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Abstract—One way to manage the complexity of software
systems is to compose them from reusable components, instead
of starting from scratch. Components may be implemented in
different programming languages and are tied together using
configuration files, or glue code, defining instantiation, initial-
ization and interconnections. Although correctly engineering
the composition and configuration of components is crucial
for the overall behavior, there is surprisingly little support
for incorporating this information in the static verification
and validation of these systems. Analyzing the properties of
programs within closed code boundaries has been studied for
some decades and is well-established. This paper contributes
a method to support analysis across the components of a
component-based system. We build upon the Knowledge Dis-
covery Metamodel to reverse engineer homogeneous models for
systems composed of heterogeneous artifacts. Our method is
implemented in a prototype tool that has been successfully
used to track information flow across the components of a
component-based system using program slicing.

Keywords-program analysis, reverse engineering, model re-
construction, KDM, component-based software systems, SDG

I. INTRODUCTION

Component-based software engineering is a frequently ad-

vocated approach for the development of large software sys-

tems. It is based on the notion that the complexity of software

development can be better managed by assembling systems

from reusable parts, similar to how hardware systems are

constructed from ready-made components. Many of today’s

software systems are built following these principles: they are

composed from reusable components, implemented in one or

more programming languages, and connected using a variety

of configuration artifacts, ranging from simple key-value

maps to elaborate domain specific configuration languages.

Since correctly engineering the composition and configu-

ration of components is no less challenging or error-prone

than source code, one could assume that the analysis of such

artifacts is an intrinsic part of professional software develop-

ment methods and tools. However, we found that even though

these aspects are crucial for the overall behavior of such

systems, there is surprisingly little support for incorporating

this information in static verification and validation.

Analyzing the properties of programs within closed code

boundaries is a well-established area that has been studied

for some decades [1], and techniques have successfully been

implemented in professional program analysis tools [2], [3].

However, most of these tools have strict limitations on

the programming languages that can be processed. In the

context of component-based systems, this typically means

that information from configuration artifacts can not be

included, effectively inhibiting system-wide analysis and

confining it to the boundaries defined by the source code of

a single component. We address this issue with an approach

that allows crossing the boundaries between components,

enabling system-wide analysis of component-based systems.

The contributions of this paper are the following: We

present a method that combines model-driven engineering

with program analysis techniques to support analysis across
the components of a component-based system. In partic-

ular, we build upon the foundations laid out by OMG’s

Knowledge Discovery Metamodel (KDM) [4] to reverse en-

gineer a homogeneous system-wide dependence model from

a software system’s heterogeneous source- and configuration

artifacts, and use this model as the basis for our analysis. We

have implemented and evaluated our approach by building a

prototype tool which has been successfully used to track in-

formation flow in a component-based system using program

slicing. Finally, we add a point of reference to the use and

extension of KDM in an industrial setting, extending an area

of literature that is currently underdeveloped.

The remainder of the paper is organized as follows: Sec-

tion II describes the background of this study. We describe

our approach in Section III, and report on our prototype

implementation in Section IV. We evaluate our approach and

prototype implementation in Section V, discuss the related

work in Section VI, and conclude in Section VII.

II. BACKGROUND AND MOTIVATION

The research described in this paper is part of an ongoing

industrial collaboration with Kongsberg Maritime (KM), one

of the largest suppliers of systems for dynamic positioning,

navigation and automation to vessels and on- and offshore

installations worldwide. The division that we work with

specializes in computerized systems for safety monitoring

and automatic corrective actions on unacceptable hazardous

situations. Examples include emergency shutdown, process

shutdown, and fire & gas detection in installations such

as drilling vessels, and offshore oil and gas terminals. In

particular, we study a family of complex safety-critical
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Figure 1. Examples of component configurations

embedded software systems that connect software control

components to physical sensors and mechanical actuators.

The overall goal of the collaboration is to supply our partner

with software analysis tooling that provides source based
evidence to support software certification.

The remainder of this section gives a generalized view

on how systems are developed in this domain. We use the

following terminology: a component is a unit of composition

with well-defined interfaces and explicit dependencies; a

system is a network of interacting components; and a port is

an atomic part of an interface, a single point of interaction

between components or components and the environment.

Concrete software products are assembled in a component-

based fashion from a limited collection of reusable com-

ponents. Components are implemented in a safe subset of

C called MISRA C [5]. They are relatively small in size

and the computations are relatively straightforward. The

control logic, however, can be rather complex and is highly

configurable via parameters (e.g. initialization, thresholds,

multipliers etc). This flexibility is taken to the max in the

control components, which are configured using a cause and
effect matrix. This is basically a decision table that defines

what action should be triggered when a given situation arises.

The system’s overall logic is composed as a network of in-

terconnected component instances. The control components

play a central role and receive inputs that are derived from

raw sensor data via a series of components that implement

tasks such as measurement, voting, and counting. The control

components’ outputs are read by a series of components that

trigger and drive the system’s actuators.

Components can be cascaded to handle larger numbers of

input signals (Figure 1a), and the output of a given network

can be used as input signal for another (Figure 1b). The latter

is used, for example, to reuse the conclusion for one area as

input for a connected area. As the installations that are mon-

itored become bigger, the numbers of sensors and actuators

grow rapidly, the safety logic becomes increasingly complex

and the induced component networks end up interconnecting

hundreds of component instances.

III. APPROACH

A. Tracking Information Flow

It will not be surprising that one of the main software

certification questions asks for evidence that signals from

the sensors trigger the appropriate actuators. In program

analysis terms, this amounts to tracking the information

flow between sensors and actuators through the network of

components that makes up the system. Conceptually, this

question lends itself well to being answered by means of

program slicing [6].

Program slicing is a decomposition technique that leaves

out all parts of the program that are not relevant to a given

point of interest, referred to as the slicing criterion. In other

words, the program slice consists of the parts of the program

that potentially affect the values at the slicing criterion [7].

When we select a given actuator as slicing criterion, the

program slice of our system would contain exactly those

sensors that may have an effect on the given actuator.

The predominant way of computing program slices is

based on traversing the system dependence graph (SDG) [8],

and one of the main challenges that a program slicing tool

has to tackle is the construction of this SDG from a system’s

source code. In extension to the original approach which was

defined on procedural code, various authors have proposed
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Figure 2. Integrating models derived from heterogeneous sources into a homogeneous model

methods to construct SDGs for other paradigms, such as

object oriented and parallel programming. In contrast to our

expectations, an investigation of the scientific literature did

not bring up any work on the construction of SDGs for

heterogeneous component-based systems. As discussed in

the introduction, this gap in literature is mirrored by the

state of the art in program analysis tools which are typically

confined to the boundaries defined by the source code of a

single component because they can not construct an SDG

that incorporates information from configuration artifacts.
To enable program slicing across the components of our

subject systems, we devise a method to construct a system-
wide dependence graph that integrates the dependencies from

both the components and the configuration artifacts.

B. Construction of A System-wide Dependence Graph
This section describes a model-driven approach to con-

struct a system-wide dependence graph that incorporates

and integrates the dependence’s from all components and

configuration artifacts. A high level overview of our approach

is shown in Figure 2. We distinguish two main phases

in the process: (1) model recovery in which we reverse

engineer the dependency models of interest from individual

source artifacts; (2) model integration in which we merge the

individual models into a single homogeneous system model.
The overall process of creating a system-wide dependence

graph can be described using the following steps. The first

two steps are concerned with model reconstruction, the third

is concerned with model integration. The process can be

completely automated (as shown in Section IV):
1) For each component in the system, we build an (intra-)

component dependence graph (CDG). The construction

of these CDGs can be done following the SDG con-

struction method in [8], with the component’s imple-

mentation as “system” source code.

2) The system’s configuration artifacts are analyzed to

build an inter-component dependence graph (ICDG).
This is a dependence graph at a higher level of abstrac-

tion than the CDG: the ICDG captures the externally
visible interfaces and interconnections of components

and component instances. These facts can be derived

from the configuration files since they are also needed

by the component composition framework to set up the

correct network. Because the format of the configuration

files is specific to the component composition frame-

work, we need to write a dedicated language processor

to analyze its configuration files. However, this is not a

demanding task as these “languages” are typically very

straightforward, most often in the form of key-value

pairs or a simple XML based configuration.

3) The system-wide dependence graph (SDG) is con-

structed by integrating the system’s ICDG with the

CDGs for the individual components. Conceptually, the

construction of the SDG can be seen as a process that

creates a copy of the ICDG and replaces each high level

“component” node in that copy with a sub-graph that is

the CDG for that component.

To enable flexible integration of individual models in step

(3), we propose to use OMG’s Knowledge Discovery Meta-

model (KDM) [4] as a foundation for representing the

various intra- and inter-component dependence graphs. The

KDM was designed as a wide-spectrum intermediate rep-

resentation for describing existing software systems and

their operating environments. It is uniform, language- and

platform independent. Its goal is to ensure interoperabil-

ity between tools for maintenance, evolution, assessment

and modernization. One of the key concepts is that of a

container: an entity that owns other entities. This enables

the representation of software systems at various levels of
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Figure 3. Target KDM metamodel classes and their mapping to CodeSurfer constructs

abstraction. The KDM supports incremental analysis that can

be used to augment an initial representation based on new

knowledge. In addition, it has an extensibility mechanism

that allows adding domain-, application- or implementation-

specific knowledge. By using the KDM as a basis for our

models, we become language agnostic. In the next section

we will discuss the concrete mapping from SDG elements

to entities in the KDM.

Finally, we want to point out that it is possible to reuse

existing program analysis tools for the construction of the

individual CDGs in step (1). In this case we will also benefit

from the KDM as it helps us to become tool independent. We

distinguish the following two sub-steps: (1a) use a third party

tool to build the CDG; (1b) apply a model transformation

that converts the internal representation of the tool into a

KDM-based representation of the CDG. Obviously, the tool

should provide access to its internal representation or be

able to emit it in some structured format. We will discuss a

concrete example of this setup in the next section where we

use the CodeSurfer program analysis tool to recover CDGs

for components written in C language.

IV. PROTOTYPE IMPLEMENTATION

In this section we discuss a prototype implementation of

the approach that was sketched in Section III. First, we

discuss how we derive CDGs for the individual components

by building on functionality provided by a third party tool

and transforming the tool’s internal representation into de-

pendence graphs represented using KDM. Next, we describe

how we analyze configuration artifacts to combine these

individual CDGs into a system-wide SDG.

A. Component Dependence Graphs

Our prototype builds on Grammatech’s CodeSurfer to derive

the CDG. CodeSurfer is a program analysis tool that can

construct dependence graphs for C and C++ programs [2]. It

provides an API that can be used to make your own analysis

plugin that can query and traverse the internal representation
that CodeSurfer builds to analyze a system.

We have built a CodeSurfer plugin that traverses the inter-

nal representation and uses the Java Native Interface (JNI)

to build a counterpart of the dependence graph by driving

a Java implementation of KDM in the Eclipse Modeling

Framework (EMF). This relieves us from having to deal with

the challenging idiosyncrasies of analyzing C code, including

parsing the various dialects and performing pointer analysis.

Figure 3 shows a simplified excerpt of the KDM to-

gether with the mapping between CodeSurfer constructs and

metamodel classes that we used to represent dependence

graphs in the KDM. Although dependence graphs are not

“natively” supported in the KDM, the metamodel contains

appropriate fine-grained entities that can be used (or ex-

tended) to represent such graphs. As is shown in the figure,

we can define a direct mapping for most constructs and

we use KDM’s lightweight extension mechanism to create

appropriate stereotypes for constructs that have no direct
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mapping. Note that we only need a small part of the KDM;

the KDM-specific classes in this figure belong to three of the

twelve KDM packages: Source, Code and Action. These are

respectively shown in the left, middle and right “columns”

of the KDM-specific part of Figure 3.

The Code package represents ”implementation level pro-

gram elements and their associations”, and the Action pack-

age expresses ”implementation-level behavior descriptions”.

Both packages complement each other to build a CodeModel

of the system, capable of describing almost any valid ele-

ment in a programming language in KDM. For instance, a

CallableUnit represents ”a basic stand-alone element that can

be called, such as a procedure or a function”. We use this

container class to include the information about each PDG.

An ActionElement, ”a basic unit of behavior”, is used to

represent a program point in PDG, and can be linked to the

original representation through the SourceRef element.

The Action package defines several relationship classes to

represent relations between ActionElements or between Ac-

tionElements and DataElements, such as EntryFlow, Guard-

edFlow, Calls, Reads, Writes, etc. However, none of these

map to the control and data dependency relations in PDGs.

ActionRelationship is a ”wild-card element to define new

metamodel elements through the KDMs light-weight exten-

sion mechanism”. We use ActionRelationships together with

the stereotyping mechanism in KDM to express control, data,

forward, and backward dependencies among program points.

In addition to the dependence graph, we also extract addi-

tional information from CodeSurfer to make our model more

complete, such as information regarding compilation units,

functions, etc. that is used to populate the inventory model.
The inventory model is part of KDM’s Source package and

is used to represent the physical artifacts in the system [4].

Although we do not need this model to perform slicing, we

use it to add traceability to our models. This information can

be used, for example, to highlight the source code that is the

result of a slice. We use the SourceFile and SourceRegion

classes to save the location (file:line#) of each program point.

Based on this mapping we can build CDGs in KDM. This

enables us to compute an intra-component slice: when we

select an output port as slicing criterion, we can determine

which of the component’s input ports can affect the value on

that output port. Although one could argue that the transition

from proprietary program analysis tool to KDM-enabled

platform opens up many interoperability opportunities, we

still can not do anything more than CodeSurfer already does

out of the box. To change this, we need to take the next step

and assemble a system-wide dependence graph.

B. The Inter-Component Dependence Graph

Before we can assemble all individual CDGs into a system-

wide dependence graph (SDG), we analyze the configuration

artifacts to derive information about component instantiations

1
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Figure 4. Cause&Effect matrix: a domain-specific inter-component com-
munication mechanism based on shared memory.

and interconnections. We capture this information in an inter-

component dependence graph (ICDG) which models the

externally visible interfaces and interconnections of com-

ponents and component instances. The nodes in this graph

represent component instances and port instances and we use

data dependence edges to represent connections between port

instances, and control dependence edges to associate compo-

nents with their input/output ports. We refer to Figure 5 later

in this paper for an overview of the nodes and edges in the

ICDG (but note that this figure serves another role and the

ICDG does not contain the parts that are shown inside the

grey component nodes). In our case study, the configuration

files are in XML and we use Xalan-Java for processing (but

other XSLT processors could have been used as well).

We distinguish two types of inter-component communica-

tion: the first type are the common port-based connections

where an output port of component A is connected to an

input port of component B. These connections are explicitly

defined in the configuration files and can directly be trans-

lated into dependencies between port instances in our ICDG.

The second type of connections are made via the cause &
effect matrix, a domain-specific inter-connection mechanism

that needs some explanation: At the core of the system, the

inputs (causes) are processed by a control component that

decides what outputs (effects) to trigger. The mapping from

causes to effects is encoded in a decision table that is known

as the cause & effect (C&E) matrix. This matrix serves an

important role in discussing the desired safety requirements

between the supplier and the customers and safety experts.

By filling certain cells of a C&E matrix, the expert can, for

example, prescribe which combination of sensors needs to

be monitored to ensure safety in a given area.

The C&E matrix is implemented as shared memory in the

main control component (see Figure 4). It creates a black-

board architecture to which components have read or write

access. Each input component handles one cause and can

only write to a single cell in the C&E matrix. Multiple output

components can read that same cell, effectively ensuring that

a cause could trigger multiple effects. The cells to which the
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inputs can write and from which the output modules can read

are described in (XML-based) configuration files.

Note that this form of connections is of special interest

because static analysis tools in general have trouble with

following the flow through such a block of shared memory.

Even the tools that use sophisticated pointer-analysis algo-

rithms will at some point need to make the trade-off between

precision and analysis time/resources. For most tools this

trade-off means that they will analyze pointers down to the

level of directly addressable (named) memory locations, but

not consider the individual elements of arrays or matrices:

these are lumped together as a single array or matrix object.

This conservative estimate has unfortunate effects in this

situation, as the C&E matrix will be seen as a single object

that is being written by all input- and read put all output

components. Although this is a safe approximation that does

not miss any potential dependencies, it is prohibitively sub-

optimal as it creates numerous false positives.

We address this issue as follows: During processing of

the configuration artifacts, whenever we find a pair of input-

output components that write and read from the same matrix

cell respectively, we capture this indirect connection via the

C&E by adding a direct inter-component data dependency

between the input and output components to the ICDG. This

will enable program analysis (and slicing) to “pass through”

the C&E matrix from output component instances to exactly

those input component instances that write to the same cell

in the C&E matrix as the output components read from.

Although this example is specific to our case, we believe

that the proposed solution is general enough to be used

as a template for other inter-component communication

mechanisms, such as message passing, sockets, and pipes.

C. The System-wide Dependence Graph

The method of assembling a system-wide dependence graph

from CDGs closely resembles the method of building an

SDG from a collection of PDGs in [8] with the exception that

there is no call-return relation between a couple of connected

components so we adapt our description accordingly. The

concrete assembly process is implemented as follows: Based

on the information in the ICDG, we add an ActionElement

for each port to the owner component (CompilationUnit) in

our KDM model (Figure 5, marker A). These ActionEle-

ments (ports) play exactly the same role to a component, as

a formal parameter plays to a procedure.

Analogous to the intra-procedural dependency edges of

each formal parameter, we need to add the intra-component

data dependencies of each port (Figure 5, marker B). The

output ports have a data dependency to the last ”may-kill”

program points for that port, i.e. those locations at which

the value communicated over the port can be defined [9].

Similarly, there is a data dependence between an input port

and the first ”uses” of values received over that port. Note

that a component may contain multiple functions that read

or write values to ports and we need to add the above data

dependencies for each of them.

We model component instantiation analogous to procedure

calls in [8] with the exception that there is no return flow. For

each port instance in the ICDG, we add an ActionElement

and add a data dependency to the element representing the

port (Figure 5 marker C). Such port-instance nodes roughly

correspond to actual parameters in procedure calls. Note

that the structured names of port-instance ActionElements

(Figure 5, marker D) play an important role in our method

as these are used to associate the input ports of a component

instance to the output ports of the same component instance.

This helps preserving context during slicing.

Finally, we add the component interconnections to the

model: wherever we see a data dependence between two port

instances in the ICDG, we simply add a data dependency

edge between the corresponding ActionElements of those

port-instances (Figure 5, marker E).
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D. Slicing

Now we have a homogeneous model representing the system-

wide dependence graph, we can slice it to gather evidence

to support our original certification questions.

We have created a simple slicing tool in Java which

compute slices by traversing the dependencies (ActionRe-

lationships) in our SDG using the standard graph reach-

ability algorithms with one minor adaptation for context

preservation: when entering a component via a port instance

we save the component instance name, and when exiting

a component, we only ascend to those port instances that

belong to the same component instance as the saved one.

V. EVALUATION

In order to evaluate our approach and the implemented

prototype tool, we will consider two aspects: First, we

evaluate accuracy by comparing the results of our slicing

method with a gold standard set by CodeSurfer. Second,

we evaluate performance and scalability by converting and

analyzing a series of large industrial code bases.

A. Accuracy

One of the challenges in evaluating the accuracy of our

approach is determining a gold standard to compare our

results to. Remember that one of the motivations was that

existing approaches and tools are not able to handle the type

of systems that we want to analyze.

We have solved this challenge by increasing our level of

control during the experimental evaluation: First, we have

developed a simple component based system that closely

resembles the architecture of the ones described in Section II.

Our system consists of a “framework” (main function) that

reads a number of external configuration files that describe

how it should instantiate and interconnect a network of

components (represented by other functions). We follow a

similar component-based design and use the same compo-

nent interconnection mechanisms as the system in our case

study. Port declarations, component instantiations, and all

component interconnections are described using text-based

configuration files. The connection mechanism is simple, yet

general enough to represent most component-based systems,

including our case study. The characteristics of this system

are described as System A in Table I.

Second, because we have full control over this system,

we can trivially create a variant A’ in which we replace the

framework code that reads the configuration files by code

that directly instantiates and interconnects components. To

minimize the differences, this hard-coded variant A’ uses

the same instantiation and interconnection functions as the

configuration file reader to programmatically build a network

of components. We program A’ to create a network that

corresponds exactly to the network that is specified in the

configuration files of system A.

Since system A’ does not depend on external configuration

files and since all aspects are programmed in C, it can

be analyzed by CodeSurfer to set the gold standard in our

evaluation. The components and configuration artifacts of the

original system (A) are analyzed using our prototype tool-set:

we generate an SDG in KDM using the tooling described in

Section IV-A&B and slice it for a given set of slicing criteria

using the tool described in Section IV-D.

We evaluate the accuracy by comparing the slices obtained

for system A using our tool-set with the gold standard

computed by CodeSurfer on system A’, looking for any

differences in the program points, component instances, and

port instances that are included in a slice. To maximize the

fault-revealing potential, we have repeated this comparison

for all elements in a set of slicing criteria that was increased

in a guided-random fashion until the complete set of slices

covered the SDG (i.e., in each increment we add a randomly

selected element from the program points that were not yet

covered as new slicing criterion, until we have covered the

whole SDG). Moreover, we have repeated this process for

three different configurations (adding variants A” and A”’).

Our comparisons showed that for each configuration and

slicing criterion, both slicing tools generated the same output

for what concerns the components and their interactions.

The slices computed by CodeSurfer also contained the code

that was added to the variants to programmatically set up

the component connections. Since our approach by design

abstracts from the framework and directly captures the con-

figuration, those program points have no counterpart in our

slices, as was expected. We conclude that we achieve 100%

accuracy.

B. Scalability

For this step we use our prototype to analyze the source code

of three industrial code bases of increasing size and create

the corresponding SDGs in KDM. These systems are shown

as systems B, C and D in Table I. Note that the number

of components that is reported refers to the number of

component types in each code base. Each of these types may

be instantiated numerous times in an actual configuration.

Analysis of the results shows that the number of nodes

(ActionElements) in the KDM SDG is equal to the sum of

all program points of the individual CDGs in CodeSurfer,

as long as there are no component instantiations. When

component instantiation is included, the difference between

these two is a linear function of the number of instances of

each component and the number of input/output ports of the

instantiated components. This shows the main advantage of

the way how we model component instances compared to

the alternative, where the complete CDG is duplicated for

each component instance. The latter approach would yield a

high risk of scalability problems in our case, since the typical

scenario in our application domain is to create large numbers

of instances from a limited set of components.
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Table I
CHARACTERISTICS OF ANALYZED SYSTEMS AND RESULTING MODELS

System A B C D

# Distinct Components 4 6 30 60

LOC 207 16181 54053 101393

Total CodeSurfer time (sec.) 3.181 13.064 65.022 132.381

SDG construction time (sec.) 0.246 1.996 9.938 19.755

# Nodes in final SDG 2074 13787 61507 121197

# Dependencies in final SDG 3784 46276 216956 431042

The model reconstruction and transformations are per-

formed on a general-purpose laptop with 2.66 GHz Intel Core

2 Duo CPU, 4 GB of memory, running Mac OS X V10.6.

The value reported as ”Total CodeSurfer time” is the sum

of the times that it takes CodeSurfer to create all individ-

ual CDGs, including the time for parsing and full pointer

analysis. The value reported as “SDG construction time”

includes reconstructing the ICDG from the configuration

artifacts, transforming all CDGs into KDM representation

and assembling these parts into a single homogeneous SDG.

To minimize potential performance fluctuations of a mul-

titasking system, we profile 22 executions of our model

transformation, omit both the longest and shortest execution

times and report the average time of remaining 20 executions.

We should remark that the transformation times had very

little variation, so this precaution was probably not needed.

However, the purpose of these tests was not so much to

analyze the execution times but to assess the scalability. Our

results show that both execution time and model size grow

linear as the system size grows (see also Figure 6, the small

dent can be explained by startup overhead which has more

impact for A than for the other systems). The growth rate

is constant, even for the largest code base which measures a

little over 100KLOC in size. The serialized KDM model for

this code base results in an impressive 600,000 lines of XMI

(78MB). In all cases, the execution of the slicing algorithm

takes a trivial time, in the order of milliseconds.

C. Threats to validity

We have identified the following threats to the validity:

Internal Validity: Since our accuracy evaluation is based

on a form of “regression testing” where we compare the

slices generated by our approach for random slicing criteria

with the slices that are generated by CodeSurfer, there are

two factors that could affect the evidence that supports our

claims: (1) The statically configured systems A’, A” and A”’

that are analyzed by CodeSurfer may differ from the original

system A that is analyzed by our approach (and cannot

be analyzed by CodeSurfer). While designing the example

software systems, we have taken all possible measures to

prevent differences between these systems with the required

exception of the way in which the component network is

configured. The fact that all the resulting slices are identical

supports our belief that we were successful in mitigating
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Figure 6. Transformation time and SDG size vs. system size.

this threat of changing the instrument. (2) The evaluation is

based on randomly selected slicing criteria that by chance

may not expose problems in our implementation. We have

minimized this risk by taking a sufficiently large number

of slices and use a random selection of slicing criteria to

increase the coverage of the SDG by the generated slices.

External Validity: We have identified the following two

threats to the generalizability of our results: (1) In addition

to our own example system, the study only includes industrial

code from one particular company. As a result, there may be

a bias in our approach towards specifics of that particular

codebase. In general, this is hard to avoid in an industrial

collaboration, and specifically so in a setting as described in

this paper where one needs to develop a small dedicated

language processor to derive facts from the configuration

artifacts. However, we have identified two general component

interconnection mechanisms and present a solution that can

be used as template for other interconnection mechanisms.

We leave the demonstration on other cases as future work.

(2) The evaluation is based based on one particular tool

(CodeSurfer) to generate CDG’s. Although this tool supports

both C and C++, the generalizability to tools that process

other languages is not evaluated. The extension of the SDG

to represent other languages has been described by many

papers and we do not expect problems with mapping those

extensions to KDM. However there seems to be only a

limited amount of industrial strength tools that can create

PDGs or SDGs from given source code, so this may be a

practical challenge to the generalizability.

VI. RELATED WORK

Architecture Driven Modernization: In the recent years,

several studies have been published that follow the ADM

approach and use KDM to capture knowledge about legacy

systems [10], [11], [12], [13]. Although there are similar-

ities in the approach and use of KDM, both the type and

abstraction level of the information that is recovered in

these studies is very different from ours. The MARBLE

framework [11] creates KDM models from database schemes

and SQL statements embedded in Java source code which are
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used for data contextualization: the recovery of links between

source code and the relevant parts of any databases that are

used. In [12], [13], KDM models are recovered from PL/SQL

triggers in Oracle Forms applications. These models are used

to measure the coupling between code and UI as this was

recognized as major factor influencing the time and effort

required to migrating the applications.

MoDisco is an Eclipse plug-in aimed at supporting model-

driven software modernization by reverse engineering mod-

els from (Java) source code [14]. It consists of a “model

discoverer”, which uses the Eclipse Java Development Tools

(JDT) parser and its resulting AST to create models from

Java source code files. These models conform to a detailed

Java metamodel defined in Ecore, and can be browsed by the

MoDisco model browser. In addition, they can be analyzed

and explored by all tools that can process Ecore models, such

as transformation and querying engines. Finally, MoDisco

includes transformations to transform their internal Java

models into models that conform to the Knowledge Dis-

covery Metamodel (KDM) and the Software Metrics Meta-

model (SMM). Several other researchers have investigated

the reverse engineering of fine-grained model from source

code, resulting in tools such as Spoon [15], and JaMoPP [16]

but at the time of writing, these approaches do not generate

KDM compliant models. The main difference between our

work and the approaches mentioned above is that those are

based on building structural models of the code entities and

their direct relations, such as function calls and control flow,

whereas our approach is aimed at models that include the

higher level semantic relations needed for program analysis

(such as control and data dependence). As such, the KDM

models that are recovered by MoDisco are orthogonal to ours

for the same set of source artifacts, and one of the main

advantages of building on KDM is that they can easily be

merged together to recover an even richer model.

Program analysis: Ricca and Tonella describe the con-

struction of system dependence graphs for web application

slicing [17]. Their approach addresses a problem similar

to ours in that they need to combine dependence informa-

tion from the server side programming language PHP with

dependence information from the client side programming

language JavaScript. They extend the traditional SDG to one

that contains specific dependencies for web applications.

Several authors have studied slicing at the architectural

level. In general, all these approaches aim at raising the

abstraction level of the analysis to the component level:

the (dependency) relations that are captured are between
components and not within components. As such, these

approaches cannot be used to conduct a detailed analysis

across components, as we aim at in our work. The authors

typically aim at answering impact analysis questions such

as “What other components are required when one com-

ponent is to be reused in another system?”, “What other

components might be affected when a given component is

changed?”, “What is the minimal set of components that

must be inspected when a system fails at a given compo-

nent?”. Both Zhao [18] and Stafford et al. [19] have studied

the analysis and slicing of software architectures based on

their specification in an Architecture Description Language

(ADL). In both approaches, the components and relations in

a software system’s architecture are first (manually) modelled

in a domain specific language before they are analyzed.

In addition to the difference in abstraction levels described

above, these approaches differ from ours in that we aim at

automatically reconstructing our analysis models from the

system’s source artifacts (code and configuration).

Li et al. introduce the component dependency graph (and

component dependence adjacency matrix) to explicitly repre-

sent dependencies in a component-based system [20]. They

find components in C++ or Java source code by identifying

all classes and interfaces, and derive component dependen-

cies from the #include directives. The difference with our

work is that the granularity of dependencies in their approach

is at the component level, where the Boolean cells in their

adjacency matrix indicate the existence or absence of a

dependency between the two components. Such information

can be used to estimate the impact of changes, and for finding

the set of components that is required to support the reuse of

a component in another system. However, the granularity is

too coarse for the type of detailed program analysis that we

aim to support with our technique, such as program slicing

and information flow analysis, which need dependencies at

the granularity of individual program points.

Eichberg et al. define an approach that uses static anal-

ysis expressed in Datalog for the continuous checking of

constraints on structural program dependencies [21]. The

granularity of their dependencies is more fine-grained than

that of Li et al. discussed above and ranges from intra-class

dependencies to the level of architectural building blocks.

Their approach is designed to check architectural and design

level constraints and they provide a domain-specific language

to easily specify these constraints. The main difference with

our work is that their approach is limited to identifying

and reasoning over structural dependencies between source

elements. Since they do not capture semantic dependencies

such as control- and data-dependence, their approach cannot

be used to analyze (constraints on) the information flow in

a system, as opposed to our work.

VII. CONCLUDING REMARKS

Many of today’s software systems are composed from

reusable components, implemented in one or more program-

ming languages, and connected using a variety of config-

uration artifacts. Correctly engineering these configuration

artifacts is no less challenging or error-prone than source

code. We found that even though these are crucial for the

overall behavior of these systems, there is surprisingly little
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support for incorporating them in the static verification and

validation. In this paper, we remediate this situation.

Contributions of this paper include: We present a method

that combines model-driven engineering with program anal-

ysis techniques to support analysis across the components

of a component-based system. Our approach is based on (1)

recovering intra-component dependence graphs (CDGs) for

each component; (2) recovering an inter-component depen-

dence graph (ICDG) from the configuration artifacts; and (3)

integrating the ICDG with the various CDGs to reconstruct

a system-wide dependence graph (SDG).

We build on the Knowledge Discovery Metamodel (KDM)

to reverse engineer a homogeneous model from heteroge-

neous artifacts. We leverage KDM to become programming

language agnostic and tool independent. This enables us to

reuse existing tools for constructing the individual CDGs.

We have implemented and evaluated our approach by

building two prototype tools which have been successfully

used to recover models from component-based systems and

track information flow using program slicing. We have tested

the scalability of our approach on industrial code bases up to

100 KLOC, and the results show a linear growth in execution

time and model size, as the system size increases.

Future Work: We see several directions for future research.

The first (and obvious) one is the extension of our prototype

and experiments to include the analysis of more source lan-

guages and component composition/configuration languages.

Next, considering the size and complexity of most indus-

trial systems, there are many opportunities in the direction

of visualizing the analysis results. So far, we have used

the SourceRegion objects in our KDM model as traceability

links between the analysis results and the source code, but

a visualization of the information flow at higher levels of

abstraction may considerably improve the comprehensibility.

More abstract visualizations are of special interest to our

industrial partner because it is not just the developers but also

the (non-developer) safety domain experts that could use the

recovered information to support software certification.

Another interesting direction is the “injection” of our

SDG back into CodeSurfer by modifying its internal rep-

resentation. This would enable us to reuse the visualization,

exploration and analysis capabilities of CodeSurfer.

Finally, by integrating the SDG into a graph exploration

tool, it may be possible to provide more user-friendly vi-

sualization and navigation facilities. This can, for example,

enable the user to “zoom” from a high-level view of the

system showing information flow, to a fine-grained view

showing CDG internals. Such variations in abstraction level

support the requirements imposed by different maintenance

tasks, for instance debugging a single component, or finding

an ill-configured system before deployment.
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