
On the Effectiveness of Contracts as Test Oracles in the Detection and Diagnosis of
Race Conditions and Deadlocks in Concurrent Object-Oriented Software

Wladimir Araujo
Juniper Networks and Carleton

University
Ottawa, Canada

waraujo@juniper.net

Lionel C. Briand
Simula Research Laboratory and

University of Oslo
Lysaker, Norway
briand@simula.no

Yvan Labiche
Carleton University

Ottawa, Canada
labiche@sce.carleton.ca

Abstract— The idea behind Design by Contract (DbC) is that a
method defines a contract stating the requirements a client
needs to fulfill to use it, the precondition, and the properties it
ensures after its execution, the postcondition. Though there
exists ample support for DbC for sequential programs,
applying DbC to concurrent programs presents several
challenges. We have proposed a solution to these challenges in
the context of Java as programming language and the Java
Modeling language as specification language. This paper
presents our findings when applying our DbC technique on an
industrial case study to evaluate the ability of contract-based,
runtime assertion checking code at detecting and diagnosing
race conditions and deadlocks during system testing. The case
study is a highly concurrent industrial system from the
telecommunications domain, with actual faults. It is the first
work to systematically investigate the impact of contract
assertions for the detection of race conditions and deadlocks,
along with functional properties, in an industrial system.

Keywords- Design by contract, concurrency, object-oriented
programming, Java.

I. INTRODUCTION
Including specifications of program behaviour together

with the source code is not a new idea. Design-by-Contract
(DbC) [1] is one of the most elaborate software development
methodologies that put such idea in practice, with Eiffel
being a well-known example of a programming language
that supports it. Following DbC principles, a method defines
a contract stating the requirements a client needs to fulfill to
use it, the precondition, and the properties it ensures after its
execution, the postcondition. Contracts can be treated as
logical assertions (contract assertions) about the state of a
program at a certain point. A program can be instrumented
with code that checks the validity of the assertions at runtime
and upon failure throws an exception indicating where it
happened. DbC also defines object invariants, properties that
must hold in all visible states of an object. The visible states
of an object are the states just after object construction, just
before a visible method execution, and just after a visible
method execution. Behavioural subtyping [2-5] is an integral
part of DbC. A subtype automatically inherits the
specification (contracts and invariants) from its super-types
[6]. The effective precondition of a method is the disjunction
of all the inherited preconditions and the method’s declared
preconditions. The effective postcondition is the conjunction
of all inherited postconditions for which the associated
precondition is satisfied and the method’s declared

postconditions if associated preconditions are satisfied. The
effective class invariant is the conjunction of all inherited
class invariants with the object’s declared invariant. This
guarantees that a subtype can be properly used in place of its
super-type(s).

The Java Programming Language [7] does not provide
native support to DbC. It only provides basic support for
assertions through the assert keyword, which simply causes
an exception to be thrown in case a given Boolean
expression evaluates to false. This work uses the Java
Modeling Language (JML) [8, 9] as the specification
language used to write contracts. JML includes notations for
pre- and postconditions, invariants, and offers mechanisms
for specification inheritance, thus providing support for the
Design-by-Contract paradigm. JML has a Java-like syntax
and specifications can even perform method calls in
assertions. It also provides a rich set of model classes (i.e.,
classes allowed only in specifications) that enable the
construction of rich abstract descriptions of program
behaviour, such as data structure model classes, which can
be used to model abstract properties of concrete data
structures in a concise way.

The JML toolset comes with a compiler [10] that
translates specifications into runtime assertion checking
(RAC) code producing Java classes augmented with
executable assertions. The process of adding RAC code to a
Java class is called instrumentation. The resulting class is
called the instrumented class. The JML compiler [10]
produces RAC code that enforces behavioural subtyping, i.e.,
RAC code for all applicable invariants and preconditions is
executed upon entering a method, and RAC code for all
applicable postconditions and invariants is executed upon
exiting a method.

Most work on DbC focused on sequential programs, and
applying DbC to concurrent programs presents several
challenges. The first challenge is interference, the product of
multiple threads of execution modifying and accessing
shared state. Interference is present even on correct programs
with respect to concurrency control. Basically, interference
with respect to the precondition happens because assertion
checking code is evaluated at a point in time after which
other threads are allowed to modify the objects referenced in
such assertions but prior to the point in which these objects
are accessed by the method in question. This causes RAC
code to report errors for correct methods and vice-versa. The
problem is analogous with respect to postconditions and
invariants [10, 11]. The second challenge is the specification

and verification of locking related properties using contract
assertions (the use of locking policies is a common deadlock
avoidance technique). The third challenge is the specification
of thread-safety properties in the presence of inheritance.
These properties state which objects are safe to be accessed
by the currently executing thread, i.e., there are no other
threads accessing such objects. Locking requirements had so
far been associated with preconditions. This causes
problems. These challenges and their solutions are described
in detail in [11] and summarized in section B.

This paper focuses, based on a large scale industrial case
study, on assessing if and in which conditions contract based
assertions are good replacements for manually coded test
oracles for concurrent systems. Given the space restrictions,
we address in this paper only the aspect related to concurrent
faults even though the study is conducted with contracts
including specifications for functional properties.

In our case study, we systematically apply DbC to a
highly concurrent industrial system and measure the
effectiveness of contract-based assertions at detecting and
diagnosing race conditions and deadlocks, two important
types of concurrent faults. We conclude that contracts are
very good at detecting such faults. Moreover, contracts are
extremely helpful in reducing the diagnosis effort for the
faults they detect since faults are located at most one method
away from the detection point. To the best of our knowledge,
this is the first study to systematically apply contract
assertions that combine the specification of functional and
concurrent properties to the detection and diagnosis of race
conditions and deadlocks in a highly concurrent industrial
system and under realistic conditions (actual faults, realistic
test suites).

The following section discusses related work. It is
followed by a brief introduction to JML, a summarized
description of the challenges in applying DbC to concurrent
programs together with our solutions, and an empirical
assessment of the validity of the use of RAC code in a
concurrent environment to conduct system testing. Section
IV describes the case study with attention to the
methodology and reports the main results of this work. We
conclude with a summary and future work.

II. RELATED WORK
Verification of concurrency properties of programs can

be divided into three kinds of approaches. Static checking
uses the source code only (usually augmented with some
annotations) to check the validity of certain properties.
Dynamic checking uses only information available during
runtime execution of the program under test. There are also
approaches that combine both techniques. Our work
concentrates on dynamic checking.

Flanagan and Freund [12] describe Atomizer, a dynamic
checker for Java programs. Atomizer checks for method
atomicity. Agrawal et al. [13] describe a combination of
runtime and static analysis to check for atomicity. Atomicity
checking relies on annotations provided by the programmer
to determine the set of locks protecting access to a variable
(which is possibly flawed) or the lock inference algorithms
used in their place require multiple executions of a method

(or block of code in general) being checked for atomicity to
make a determination, which does not fit well with a RAC-
based approach to verification, in which a predicate is
expected to yield an answer in every execution. Atomicity is
to be established prior to executing functional contracts.
Nevertheless, interference can cause a contract to evaluate
erroneously even in atomic methods. Therefore these
solutions do not contemplate the joint dynamic verification
of functional and concurrent properties. A similar problem
happens with pattern-based concurrent bug detection, as
reported by Park et al [14]. Furthermore, they only report
results for small programs or for programs with a small
number of threads (< 20).

Rodríguez et al. [15] describe a variety of constructs in
JML for dealing with several aspects of concurrency
properties. They present solutions to the problem of
specifying lock acquisition and thread-safety properties but
fail to consider the issue of inheritance. Although they
propose several constructs, none of them were actually
implemented in the JML toolset and assessed empirically.
We implement all the constructs we propose on the JML
compiler and generate RAC code for them [16].

Jacobs et al. [17] present a methodology based on object
and thread ownership in which a thread must own an object
to access any of its fields. This implies that preconditions
and postconditions only refer to thread-safe fields. In other
words, the internal behaviour of the object cannot be
specified in several important cases.

Nienaltowsky and Meyer [18] present an interesting
proposition regarding the use of contracts in a concurrent
environment. They target SCOOP [19], an extension of the
Eiffel language to provide support for concurrency. The
SCOOP model prevents data races by design but does not
address deadlocks. They do not consider specification
inheritance nor conduct any experiments or case studies.

Greenhouse et al. [20] describe a series of annotations
related to the specification of the concurrent behaviour of a
Java program. Their annotations are similar to those present
in [15] with respect to locking properties and member
ownership, and thus suffer from the same limitations. They
do not present a specialized construct to state the thread-
safety of an object. They do not present a solution to the
verification of functional properties in combination with
concurrency related properties.

Qadeer and Wu [21] describe a technique to translate a
concurrent program into a sequential program, which is,
then, analyzed by a checker to detect data races. Their
approach has been applied to multithreaded C programs;
ours focuses on object-oriented programs. They focus on
data races only, whilst our approach covers deadlocks as
well. Their approach does not allow a developer to specify
what objects are expected to be thread-safe in which
conditions, which leads to false positives.

Elmas et al. [22] describe VYRD, a tool to detect data
races based on a trace refinement technique. A concurrent
execution must be a refinement of a trace specification.
Flanagan and Freund [23] describe FastTrack, a precise
dynamic race detection algorithm based on Lamport’s
happens-before memory access relation. Their system works

by instrumenting Java bytecode to record an event stream of
memory and synchronization operations for offline analysis.
They apply it to the Eclipse framework and report detecting
real faults. The fault selection and injection procedure is not
described precisely. Ratanaworabhan et al [24] describe
ToleRace, a system to detect and tolerate data races. The
detection mechanism is similar to ours [16] but their tool
does not require annotations. All the above works do not
address the verification of functional properties and do not
consider inheritance.

In [25] Le Traon et al. describe how to use contracts to
generate assertion code. The authors propose metrics to
evaluate the benefits of instrumenting contracts. They define
vigilance and diagnosability and apply them to several case
studies. The experiments are, however, limited to small
programs in which faults are introduced via program
mutation [26]. Briand et al. [27] clarify the concept and
metric of observability (as a replacement for vigilance) and
diagnosability. Although carefully designed, their
experiment is performed on a small system through mutation
analysis. Both studies are restricted to sequential software.

To the best of our knowledge, no existing work reports
on an industrial case study where a unified solution to the
specification and dynamic verification of concurrency and
functional properties is rigorously assessed in terms of
concurrent fault detection and diagnosis, and under realistic
industrial conditions.

III. CONCURRENT CONTRACTS
This section begins with a brief description of JML and

its fundamental constructs. It then briefly describes the
challenges in applying DbC to concurrent programs together
with our solutions, describing the constructs we introduced.

A. The Java Modelling Language
The Java Modeling Language (JML) has a Java-like

syntax and specifications can even perform method calls.
JML specifications are delimited by the strings /*@ and @*/
or by the remainder of lines following //@, being treated as
comments by the Java compiler. Specifications can be
written as annotations in ‘.java’ files (javadoc style).

In JML, the interface of a method is specified through a
set of clauses. The most relevant for this study are:
• requires: specifies the conditions that need to be

satisfied by the method caller.
• ensures: specifies the properties that this method

guarantees to its caller.
• when: specifies an enabling condition (the method

blocks until this condition is met).
• signals: specifies a condition that is guaranteed to

hold if a given exception is thrown.
• signals_only: constrains the exceptions that can be

thrown when a condition for exceptional behaviour is
satisfied.

• normal_behaviour: specifies the conditions in which
a method returns normally and what it ensures.

• exceptional_behaviour: specifies the conditions in
which a method throws an exception.

Invariants are specified using the invariant clause.
Invariants must hold in any publicly visible state, i.e., prior
to and after the execution of any instance methods. JML
provides a rich set of native operators for defining complex
specifications, the most relevant for this study being:
• \old(e): used in post-conditions to refer to the value of

expression e in the pre-state of the method.
• \return: the return value of a method. Its type is the

same as the method return type.
• \lockset: returns the set of locks held by the current

thread.
• Operators < and <=: used to test the order of lock

acquisition. A lock is greater than another if it was
acquired later.

• \max(s): returns the largest lock in set s according to
the ordering defined by the operator above.

B. Contracts and Concurrency
In previous work [11, 28], we solved the problem of

interference by combining the use of safepoints with thread-
safety requirements. A safepoint is a point inside the method
body at which it is safe to evaluate precondition or
postcondition predicates together with invariants. Fig. 1
shows an example of their use. The method specification is
composed of two specification cases separated by the
keyword also (each with a precondition and the
corresponding expected postcondition, the postcondition to
be established if the precondition is satisfied), which simply
tell that the head of the list will move to the next element and
the method will return the value of what used to be the first
element of the list if the list is not empty (lines 5-9), and
returns null otherwise (lines 1-4). In JML, the preconditions
of a method (i.e., the requires clauses), as well as
arguments to the \old operator in postconditions are
evaluated in the method’s pre-state. The method
postconditions (i.e., the ensures clauses) are evaluated in
the method’s post-state. “The pre-state of a method call is
the state just after the method is called and parameters have
been evaluated and passed, but before execution of the
method’s body. The post-state of a method call is the state
just before the method returns or throws an exception; in
JML we imagine that \result and information about
exception results is recorded in the post-state” ([8], p. 8).

Although straightforward, this specification is not correct
in a multi-threaded environment without safepoints. Suppose
that extract() is invoked by thread 1 and in the method’s
pre-state, head references the same object as last (i.e., the
list is empty). Suppose, also, that thread 2 pre-empts thread 1
right after thread 1 acquires the lock on this to fully execute
method insert(), which does not acquire such lock for
performance reasons. The postcondition of insert()
specifies that head is not referencing the same object as
last, i.e., the list is not empty. Once thread 1 resumes
execution and acquires the lock on head, it will return the
first element of the list, violating the postcondition of
extract() for an (expected) empty list, i.e., that it should
have returned null.

public class LinkedQueue {
 protected /*@ spec_public @*/ LinkedNode head;
 protected /*@ spec_public @*/ LinkedNode last;
 //@ public invariant head.value == null;
1 /*@ public normal_behavior
2 @ requires head == last;
3 @ assignable \nothing;
4 @ ensures \result == null;
5 @ also public normal_behavior
6 @ requires head != last;
7 @ assignable head, head.next.value;
8 @ ensures head == \old(head.next) &&
9 @ \result == \old(head.next.value);
10 @*/
11 public synchronized Object extract() {
12 synchronized (head) {
13 //@requires_safepoint:
14 Object x = null;
15 LinkedNode first = head.next;
16 if (first != null) {
17 x = first.value;
18 first.value = null;
19 head = first;
20 }
21 //@ensures_safepoint:
22 return x;
23 }
24 }
25}

Figure 1. Method extract() of class LinkedQueue using safepoints
to avoid internal interference.

This is an example of interference in the context of DbC.
This problem is not specific to Java or JML. Any object-
oriented language in which the scenario we described above
is realizable and provides support for DbC via runtime
assertion checking (RAC) is prone to this problem. It is
important to emphasize that such problem arises due to the
combination of DbC and the program under execution. It is
not due to erroneous concurrency control on the part of the
implementation either of the client or the provider. The case,
as above, where interleaving occurs inside the method body
is called internal interference. Interference can also happen
between the contract evaluation points (pre- and post-state)
and the method entry and exit points. Since interleaving
occurs outside the method body, this is called external
interference.

A safepoint is any point inside the method body where it
is safe to evaluate precondition, postcondition and invariant
predicates. A precondition safepoint is a point where it is
safe to evaluate preconditions and invariants, and the pre-
state expressions of postconditions. A postcondition
safepoint is a point where it is safe to evaluate the expected
postconditions and the invariants. Any method execution
path (from the pre-state to the post-state) can have only one
precondition safepoint and only one postcondition safepoint
to maintain the semantics of DbC as for sequential software.
If no precondition (resp. postcondition) safepoint is explicitly
specified for an execution path, it defaults to the method pre-
state (resp. post-state). In a precondition safepoint, all
preconditions, invariants and pre-state expressions are
required to be safely evaluated. In a postcondition safepoint,
the postconditions and all invariants are required to be safely
evaluated. The requires_safepoint and
ensures_safepoint labels demarcate those safepoints. At
the precondition safepoint in Fig. 1 (line 13), all the objects
referenced by both requires clauses (lines 2 and 6) and the
contents of the \old statements in the ensures clauses
(lines 8-9) are properly protected by locks. At the
postcondition safepoint (line 21), the field head, present in

the ensures clause at lines 8-9, is properly protected by a
lock. Since \result refers to local variable x, which in turn
points to an object no longer referenced by the list, it is also
thread-safe at the postcondition safepoint. Finally, the object
invariant can be safely evaluated both in the pre- and
postcondition safepoints since it refers to head, which is
properly locked in both places. The postcondition safepoint
must be the return or throw statement. Additionally, the
return (or throw) expression must be side-effect free.

We also solved in [11] the issue of thread-safety
specification by detaching these properties from
preconditions while considering interference and inheritance
issues. Thread-safety properties are specified using the
requires_thread_safe and ensures_thread_safe
clauses of a method specification. Such clauses specify a set
of objects to which access is required to be thread-safe. An
object is considered to be thread-safe if it is local to the
current thread (i.e. no other thread has a reference to it) or
access to it is protected by a lock. Thread-safety properties
can also be specified by referring explicitly to the locks a
method must or must not hold before or after its execution
via the requires_locked, requires_unlocked,
ensures_locked and ensures_unlocked clauses,
respectively. Fig. 2 shows an example of their use (lines 8-
10) in combination with safepoints. The
requires_thread_safe clause specifies that object r
must be thread-safe in the method pre-state. This is necessary
because the effective precondition, accounting for normal
and exceptional behavior of the method is r.isRequest()
(the disjunction of preconditions from both specification
cases simplifies the terms connected and !connected),
which is not simply true. In this situation, safepoints alone
cannot guarantee the thread-safe observation of this predicate
since r is external to the provider. Once such object is
thread-safe, predicates involving it can be checked at
precondition safepoints since they will not change between
the method pre-state and the safepoints. A similar discussion
can be made for postconditions and thus the
ensures_thread_safe clause specifies that the object
returned by the method must be thread-safe on the method’s
post-state. The *_thread_safe clauses guarantee freedom
from interference with respect to r from the method pre-state
up to the precondition safepoint and with respect to \result
on the post-state. Precondition safepoints prevent
interference related to model (i.e. specification-only) field
connected. As these are the only possible sources of
interference, we conclude that combining safepoints and
thread-safety predicates guarantees sendAndWait() and its
contract are interference-free. In general, the combination of
thread-safety requirements on data to be observed by the
provider and the client with safepoints (for safe evaluation of
predicates referring to internal state) is required to guarantee
freedom from interference.

The semantics of specification inheritance on the
concurrent aspect, i.e., the clauses defined under the
concurrent_behaviour construct (line 8), is identical to
the one of invariants (conjunction). The effective
specification (in a subclass) of any of the new clauses is the

union of the argument set specified on the target object with
the argument sets of its immediate supertypes. In other
words, thread-safety specifications, like invariants, can only
be strengthened by sub-types. Decoupling concurrency
related properties from functional properties gives concurrent
contracts their intuitive (expected) meaning. A complete
argument is presented in [11, 28].

We also addressed in [28] the problem of lock acquisition
order specification with the introduction of the lock_order
clause to the specification of a type (i.e., it is analogous to an
invariant). This clause takes a list of lock order expressions
that must be satisfied. A lock order expression is in the form
l1 < l2 or l1 <= l2 where l1 and l2 are instances of
either java.lang.Object (for monitor locks) or
java.util.locks.Lock (for the semaphore style ones).
These expressions evaluate to true if the current executing
thread acquires l2 only after acquiring l1. The semantics of
the lock_order clause is that each lock order expression
must hold for every state it is in effect in the context of the
current thread. A lock_order clause is in effect for a given
state if such state is in the activation record of a method
belonging to the type declaring such a clause or one of its
subtypes. A clause that is in effect is evaluated at every
attempt of the current thread in acquiring a lock.

IV. DETECTION AND DIAGNOSIS OF
CONCURRENT FAULTS

The objective of this study is to evaluate the applicability
of the concurrency related constructs in contracts as defined
in section B. More specifically, if contract assertions can be
effective test oracles to detect and diagnose concurrency
related faults. The study is limited to detecting and
diagnosing race conditions and deadlocks since available
JML constructs do not support the specification of liveness
or fairness properties. This section begins by reviewing the
concepts of observability and diagnosability. It follows with
a description of the test bed used to conduct this study. It
then addresses the issue of the validity of the results obtained
using RAC code in concurrent programs during system
testing in place of the original (non-instrumented) program.
The methodology is described next and then the results
reported.

A. Background on Observability and Diagnosability
This section only presents the definitions and some basic

facts on the concepts and measures of observability and
diagnosability. For a complete exposition, see [25, 27].

The observability of a system (also called global
observability) composed of a set of interconnected
components is defined as the probability that a fault internal
to a component is detected in the component itself (e.g.,
through assertion violations) or in any one of the other
components.

Diagnosability is defined as the ease with which the
causes of a failure can be isolated. It can be measured based
on an estimate of the size of the diagnosis work to be done
by measuring the distance between the location of the failure
detection and the location of the faulty statements that

caused it. Such distance can be defined as the number of
methods investigated beginning at the detection point (where
the failure occurred) to the location of the faulty statement
according to a diagnosis flow (see below). This, like any
model, is a simplification of the reality since expert
developers frequently use shortcuts to diagnose a failure.
Such simplification, however, is necessary to perform a
systematic, objective study of diagnosability.

/*@
1 normal_behaviour
2 requires connected && r.isRequest();
3 ensures \result.isResponse();
4 also
5 exceptional_behaviour
6 requires !connected && r.isRequest();
7 signals_only NotConnectedException;
8 concurrent_behaviour
9 requires_thread_safe r;
10 ensures_thread_safe \result;
 */
public Message sendAndWait(Message r) throws … {
11 synchronized(in) {
12 synchronized(this) {
13 //@ requires_safepoint:
14 if(closed || remoteClosed)
15 throw new NotConnectedException();
16 }
17 out.put(r);
18 return in.get();
19 }
}

Figure 2. Method declaration exemplifying the use of thread-safety
specification clauses.

Figure 3. Diagnosability measure example: diagnosis flow as a sequence

diagram.

The starting point of the diagnosis is the method in which
the failure was detected. It is the caller of a method that had
its precondition violated or the method that had a post-
condition violation. The search proceeds then from the
beginning of the method in which the fault was detected,
recursively exploring all the methods called until the fault is
uncovered or the end of the method is reached. In the latter
case, the search proceeds to the caller method. A method is
assumed to be investigated only once. The method to be
investigated is determined based on the dynamic type of the
target object, not its static type. A method call is not
explored if it is certain that the particular execution path
leading to the fault did not execute such method based on

method arguments and structural constraints. For instance,
only one of either an if statement or an else statement needs
to be investigated provided the conditional expression refers
to only method parameters, their values are not changed by
the method under investigation, and their values are known.
It is explored otherwise. For instance, assuming an assertion
violation occurs in the precondition of method e() in Fig. 3,
the diagnosis flow is then the sequence [a, b, c] (method d()
is not inspected since the faulty statement is discovered in a
statement preceding its invocation). The distance is then 3.
An assertion violation occurring in the post-condition of
method e() would yield the diagnosis flow [e, f, a, b, c],
instead, and thus a distance of 5.

B. Target System and Test Bed Setup
The target system is the Service Activation Engine (SAE)

component of the Session Resource Controller product line
of Juniper Networks. It is basically a platform to design and
deploy value-added services in an Internet Protocol network.
It does so by converting service definitions specified as an
abstract set of traffic controlling policies for a particular
subscriber into device specific policies in the context of the
interface such subscriber uses to connect to the network. The
SAE currently supports various devices.

Our empirical study focuses on the subsystem that
interfaces with Juniper’s E-series routers. This subsystem,
called the router driver, is responsible for responding to
asynchronous notifications from the router regarding the
state of each subscriber interface and managing traffic
policies for each such interface. Due to the large number of
subscribers a router supports, these requests are processed
concurrently to maximize system performance. The router
driver is responsible for the translation task above, the low-
level communication with the router and to ensure
correctness in the presence of concurrent processing. It does
so by implementing a transactional infrastructure to
guarantee ACID (Atomicity, Consistency, Isolation, and
Durability) properties of transactions. The SAE is capable of
managing approximately 520,000 active subscribers
connected to multiple E-series routers. This amounts to
executing approximately 1,500 transactions per second. The
complex functionality of the router driver subsystem allows
the use of complex functional specification constructs, and
its high degree of concurrency with varied and intricate
concurrency control patterns allows for all proposed
constructs to be explored. With respect to code size, the
router driver subsystem is composed of 54 classes and
interfaces (33509 LOC), all of which are used in a
concurrent environment. In many ways this can be
considered a representative concurrent system in the telecom
domain.

The standard test suite is an automated test suite
composed of a sufficiently large number of test cases that are
required to pass for a version of the SAE component to be
released to production. Each test case exercises the SAE
through its interfaces and the test case oracle (embedded in
the test case) checks return values, parameters and
exceptions of operations in its programmatic interface
against expected values. It also checks the presence or

absence of expected contents in the log files produced by the
SAE, such as error messages related to the operation
performed.

The test suite is built using a black box approach based
on test plans derived from functional specification
documents of SAE’s features. Specific size and coverage
parameters of the standard test suite are confidential
information of Juniper Networks. However, the key property
for this study can be stated: for every defect present in the
defect database there is at least one test case in the standard
test suite that exercises the fault caused by such defect thus
causing it to manifest as a failure in the production system or
as an assertion violation in the instrumented system if the
fault is observable by the contracts. The test suite is executed
in an environment that mimics production environments.

The scripts composing the standard test suite take as
input several parameters that impact the load imposed on the
overall system. Some of these parameters are the rate at
which subscribers log in(out) to(of) the network, the total
number of subscribers and types of services such subscribers
have. All these parameters are abstracted as a load factor due
to their confidential nature. The only property of interest for
the experiments concerning the load factor is the ratio
between them, i.e., if the load factor in one execution is
double the value of another’s then the overall load the first
execution imposes on the system is double the other’s. The
load factor represents mainly the throughput of the system.

C. Runtime Assertion Checking
We modified the JML compiler to generate RAC code

for the new constructs described in the previous section as
well as for the existing constructs to enable their execution in
a concurrent environment. A complete description of such
modifications is presented in [16]. In this section, since this
paper’s main contribution is an industrial case study, we
focus on investigating whether a program instrumented with
RAC code is a valid replacement of the original program
during system testing.

The target system is specified following the methodology
described in section D. Ideally, the instrumented system
should present the same external behaviour as the production
system. We name this factor indistinguishability. The
instrumentation techniques introduce extra processing steps
and require more data to be stored for the purpose of
verifying the validity of the contracts. Therefore, the
instrumented system is expected to consume more resources
(CPU, memory and persistent storage) than the production
system. There should be a linear relation between the
resource utilization of the original and instrumented versions
to guarantee similar behaviour between them. We name this
factor runtime overhead. These two factors are considered
independently. Achieving satisfactory results, as described
below, in both dimensions would allow us to conclude that
an instrumented version of a concurrent system can be used,
under practical conditions, during system testing to uncover
faults.

1) Runtime Overhead
Program size is measured in two ways: class file size and

permanent generation size. The class file size is the number

of bytes of the bytecode representation of a Java class or
interface. The purpose of this metric is to determine the
increase in the amount of persistent memory necessary to
hold the instrumented program uncompressed. The
permanent generation is the area of runtime memory of a
JVM dedicated to holding the runtime representation of a
class or interface. The purpose of this metric is to determine
the increase in the amount of runtime memory necessary to
load the class file into memory. Both metrics are important
to understand the system requirements to execute the
instrumented program in conditions equivalent to the original
system.

Analyzing the incremental class file size (the size of the
instrumented class file minus the size of the production class
file) as a function of the number of methods in each class
enables the derivation, through linear regression, of the
following formula to determine the total class size (in
kilobytes) of the instrumented version of the system based on
the number of methods of the classes in the production
version of the target system:

ሻݏ݁ݏݏ݈ܽܥ݈݀݁݅݌݉݋ܥܿܽݎሺ݁ݖ݅ܵݏݏ݈ܽܥ݈ܽݐ݊݁݉݁ݎܿ݊ܫ
ൎ ሻݏ݁ݏݏ݈ܽܥ݈݀݁݅݌݉݋ܥܿܽݎሺݐ݊ݑ݋ܥ݀݋݄ݐ8݉݁
൅ |ݏ݁ݏݏ݈ܽܥ݈݀݁݅݌݉݋ܥܿܽݎ|9
…,ଵܥሺሼݐ݊ݑ݋ܥ݀݋݄ݐ݁݉ , ௡ሽሻܥ ൌ ∑ ௜ሻ௡ܥሺݐ݊ݑ݋ܥ݀݋݄ݐ݁݉

௜ୀଵ , (1)
where ݏ݁ݏݏ݈ܽܥ݈݀݁݅݌݉݋ܥܿܽݎ is the set of classes compiled
with the JML compiler, and ݉݁ݐ݊ݑ݋ܥ݀݋݄ݐሺ. ሻ returns the
number of methods in a given class. ݁ݖ݅ܵݏݏ݈ܽܥ݈ܽݐ݊݁݉݁ݎܿ݊ܫ
returns values in kB. The average magnitude of relative error
observed between the calculated and the observed
incremental class file size was 10%. The spearman
correlation coefficient between the incremental class size and
the number of methods was 0.99 indicating a strong
dependency between them and, consequently, a small
dependency (i.e., less than 1%) on the contents of the
contracts and other unaccounted factors.

We also measured the increase in memory footprint
(heap) and CPU utilization. The heap is the memory area in
the JVM where all dynamically allocated objects reside. The
heap needs to be carefully dimensioned to avoid not only
failures in allocating objects but also to avoid excessive load
on the JVM garbage collector (GC), which would cause a
significant increase in CPU utilization, possibly reducing the
amount of cycles available to execute the application itself.

Fig. 4 compares the heap utilization between the
production and the instrumented versions of the target
system subject to the same test suite. This is the actual
system test suite and it consists of a ramp-up phase, in which
subscribers are logged into the system (approximately the
first 20 minutes), and a steady-state phase in which several
operations are performed (the remaining time). The duration
of the test is about two hours. The overall load factor was
chosen as to cause 30% CPU utilization during the steady-
state phase of the suite for the instrumented version of the
system. This was necessary to guarantee that the CPU
utilization would almost never go beyond 80% to ensure that
CPU was never a contention point, thus preventing
significant periods during which the CPU utilization is
100%. During such periods, there would be threads that

could be scheduled to run but could not get cycles. This
prevents the analysis of the relationship of the CPU usage
between the instrumented and production versions of the
system.

Figure 4. Comparison of the heap utilization between the production and
the instrumented versions of the target system subject to the same test suite.

There is no easy formula to determine the ratio of heap
utilization between the original and instrumented systems
based on static parameters as with the permanent generation
size, which is approximately 3.9 times the incremental class
size. This is because several factors like the number of
instances of each class as well as the number of threads in
the system, which are essentially dynamic parameters,
cannot be determined in a generic fashion for all applications
since they depend on each application’s structure. The
important property, however, is that such ratio is bounded.
Notice from the graph that although the heap size grows
steadily in both versions, the ratio between them is almost
constant. After the 20 minutes mark, the heap size of both
versions grow linearly at a rate of 46.8MB/minute for the
instrumented version and 13.5MB/minute for the production
version; i.e. the instrumented version consumes heap at a
constant rate of 3.47 times the production version. That is,
there is a linear relation between the two versions of the
system regarding their resource usage. This suggests that the
instrumented version is presenting the same behaviour with
respect to resource utilization as the production version
whilst requiring more resources. It should be noted that,
although the heap grows steadily, the system does not
present a memory leak. The configured heap size is
significantly higher than the range displayed in Fig. 4 and,
therefore, the JVM does not attempt to collect garbage
aggressively.

The overall CPU load that the instrumented version of
the target system can handle is approximately 17.5 times
smaller than that of the production system (based on the load
factor in section 0). The immediate effect of this slowdown
is on time-sensitive activities. This result implies that any
absolute value used to detect improper behaviour like
timeouts needs to be increased 20-fold to accommodate
delays in the processing due to the instrumentation overhead,
which typically consists of changing configuration
properties.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 20 40 60 80 100 120

H
ea
p
Si
ze
 (G

B)

Time (minutes)

Production Instrumented

Though the impact of instrumentation is expectedly
significant, for example on the amount of CPU required to
execute the instrumented code, we have seen that the load
factor can be adjusted to guarantee resource usage conditions
by the instrumented version similar to those of the
production version. As a result, the amount of extra heap,
program storage and permanent generation required by the
runtime is kept at reasonable bounds thus allowing
instrumented applications to be executed in the same
environment used by the production version. Overall, the
runtime overhead introduced by the instrumentation activity
is deemed, from a practical standpoint, reasonable.

2) Indistinguishability
Indistinguishability is analyzed based on the behaviour of

an instrumented version of the target system compared to its
production version. Success is defined by the following:
1. The instrumented and the production versions of the target

system pass the standard test suite.
2. Faults introduced in both versions cause the same failures

when submitted to the standard test suite, i.e., the test
cases that fail and succeed are identical for both versions.

3. A qualitative analysis of the instrumentation techniques
give a high degree of confidence that thread interleavings
present in the production version are also present in the
instrumented version. This is omitted for lack of space. It
can be found in [16].

To verify that both versions of the system behave the
same in the absence of faults, contracts for the system were
defined taking the behaviour presented by the code at a
particular released version of the Service Activation Engine
as correct (see section D and [11] for details). This became
the instrumented version of the system. The standard test
suite described above was then executed for two hours (the
standard duration) and no (contract) assertion violations were
observed.

To verify that both versions of the system behave the
same in the presence of faults, the instrumentation was
performed using a special compilation option that causes an
error message to be printed on the error console (i.e. stderr
on UNIX systems) instead of causing an assertion failure
(the system is stopped manually after each failure, instead).
This approach allows a fault to manifest itself identically in
the instrumented and the production versions of the system.
The faults introduced originate from Juniper’s defect
database and are related to the router driver subsystem.
Moreover, the faults considered are only those found during
the system test phase of the product and only through a
period for which the feature set of the subsystem remained
the same (i.e., contracts did not change). This amounts to a
total of 139 faults split between functional and concurrent
(deadlock and race conditions). All faults were reproduced in
both versions of the system submitted to the standard test
suite. Using functional faults increases the coverage of RAC
functionality enabling more general conclusions than if
restricted to concurrent faults.

There is still the question of timing, which is
fundamental to race conditions. Given the instrumentation
process causes significant slowdown to tasks (see section 1))
there is the possibility of some race conditions to be

uncovered as well as others to be hidden. The only solution
for this (in the context of testing) is to let the system run for a
sufficiently long time performing a sufficiently varied set of
tasks, which is the same approach used for uncovering race
conditions and deadlocks in production systems. Therefore
the instrumentation does not change the testing procedure
with respect to uncovering concurrent faults.

The instrumented system presents the same observable
behaviour as the production system since the outcome of the
standard test suite to which both versions are submitted is the
same in the presence and absence of faults, and that no
thread interleavings present in the production system are
artificially removed by the instrumentation process.
Therefore, the instrumented system is deemed
indistinguishable from the original for system testing.

D. Experimental Methodology
Contracts are specified for all methods of the classes and

interfaces of the target system to the maximum extent
possible and without modifying the code. This restriction is
of fundamental importance to obtain realistic results as in
practice the code would not be modified to facilitate contract
specifications at the expense of performance or simplicity.
An example would be increasing the scope of a lock by
covering more statements in the method body to satisfy
thread-safety requirements so that a more precise predicate
can be stated. Doing so has the potential of impacting the
performance of the system. In total, 1536 methods were
specified with contracts containing concurrent facets. Each
contract typically contains two clauses, for both pre- and
post-state predicates. There is, on average, 1 contract per
17.6 LOC.

The target system with contracts is compiled with the
RAC compiler and is then called the instrumented system.
All contracts were designed prior to executing any
experiments, including fault selection (see below), to avoid
biased results.

The observability and diagnosability of the instrumented
version of the system is measured using injected concurrency
related faults, which may be detected through assertion
violations. The faults to be injected are real and retrieved
from Juniper’s bug database according to the following
criteria:
1. It is a concurrency related fault (deadlock or race

condition)
2. It is reproducible in the production system (i.e. detected by

the standard test suite)
3. It was originally discovered during system testing
4. It is located in the router driver subsystem or on a directly

connected client so that the failure is detected due to the
erroneous behaviour of the router driver subsystem

5. It was originally discovered during a period of time in
which no significant new functionality was added to the
router driver subsystem.

Points 1 and 2 above are self-explanatory. Point 3 is
necessary to exclude faults reported by developers during
development as our focus is system testing. Such faults are
discovered during coding and developers have the habit of
filing reports to keep track of their development activities.

Point 4 is necessary to limit the scope of the study to the
subsystem we selected for our empirical work and keep the
effort of the study to a reasonable level. Faults located in
directly connected clients are eligible since some locks need
to (or must not) be acquired prior to executing operations in
the router driver subsystem. It is expected that such faults be
detected by the contracts of the methods in the interface
objects. Point 5 is required so that the contracts used to
specify the subsystem remain valid (i.e., they do not need to
be changed) in order to inject a fault present in an earlier
version of the system. This is not merely a matter of effort in
contract updating but a requirement to allow for the proper
analysis of the results: the target system remains the same
throughout the experiment, with the exception of the injected
fault.

The experimental procedure is as follows:
1. Select a fault satisfying the criteria above and inject it in

the instrumented and the production versions of the
system.

2. Run both versions of the system through the standard test
suite; the instrumented version should execute in a non-
fatal assertion checking mode. If both versions of the
system exhibit failures on the same test cases, proceed to
step 3. Otherwise go to step 4.

3. Run the instrumented version of the system through the
standard test suite in regular mode (i.e., with assertion
violations reported via thrown exceptions)
a. If an assertion violation occurs, register the

occurrence and calculate the distance between the
violated contract and the fault and go to step 4.

b. If an assertion violation does not occur, update the
contracts, if possible, to detect the fault and restart
step 3.

c. If it is determined that the fault cannot be detected
through a contract violation, record this occurrence
and go to step 4.

4. Go to the next fault and go to step 1. If there are no more
faults, stop.

The decision to retrieve faults from the bug database
serves two purposes: it eliminates the human factor in the
fault selection process and it ensures that the faults are
representative of realistic faults.

There is still the risk that such faults do not represent the
complete spectrum of possible types of concurrency related
faults. However, given the complexity of the system under
test with respect to concurrency control (i.e. a transactional
system responding to asynchronous events from devices and
users with a high degree of parallelism), the fact that the
system has been through multiple releases to a variety of
customers and is operational in several networks supporting
many different scenarios, it is reasonable to state that the vast
majority of faults in the system have already been found.
This conclusion is only possible because the feature set of
the system under test did not change over the period
(releases) in which the faults were discovered (see point 5 of
the selection criteria above).

Regarding the iteration in step 3.b above, it is an error
free task to modify a contract (or a set of contracts) to detect
a specific fault since the correct system in combination with

the standard test suite can be used to determine the validity
of the contract. Such iteration will enable the determination
of an upper bound in contract fault detection effectiveness
though in practice we can expect the effectiveness to be
lower, to an extent depending on the developers’ skills.

Success is defined by the ability of the instrumented
system in detecting the injected faults and by the ease in
diagnosing it. The first factor is measured by the system
observability and the second by the size of the diagnosis
effort in terms of the distance between the fault and the
contract that detected it. The higher the observability and the
lower the diagnosis effort, the more successful contracts are
as test oracles for concurrency related faults.

E. Results
A total of 10 faults satisfied the experimental criteria

defined above. All faults were detected by contracts, thus
amounting to 100% observability. Table I summarizes the
results. Race condition faults are detected by method
specification clauses in the concurrent facet. Faults caused
by lock ordering issues are detected by the lock_order
type specification clause.

TABLE I. SUMMARY OF CONCURRENT FAULTS DETECTED BY
CONTRACTS WITH AND WITHOUT UPDATES.

 Contract
unchanged

Contract
updated

Race condition 6 0
Lock order 2 0
Race condition & lock order 1 1

Table I allows us to derive two important conclusions.

First that the vast majority of concurrency related faults
(80%) are related to race conditions since only 20% of them
are exclusively associated with lock ordering issues. One
must notice that this does not mean that deadlocks represent
only 20% of concurrency related faults since deadlocks can
be caused by race conditions in the evaluation of wait
conditions. This only means that the effort to specify race
condition related behaviour is significantly more likely to
offer a better return in terms of fault detection than the effort
spent on specifying lock ordering behaviour. The second
conclusion we can draw is that concurrency related contracts
written by a well-trained person (the first author was
responsible for designing and implementing the majority of
the subsystem under test) are rarely incorrect or incomplete
since only one fault required a contract to be updated to
enable its detection. This is likely due to the simplicity of the
concurrency clauses (compared to functional clauses) since
one simply specifies if an object is expected to be thread-safe
or if a lock is expected to be (or not to be) acquired by a
thread as well as having a separate facet dedicated for such
clauses. This allows us to conclude that the likelihood for
contracts written based on design information to detect faults
is very high (90% in this study).

Regarding diagnosability, all faults have a distance
measure equal to 1, meaning that a fault is either located
immediately preceding the detecting contract or in the same
method that detected the fault in its post-state, in such a way

that no other methods needed to be investigated to determine
the cause of the fault. A typical example of the former case is
missing to acquire a lock via a synchronized block prior to
calling the method with the detecting contract. A typical
example of the latter is missing to make a method
synchronized. This result may seem surprising as one
would expect at least some cases of nested method calls with
the innermost method contract detecting the failure of the
outermost method in acquiring (or ensuring the release of) a
lock to occur. Such cases would have a diagnosis effort with
distance greater than 1. This is likely due to the small
number of injected faults.

Despite the lack of data regarding diagnosability of
concurrency related faults in the absence of contract
instrumentation, it is a well-known fact that such faults are
difficult to diagnose. The use of contracts as test oracles is
therefore clearly expected to help since our results show that
faults are located very close to the detecting contract.

Though we used all the system-level concurrency faults
we could use in our industrial system, our fault sample
remains small and the above results will need to be
confirmed by further studies.

V. CONCLUSION
We described the challenges involved in defining

contract assertions describing both functional and concurrent
properties in concurrent systems and presented a solution
implemented with an extended version of the Java Modeling
Language (JML). Using an industrial concurrent system as
case study and actual system-level faults, we systematically
analyzed the use of contract assertions as test oracles to
detect and diagnose concurrency related faults. Results
clearly show that assertions were effective at improving
system observability and diagnosability since they were able
to detect all faults and that such faults were located in the
immediate vicinity of the assertion detecting them. Future
work will attempt to extend these results to functional faults
and replicate these results on other systems.

REFERENCES
[1] B. Meyer, "Design by Contract," IEEE Computer, vol. 25, pp. 40-52,

Oct. 1992 1992.
[2] B. H. Liskov and J. M. Wing, "A Behavioral Notion of Subtyping,"

ACM Transactions on Programming Languages and Systems, vol. 16,
pp. 1811-1841, 1994.

[3] P. America, "Inheritance and Subtyping in a Parallel Object-Oriented
Language," in European Conference on Object Oriented
Programming, 1987, pp. 234-242.

[4] P. America, "Designing an Object-Oriented Programming Language
with Behavioural Subtyping," in REX School/Workshop on
Foundations of Object-Oriented Languages, 1990, pp. 60-90.

[5] G. T. Leavens and W. E. Weihl, "Specification and Verification of
Object-Oriented Programs Using Supertype Abstraction," Acta
Informatica, vol. 32, pp. 705-778, 1995.

[6] K. Dhara and G. T. Leavens, "Forcing Behavioural Subtyping Through
Specification Inheritance," in International Conference on Software
Engineering, 1996, pp. 258-267.

[7] K. Arnold, et al., The Java Programming Language, 3rd ed. Reading,
MA: Addison-Wesley, 2000.

[8] G. T. Leavens, et al., "Preliminary design of JML: A behavioral
interface specification language for Java," ACM SIGSOFT Software
Engineering Notes, vol. 31, pp. 1-38, 2006.

[9] G. T. Leavens, et al. (2009, JML Reference Manual. Available:
http://www.eecs.ucf.edu/~leavens/JML/jmlrefman/jmlrefman_toc.html

[10] Y. Cheon and G. T. Leavens, "A Runtime Assertion Checker for the
Java Modeling Language (JML) " presented at the International
Conference on Software Engineering Research and Practice (SERP
'02), Las Vegas, Nevada, 2002.

[11] W. Araujo, et al., "Concurrent Contracts for Java in JML," presented at
the 19th International Symposium on Software Reliability
Engineering, ISSRE, Seattle, WA, United states, 2008.

[12] C. Flanagan and S. N. Freund, "Atomizer: a dynamic atomicity
checker for multithreaded programs," in ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages, 2004, pp. 256-
267.

[13] R. Agrawal, et al., "Optimized Run-Time Race Detection And
Atomicity Checking Using Partial Discovered Types," presented at the
20th IEEE/ACM International Conference on Automated Software
Engineering, Long Beach, CA, United states, 2005.

[14] S. Park, et al., "Falcon: fault localization in concurrent programs,"
presented at the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, Cape Town, South Africa, 2010.

[15] E. Rodríguez, et al., "Extending JML for Modular Specification and
Verification of Multi-threaded Programs," presented at the 19th
European Conference on Object-Oriented Programming, ECOOP
2005, Glasgow, United kingdom, 2005.

[16] W. Araujo, et al., "Enabling the Runtime Assertion Checking of
Concurrent Contracts for the Java Modeling Language," presented at
the 33rd ACM/IEEE International Conference on Software
Engineering (ICSE '11), Honolulu, HI, United states, 2011.

[17] B. Jacobs, et al., "Safe concurrency for aggregate objects with
invariants," in IEEE International Conference on Software
Engineering, 2005, pp. 137-147.

[18] P. Nienaltowski and B. Meyer, "Contracts for concurrency," in
International Symposium on Concurrency, Real-Time and Distribution
in Eiffel-like Languages, 2006.

[19] V. Arslan, et al., "SCOOP - concurrency made easy," in Dependable
Systems: Software, Computing, Networks - Research Results of the
DICS Program. vol. 4028, B. Meyer, et al., Eds., ed: Springer Verlag,
Heidelberg, Germany, 2006, pp. 82-102.

[20] A. Greenhouse, et al., "Observations on the assured evolution of
concurrent Java programs," Science of Computer Programming, vol.
58, pp. 384-411, 2005.

[21] S. Qadeer and D. Wu, "KISS: Keep it simple and sequential,"
presented at the 2004 ACM SIGPLAN Conference on Programming
Language Design and Implementaion (PLD'04), Washington, DC,
United states, 2004.

[22] T. Elmas, et al., "VYRD: VerifYing concurrent programs by runtime
refinement-violation detection," presented at the 2005 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 05, Chicago, IL, United states, 2005.

[23] C. Flanagan and S. N. Freund, "FastTrack: efficient and precise
dynamic race detection," Commun. ACM, vol. 53, pp. 93-101, 2010
2010.

[24] P. Ratanaworabhan, et al., "Detecting and tolerating asymmetric
races," SIGPLAN Not., vol. 44, pp. 173-184, 2009 2009.

[25] Y. Le Traon, et al., "Design by contract to improve software
vigilance," IEEE Transactions on Software Engineering, vol. 32, pp.
571-86, Aug. 2006 2006.

[26] B. Baudry, et al., "Building trust into OO components using a genetic
analogy," presented at the ISSRE 2000 International Symposium on
Software Reliability Engineering, Los Alamitos, CA, USA, 2000.

[27] L. C. Briand, et al., "Investigating the Use of Analysis Contracts to
Improve the Testability of Object-Oriented Code," Software - Practice
and Experience, vol. 33, pp. 637-672, June 2003 2003.

[28] W. Araujo, "Assessing the Effectiveness of Design Contracts as Test
Oracles in the Detection of Faults in Concurrent Object-Oriented
Software," Ph. D. Doctoral Thesis, Department of Systems and
Computer Engineering, Carleton University, Ottawa, 2010.

