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Abstract—The computational demands of multimedia data
processing are steadily increasing as consumers call for pro-
gressively more complex and intelligent multimedia services.
New multi-core hardware architectures provide the required
resources, but writing parallel, distributed applications remains
a labor-intensive task compared to their sequential counter-part.
For this reason, Google and Microsoft implemented their respec-
tive processing frameworks MapReduce [10] and Dryad [19], as
they allow the developer to think sequentially, yet benefit from
parallel and distributed execution. An inherent limitation in the
design of these batch processing frameworks is their inability to
express arbitrarily complex workloads. The dependency graphs
of the frameworks are often limited to directed acyclic graphs,
or even pre-determined stages. This is particularly problematic
for video encoding and other algorithms that depend on iterative
execution.

With the Nornir runtime system for parallel programs [39],
which is a Kahn Process Network implementation, we addressed
and solved several of these limitations. However, it is more
difficult to use than other frameworks due to its complex pro-
gramming model. In this paper, we build on the knowledge gained
from Nornir and present a new framework, called P2G, designed
specifically for developing and processing distributed real-time
multimedia data. P2G supports arbitrarily complex dependency
graphs with cycles, branches and deadlines, and provides both
data- and task-parallelism. The framework is implemented to
scale transparently with available (heterogeneous) resources, a
concept familiar from the cloud computing paradigm. We have
implemented an (interchangeable) P2G kernel language to ease
development. In this paper, we present a proof of concept
implementation of a P2G execution node and some experimental
examples using complex workloads like Motion JPEG and K-
means clustering. The results show that the P2G system is a
feasible approach to multimedia processing.

I. INTRODUCTION

Live, interactive multimedia services are steadily growing

in volume. Interactively refined video search, dynamic par-

ticipation in video conferencing systems and user-controlled

views in live media transmissions are a few examples of

features that future consumers will expect when they consume

multimedia content. New usage patterns, such as extracting

features in pictures to identify objects, calculation of 3D

depth information from camera arrays, or generating free-

view videos from multiple camera sources in real-time, add

further magnitudes of processing requirements to already

computationally intensive tasks like traditional video encoding.

This fact is further exacerbated by the advent of high-definition

videos.

Many-core systems, such as graphic processor units (GPUs),

digital signal processors (DSPs) and large scale distributed

systems in general, provide the required processing power, but

taking advantage of the parallel computational capacity of such

hardware is much more complex than single-core solutions. In

addition, heterogeneous hardware requires individual adapta-

tion of the code, and often involve domain specific knowledge.

All this places additional burdens on the application developer.

As a consequence, several frameworks have emerged that aim

at making distributed application development and processing

easier, such as Google’s MapReduce [10] and Microsoft’s

Dryad [19]. These frameworks are limited by their design

for batch processing of large amounts of data, with few

dependencies across a large cluster of machines. Modifications

and enhancements that address bottlenecks [8] together with

support for new types of workloads and additional hard-

ware exist [9], [16], [31]. It is also worth mentioning that

new languages for current batch frameworks have been pro-

posed [29], [30]. However, the development and processing of

distributed multimedia applications is inherently more difficult.

Multimedia applications also have stricter requirements for

flexibility. Support for iterations is essential, and knowledge of

deadlines is often imperative. The traditional batch processing

frameworks do not support this.

In our Nornir runtime system for parallel processing [39],

we addressed many of the shortcomings of the batch process-

ing frameworks. Nornir is based on the idea of Kahn Process

Networks (KPN). Compared to MapReduce-like approaches,

Nornir adds support for arbitrary processing graphs, determin-

istic execution, etc. However, KPNs are designed with some

unrealistic assumptions (like unlimited queue sizes), and the

Nornir programming model is much more complex than that

of frameworks like MapReduce and Dryad. It demands that

the application developer establishes communication channels

manually to form the dependency graph.

In this paper, we expand on our visions and present our

initial ideas of P2G. It is a completely new framework for

distributed real-time multimedia processing. P2G is designed



to work on continuous flows of data, such as live video

streams, while still maintaining the ability to support batch

workloads. We discuss the initial ideas and present a proof-

of-concept prototype1 running on x86 multi-core machines.

We present experimental results using concrete multimedia

examples. Our main conclusion is that the P2G approach is a

step in the right direction for development and execution of

complex parallel workloads.

II. RELATED WORK

A lot of research has been dedicated to addressing the

challenges introduced by parallel and distributed program-

ming. This has led to the development of a number of

tools, programming languages and frameworks to ease the

development effort.

For example, several solutions have emerged for simplifying

distributed processing of large quantities of data. We have

already mentioned Google’s MapReduce [10] and Microsoft’s

Dryad [19]. In addition, you have IBM’s System S and ac-

companying programming language SPADE [13]. Yahoo have

also implemented a programming language with their PigLatin

language [29], other notable mentions for increased language

support is Cosmos [26], Scope [6], CIEL [25], SNAPPLE [40]

and DryadLINQ [41]. The high-level languages provide easy

abstractions for the developers in an environment where mis-

takes are hard to correct.

Dryad, Cosmos and System S have many properties in

common. They all use directed graphs to model computations

and execute them on a cluster. System S also supports cycles

in graphs, while Dryad supports non-deterministic constructs.

However, not much is known about these systems, since no

open implementations are freely available. MapReduce on the

other hand has become one of the most cited paradigms for

expressing parallel computations. While Dryad and System

S use a task parallel model, MapReduce uses a data-parallel

model based on keys and values. There are several imple-

mentations of MapReduce for clusters [1], multi-core [31],

the Cell BE architecture [9], and also for GPUs [16]. Map-

Reduce-Merge [8] adds a merge step to process data rela-

tionships among heterogeneous data sets efficiently, operations

not directly supported by the original MapReduce model. In

Oivos [35], the same issues are addressed, but in addition, this

system provides a more expressive, declarative programming

model. Finally, reducing the layering overhead of software

running on top of MapReduce is the goal of Cogset [36] where

the processing architecture is changed to increase performance.

An inherent limitation in MapReduce, Dryad and Cosmos

is their inability to model iterative algorithms. In addition,

the rigid MapReduce semantics do not map well to all types

of problems [8], which may lead to unnaturally expressed

solutions and decreased performance [38]. The limited support

for iterative algorithms has been mitigated in HaLoop [5], a

fork of Hadoop optimized for batch processing of iterative

1The P2G source code and workload examples are available for download
from http://www.p2gproject.org/.

Figure 1. Overview of nodes in the P2G system.

algorithms where data is kept local for future iterations of the

MR steps. However, the programming model of MapReduce

is designed for batch processing huge datasets, and not well

suited for multimedia algorithms. Finally, Google’s patent on

MapReduce [11] may prompt commercial actors to look for

an alternative framework.

KPN-based frameworks are one such alternative. KPNs

support arbitrary communication graphs with cycles and are

deterministic. However, in practice, very few general-purpose

KPN runtime implementations exist. Known implementations

include the Sesame project [34], the process network frame-

work [28], YAPI [22] and our own Nornir [39]. These frame-

works have several benefits, but for application developers, the

KPN model has some challenges, particularly in a distributed

scenario. To mention some issues, a distributed version of a

KPN implementation requires a distributed deadlock detec-

tion and a developer must specify communication channels

between the processes manually.

An alternative framework based on a process network

paradigm is StreamIt [15], which comprises a language and a

runtime system for simplifying the implementation of stream

programs described by a graph that consists of computational

blocks (filters) with a single input and output. Filters can be

combined in fork-join patterns and loops, but must provide

bounds on the number of produced and consumed messages,

so a StreamIt graph is actually a synchronous data-flow

process network [23]. The compiler produces code that can

make use of multiple machines or CPUs, whose number is

specified at compile-time, i.e., a compiled application cannot

adapt to resource availability.

The processing and development of distributed multime-

dia applications is inherently more difficult than traditional

sequential batch applications. Multimedia applications have

strict requirements and knowledge of deadlines is necessary,

especially in a live scenario. For multimedia applications that

enable live communication, iterative processing is essential.

Also, elastic scaling with the available resources becomes

imperative when the workload, requirements or machine re-

souces change. Thus, all of the existing frameworks have some

short-comings that are difficult to address, and the traditional

batch processing frameworks simply come up short in our

multimedia scenario. Next, inspired by the strengths of the

different approach, we present our ideas for a new framework

for distributed real-time multimedia processing.



III. BASIC IDEA

The idea of P2G was born out of the observation that

most distributed processing framework lack support for real-

time multimedia workloads, and that data or task parallelism,

two orthogonal dimensions for expressing parallelism, is often

sacrificed in existing frameworks. With data parallelism, mul-

tiple CPUs perform the same operation over multiple disjoint

data chunks. Task parallelism uses multiple CPUs to perform

different operations in parallel. Several existing frameworks

optimize for either task or data parallelism, not both. In

doing so, they can severely limit the ability to express the

parallelism of a given workload. For example, MapReduce

and its related approaches provide considerable power for

parallelization, but restrict runtime processing to the domain of

data parallelism [12]. Functional languages such as Erlang [3]

and Haskell [18] and the event-based SDL [21], map well

to task parallelism. Programs are expressed as communicating

processes either through message passing or event distribution,

which makes it difficult to express data parallelism without

specifying a fixed number of communication channels.

In our multimedia scenario, Nornir improves on many of the

shortcomings of the traditional batch processing frameworks,

like MapReduce and Dryad. KPNs are deterministic; each

execution of a process network produces the same output

given the same input. KPNs support also arbitrary com-

munication graphs (with cycles/iterations), while frameworks

like MapReduce and Dryad restrict application developers

to a parallel pipeline structure and directed acyclic graphs

(DAGs). However, Nornir is task-parallel, and data-parallelism

must be explicitly added by the programmer. Furthermore,

as a distributed, multi-machine processing framework, Nornir

still has some challenges. For example, the message-passing

communication channels, having exactly one sender and one

receiver, are modeled as infinite FIFO queues. In real-life

distributed implementations, however, queue length is limited

by available memory. A distributed Nornir implementation

would therefore require a distributed deadlock detection al-

gorithm. Another issue is the complex programming model.

The KPN model requires the application developer to specify

the communication channels between the processes manually.

This requires the developer to think differently than for other

distributed frameworks.

With P2G, we build on the knowledge gained from devel-

oping Nornir and address the requirements from multimedia

workloads, with inherent support for deadlines. A particu-

larly desirable feature for processing multimedia workloads

includes automatic combined task and data parallelism. Intra-

frame prediction in H.264 AVC, for example, introduces many

dependencies between sub-blocks of a frame, and together

with other overlapping processing stages, these operations

have a high potential for benefiting from both types of par-

allelism. We demonstrated the potential in earlier work with

Nornir, whose deterministic nature showed great paralleliza-

tion potential in processing arbitrary dependency graphs.

Multimedia algorithms being iterative by nature exhibit

many pipeline parallel opportunities. Exploiting them are hard

because intrinsic knowledge of fine-grained dependences are

required, and structuring programs in such a way that pipeline

parallelism can be used is difficult. Thies et al. [33] wrote

an analysis tool for finding parallel pipeline opportunities by

evaluating memory accesses assuming that the behaviour is

stable. They evaluated their system on multimedia algorithms

and gained significantly increased parallelism by utilizing the

complex dependencies found. In the P2G framework, applica-

tion developers model data and task dependencies explicitly,

and this enable the runtime to automatically detect and take

full advantage of all parallel opportunities without manual

intervention.
A major source of non-determinism in other languages and

frameworks lies in the arbitrary order of read and write opera-

tions from and to memory. The source of this non-deterministic

behavior can be removed by adopting strict write-once seman-

tics for writing to memory [4]. Languages that take advantage

of the concept of single assignment include Erlang [3] and

Haskell [18]. It enables schedulers to determine when code

depending on a memory cell is runnable. This is a key concept

that we adopted for P2G. While write-once-semantics are well-

suited for a scheduler’s dependency analysis, it is not straight-

forward to think about multimedia algorithms in the functional

terms of Erlang and Haskell. Multimedia algorithms tend to be

formulated in terms of iterations of sequential transformation

steps. They act on multi-dimensional arrays of data (e.g.,

pixels in a picture) and provide frequently very intuitive

data partitioning opportunities (e.g., 8x8-pixel macro-blocks

of a picture). Prominent examples are the computation-heavy

MPEG-4 AVC encoding [20] and SIFT [24] pipelines. Both are

also examples of algorithms whose subsequent steps provide

data decomposition opportunities at different granularities and

along different dimensions of input data. Consequently, P2G

should allow programmers to think in terms of fields without

loosing write-once-semantics.
Flexible partitioning requires the processing of clearly dis-

tinct data units without side-effects. The idea adopted for P2G

is to use kernels as in stream processing [15], [27]. Such

a kernel is written once and describes the transformation of

multi-dimensional fields of data. Where such a transformation

is formulated as a loop of equal steps, the field should instead

be partitioned and the kernel instantiated to achieve data-

parallel execution. Each of these data partitions and tasks can

then be scheduled independently by the schedulers, which can

analyze dependencies and guarantee fully deterministic output

independent of order due to the write-once semantics of fields.
Together, these observations determined four basic ideas for

the design of P2G:

• The use of multi-dimensional fields as the central con-

cept for storing data in P2G to achieve straight-forward

implementations of complex multimedia algorithms.

• The use of kernels that process slices of fields to achieve

data decomposition.

• The use of write-once semantics to such fields to achieve

deterministic behavior.



• The use of runtime dependency analysis at a granularity

finer than entire fields to achieve task decomposition

along with data decomposition.

Within the boundaries of these basic ideas, P2G should be

easily accessible for programmers who only need to write

isolated, sequential pieces of code embedded in kernel def-

initions. The multi-dimensional fields offer a natural way to

express multimedia data, and provide a direct way for kernels

to fetch slices of a field in as fine a granularity as possible,

supporting data parallelism.

P2G is designed to be language independent, however, we

have defined a C-like language that captures many of P2G’s

central concepts. As such, the P2G language is inspired by

many existing languages. In fact, Cray’s Chapel [7] language

antedates many of P2G’s features in a more complete manner.

P2G adds, however, write-once semantics and support for

multimedia workloads. Furthermore, P2G programs consist

of interchangeable language elements that formulate data

dependencies between implicitly instantiated kernels, which

are (currently) written in C/C++.

The biggest deviation from most other modern language

designs is that the P2G kernel language makes both message

passing and parallelism implicit and allows users to think in

terms of sequential data transformations. Furthermore, P2G

supports deadlines, which allows scheduling decisions such as

termination, branching and the use of alternative code paths

based on runtime observations.

In summary, we have opted for an idea that allows pro-

grammers to focus on data transformations in a sequential

manner, while simultaneously providing enough information

for dynamically adapting the data and task parallelization.

As an end result of our considerations. P2G’s fields look

mostly like global multi-dimensional arrays in C, although

their representation in memory may deviate, i.e., they need not

be placed contiguously in the memory of a single node, and

may even be distributed across multiple machines. Although

this looks contrary to our message-based KPN approach used

in Nornir, it maps well when slices of fields are interpreted

as messages and the run-queues of worker threads as KPN

channels. An obvious difference is that fields can be read as

often as necessary.

IV. ARCHITECTURE

As shown in figure 1, the P2G architecture consists of

a master node and an arbitrary number of execution nodes.

Each execution node reports its local topology (a graph of

multi-core and single-core CPUs and GPUs, connected by

various kinds of buses and other networks) to the master node,

which combines this information into a global topology of

available resources. As such, the global topology can change

during runtime as execution nodes are dynamically added and

removed to accommodate for changes in the global load.

To maximize throughput, P2G uses a two-level scheduling

approach. On the master node, we have a high-level sched-

uler (HLS), and on the execution node(s), we use a low-

level scheduler (LLS). The HLS can analyze a workloads

Figure 2. Intermediate implicit static dependency graph

Figure 3. Final implicit static dependency graph

store and fetch statements, from which it can generate an

intermediate implicit static dependency graph (see figure 2)

where edges connecting two kernels through a field can be

merged, circumventing the need for a vertex representing the

field (as seen in figure 3). From the intermediate graph, the

HLS can then derive a final implicit static dependency graph

(see figure 3). The HLS can then use a graph partitioning [17]

or search based [14] algorithm to partition the workload into

a suitable number of components that can be distributed to,

and run, on the resources available in the topology. Using

instrumentation data collected from the nodes executing the

workload the final graph can be weighted with this profiling

data during runtime. The weighted final graph can then be

repartitioned, with the intent of improving the throughput in

the system, or accommodate for changes in the global load.

Given a partial workload (such as partition A from figure 3),

an LLS at an execution node is responsible for maximizing lo-

cal scheduling decisions. We discuss this further in section V,

but figure 4 shows how the LLS can combine tasks and data

to minimize overhead introduced by P2G, and take advantage

of specialized hardware, such as GPUs.

This idea of using a two level scheduling approach is not

new. It has also been considered by Roh et al. [32], where they

have performed simulations on parallel scheduling decisions

for instruction sets of a functional language. Simple workloads

are mapped to various simulated architectures, using a "merge-



up" algorithm, which is equivalent to our LLS, and "merge-

down" algorithm, which is equivalent to our HLS. These

algorithms cluster instructions in such a way that parallelism

is not limited, their conclusion is that utilizing a merge-down

strategy often is better.

Data distribution, reporting, and other communication pat-

terns is achieved in P2G through an event-based, distributed

publish-subscribe model. Dependencies between components

in a workload are deterministically derived from the code

and the high-level schedulers partitioning decisions, and direct

communication occurs.

As such, P2G relies on its combination of a HLS, LLS,

instrumentation data and the global topology to make best

use of the performance of several heterogeneous cores in a

distributed system.

V. PROGRAMMING MODEL

The programming model of P2G consists of two central

concepts, the implicit static dependency graph (figures 2

and 3) and the dynamically created directed acyclic depen-

dency graph (DC-DAG) (figure 4). We have also developed a

kernel language (see figure 5), to make it easier to develop

applications using the P2G programming model, though we

consider this language to be interchangeable.

The example we use throughout this discussion consists of

two primary kernels: mul2 and plus5. These two kernels form

a pipeline where mul2 first multiples a value by 2 and stores

this data, which plus5 then fetches and increases by 5, mul2

then fetches the data stored by plus5, and so on. The print

kernel runs orthogonally to these two kernels and fetches and

writes the data they have produced to cout. In combination,

these three kernels form a cycle. The kernel init runs only

once and writes some initial data for mul2 to consume. The

kernels operate on two 1-dimensional, 5 element fields. The

print kernel writes {10, 11, 12, 13, 14}, {20, 22, 24, 26, 28} for

the first age and {25, 27, 29, 31, 33}, {50, 54, 58, 62, 66} for

the second, etc (as seen in figure 4). As such, the first iteration

produces the data: {10, 11, 12, 13, 14}, {20, 22, 24, 26, 28}

and {25, 27, 29, 31, 33}, and the second iteration produces

the data: {50, 54, 58, 62, 66} and {55, 59, 63, 67, 71}, etc.

Since there is no termination condition for this program it runs

indefinitely.

A. Dependency graphs

The intermediate implicit static dependency graph (as seen

in figure 2) is derived from the interaction between fields and

kernel definitions, more precisely from the fetch and store

statements of a kernel definition. This intermediate graph can

be further refined by merging the edges of kernels linked

through a field vertex, resulting in a final implicit static

dependency graph, as depicted in figure 3. This final graph

can serve as input to the HLS, which can use it to determine

how best to partition the workload given a global topology.

The graph can be further weighted using instrumentation data,

to serve as input for repartitioning. It is important to note

that these weighted graphs can serve as input to static offline

analysis. For example, it could be used as input to a simulator

to best determine how to initially configure a workload, given

various global topology configurations.

During runtime, the intermediate implicit static dependency

graph is expanded to form a dynamically created directed

acyclic dependency graph, as seen in figure 4. This expansion

from a cyclic graph to a directed acyclic graph occurs as a

result of our write-once semantics. As such, we can see how

P2G is designed to unroll loops without introducing implicit

barriers between iteration. We have chosen to call each such

unrolled loop an Age. The LLS can then use the DC-DAG

to combine tasks and data to reduce overhead introduced by

P2G and to take advantage of specialized hardware, such as

GPUs. It can then try different combinations of these low-level

scheduling decisions to improve the throughput of the system.

We can see how this is accomplished in figure 4. When

moving from Age=1 to Age=2, we can see how the LLS has

made a decision to reduce data parallelity. In P2G, kernels

fetch slices of data, and initially mul2 was defined to work on

each single field entry in parallel, but in Age=2, the LLS has

decreased the granularity of the fetch statement to encompass

the entire field. It could also have split the field in two, leading

to two kernel instances of mul2, working on disparate sets of

the field.

Moving from Age=2 to Age=3, we see how the LLS

has made a decision to decrease the task parallelity. This is

possible because mul2 and plus5 effectively form a pipeline,

information that is available from the static graphs. By com-

bining these two tasks, the individual store operations of the

tasks are deferred until the data has been fully processed by

each task. If the print kernel was not present, storing to the

intermediate field m_data could be circumvented in its entirety.

Finally, moving from Age=3 to Age=4, we can see how

a decision to decrease both task and data parallelity has

been taken. This renders this single kernel instance effectively

instance into a classical for-loop, working on each data el-

ement of the field, with each task (mul2, plus5) performed

sequentially on the data.

P2G makes runtime adjustments dynamically to both data

and task parallelism based on the possibly oscillating resource

availability and the reported performance monitoring.

B. Kernel language

From our experience with developing Nornir, we came

to the realization that expressing workloads in a framework

capable of supporting such complex graphs without a high-

level language is a difficult task. We have therefore developed

a kernel language. An implementation of a simple workload is

outlined in figure 5, with a C++ equivalent listed in figure 6.

In the current version of our system, P2G is exposed to the

developer through this kernel language. The language itself

is not an integral part and can be replaced easily. However, it

exposes several foundations of the P2G design. Most important

are the kernel and field definitions, which describe the code

and interaction patterns in P2G.



Figure 4. Dynamically created directed acyclic dependency graph (DC-DAG)

Kernel definitions:
init:

  local int32[] values;

  %{

    int i = 0;

    for( ;i < 5; ++i )

    {

      put( values, i+10, i );

    }

  %}

  store m_data(0) = values;

mul2:

  age a;

  index x;

  local int32 value;

  fetch value = m_data(a)[x];

  %{

    value *= 2;

  %}

  store p_data(a)[x] = value;

print:

  age a;

  local int32[] m, p;

  

  fetch m = m_data(a);

  fetch p = p_data(a);

  

  %{

  for(int i=0; i < extent(m, 0);)

    cout << get(m, i++) << " ";

  cout << endl;

  for(int i=0; i < extent(p, 0);)

    cout << get(p, i++) << " ";

  cout << endl;

%}

plus5:

  age a;

  index x;

  local int32 value;

  fetch value = p_data(a)[x];

  %{

    value += 5;

  %}

  store m_data(a+1)[x] = value;

Field definitions:

int32[] p_data age;

int32[] m_data age;

Figure 5. Kernel and field definitions

A kernel definition’s primary purpose is to describe the

required interaction of a kernel instance with an arbitrary

number of fields (holding the application data) through the

fetch and store statements. As such, a field serves as an

interaction point for kernel definitions, as can be seen in

figure 2.

An important aspect of multimedia workloads is the ability

to express deadlines, where it does not make sense to encode

a frame if the playback has moved past that point in the

void print( int *data, int num )

{

for( int i = 0; i < num; ++i )

std::cout << data[i] << " ";

std::cout << std::endl;

}

int main()

{

int m_data[5] = { 10, 11, 12, 13, 14 };

int p_data[5];

while( true )

{

for( int i = 0; i < 5; ++i )

p_data[i] = m_data[i] * 2;

print( m_data, 5 );

print( p_data, 5 );

for( int i = 0; i < 5; ++i )

m_data[i] = p_data[i] + 5;

}

return 0;

}

Figure 6. C++ equivalent of mul/sum example

video-stream. Consequently, we have implemented language

support for expressing deadlines. In principle, a deadline gives

the application developer the option of defining a global

timer: timer t1. This timer can then be polled, and updated,

from within a kernel definition, for example t1+100ms or

t1 = now. Given a condition based on a deadline such as

t1+100ms, a timeout can occur and an alternate code-path

can be executed. Such an alternate code-path is executed by

storing to a different field then in the primary path, leading to

new dependencies and new behavior. Currently, we have basic

support for expressing deadlines in the kernel language, but

the semantics of these expressions require refinement, as their

implications can be considerable.

Fields in P2G have a number of properties, including a type

and a dimensionality. Another property is, as mentioned above,

aging, which allows kernels to be iterative while maintaining

write-once semantics in such cyclic execution. Aging enables

unique storage to the same position in a field several times,



as long as the age increases for each store operation (as seen

in figure 4). In essence, this adds a dimension to the field

and makes it possible to accommodate iterative algorithms.

Additionally, it is important to realize that fields are not

connected to any single node, and can be fully localized or

distributed across multiple execution nodes (as seen in figure

1).

In defining the interaction between kernels and fields, it is

encouraged that the programmer expresses the finest possi-

ble granularity of kernel definitions, and, likewise, the most

precise slices possible for the kernel within the field. This is

encouraged because it provides the low-level scheduler more

control over the granularity of task and data decomposition.

Aided by instrumentation data, it can reduce scheduling over-

head by combining several instances of a kernel that process

different data, or several instances of different kernels that

process data in sequence (as seen in figure 4). The scheduler

makes its decisions based on the implicit static dependency

graph and instrumentation data.

C. Runtime

Following from the previous discussions, we can extrapolate

the concept of kernel definitions to kernel instances. A kernel

instance is the unit of code that is executed during runtime,

and the number of kernel instances executed in parallel for a

given kernel definition depends on its fetch statements.

To clarify, a kernel instance works on an arbitrary number of

slices of fields, depending on the number of fetch statements

of the kernel definition. For example, looking at figure 4 and

5, we can see how the mul2 kernel, given its fetch statement on

m_data with age=a and index=x fetches only a single element

of the data. Thus, since the m_data field consists of five

data elements, this means that P2G can execute a maximum

possible x kernel instances simultaneously per age, giving a*x

mul2 kernel instances. Though, as we have seen, this number

can be decreased by the scheduler making mul2 work over

larger slices of data from m_data.

With P2G we support implicit resizing of fields, this can

be witnessed by looking at the kernel definition of print in

figure 5. Initially, the extents of m_data and p_data are not

defined, as such, with each iteration of the for-loop in init

the local field values is resized locally, leading to a resize

of the global field m_data when values is stored to it. These

extents are then propagated to the respective fields impacted

by this resize, such as p_data. Following the discussion from

the previous paragraph, such an implicit resize can lead to

additional kernel instances being dispatched.

It is worth noting that a kernel instance is only dispatched

when all its dependencies are fulfilled, i.e., that the data it

fetches has been stored to the respective fields and elements.

Looking at figure 4 and 5 again, we can see that mul2 stores

its result to p_data with age=a and index=x. This means that

once mul2 has stored its results to p_data with index=2 and

age=0, this means that the kernel instance plus5 with the fetch

statement fetch(0)[2] can be dispatched. In our system, each

kernel instance is only dispatched once, due to our write-once

semantics. To summarize, the print kernel instance working

on age=0 becomes runnable when all the elements of m_data

and p_data for age=0 have been stored. Once it has become

runnable, it is dispatched and runs only once.

VI. PROTOTYPE IMPLEMENTATION

To verify the feasibility of the P2G framework presented

in this paper, we have implemented a prototype version. The

prototype consists of a compiler for the kernel language and

a runtime that can execute P2G programs on multi-core linux

machines.

A. Compiler

Programs written for the P2G system are designed to be

platform independent and feature native blocks of code written

in C or C++. Heterogeneous systems are specifically targeted,

but many of these require a custom compiler for the native

blocks, such as nVIDIA’s nvcc compiler for the CUDA system

and IBM’s XL compiler for the Cell Broadband Engine. We

decided to compile P2G programs into C++ files, which can be

further compiled and linked with native code blocks, instead

of generating binaries directly. This approach gives us less

control of the resulting object code, but we gain the flexibility

and sophisticated optimization of the native compilers, result-

ing in a lightweight P2G compiler. The P2G compiler works

also as a compiler driver for the native compiler and produces

complete binaries for programs that run directly on the target

system.

B. Runtime

The runtime prototype implements the basic features of a

P2G execution node, including multi-dimensional field sup-

port, implicit resizing of fields, instrumentation and parallel

execution of kernel instances on multiple processors using

the implicit dependency graph formed by kernel definitions.

However, at the time of writing, the prototype runtime does

not yet have a full implementation of deadline expressions,

this is because the semantics of the kernel language support

for this feature is not fully defined yet.

The prototype targets a node with multiple processors. It is

designed as a push-based system using event subscriptions on

field operations. Kernel instances are executed in parallel and

produce events on store statements, which may require resize

operations. A kernel subscribes to events related to fields that

it depends on, i.e., fields referenced to by the kernels fetch

statements. When receiving such a storage event, the runtime

finds all new valid combinations of age and index variables

that can be processed as a result of the store statement, and

puts these in a per-kernel ready queue. This means that the

ready queues contain always the maximum number of parallel

instances that can be executed at any time, only limited by

unfulfilled data dependencies.

The low-level scheduler consists of a dependency analyzer

and kernel instance dispatcher. Using the implicit dependency

graph, the dependency analyzer adds new kernel instances to

a ready queue, which later can be processed by the worker



Figure 7. Overview of the K-means clustering algorithm

threads. Dependencies are analyzed in a dedicated thread

which handles events emitted from running kernel instances

that notifies on store and resize operations performed on fields.

Kernel instances are executed by a worker thread dispatched

from the ready queue. They are scheduled in an order that

prefers the execution of kernel instances with a lower age value

(older kernel instances). This ensures that no runnable kernel

instance is starved by others that have no fetch statements or

by groups of kernels that satisfy their own dependencies in

aging cycles, such as the mul2 and plus5 kernel in figure 5.

The runtime is written in C++ and uses the blitz++ [37]

library for high-performance multi-dimensional arrays. The

source code for the P2G compiler and runtime can be down-

loaded from http://www.p2gproject.org/.

VII. WORKLOADS

We have implemented a few workloads commonly used in

multimedia processing to test the prototype implementation.

The P2G kernel language is able to expose both the data and

task parallelism of the programs to the P2G system, so the

runtime is able to adapt execution of the programs to suit the

target architecture.

A. K-means clustering

K-means clustering is an iterative algorithm for cluster

analysis which aims to partition n datapoints into k clusters in

which each datapoint belongs to the cluster with the nearest

mean. As shown in figure 7, the P2G k-means implementation

consists of an init kernel, which generates n datapoints and

stores them to the datapoints field. Then, it selects k of these

datapoints randomly, as the initial means, and stores them to

the centroids field. Next, the assign kernel fetches a slice of

data, a single datapoint per kernel instance, the last calculated

centroids, and stores this datapoint to the cluster of the closest

centroids using the euclidean distance calculation. Finally,

the refine kernel fetches a cluster, calculates its new mean

and stores this information in the centroids field. The kernel

definitions of assign and refine form a loop which gradually

leads to a convergence in centroids, at which point the k-means

algorithm has completed.

B. Motion JPEG

Motion JPEG (MJPEG) is a video coding format using a

sequence of separately compressed JPEG images. The MJPEG

Figure 8. Overview of the MJPEG encoding process

4-way Intel Core i7
CPU-name Intel Core i7 860 2,8 GHz
Physical cores 4
Logical threads 8
Microarchitecture Nehalem (Intel)

8-way AMD Opteron

CPU-name AMD Opteron 8218 2,6 GHz
Physical cores 8
Logical threads 8
Microarchitecture Santa Rosa (AMD)

Table I
OVERVIEW OF TEST MACHINES

format provides many layers of parallelism, well suited for

illustrating the potential of the framework. We focused on op-

timizing the discrete cosine transform (DCT) and quantization

part as this is the most compute-intensive part of the codec.

The read + splitYUV kernel reads the input video in YUV-

format and stores the data in three global fields, yInput, uInput,

and vInput. The read loop ends when the kernel stops storing

to the next age, e.g., at the end of the file. In our scenario,

three YUV components can be processed independently of

each other and this property is exploited by creating three

kernels, yDCT, uDCT and vDCT, one for each component.

From figure 8, we see that the respective DCT kernels are

dependent on one of these fields.

The encoding process of MJPEG comprises splitting the

video frames into 8x8 macro-blocks. For example, given the

CIF resolution of 352x288 pixels per frame used in our tests,

this generates 1584 macro-blocks of Y (luminance) data, each

with 64 pixel values. This makes it possible to create 1584

instances per age of the DCT kernel transforming luminance.

The 4:2:2 chroma sub-sampling yields 396 kernel instances

from both the U and V (chroma) data. Each of these kernel

instances stores the DCT’ed macro-block into global result

fields yResult, uResult and vResult. Finally, the VLC + write

kernel store the MJPEG bit-stream to disk.

VIII. EVALUATION

We have run tests with the workloads Motion JPEG and

K-means (described in section VII). Each test was run on a

4-way Core i7 and an 8-way Opteron (see table I for hardware

specifications) ranging from 1 worker thread to 8 worker

threads with 10 iterations per worker thread count. The results

of these tests are reported in the figures 10 and 9, which show

the mean running time in seconds for each machine for a given

thread count with standard deviation reported as error-bars.
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Figure 9. Workload execution time for Motion JPEG

Kernel Instances Dispatch Time Kernel Time

init 1 69.00 µs 18.00 µs

read/splityuv 51 35.50 µs 1641.57 µs

yDCT 80784 3.07 µs 170.30 µs

uDCT 20196 3.14 µs 170.24 µs

vDCT 20196 3.15 µs 170.58 µs

VLC/write 51 3.09 µs 2160.71 µs

Table II
MICRO-BENCHMARK OF MJPEG ENCODING IN P2G

In addition, we have performed micro-benchmarks for each

workload, summarized in the tables II and III. The benchmarks

summarize the number of kernel instances dispatched per

kernel definition, dispatch overhead and time spent in kernel

code.

A. Motion JPEG

The Motion JPEG workload is run on the standard test

sequence Foreman encoded in CIF resolution. We limited the

workload to process 50 frames of video.

As we can observe from figure 9, P2G is able to scale close

to linearly with the resources it has available. In P2G, the

dependency analyzer of the LLS runs in a dedicated thread.

This affects the running time when moving from 7 to 8

worker threads. Where the eighth thread shares resources with

the dependency analyzer. To compare, the standalone single

threaded MJPEG encoder on which the P2G version is based

upon has a running time of 30 seconds on the Opteron machine

and 19 seconds on the Core i7 machine. Note that both the

standalone and P2G versions of the MJPEG encoder use a

naive DCT calculation, there are versions of DCT that can

significantly improve performance, such as FastDCT [2].

From table II, we can see that time spent in kernel code

is considerably higher compared to the dispatch overhead for

the kernel definitions. The dispatch time includes allocation

or reallocation of fields as part of the timing operation. As

a result, init and read/splitYUV have a considerably higher

dispatch time then the *DCT operations.

We can also see that the majority of CPU-time is spent

in the kernel instances of yDCT, uDCT and vDCT, which

is the computationally intensive part of the workload. This
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Figure 10. Workload execution time for K-means

indicates that decreasing data and task granularity, as discussed

in section V-A, has little impact on the throughput of the

system. This is because the majority of time is already spent

in kernel code.

Note that even though there are 51 instances of the read-

/write kernel definitions, only 50 frames are encoded, because

the last instance reaches the end of the video stream.

B. K-means

The K-means workload is run with K=100 using a randomly

generated data set containing 2000 datapoints. The K-means

algorithm is not run until convergence, but with 10 iterations.

If we do not define this break-point it is undefined when the

algorithm converges, and as such, we have introduced this

condition to ensure that we get a relatively stable running time

for each run.

As seen in figure 10, the K-means workload scales to 4

worker threads. After this, the running time increases with

the number of worker threads. This can be explained by the

fine granularity of the assign kernel definition, as witnessed

when comparing the dispatch time to the time spent in kernel

code. This leads to the serial dependency analyzer becoming

a bottle-neck in the system. As discussed in section V-A, this

condition could be alleviated by decreasing the granularity

of data-parallelism, in effect leading to each kernel instance

of assign working on larger slices of data. By doing so, we

would increase the ratio of time spent in kernel code compared

to dispatch time and reduce the workload of the dependency

analyzer. The reduction in work for the dependency analyzer

is a result of the lower number of kernel instances being run.

The two different test machines behave somewhat differ-

ently in that the Opteron suffers more than the Core i7 when

the dependency analyzer saturates a core. The Core i7 is able

to increase the frequency of a single core to mitigate serial

bottlenecks, and we think this is why the Core i7 suffers less

when we meet the limitations dictated by Amdahl’s law.

The considerable time init spends in kernel code is because

it generates the data set.



Kernel Instances Dispatch Time Kernel Time

init 1 58.00 µs 9829.00 µs

assign 2024251 4.07 µs 6.95 µs

refine 1000 3.21 µs 92.91 µs

print 11 1.09 µs 379.36 µs

Table III
MICRO-BENCHMARK OF K-MEANS IN P2G

C. Summary

We have shown that our prototype implementation of an

execution node is able to scale with the available resources,

as seen in figure 9 and 10. Our initial results indicate that the

functionality of decreasing the granularity of task and data

parallelity, as discussed in section V-A, is important to ensure

full resource utilization.

IX. DISCUSSION

Even though support for deadlines is not yet fully imple-

mented in the P2G runtime, the concept of deadlines formed an

integral part of our design goal. The intention behind deadlines

is to accommodate for live multimedia workloads, where real-

time requirements are mission essential. Varying conditions

over time, both in the workload and topology, may effect

scheduling decisions: such as termination, branching and the

use of alternative code paths based on runtime observations.

This is similar to SDL, but unlike contemporary high perfor-

mance languages.

In P2G, we encourage the programmer to describe the work-

load in as fine granularity as possible, both in the functional

and data decomposition domains. The low-level scheduler

has an understanding of both decomposition domains and

deadlines. Given this information, the low-level scheduler can

minimize overhead by combining functional components and

slices of data by adapting to its available resources, be it local

cores, or even GPU execution units.

Write-once semantics on fields incurs a large penalty if

implemented naively, both in terms of memory usage and

data cache misses. However, as the fields are virtual and do

not even have to reside in continuous memory, the compiler

and runtime are free to optimize field usage. This includes

re-using buffers for increased cache locality when old ages

are no longer referenced, and garbage collecting old ages.

The explicit programming model of P2G allows the system

to anticipate what data is needed in the future, which can be

used for further optimizations.

Given the complexity of multimedia workloads and the

(potentially) heterogeneous resources available in a modern

topology, and in many cases, no knowledge of the underlying

capabilities of the resources (which is common in modern

cloud services), mapping these complex multimedia workloads

manually to the available resources becomes an increasingly

difficult task, and at some point, even impossible. This is par-

ticularly the case where resource availability fluctuates, such

as in modern virtual machine parks. With batch processing,

where the workloads frequently are not associated with some

intrinsic deadline, this task is solved, with frameworks such as

MapReduce and Dryad. However, for processing continuous

streams such as iterative multimedia algorithms in an elastic

manner requires new frameworks; P2G is a step in that

direction.

X. CONCLUSION

With P2G, we have proposed a new flexible framework for

automatic parallel, real-time processing of multimedia work-

loads. We encourage the programmer to specify parallelism in

as fine a granularity as possible along the axes of data and task

decomposition. Using our kernel language this decomposition

is expressed through kernel definitions and fetch and store

statements on fields. This language is independent from the

P2G runtime and can easily be replaced. Given a workload

defined in our kernel language it is compiled for execution

in P2G. This workload can then be partitioned by the high-

level scheduler of a P2G master node, which then distributes

partitions to P2G execution nodes which runs the tasks locally.

Execution nodes can consist of heterogeneous resources. A

low-level scheduler at the execution nodes then adapted the

partial (or full) workload to run optimally using resources

at hand. Feedback from the instrumentation daemon at the

execution node can lead to repartitioning of the workload (a

task performed by the high-level scheduler). The aim is to

bring the ease of batch-processing frameworks to multimedia

workloads.

In this paper we have presented an execution node capable

of running on a multi-way architecture. This results from our

experiments running on this prototype show the potential of

our ideas. However, there still remains a number of vectors

for optimization. In the low-level scheduler we have identified

that combining task and data to minimize overhead introduced

by P2G is a first reasonable modification. Additionally, com-

pleting the implementation of a fully distributed version is

in the pipeline. Also, writing workloads for heterogeneous

processing cores like GPUs and non-cache coherent architec-

tures like Intel’s SCC is a further consideration. Currently, we

are investigating appropriate mechanisms for both high- and

low-level scheduling, garbage collection, fat binaries, resource

profiling and monitoring, and efficient migration of tasks.

While a number of optimizations remain, we have deter-

mined that P2G is feasible, through the implementation of

this execution node, and the successful implementation of

multimedia workloads, such as Motion JPEG and k-means.

With these workloads we have shown that it is possible to

express multimedia workloads in the kernel language and we

have implemented a prototype of an execution node in the P2G

framework that is able to execute kernels and scales with the

available resources.

REFERENCES

[1] Apache. Hadoop, Accessed July 2010. http://hadoop.apache.org.
[2] Y. Arai, T. Agui, and M. Nakajima. A fast dct-sq scheme for images.

Transactions of IEICE, E71(11), 1988.
[3] J. Armstrong. A history of Erlang. In Proc. of ACM HOTL III, pages

6:1–6:26, 2007.
[4] R. Arvind, R. Nikhil, and K. Pingali. I-structures: Data structures for

parallel computing. TOPLAS, 11(4):598–632, 1989.



[5] Y. Blu, B. Howe, M. Balazinska, and M. Ernst. Haloop: Efficient iter-
ative data processing on large clusters. In Proceedings of International

Conference on Very Large Data Bases (VLDB), 2010.
[6] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,

and J. Zhou. Scope: easy and efficient parallel processing of massive
data sets. Proc. VLDB Endow., 1:1265–1276, August 2008.

[7] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmabil-
ity and the Chapel language. International Journal of High Performance

Computing Applications, 23(3), 2007.
[8] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-

merge: simplified relational data processing on large clusters. In Proc. of

ACM SIGMOD, pages 1029–1040, New York, NY, USA, 2007. ACM.
[9] M. de Kruijf and K. Sankaralingam. MapReduce for the Cell BE

architecture. University of Wisconsin Computer Sciences Technical

Report CS-TR-2007, 1625, 2007.
[10] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on

large clusters. In Proc. of USENIX OSDI, pages 10–10, 2004.
[11] J. Dean and S. Ghemawat. System and method for efficient large-scale

data processing. US Patent Application, (US 7650331), 2010.
[12] I. Foster. Designing and Building Parallel Programs: Concepts and

Tools for Parallel Software Engineering. Addison-Wesley, 1995.
[13] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. Spade: the

system s declarative stream processing engine. In Proceedings of the

2008 ACM SIGMOD international conference on Management of data,
SIGMOD ’08, pages 1123–1134, New York, NY, USA, 2008. ACM.

[14] F. Glover. Tabu search, Part I1. ORSA journal on Computing, 2(1):4–32,
1990.

[15] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs. In ASPLOS-

XII: Proceedings of the 12th international conference on Architectural

support for programming languages and operating systems, pages 151–
162, New York, NY, USA, 2006. ACM.

[16] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: a
MapReduce framework on graphics processors. In Proc. of PACT, pages
260–269, New York, NY, USA, 2008. ACM.

[17] B. Hendrickson and T. Kolda. Graph partitioning models for parallel
computing* 1. Parallel Computing, 26(12):1519–1534, 2000.

[18] P. H. J. Hughes, S. P. Jones, and P. Wadler. A history of Haskell: being
lazy with class. In Proc. of ACM HOTL III, pages 12:1–12:55, 2007.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In Proc. of ACM

EuroSys, pages 59–72, New York, NY, USA, 2007. ACM.
[20] ISO/IEC. ISO/IEC 14496-10:2003, 2003. Information technology -

Coding of audio-visual objects - Part 10: Advanced Video Coding.
[21] ITU. Z.100, 2007. Specification and Description Language (SDL).
[22] E. A. D. Kock, G. Essink, W. J. M. Smits, and P. V. D. Wolf. Yapi:

Application modeling for signal processing systems. In In Proc. 37th

Design Automation Conference (DAC’2000, pages 402–405. ACM Press,
2000.

[23] T. Lee, E.A.; Parks. Dataflow process networks. Proceedings of the

IEEE, 83(5):773–801, 1995.
[24] D. G. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60:91–110, 2004.
[25] D. Murray, M. Schwarzkopf, and C. Smowton. Ciel: a universal

execution engine for distributed data-flow computing. In Proceedings of

Symposium on Networked Systems Design and Implementation (NSDI),
2011.

[26] C. Nicolaou. An architecture for real-time multimedia communication
systems. Selected Areas in Communications, IEEE Journal on, 8(3):391–
400, 1990.

[27] Nvidia. Nvidia cuda programming guide 3.2, Aug. 2010.
[28] A. G. Olson and B. L. Evans. Deadlock detection for distributed

process networks. In in Proc. IEEE Int. Conf. Acoustics, Speech, Signal

Processing (ICASSP, pages 73–76, 2006.
[29] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig

latin: a not-so-foreign language for data processing. In Proc. of ACM

SIGMOD, pages 1099–1110, New York, NY, USA, 2008. ACM.
[30] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data:

Parallel analysis with Sawzall. Sci. Program., 13(4):277–298, 2005.
[31] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.

Evaluating MapReduce for multi-core and multiprocessor systems. In
Proc. of IEEE HPCA, pages 13–24, Washington, DC, USA, 2007. IEEE
Computer Society.

[32] L. Roh, W. A. Najjar, and A. P. W. Böhm. Generation and quan-
titative evaluation of dataflow clusters. In ACM FPCA: Functional

Programming Languages and Computer Architecture, New York, NY,
USA, 1993. ACM.

[33] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach
to exploiting coarse-grained pipeline parallelism in c programs. In
Proceedings of the 40th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 40, pages 356–369, Washington, DC, USA,
2007. IEEE Computer Society.

[34] M. Thompson and A. Pimentel. Towards multi-application workload
modeling in sesame for system-level design space exploration. In
S. Vassiliadis, M. Berekovic, and T. Hämäläinen, editors, Embedded
Computer Systems: Architectures, Modeling, and Simulation, volume
4599 of Lecture Notes in Computer Science, pages 222–232. Springer
Berlin / Heidelberg, 2007.

[35] S. V. Valvåg and D. Johansen. Oivos: Simple and efficient distributed
data processing. In Proc. of IEEE International Conference on High

Performance Computing and Communications (HPCC), pages 113–122,
2008.

[36] S. V. Valvåg and D. Johansen. Cogset: A unified engine for reliable stor-
age and parallel processing. In Proc. of IFIP International Conference

on Network and Parallel Computing Workshops (NPC), pages 174–181,
2009.

[37] T. L. Veldhuizen. Arrays in blitz++. In Proceedings of the Second

International Symposium on Computing in Object-Oriented Parallel En-

vironments, ISCOPE ’98, pages 223–230, London, UK, 1998. Springer-
Verlag.
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