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Abstract—Networked devices often come equipped with mul-
tiple network interfaces, and bandwidth aggregation is one of
the many possible benefits of using multiple interfaces simultane-
ously. Real-world networks introduce several challenges that have
often been ignored by related work on bandwidth aggregation.
The challenges include limited connectivity due to NAT-boxes,
link heterogeneity and link variability.

In this paper, we present a transparent solution for proxy-
based bandwidth aggregation that is able to overcome the
different deployment and link heterogeneity challenges present
in real-world networks. Our focus has been on increasing the
performance of bandwidth-intensive UDP-based applications,
and through evaluation we show that our solution efficiently
aggregates bandwidth and increases the in-order throughput.
Previously, we introduced a multi-link UDP proxy solution that
improves in-order throughput. This paper presents a significant
extension and improvement in terms of support for middle-
boxes (NAT), congestion control, a client-based resequencer and
support for all operating systems.

I. INTRODUCTION

Today, an increasing number of end devices are equipped

with multiple network interfaces, giving users the opportunity

to simultaneously connect to independent Internet service

providers. For example, laptops typically come equipped with

both LAN- and WLAN-interfaces, while most smartphones are

able to connect to both HSDPA- and WLAN-networks. Using

multiple networks simultaneously offers many advantages. For

example, the links can be used to provide redundancy or

bandwidth aggregation. This involves merging several physical

links into one logical link that is exposed to the application,

offering more bandwidth and potentially higher throughput.

Fig. 1. Real-world multi-link scenario - End-to-end communication between
a client and a server over independent access networks using a single TCP
connection.

Multi-link communication and bandwidth aggregation have

become a hot research topic the last couple of years, much

thanks to the increased popularity of mobile devices. Solutions

have been proposed on almost every layer of the network

stack. However, we have chosen to focus on network-layer

solutions. A network-layer approach to bandwidth aggregation

can be made completely transparent to the higher layers, and

implemented in such a way that the only required changes are

routing configurations on the client.
To the best of our knowledge, existing bandwidth ag-

gregation network-layer solutions have ignored the practical

challenges introduced by a real-world network environment,

such as the scenario presented in figure 1. Common incor-

rect assumptions include that network interfaces are always

assigned globally reachable IP-addresses, the absence of NAT

middle-boxes and cross-layer feedback from base stations. In

addition, link heterogeneity is often not considered properly.
Based on our own experience and related work, we have

defined the following three functional requirements that a

bandwidth aggregation proxy-based solution intended for use

in real-world networks must meet:

1) Work in the presence of NAT and other middle-boxes.

Otherwise, the proxy will not be able to send packets

back to the multi-homed client.

2) Stripe packets efficiently over links with different capac-

ity and in a manner that avoids congesting the link. If

not, the links will not be fully utilized, in addition to

the proxy being unfair to other traffic.

3) Compensate for the delay difference between different

networks and network technologies. Most applications

process data sequentially and require it to arrive in-order.

Previously, we introduced a limited multi-link UDP proxy-

based solution that aggregates bandwidth transparently, ef-

ficiently and improves in-order throughput [1]. This paper

presents a complete solution with support for middle-boxes

(e.g., NAT), congestion control, client-based resequencer and

support for all major operating systems.
The proxy and client build a multi-link overlay network

consisting of IP-tunnels established over each active interface

at the client. The proxy is responsible for scheduling packets

and doing bandwidth aggregation, while the client reduces

reordering by buffering out-of-order packets and delaying their

delivery to the higher layer until reordering is resolved.
We have made thorough evaluations of the new bandwidth

aggregation solution, both in a controlled network environ-



ment, for different levels of bandwidth and latency hetero-

geneity, and with real-world wireless networks. Measurement

results show that the proxy efficiently aggregates bandwidth,

irrespective of link heterogeneity and dynamics, and increases

the in-order throughput compared to when a single is used.

The rest of the paper is structured as follows. Section II

presents related work, while section III describes the proxy

and client. In section IV, we discuss the results of the different

performance measurements, and our work is concluded in

section V.

II. RELATED WORK

Multi-link communication and bandwidth aggregation have

been popular research topics for many years, and solutions to

client based aggregation of multiple network interfaces have

been proposed on virtually all layers of the network protocol

stack. Application layer bandwidth aggregation schemes are

suggested in, for example, [2]–[5]. In [2], the FTP protocol

is modified to create several connections, and the desired file is

split into pieces that are requested when an interface is ready.

Wang et al. [4] divide a single TCP-flow into several subflows

that are sent over different interfaces, while in [5], we used

HTTP pipelining to improve the performance of bulk, HTTP

data transfer over multiple heterogeneous interfaces.

Most application layer solutions would work in real-world

networks and meet all three functional requirements, as they

build on established transport layer protocols. However, one

drawback with application layer solutions is that they are tuned

for one application or application type, making them unsuited

when the goal is to do transparent bandwidth aggregation.

Also, changes to the applications are required, which might

not be desirable or even possible.

Transport-layer bandwidth aggregation solutions (e.g., [6]–

[8]) also require changes to the applications, and depend

on modifications to well-established protocols or brand new

protocols. These will take years until wide-use or standard-

ization. MPTCP [6] is a new TCP specification that IETF

is currently working on, while [7] suggests a new multi-link

TCP-extension, TCP PRISM, that makes use of a proxy to

aggregate bandwidth.

We believe that a network-layer solution is most applica-

ble, as the bandwidth aggregation can be made transparent

to higher layers, and network-layer bandwidth aggregation

approaches are presented in [9]–[11]. The approaches all make

use of IP-tunnels and either stripe packets on a server or at a

proxy, and are based on assumptions that are incorrect in real-

world networks and does not coincide with field measurements

we have made [12]. For example, the solution presented in [9]

relies on link-layer feedback from base stations, while [10]

assumes that the difference in RTT can be equalized by

adjusting the packet size.

Finally, link-layer bandwidth aggregation solutions

(e.g., [13], [14]), known as packet striping, stripes data across

several physical channels. Another example of a link-layer

solution to utilizing multiple links is presented in [15], where

parity codes are applied across multiple channels instead of

packets, thereby increasing resilience. However, striping data

through multiple heterogeneous networks and to different

IP-addresses requires additional and complex changes.

III. TRANSPARENT BANDWIDTH AGGREGATION

When aggregating bandwidth at the network layer, a com-

mon technique is to use a proxy and a client. Working on

the network layer allows for changes to be transparent to the

higher layers (including the actual applications running on

top), while a proxy removes the need to change the server.

In this section, we present a transparent proxy-based band-

width aggregation solution. The focus has been on downstream

UDP-traffic and all three functional requirements, defined in

introduction, are met. In addition, the client can be imple-

mented for any major OS, making it platform independent.

A. Enabling multiple links in real-world networks

By default, even though a client machine has multiple

network interfaces and is connected to several networks,

one interface is regarded as the default and used by all

applications. In order to transparently enable multi-link in

real-world networks, our bandwidth aggregation solution uses

virtual interfaces and IP-tunneling.

Virtual interfaces behave as normal network interfaces and

are for example given a regular IP-address. However, unlike

a normal network interface, the virtual interface is owned

and controlled by a user-space application. This application

receives all the data written to the virtual interface, and is

responsible for sending it through an actual network. Virtual

interfaces are typically used for IP-tunneling, and applications

can make use of a virtual interface, for example, by explicitly

binding to it, or desired routes can be configured to go through

the tunnel.

Our bandwidth aggregation client and proxy each create

a virtual interface. The reason a virtual interface is needed

at both sides, is that the data sent through the tunnel gets

encapsulated and, thus, must be decapsulated. In addition to

the additional network and transport layer header added when

a packet is sent by the physical interface, a separate tunneling

header is added. This header contains information needed by

the client and the proxy. We use UDP as the tunnel transport

protocol, and in our current implementation, the total per

packet overhead is 24 bytes (including IP- and UDP-header).

With a 1500 byte MTU, the overhead is 3.5%, which we

believe is acceptable.

An overview of how multi-link is enabled and used for

a client with two interfaces, is shown in figure 2. For each

interface, an IP-tunnel is established between the client and

the proxy, and by doing this, a multi-link overlay network

is built. Data is then sent through these tunnels, and NAT

hole punching is used to make our solution work in real-world

networks. In order to maintain the tunnels and allow the client

and proxy to communicate directly, the client sends probe

packets to the proxy at given intervals, and the proxy replies.

This forces NAT-boxes to keep a state for each ”connection“,

allowing packets to flow in both directions. The reason the



NAT hole punching is initiated from the client, is that many

NAT-boxes only create a state when the first packet was sent

from within its network. Without NAT hole punching and the

use of IP-tunnels, the proxy would in most cases not be able

to send packets back to the client, as there would be no direct

route. The packet resequencer and scheduler will be presented

in the two following sections.
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Fig. 2. An overview of our multi-link proxy achitecture running on a client
with two active network interfaces

Applications that want to benefit from bandwidth aggrega-

tion can either explicitly be bound to the virtual interface, or

routes can be configured to go through the overlay network.

The proxy can then use source NAT (SNAT) to make sure

packets destined for the clients are routed through it. SNAT

rewrites the source IP of packets to be that of the proxy,

and changes the destination IP back to the client’s IP (the

virtual interface) when (if) a reply arrives. In order to separate

between packets that will and will not have their IP address

rewritten, a mapping is used.

Even though our current implementation is for Linux (using

TUN-devices 1), libraries for creating virtual interfaces exist

for most OSes, for example Windows and BSD. In other

words, because our client does not use any Linux-specific

features, it can be ported to any OS.

B. Bandwidth aggregation

In order to aggregate bandwidth efficiently, the proxy must

be aware of the capacity of each link and use an intelligent

packet scheduler. Otherwise, the proxy will congest the links,

schedule packets incorrectly and not utilize the full capacity

of each link. For example, if the bandwidth ratio between two

links is 3:1 and packets are scheduled round-robin, only a third

of the capacity of the fastest link is used.

To get a good estimate of the capacity of each link and be

able to do congestion control, we chose to use CCID2 [16], as

it is well suited for datagram-based applications that prioritize

high bandwidth. CCID2 behaves like TCP’s congestion con-

trol, and the proxy monitors each link’s congestion window.

The client acknowledges the packets it receives, and the proxy

updates the size of the congestion window according to the

same rules as in TCP, with some modifications due to the fact

that UDP does not retransmit data.

1http://vtun.sourceforge.net/tun/index.html

The packet scheduler is summarized in algorithm 1, and is

based on the one used by TCP PRISM [7]. Even though that

solution is built for TCP, the congestion controls are similar

and the same ideas and challenges apply. When a packet

destined for the client arrives at the proxy, the proxy finds all

links that have room in their congestion window. If no links

have room in their congestion window, the packet is dropped

(line 5-8) to avoid potentially causing congestion. Otherwise,

the link with the most available capacity (relative to all links)

is chosen (line 10-16). The capacity metric is the free space

in each link’s congestion window.

Algorithm 1 Packet scheduler
1: max_capacity = MIN_VALUE
2: scheduled_link = None
3: links = [set of links with an open congestion window]
4:

5: if links == Empty then

6: drop packet
7: return None
8: end if

9:

10: for all links do

11: if capacity_link > max_capacity then

12: max_capacity = capacity_link
13: scheduled_link = link

14: end if

15: end for

16: return scheduled_link

C. Increasing in-order throughput

Even though bandwidth aggregation increases the available

bandwidth, it does not guarantee a higher in-order through-

put. That packets arrive in-order is important because most

applications process data sequentially.

In a multi-link scenario, most of the packet reordering is

caused by latency heterogeneity. With our new bandwidth

aggregation solution, we have chosen to compensate for re-

ordering at the client by resequencing packets. This is a similar

approach to that used by MPTCP [6]. Our packet resequencer

is summarized in figure 3, and works by buffering out-of-order

packets at the client.

When a packet is sent from the proxy, it is given two

sequence numbers. One is a global sequence number that is

valid across all links, while the other is local to one link. The

global sequence number is used to detect reordering. Packets

are sent in-order from the proxy, so sorting packets according

to the global sequence number will tell if reordering has

occurred or not. Reordered packets are held in a buffer until

the missing packet(s) arrive. In our current implementation,

there is no limit on the buffer size, but this should be added if

memory is an issue. Packets could then for example be written

to the virtual interface when they are pushed out of the buffer.

The local sequence number is used to determine if packets

are lost. We assume that there is no internal reordering on

a link, so missing local sequence numbers are interpreted as

packet loss. If packet loss is detected, the missing global se-

quence number(s) is ignored and in-order packets are released

to the virtual interface.

To avoid deadlocks and head of line blocking, a timeout is

used. This timeout is calculated in the same way as TCP’s
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Fig. 3. A state-diagram showing how the resequencer works

Retransmission Timeout (RTO) [17], except that the one way

delay (OWD) is used. The OWD is used because it provides

a good estimate for the worst-case time between sending a

packet and its reception at the client. When the timeout expires

for the first and second time, one packet is released. When it

expires for the third consecutive time, all packets held in the

buffer are released. This is done to reduce the probability of

releasing large bursts of out-of-order data.

IV. PERFORMANCE MEASUREMENTS

To properly evaluate the performance of our bandwidth

aggregation proxy, we were interested in its performance in a

fully controlled environment, and in the real world. The latter

gives an impression of how the proxy will benefit potential

users, as well as how it performs with a combination of

dynamic bandwidth and latency heterogeneity. A controlled

environment allows us to isolate and control each type of

heterogeneity, and look at how they affect the performance.

A. Controlled network environment

1) Testbed: Our controlled network environment testbed

consisted of three machines, each running Linux 2.6.31-14.

The machines were connected directly to each other using

100 Mbit/s Ethernet, and one machine was used as both proxy

and sender, the second emulated link delay (when needed),

while the third was the multi-link-enabled client. Our own

tool was used to generate the constant bitrate stream that was

used to measure the performance of our solution. To emulate

bandwidth and RTT, the network emulator netem 2 was used,

together with the hierarchical token bucket.

2) Bandwidth aggregation: A good bandwidth aggregation

depends on an efficient packet scheduler and good congestion

control, the proxy has to accurately estimate the capacity

of each link and select the ”correct” one. Otherwise, if for

example a slow link is prioritized, the full capacity of the

fast link will not be used. To measure how efficiently the

proxy aggregates bandwidth, two sets of experiments were

performed. For all the results presented in this section, the

server sent a 10 Mbit/s UDP-stream to the client, and the sum

of the available bandwidth at the client was always equal to

2http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

10 Mbit/s. We experimented with different bandwidths as well,

and saw similar results to those presented here.

 0

 2

 4

 6

 8

 10

10:0 5:0 5:5 6:0 6:4 8:0 8:2

B
an

d
w

id
th

 (
M

b
it

/s
)

Bandwidth ratio (in Mbit/s). :0 means that a single link was used

Average aggregated throughput using multi-link proxy

Single-link
Multi-link

Fig. 4. Achieved bandwidth with fixed bandwidth heterogeneity

In the first series of tests, the proxy was faced with different

levels of bandwidth heterogeneity (the RTT was left untouched

and was <1 ms). The results are shown in figure 4. Ten one

minute long tests were run for each heterogeneity level and

the proxy achieved close to the same bandwidth as a single

10Mbit/s link, and gave a significant performance increase

over a single link for all levels of heterogeneity. In other words,

the congestion control accurately estimated the capacity of

each link, which enabled the packet scheduler to make the

right scheduling decisions.
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The purpose of the second series of tests was to see

how latency heterogeneity affects the effectiveness of the

bandwidth aggregation. Each link had a bandwidth of 5 Mbit/s,

to avoid potential side-effects caused by bandwidth hetero-

geneity, while the RTT of one link was set to 10 ms, and the

other assigned an RTT of r ms, with r ∈{10, 20, . . . , 100}. As

with bandwidth heterogeneity, ten one minute long tests were



run for each heterogeneity level, and the results are shown in

figure 5. The proxy significantly improved the performance

compared to a single 5 Mbit/s link.
A small decrease in the aggregated bandwidth can be

observed as the heterogeneity increases, indicating that the

latency heterogeneity will at some point have a significant

effect. This is expected with a TCP-like congestion control,

like the one we have implemented. As the latency increases,

the growth rate of the congestion window decreases. During

the initial phase or when packets are lost, the congestion

window and thereby throughput will grow at a slower rate.
3) In-order throughput gain: Increasing the in-order

throughput is important for most applications, as they depend

on processing data sequentially. With the bandwidth aggrega-

tion solution presented in this paper, reducing reordering is the

responsibility of the resequencer at the client. For measuring

the in-order throughput, three sets of tests were run. Two were

the same as for bandwidth aggregation, while, in the third, we

combined the different bandwidth and latency heterogeneities.
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One representative sample of the in-order throughput for

the most severe bandwidth heterogeneity, 8:2, is shown in

figure 6. The in-order throughput increased significantly, how-

ever, a bursty pattern can be observed. This is caused by the

bandwidth heterogeneity. Due to the difference in capacity, the

fast link was allocated a larger share of the packets. When a

packet that solved reordering arrived over the slow link, the

buffer often contained several packets waiting to be released

to the virtual interface and the application, causing the spikes.
Figure 7 displays the measured in-order throughput for a

case of worst-case latency heterogeneity (10ms:100ms). As

with bandwidth heterogeneity, the in-order throughput was

significantly better than that of a single link.
However, a distinct pattern can be seen also in this graph.

When the link with the highest RTT got congested and the

proxy invoked congestion control, it took a significant amount

of time before the aggregated throughput grew back to the

previous level. As with the decrease in aggregated bandwidth,
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this is caused by the increased RTT affecting the growth rate

of the congestion window at the proxy. Also, the reason there

are no significant throughput spikes, is that the bandwidth

was homogeneous (we wanted to isolate the effect of latency

heterogeneity), so close to the same number of packets were

sent over each link. Thus, there were few out-of-order packets

in the buffer.
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In figure 8, we show the results from one experiment with

the combination of the worst-case bandwidth and latency

heterogeneity. A more bursty traffic pattern can be observed,

which was caused by the low bandwidth link also having the

highest RTT. Reordering occurred more frequently, and when

a packet that solved reordering arrived over the slow link, more

packets were waiting in the out-of-order buffer than in the tests

with only bandwidth heterogeneity. The reason for the lack of

the throughput drops seen in figure 7, was that less traffic went

over the high RTT-link. When looking at the logs, we see that

the drops were present, however, they are less visible and did



not have a significant effect on the throughput.

B. Real-world networks

1) Testbed: To get an impression of how our bandwidth

aggregation solution performs in real-world networks, and in

the presence of dynamic bandwidth and latency heterogene-

ity, we also measured the performance when the client was

connected to one public WLAN (placed behind a NAT) and

one HSDPA-network. The average bandwidth and measured

RTT of the networks were 4 Mbit/s / 25 ms and 2.5 Mbit/s /

60 ms, respectively. The same application was used to generate

the network traffic as in the other experiments.
2) Results: As in the experiments performed in the con-

trolled network environment, the sender sent a 10 Mbit/s

stream to the client. The average aggregated bandwidth

when the client was connected to real-world networks was

5.52 Mbit/s, which is a significant improvement over using

only WLAN (which measured an average of 3.34 Mbit/s).
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The measured in-order throughput for one experiment is

shown in figure 9. As can be seen, the aggregated throughput

was significantly more bursty than in the experiments per-

formed in the controlled network environment. This is caused

by the dynamic behavior of the links, as well as the combined

heterogeneities. A higher number of out-of-order packets will

often be buffered at the client, so when reordering is resolved,

a larger amount of data will be delivered to the application.

V. CONCLUSION

In this paper, we have presented a proxy-based band-

width aggregation solution that improves the performance

of bandwidth-intensive UDP-based applications. Virtual inter-

faces and IP-tunnels are used to build a multi-link overlay

network. The proposed solution works in the presence of NAT

and can therefore be deployed in real-world networks, and the

proxy does congestion control to avoid congesting the links

and affecting other traffic.

The solution consists of a proxy and a client, and was

thoroughly evaluated in a controlled network environment and

in real-world networks. The results from the experiments show

that the proxy was able to achieve almost ideal bandwidth

aggregation, and that the in-order throughput was significantly

increased compared to when a single link was used. In the

future, we plan to look at different ways of reducing reordering

and the bursty delivery of in-order data to the virtual interface,

and thereby to the application. We also plan to add support

for more transport protocols, and analyze the performance of

different congestion controls and packet schedulers.
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