 41.890 0.405

® v w 41.925 0.413

X & v w 42.150 0.399

X o v B w 42.195 0.401

X & v B w 42.470 0.388
AR e v w 42,500 0.395
X o w 42.800 0.422

® w 43.075 0.407

X o w 43.095 0.421

A R @ w 43.255 0.420
AR e v B w 43.635 0.377
® w 45.160 0.398

X & v w 45.205 0.393

® v w 45.285 0.412
AR @ v w 45.450 0.392
A ® w 45.850 0.418
® w 46.460 0.401

A R @ w 46.625 0.388
A KB 2 w 46.700 0.409
A R o v B w 47.760 0.379
X o w 47.850 0.384
A v @ w 48.985 0.342
v w 49,585 0.329

v @ w 49.705 0.334

A v B 9w 49.995 0.369
A K v @ w 50.290 0.313
A v w 50.740 0.356
A v w 51.295 0.313
A v w 51.350 0.340
A 2 w 51.570 0.327
A v B w 52.215 0.326
A B w 52.800 0.330
v B w 53.260 0.330

v B w 53.610 0.309

A v w 53.845 0.321
X v B 9w 54.040 0.310

X v w 54.475 0.312

v B w 54.835 0.296

v w 55.080 0.306

2 w 55.290 0.317

X v w 55.390 0.313

X v @ w 55.605 0.304

A w 55.635 0.305
v w 55.695 0.324

A K v w 56.065 0.310
A w 56.160 0.309
X 2 w 56.200 0.304
A K v B w 56.255 0.301
X v w 56.295 0.312
A K v B 0w 56.655 0.312
A K v w 56.835 0.291
A K w 57.095 0.279
A K 2 w 57.135 0.291
A | w 57.180 0.319
® w 57.390 0.306

w 58.955 0.285

X 2 w 59.085 0.297

B w 59.190 0.297

X B w 59.270 0.285

X w 59.595 0.279
w 59.995 0.300

X B w 60.145 0.281

X w 60.150 0.289

A K w 60.675 0.278
X 2 w 60.705 0.289
A K w 60.975 0.292
w 61.655 0.267

X w 65.220 0.238
w 71.765 0.190

18

10 Choiceof Artifacts

When assessing randomized algorithms, the choice of artifacts to whichalggsghms are applied (e.qg.,
source code or executable programs) is of paramount importance asliyydsas a strong bearing on the eval-
uation results. When analyzing empirical analyses in the software enigigdéitarature evaluating randomized
algorithms, many of the studies are carried out on artificial and small artitaestpirical analyses on real indus-
trial systems are rare, thus raising questions about the credibility of result§e usefulness of the proposed
algorithms. However, achieving realism by using representative indusgstems is particularly challenging.
We usually cannot precisely characterize the population of artifactsevayeting in our studies. Even if we
could, we usually do not have access to large collections of industriadcgtithat are readily available to be
sampled. And even if that were the case, studies are necessarily limited irofenessurces and time, and the
number of artifacts studied is typically much more restricted than one would likea vesult, studies about
randomized algorithms in software engineering typically present threatseimeakvalidity, making it difficult

to generalize the results to other systems than the ones under study. InpenishEcause the focus is on how
to apply statistical tests, we do not emphasize the details of how one showlgecadifacts from a general
standpoint. We rather concentrate on how this choice affects the statissisaptecedures and the number of
runs required.

The first question one faces is whether the selected artifactepresentativef the type of problem that
is being addressed. For example, assume one wants to evaluate a new tngbmatically generating unit
tests for object-oriented software (e.g., Pex [96], Randoop [81] oSHite [33]). Which (types of) classes
should be selected for experimenting? Following common practice in many erhgitidées (e.g., [5, 85, 13]),
is only using “container classes” acceptable? Well, it all depends on iwlia¢ target set of classes for the
evaluation. If the proposed testing techniques are aiombglat container classes (e.g., [13]), then this would
likely be acceptable. On the other hand, if the goal is to propagnaraltool for generating unit tests, then
using only container classes would leadstyiousthreats to external validity. But then the question is which
classes should ideally be used? Again, we do not have well definethtiops of classes that we can target and
sample. But one possible simple heuristic is to try to maximize the diversity in terme tyfgl of classes, their
size and complexity, and various other properties that are deemed tejexeamnthe objective of the randomized
algorithm, e.g., number of tasks accessing a lock when investigating desidlodta races [93]. For example
we could rely on a sample containing a mix of container classes, numeridadaioms and others coming
from common benchmarks?

As a practical alternative, one could use open source repositorieas@ourceForgeand randomly select
a subset of projects for experimenting among26@ 000 that are currently hosted. If one wants to evaluate the
applicability of a general tool for unit testing, this would be much better thamgumnly container classes or
arbitrarily choosing some programs in a non-systematic way (as it is oftemdedrcthe literature). However,
even if one randomly samples projects from SourceForge, the empiraiglsas would likely have some sort
of bias. For example, open source projects in general may not besespative of programs developed in
industry. Embedded systems and financial applications, for examplenldeelyito be well represented among
these open source projects.

Regarding randomized algorithms (in particular search and optimization algsjitihere are specific
and rigorous theoretical reasons for which the choice of artifacts israely important. Thé&o Free Lunch
theorem states that, on average across all possible problems (artifaatsciase), all search algorithms have
the same performance [104]. If one does not clearly define which ispheeof artifacts being targeted, then
any comparison among randomized algorithms is doomed to be arbitrary.d@opkx let us consider again the
example of unit testing of object-oriented software. Assume that a cageistotl/es 10 classes, and algorithm
A is statistically better on seven of them, whereas algorithia statistically better on the other three. One
could naively claim that algorithmal is on averagebetter than5. But maybe, those seven classes for whith
is better are all container classes, whereas the other three classelsi@e to string manipulations (e.g., [4]).
If one had chosen for the case study more classes of this latter type, theartblusions could be different
(i.e., B would be consideredn averagebetter thand). Though the problem of choosiragppropriateartifacts
is intrinsically difficult, it is important for researchers to define their targéfamts as well as possible and
carefully attempt to provide plausible reasons for differences in restritss artifacts, such as classes, based

Shttp://sourceforge.net/, accessed February 2011.

19

on a thorough analysis of their characteristics.

If for the addressed research question the considered artifacte cam$fidered representative of the target,
it is meaningful to then use statistical tests for evaluating whether algoritligrsignificantly better tha$ on
all selected artifact instances. However, as we see below, which typstdd used of of the highest importance.
Using again the same example, assume six classes have been selectesdfigating the unit testing of object-
oriented software. Each algorithm is run on each of these six clagsmes (e.g.n = 30), and average values
out of these runs are collected for each class. This makes up a t@at 6fx 30 = 360 runs. Assume that
the algorithms are evaluated based on how many test cases they genferatedaehing full coverage. For the
first algorithm, we obtain the following average valu€s= {10k, 20k, 30k, 40k, 50k, 60k}, whereas for the
second algorithm we obtali = {12k, 21k, 34k, 41k, 53k, 68k}. The average values are ordered by problem
instance wheré = 1000, i.e., in X, out ofn = 30 runs on the first artifact the average number of test cases run
equalsl0,000. Further assume that the problem instances are ordered by difficultg@l\gng the first problem
is much easier than solving the fifth, because on average it requiresdraggun less test cases). If one wants
to evaluate whether there is any statistical difference betwéeand Y, an unpaired test such as Mann-
Whitney U-test, would yield a p-value equal@®99 (e.g., by using the R [84] command “wilcox.test(X,Y)”),
thus suggesting the difference is not statistically significant. However, thitdie technically incorrect since
different artifacts present different levels of difficulty, and consigall data together at the same time would
blur the relative performance of the compared algorithms. In other wards, of an inefficient algorithm on an
easyproblem would likely result in a better value than a run of a more efficientrisiigno that is run instead on
adifficult problem. If the case study involves artifacts of different levels of dilfic(as it is usually the case,
either by design or due to random sampling) then it might be challenging tot detgstatistical difference
with an unpaired test.

Alternatively, paired testsuch as Wilcoxon T test can be used (e.g., “wilcox.test(X,Y, paired=TRUE)

R [84]). In a paired T test, what is evaluated is whether the differefAges Y; — X; are centered arourg
i.e., the null hypothesis i& = 0. In that example, we hav& = {2k, 1k, 4k, 1k, 3k, 8k}, i.e, on average the
second algorithm is always better than the first. A Wilcoxon T test here gimealue=0.035, which suggests
a statistically significant difference among the performance of the two algmijth result in sharp contrast
with the unpaired test results above. This highlights why it is extremely impaidamse paired tests when
comparing randomized algorithms on a set of selected artifacts. In the akawgle, the second algorithm
is better in six out of six cases, which is a clear case. But typically res@tsarthat consistent, and several
of the compared algorithms may perform best on different artifacts. >ample, if we assume a case study
involving 100 artifacts, if an algorithm fares better on 51 of these, theniffereahce among the two would
not be statistically significant when using a paired test. Using the examplewahegorithmA is better than
another3 on some artifacts and worse on other artifacts, a T test evaluates whe#hagorithm is statistically
better on a higher number of artifacts.

The above discussion on the use of appropriate statistical tests is incongpieteasiders the evaluation
of a randomized algorithm as ternary, i.e. it is either better, equivalenbenthan another one. Consider the
following example: algorithmd is better on 60% of the case study, but only by a very limited amount. On the
other hand, on the other 40% of the case study, it is much worse than atgditim this case, blindly applying
a Wilcoxon T test would lead to the conclusion tbhts preferable, whereas a practitioner might prefer to use
B. Another option could be to collect standardized effect sizes for eaaltigm instance, and then average
them over all of problems instances. This would provide additional informatat it would not solve the
problem of fully describing the relative performance of two randomizedrilgms. Consider a case with five
artifacts and the foIIowing@lg measureg0.6, 0.6, 0.6, 0.6, 0.1}. One algorithm is better than the other on four
artifacts (412 = 0.6), but worse on the last onel(, = 0.1). If we average those values on the entire case study,
we would obtaind;, = 0.5, thus suggesting there is no difference among the two algorithms! This example
illustrates the fact that aggregate statistics on a set of artifacts are tsefuhmarize the comparisons of two
(or more) algorithms, but that particular care needs to be taken to harsdle where sharp differences can be
observed among artifacts. In general, one should report the perfoenad the algorithms on each problem
instance separately and attempt, as discussed above, to explain déeréeme useful way to show the relative
performance of randomized algorithms on a set of artifacts is to use btxgdlthe effect sizes, especially
when dealing with many artifacts

Ideally, when realistic artifacts for a certain type of problems are difficufirtd, one would like to be

20

able to generate large numbers of them automatically in a realistic fashion. velowieis requires that the
artifacts have a clear and predictable structure, that there exist heutsienerate correct and meaningful
instances of such artifacts. If this is possible, one strong advantage tnthaan control and vary interesting
properties of the artifacts (e.g., class size, number of test cases) tie émabesting sensitivity analyses and
assess the performance of randomized algorithms as a function of tlopsetims. For example, in our work
with Hemmati [49], we analyzed different test suite reduction techniquesntwel-based testing of large
systems. Obtaining real models from industry is difficult, and UML modelsalfagstems are not common in
open source repositories. Although our case study was based onabildestrial systems (e.g., one provided
by Cisco Systems), to cope with possible threats to external validity, we adgbautarge set of artificially
generated test suites following some specific rules and a randomizeduotiostialgorithm. For example, we
wanted to vary the number of test cases in the test suites and the fault detatdipin order to assess their
impact on the effectiveness of the resulting selection technigque. We wandedso while retaining as much as
possible the realism of the test suites in the case studies. Such studies nuegidered a type of simulation
and may not generate fully realistic artifacts. But they may provide usedights into the impact of some
artifact properties on the effectiveness of a randomized algorithm.

For some types of software engineering problems, a large number ot&rtifan be selected or generated
(e.g., randomly selecting classes to investigate the unit testing of open smiteare). When evaluating
randomized algorithms in this context one has to make the following decisionn#esa budget for experiments
b = n x z for each algorithm, where represents the times a randomized algorithm is run on each artifact, and
z is the number of these artifacts. If we considdp be fixed (e.g., depending on how long it takes to sun
experiments), then a practical and important question is how to choasd>? Two extreme cases would be
(n =1, =b)and(n = b,z = 1), but they would clearly lead to problems in terms of statistical testing and
external validity, respectively. We have to strike a balance between tjgotoles: we want to analyze as many
artifacts as possible to improve external validity and wish at the same time to rataigteruns (i.e.n) to
check whether there is a statistically significant difference on any sintfiecamwhen applying and comparing
two randomized algorithms. This would, for obvious reasons, not belpessn = 1. Though in Section 8
we suggested as a rule of thumb to wse- 1,000 when possible, in certain circumstances this may not be an
option. If one has the possibility to analyze a large numbefrartifacts but has practical constraints regarding
the number of experiments to be run (e.g., having experiments running onf@ar RCouple of years would
not be very practical), then it may be more appropriate to execute lesgpenhsps as low as = 30 or even
n = 10. But going lower than such values would make the use of standard statisstalery difficult and
very likely, depending on the actual effect size, bring statistical powen&zceptable low levels.

As we discussed in Section 3, there are cases in the literature (e.g., [iBinl@hich a random instance
generator is used, but then the algorithms are run only oncer(ie.,1) on each artifact. For all the reasons
discussed in this section, we do not consider those empirical studiesrapagie.

11 Practical Guideines

Based on the above discussions, we propose a set of practical gegdlinthe use of statistical tests in ex-
periments comparing randomized algorithms. Though we expect excegioas the current state of practice
(Section 3 and [3, 52]), we believe that it is important to provide practicalance that will be valid in most
cases and enable higher quality studies to be reported. We recommenmttisiopers follow these guidelines
and justify any necessary deviation.

There are many statistical tools that are available. In the following we willigeogxamples based dr
[84], because it is a powerful tool that is freely available and supgdsyemany statisticians. But any other
professional tool would provide similar capabilities.

Practical guidelines are summarized as follows. Notice that often, foomeas space, it is not possible to
report all the data of the statistical tests. Based on the circumstancessaugled to make careful choices on
what to report.

e When randomized algorithms are analyzed, clearly specify the numben®find employed statistical

tests. For example, they can be summarized in a threats to validity section, inelalandomness has
been taken into account should be discussed and justified.

21

12

On each artifact in the case study, run each randomized algorithm atlea$t000 times. If this is not
possible, explain the reasons and report the total amount of time it took tbe@mtire case study. If for
example30 runs were performed and the total execution time was just one hour, theathés difficult
to justify why a higher number of runs was not used to gain statistical pdovegr p-values, and narrow
the confidence interval of effect size estimates (Section 8).

When a large number of artifacts can be used in the case study (e.g.itféestimg of open source
software) but there are constraints in terms of execution time, then it is ativigaexecute less runs
per artifact (though at least = 10) and use more artifacts (rather than having= 1,000 but only
few artifacts, see Section 10). The objective is to strike a balance betyeeemalization and statistical
power.

For detecting statistical differences, use the two-tailed non-parametrin-Ménitney U-test for interval-
scale results and the Fisher exact test for dichotomous results (i.e., ingbg abcensored data as
discussed in Section 6). For the former cas&Riyou can use the function “w=wilcox.test(X,Y)"” where
X andY are the data sets with the observations of the two compared randomized ahgoditlyou are
comparing a randomized algorithm against a deterministic one, use “w=wilst{X@u=D)", whereD

is the resulting performance measure for the deterministic algorithm. Whernve@beber of successes
a for the first algorithm and for the second, you can use “f=fisher.test(m)”, wheres a matrix derived
in this way: “m =matrix(c(a,n-a,b,n-b),2,2)". A constgnt= 0.5 could be added to each cell of the
matrix to address zero occurrence cases.

Report all the obtained p-values, whether they are smallerdl@mot, and not just whether differences
are significant. The motivation is for the reader to choose the level of idgkstBuitable in her application
context. When reporting all p-values is not possible, one could repprbportion of significant test
results: % out of y tests were significant at level. . .".

Always report standardized effect size measures. For dichotoraeuks, the odds ratip (and its con-
fidence interval) is automatically calculated with “f=fisher.test(m)”. For inteseale results and thé;
effect size, the rank suid; used in Equation 1 can be calculated with “R1=sum(rank(c(X,Y))keqg(X)])".
It is also strongly advised to report effect size confidence intervaistlie support ford;, is unfortu-
nately limited). This is much easier to use than p-values for decision making aigbbenefits can be
compared to costs while accounting for uncertainty.

To help the meta-analyses of published results across studies, repog arehstandard deviations (in
case readers for some reasons want to calculate effect sizesdrfahely). For dichotomous experi-
ments, always report the valuesaindb (so that other types of effect sizes can be computed [45]).

If space permits, provide full statistics for the collected data, as for exameén, median, variance,
min/max values, skewness, median and absolute deviation. Box-plots atesefabto visualize them.

When analyzing more than two randomized algorithms, use pairwise compaitsduading pairwise
statistical tests and effect size measures.

Always state the employed statistical tool (there can be subtle differendesiothe tests are computed).

Threatsto Validity

The systematic review in Section 3 is based on only three sources, frorh w49 out of 223 papers were
selected. A larger review might lead to different results, although we afetysargue that TSE and ICSE are
representative of research trends in software engineering. Fumherthat review is only used as a motivation
for providing practical guidelines, and its results are in line with other lasgstematic reviews [3, 52]. Last,
papers sometimes lack precision and interpretation errors are alwasiblpos

As already discussed in Section 11, our practical guidelines may nopheape to all contexts. Therefore,

in every specific context, one should always carefully assess thenmsoRwe specific cases, other statistical
procedures could be preferable, especially when only few runsoassiye.

22

13 Conclusion

In this paper we report on a systematic review to evaluate how the resulisadmized algorithms in soft-
ware engineering are analyzed. This type of algorithms (e.g., Geneticithigas) are widely used to address
many software engineering problems, such as test case selection. Simitavitiup systematic reviews on
related topics [3, 52], we conclude that the use of rigorous statistical ahalthgies are somehow lacking when
investigating randomized algorithms in software engineering.

To cope with this problem, we provide, discuss, and justify a sptasfticalguidelines targeting researchers
in software engineering. In contrast to other guidelines in the literaturatfie@r scientific fields (e.g., [77] and
[53]), the guidelines in this paper are tailored to the specific propertiemofmized algorithms when applied
to software engineering problems. The use of these guidelines is importnteinto develop a reliable body
of empirical results over time, by enabling comparisons across studiedeo@sverge towards generalizable
results of practical importance. Otherwise, as in many other aspectdwhsefngineering, unreliable results
will prevent effective technology transfer and will inevitably limit the impalctesearch on practice.

Acknowledgments

We would like to thanks Lydie du Bousquet and Zohaib Igbal for usefutments on an early draft of this
paper. The work described in this paper was supported by the NomvBgisearch Council. This paper was
produced as part of the ITEA-2 project called VERDE.

References

[1] R. Abraham and M. Erwig. Mutation Operators for Spreadshe¢EEE Transactions on Software
Engineering (TSE)35(1), 2009.

[2] J. Aguilar-Ruiz, I. Ramos, J. C. Riquelme, and M. Toro. An evolutigragproach to estimating software
development projectdnformation and Software Technolggi3:875-882, 2001.

[3] S. Ali, L. Briand, H. Hemmati, and R. Panesar-Walawege. A systematieweof the application and
empirical investigation of search-based test-case generdi®&E Transactions on Software Engineer-
ing (TSE) 36(6):742—762, 2010.

[4] M. Alshraideh and L. Bottaci. Search-based software test datrgeon for string data using program-
specific search operatorSoftware Testing, Verification and Reliability (STYER)(3):175-203, 2006.

[5] J. H. Andrews, T. Menzies, and F. C. Li. Genetic algorithms for canided unit testinglEEE Transac-
tions on Software Engineering (TSBy(1), 2011.

[6] J. Antunes, N. Neves, M. Correia, P. Verissimo, and R. Neveslnevability discovery with attack
injection. IEEE Transactions on Software Engineering (TS¥6)3):357-370, 2010.

[7] A. Arcuri. Full theoretical runtime analysis of alternating variable metbndhe triangle classification
problem. Ininternational Symposium on Search Based Software Engineering E3388es 113-121,
2009.

[8] A. Arcuri. Theoretical analysis of local search in software testihngSymposium on Stochastic Algo-
rithms, Foundations and Applications (SAGpages 156-168, 2009.

[9] A. Arcuri and L. Briand. A practical guide for using statistical testassess randomized algorithms in
software engineering. IACM/IEEE International Conference on Software Engineering (IC3&) 1.

[10] A. Arcuri, M. Z. Igbal, and L. Briand. Black-box system testingretl-time embedded systems using
random and search-based testing.IRP International Conference on Testing Software and Systems
(ICTSS) pages 95-110, 2010.

23

[11] A. Arcuri, M. Z. Igbal, and L. Briand. Formal analysis of the effeeness and predictability of random
testing. INACM International Symposium on Software Testing and Analysis (ISfaggs 219-229,
2010.

[12] A. Arcuri and X. Yao. A novel co-evolutionary approach to autdgic software bug fixing. IMEEE
Congress on Evolutionary Computation (CE@ages 162—-168, 2008.

[13] A. Arcuriand X. Yao. Search based software testing of objeented containerdnformation Sciences
178(15):3075-3095, 2008.

[14] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and B. Ernst. Finding bugs in web
applications using dynamic test generation and explicit-state model checlibitge Transactions on
Software Engineering (TSE36(4):474—-494, 2010.

[15] F. Asadi, G. Antoniol, and Y. Gueheneuc. Concept Location withdggie Algorithms: A Comparison
of Four Distributed Architectures. Imternational Symposium on Search Based Software Engineering
(SSBSE)pages 153-162, 2010.

[16] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. The next aske problem.Information and
Software Technology3(14):883—890, 2001.

[17] N. E. Beckman, A. V. Nori, S. K. Rajamani, R. J. Simmons, S. D. Tetali, A. V. Thakur. Proofs from
tests.IEEE Transactions on Software Engineering (T.S¥6)4):495-508, 2010.

[18] M. Bowman, L. C. Briand, and Y. Labiche. Solving the class resgmlity assignment problem in
object-oriented analysis with multi-objective genetic algorithiiBEE Transactions on Software Engi-
neering (TSE)36(6):817-837, 2010.

[19] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An appitofor gos-aware service composition
based on genetic algorithms. @enetic and Evolutionary Computation Conference (GEC®@yes
1069-1075, 2005.

[20] J. Cohen. Statistical power analysis for the behavioral scieh&88.

[21] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing fduced code space using genetic
algorithms. InProceedings of the ACM SIGPLAN workshop on Languages, compaledstools for
embedded systensages 1-9, 1999.

[22] M. Cowles and C. Davis. On the origins of the .05 level of statisticaliBggmce . American Psychologist
37(5):553-558, 1982.

[23] J. T. de Souza, C. L. Maia, F. G. de Freitas, and D. P. Coutinhbe Human Competitiveness of
Search Based Software Engineeringliternational Symposium on Search Based Software Engineering
(SSBSE)pages 143-152, 2010.

[24] J. del Sagrado, I. M. del Aguila, and F. J. Orellana. Ant Col@ptimization for the Next Release
Problem. Ininternational Symposium on Search Based Software Engineering E}Siges 67—76,
2010.

[25] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. The effectgimie constraints on test case pri-
oritization: A series of controlled experimentsEEE Transactions on Software Engineering (TSE)
36(5):593-617, 2010.

[26] J. W. Duran and S. C. Ntafos. An evaluation of random testiBggE Transactions on Software Engi-
neering (TSE)10(4):438-444, 1984.

[27] J. Durillo, Y. Zhang, E. Alba, and A. Nebro. A Study of the Multi-otijge Next Release Problem. In
International Symposium on Search Based Software Engineering E33B8es 49-58, 2009.

24

[28] T.Dyba, V. Kampenes, and D. Sjgberg. A systematic review of statistical poweftimese engineering
experimentsinformation and Software Technology (1S#8(8):745—-755, 2006.

[29] P. Emberson and I. Bate. Stressing search with scenarios filméaolutions to real-time task allocation
problems.IEEE Transactions on Software Engineering (T.S¥6)Y5):704-718, 2010.

[30] M. Fay and M. Proschan. Wilcoxon-Mann-Whitney or t-test? Omaggions for hypothesis tests and
multiple interpretations of decision ruleStatistics Survey#:1-39, 2010.

[31] W. Feller. An Introduction to Probability Theory and Its Applications, Val. Wiley, 3 edition, 1968.

[32] G. Fraser and A. Arcuri. Itis not the length that matters, it is how gmtrol it. InIEEE International
Conference on Software Testing, Verification and Validation (IC3T)1.

[33] G. Fraser and A. Arcuri. Whole test suite generation. Techneg@nt, Chair of Software Engineering,
Saarland University, 2011.

[34] G. Freitag, S. Lange, and A. Munk. Non-parametric assessnfiernainferiority with censored data.
Statistics in medicine25(7):1201, 2006.

[35] M. Gabel and Z. Su. Online inference and enforcement of terhpoogerties. INPACM/IEEE Interna-
tional Conference on Software Engineering (IC3tgges 15-24, 2010.

[36] V. Ganesh, T. Leek, and M. Rinard. Taint-based directed whitélmring. INACM/IEEE International
Conference on Software Engineering (ICSEges 474-484, 2009.

[37] L. Garda. Escaping the Bonferroni iron claw in ecological studi@ikos 105(3):657-663, 2004.

[38] V. Garousi. A genetic algorithm-based stress test requirementsagentol and its empirical evalua-
tion. IEEE Transactions on Software Engineering (TS3)6):778-797, 2010.

[39] B. Garvin, M. Cohen, and M. Dwyer. An improved meta-heuristicsledor constrained interaction
testing. Ininternational Symposium on Search Based Software Engineering E3Si§es 13-22,
2009.

[40] K. Ghani, J. Clark, and Y. Heslington. Widening the Goal Postsigfimm Stretching to Aid Search
Based Software Testing. International Symposium on Search Based Software Engineering E}SBS
pages 122-131, 2009.

[41] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncakgd. Marinov. Test generation through
programming in udita. IMCM/IEEE International Conference on Software Engineering (ICB&jes
225-234, 2010.

[42] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automatedaom testing. IPACM Conference
on Programming language design and implementation (PLRdyjes 213223, 2005.

[43] S. Goodman. P values, hypothesis tests, and likelihood: implicatiorepfdemiology of a neglected
historical debateAmerican Journal of Epidemiolog$37(5):485—-496, 1993.

[44] S. Goodman. Toward evidence-based medical statistics. 1: Théu® fedlacy. Annals of Internal
Medicing 130(12):995-1004, 1999.

[45] R. Grissom and J. KinEffect sizes for research: A broad practical approathwrence Erlbaum, 2005.

[46] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su. Has the bug really liixed? INACM/IEEE International
Conference on Software Engineering (ICSEges 55-64, 2010.

[47] M. Harman, S. A. Mansouri, and Y. Zhang. Search based softwagineering: A comprehensive
analysis and review of trends techniques and applications. TechnipatRer-09-03, King'’s College,
2009.

25

[48] M. Harman and P. McMinn. A theoretical and empirical study of debased testing: Local, global and
hybrid searchlEEE Transactions on Software Engineering (T.S¥6)2):226—-247, 2010.

[49] H. Hemmati, A. Arcuri, and L. Briand. Empirical investigation of the effeof test suite properties on
similarity-based test case selection.IHEE International Conference on Software Testing, Verification
and Validation (ICST,)2011.

[50] H. Hsu and A. Orso. MINTS: A general framework and tool fapporting test-suite minimization. In
ACM/IEEE International Conference on Software Engineering (ICB&jes 419-429, 2009.

[51] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guidedponent-based program synthesis. In
ACM/IEEE International Conference on Software Engineering (ICB&jes 215-224, 2010.

[52] V. Kampenes, T. Dya, J. Hannay, and D. Sjgberg. A systematic review of effect size in aadtw
engineering experimentmformation and Software Technology (1IS#9(11-12):1073-1086, 2007.

[53] M. Katz. Multivariable analysis: a practical guide for clinician€ambridge Univ Pr, 2006.

[54] K. Khan, R. Kunz, J. Kleijnen, and G. AnteSystematic reviews to support evidence-based medicine:
how to review and apply findings of healthcare reseaiRBM Press, 2004.

[55] U. Khan and I. Bate. WCET analysis of modern processors usirti-oniteria optimisation. Ininter-
national Symposium on Search Based Software Engineering (SSB8E$ 103—112, 2009.

[56] T. Khoshgoftaar, L. Yi, and N. Seliya. A multiobjective module-ordesdel for software quality en-
hancementlEEE Transactions on Evolutionary Computation (TE&(6):593—-608, 2004.

[57] A. Kieyzun, P. Guo, K. Jayaraman, and M. Ernst. Automatic creaifdBQL injection and cross-site
scripting attacks. IMCM/IEEE International Conference on Software Engineering (ICB&jes 199—
209, 2009.

[58] D. Kim and S. Park. Dynamic Architectural Selection: A Genetic AlganitBased Approach. In
International Symposium on Search Based Software Engineering E33B8es 59-68, 2009.

[59] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, JdleBaand S. Linkman. Systematic litera-
ture reviews in software engineering-A systematic literature reviefermation and Software Technol-
ogy (IST) 51(1):7-15, 2009.

[60] J. Klein and M. Moeschbergegurvival analysis: techniques for censored and truncated.dapainger
Verlag, 2003.

[61] S. Kpodjedo, F. Ricca, G. Antoniol, and P. Galinier. Evolution andr&e Based Metrics to Improve
Defects Prediction. linternational Symposium on Search Based Software Engineering E}$38es
23-32, 20009.

[62] Z. Lai, S. Cheung, and W. Chan. Detecting atomic-set serializabilitatms in multithreaded pro-
grams through active randomized testing. AGM/IEEE International Conference on Software Engi-
neering (ICSE)pages 235-244, 2010.

[63] K. Lakhotia, M. Harman, and H. Gross. AUSTIN: A tool for SeaBased Software Testing for the C
Language and its Evaluation on Deployed Automotive Systemmténnational Symposium on Search
Based Software Engineering (SSB3t&ges 101-110, 2010.

[64] N. Leech and A. Onwuegbuzie. A Call for Greater Use of Noapwetric Statistics. Technical report,
US Dept. Education, 2002.

[65] F. Lindlar and A. Windisch. A Search-Based Approach to Funetibtardware-in-the-Loop Testing. In
International Symposium on Search Based Software Engineering E3328es 111-119, 2010.

26

[66] G. Lu, R. Bahsoon, and X. Yao. Applying Elementary Landscapalysis to Search-Based Software
Engineering. Innternational Symposium on Search Based Software Engineering E3328es 3-8,
2010.

[67] A. Marchetto and P. Tonella. Search-based testing of Ajax welicagipns. Ininternational Symposium
on Search Based Software Engineering (SSB&fes 3—-12, 2009.

[68] A. Masood, R. Bhatti, A. Ghafoor, and A. Mathur. Scalable anfiégive Test Generation for Role-
Based Access Control SystemHEEE Transactions on Software Engineering (TSkgges 654—668,
2009.

[69] P. McMinn. Search-based software test data generation: AeguBoftware Testing, Verification and
Reliability, 14(2):105-156, 2004.

[70] P. McMinn. How Does Program Structure Impact the Effectiveraghe Crossover Operator in Evo-
lutionary Testing? Irinternational Symposium on Search Based Software Engineering E3SB8es
9-18, 2010.

[71] T. Menzies, S. Williams, B. Boehm, and J. Hihn. How to avoid drastitwso® process change (using
stochastic stability). IPACM/IEEE International Conference on Software Engineering (ICPByes
540-550, 2009.

[72] B. S. Mitchell and S. Mancoridis. On the automatic modularization of so#vsystems using the bunch
tool. IEEE Transactions on Software Engineering (TSE)3):193—-208, 2006.

[73] T. Mitchell. Machine Learning McGraw Hill, 1997.
[74] M. Motwani and P. Raghavairandomized AlgorithmsCambridge University Press, 1995.

[75] P. A. Nainar and B. Liblit. Adaptive bug isolation. RCM/IEEE International Conference on Software
Engineering (ICSE)pages 255-264, 2010.

[76] S. Nakagawa. A farewell to Bonferroni: the problems of low statisticaver and publication bias.
Behavioral Ecology15(6):1044—-1045, 2004.

[77] S. Nakagawa and I. Cuthill. Effect size, confidence intervalstatistical significance: a practical guide
for biologists.Biological Reviews82(4):591-605, 2007.

[78] A. Ngo-The and G. Ruhe. Optimized Resource Allocation for So#vRelease PlannindEEE Trans-
actions on Software Engineering (T$SB%(1):109-123, 2009.

[79] S. Nijssen and T. Back. An analysis of the behavior of simplified eiaary algorithms on trap func-
tions. IEEE Transactions on Evolutionary Computation (TEQ(1):11-22, 2003.

[80] A. Nori and S. K. Rajamani. An empirical study of optimizations in yogi. AGM/IEEE International
Conference on Software Engineering (ICSEges 355-364, 2010.

[81] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedbackaled random test generation. In
ACM/IEEE International Conference on Software Engineering (ICB8&)es 75-84, 2007.

[82] T. Perneger. What's wrong with Bonferroni adjustmen®&ritish Medical Journal 316:1236—-1238,
1998.

[83] S. Poulding and J. Clark. Efficient Software Verification: Statistidting Using Automated Search.
IEEE Transactions on Software Engineering (T.S¥B(6):763-777.

[84] R Development Core TeanR: A Language and Environment for Statistical ComputiRgFoundation
for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.

27

[85] J. C. B. Ribeiro, M. A. Zenha-Rela, and F. F. de Vega. Test exaluation and input domain reduction
strategies for the evolutionary testing of object-oriented softwafermation and Software Technolagy
51(11):1534-1548, 2009.

[86] J. A. Rice.Mathematical Statistics and Data AnalysBuxbury Press, 2 edition, 1994.

[87] G. Rudolph. Convergence analysis of canonical genetic algorithBiE transactions on Neural Net-
works 5(1):96-101, 1994.

[88] G. Ruxton. The unequal variance t-test is an underused altegratiStudent’s t-test and the Mann-
Whitney U test.Behavioral Ecologyl7(4):688—690, 2006.

[89] S. Sawilowsky and R. Blair. A more realistic look at the robustnessygvel Il error properties of the t
test to departures from population normaliBsychological Bulletin111(2):352-360, 1992.

[90] C. A. Schaefer, V. Pankratius, and W. F. Tichy. Engineeringlpe applications with tunable architec-
tures. INACM/IEEE International Conference on Software Engineering (IC8&ges 405—-414, 2010.

[91] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Marinov.sfieg container classes: Random or
systematic? Ifrundamental Approaches to Software Engineering (FASE)1.

[92] M. Shevertalov, J. Kothari, E. Stehle, and S. Mancoridis. On treed®iscretized Source Code Metrics
for Author Identification. Innternational Symposium on Search Based Software Engineering E}SBS
pages 69-78, 2009.

[93] M. Shousha, L. Briand, and Y. Labiche. A uml/marte model analysis odefibr uncovering scenarios
leading to starvation and deadlocks in concurrent systéBtsE Transactions on Software Engineering
(TSE) 2010. 10.1109/TSE.2010.107.

[94] C. L. Simons, I. C. Parmee, and R. Gwynllyw. Interactive, evol#ignsearch in upstream object-
oriented class desighEEE Transactions on Software Engineering (T.S3)6):798—-816, 2010.

[95] T. Thum, D. Batory, and C. Kastner. Reasoning about edits torieatodels. IPACM/IEEE Interna-
tional Conference on Software Engineering (ICStgges 254264, 2009.

[96] N.Tillmannand N. J. de Halleux. Pex — white box test generation foil.NiEInternational Conference
on Tests And Proofs (TARages 134-253, 2008.

[97] P. Tonella. Evolutionary testing of classes. AGM International Symposium on Software Testing and
Analysis (ISSTApages 119-128, 2004.

[98] P. Tonella, A. Susi, and F. Palma. Using Interactive GA for Reguars Prioritization. Innternational
Symposium on Search Based Software Engineering (SSB}es 5766, 2010.

[99] A. Vargha and H. D. Delaney. A critigue and improvement of the Cimgmn language effect size
statistics of McGraw and Wongdournal of Educational and Behavioral Statisti@$(2):101-132, 2000.

[100] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest. Automaticailiriig patches using genetic pro-
gramming. INACM/IEEE International Conference on Software Engineering (ICpRYes 364-374,
2009.

[101] J. White, B. Doughtery, and D. Schmidt. Ascent: An algorithmic tealmmigr designing hardware and
software in tandemlEEE Transactions on Software Engineering (TS35)(6), 2010.

[102] R. Wilcox. Fundamentals of modern statistical methods: Substantially improving pameeaccuracy
Springer Verlag, 2001.

[103] C. Wohlin. Experimentation in software engineering: an introductigolume 6. Springer Netherlands,
2000.

28

[104] D. H. Wolpert and W. G. Macready. No free lunch theorems fatimoization. IEEE Transactions on
Evolutionary Computationl(1):67—-82, 1997.

[105] J. Xiao and W. Afzal. Search-based resource schedulirgufpfixing tasks. Innternational Symposium
on Search Based Software Engineering (SSBgdtjes 133-142, 2010.

[106] Q. Yang and M. Li. A cut-off approach for bounded verificatafparameterized systems. ACM/IEEE
International Conference on Software Engineering (IC$Bpes 345-354, 2010.

[107] S. Yoo. A Novel Mask-Coding Representation for Set CovebRms with Applications in Test Suite
Minimisation. Ininternational Symposium on Search Based Software Engineering E}328es 19—
28, 2010.

[108] X.Yuanand A. M. Memon. Generating event sequence-basedases using gui runtime state feedback.
IEEE Transactions on Software Engineering (TS¥6)(1):81-95, 2010.

[109] L. Zhang, S. Hou, J. Hu, T. Xie, and H. Mei. Is operator-lBseitant selection superior to random
mutant selection? IACM/IEEE International Conference on Software Engineering (ICB8&jes 435—
444, 2010.

[110] Y. Zzhang and M. Harman. Search Based Optimization of Requireni@etaction Management. In
International Symposium on Search Based Software Engineering E3§B8es 47-56, 2010.

29

