
Tracking and Visualizing Information Flow in
Component-Based Systems

Amir Reza Yazdanshenas
Simula Research Laboratory

P.O. Box 134, N-1325 Lysaker, Norway
amir.yazdanshenas@simula.no

Leon Moonen
Simula Research Laboratory

P.O. Box 134, N-1325 Lysaker, Norway
leon.moonen@computer.org

Abstract—Component-based software engineering is aimed at
managing the complexity of large-scale software development by
composing systems from reusable parts. In order to understand
or validate the behavior of a given system, one needs to acquire
understanding of the components involved in combination with
understanding how these components are instantiated, initialized
and interconnected in the particular system. In practice, this
task is often hindered by the heterogeneous nature of source and
configuration artifacts and there is little to no tool support to
help software engineers with such a system-wide analysis.

This paper contributes a method to track and visualize in-
formation flow in a component-based system at various levels
of abstraction. We propose a hierarchy of 5 interconnected
views to support the comprehension needs of both safety domain
experts and developers from our industrial partner. We discuss
the implementation of our approach in a prototype tool, and
present an initial qualitative evaluation of the effectiveness and
usability of the proposed views for software development and
software certification. The prototype was already found to be
very useful and a number of directions for further improvement
were suggested. We conclude by discussing these improvements
and lessons learned.

Index Terms—information flow analysis, software visualization,
model reconstruction, component-based software systems

I. INTRODUCTION

How well software engineers understand a system’s source
code affects how well the system will be maintained and
evolved. Various studies have shown that program compre-
hension accounts for a significant part of the development and
maintenance efforts (see [1] for an overview) and with today’s
rapid growth in system size and complexity, software engineers
are faced with tremendous comprehension challenges.

Component-based software engineering is aimed at better
managing the complexity of large-scale software development
by assembling systems from ready-made parts, similar to
how hardware systems are assembled from integrated circuits.
Software systems are composed from reusable components,
implemented in one or more programming languages, and
connected using configuration artifacts, ranging from simple
key-value maps to domain-specific configuration languages.

Even though component-based design supports comprehen-
sion by lowering coupling and increasing the cohesion of
components, the overall comprehension of component-based
systems can be prohibitively complicated. This is caused
by the fact that the configuration and composition of the
components plays an essential part in the overall behavior

of such systems. Consequently, to understand a system’s
behavior, one needs to understand how control and data flow
are interlaced through its combination of component and
configuration artifacts.

In spite of these challenges, we found that there is little
support for system-wide analysis of component-based systems.
Most of the tools that are available have strict limitations
on the programming languages that can be processed. This
typically means that information from external configuration
artifacts can not be included, effectively inhibiting system-
wide analysis and confining it to the boundaries defined by
the source code of a single component. In practice, this means
that software engineers have only their own cognition abilities
to rely on for understanding the overall system’s behavior.

Another complicating factor in the engineering of large
industrial software systems is that it is not just the developers
that need to understand what’s going on in the code. However,
most of the literature on reverse engineering and program
comprehension assumes the developer as the default, and only,
audience. There is extensive literature on the visualization of
non-source artifacts to support domain experts (e.g. [2]), but
there is considerably less information on the visualization of
source code related information for non-developers. After all,
why would non-developers need to understand source code?

This paper is motivated by a typical industrial case in which
(non-developer) safety domain experts need to understand the
logic that is implemented in the system to support software
certification. These safety domain experts need to see the
system’s source artifacts represented in a context that is
relevant to them – not just what the code does, but what it
means [3]. Consequently, any reverse engineered views on the
system need to be goal-driven, at a suitable level of abstraction,
and based on relevant knowledge of the application domain.

Our earlier work [4] presents a technique to reverse engineer
a fine-grained system-wide dependence model from the source
and configuration artifacts of a component-based system. The
paper concluded with the observations that the technique was
promising but “considering the size and complexity of most
industrial systems, there are many opportunities in the direc-
tion of visualizing the analysis results”, and “a visualization
of the information flow at higher levels of abstraction may
considerably improve the comprehensibility”.

The current paper builds on the technology developed in [4]
and makes the following contributions: (1) we propose a

978-1-4673-1216-5/12/$31.00 c© 2012 IEEE ICPC 2012, Passau, Germany143

hierarchy of views that represent system-wide information
flows at various levels of abstraction, aimed at supporting
both safety domain experts and developers; (2) we present
the transformations that help us to achieve these views from
the system-wide dependence models and discuss the different
trade-offs between scope and granularity; (3) we discuss how
we have implemented our approach and views in a prototype
tool, named FlowTracker; (4) we report on an initial qualitative
evaluation of the effectiveness and usability of the proposed
views for software development and software certification. The
evaluation results indicated that the prototype was already
very useful. In addition, a number of directions for further
improvement were suggested.

The remainder of the paper is organized as follows: Sec-
tion II describes the context of our work. We present the
overall approach and the proposed hierarchy of visualizations
in Section III, followed by a description of our prototype
implementation in Section IV. We discuss the qualitative
evaluation of our approach in Section V. We summarize related
research in Section VI, and conclude in Section VII.

II. MOTIVATION

The research described in this paper is part of an ongoing
industrial collaboration with Kongsberg Maritime (KM), one
of the largest suppliers of programmable marine electronics
worldwide. The division that we work with specializes in com-
puterized systems for safety monitoring and automated correc-
tive measures to mitigate unacceptable hazardous situations.
Examples include emergency shutdown, process shutdown,
and fire and gas detection systems for vessels and off-shore
platforms. In particular, we study a family of complex safety-
critical embedded software systems that connect software con-
trol components to physical sensors and mechanical actuators.
The overall goal of the collaboration is to provide our partner
with tooling that provides source-based evidence to support
software certification, and assists the development teams with
understanding the behavior of deployed systems, i.e. systems
composed and configured to monitor the safety requirements
of a particular installation (execution environment).

The remainder of this section gives a generalized view
on how systems are developed in this application domain.
We use the following terminology: a component is a unit
of composition with well-defined interfaces and explicit con-
text dependencies [5]; a system is a network of interacting
components; and a port is an atomic part of an interface, a
single point of interaction between a component and other
components or the environment. A component instance is the
representation of a component as it would appear at run-time,
specialized and interconnected following the configuration
data. A component implementation refers to the component’s
source code artifacts (i.e without configuration information).
There is one component implementation and possibly several
component instances for each component in the system.

Without loss of generality, we discuss our approach in terms
of the system that was studied. This means that we use the
general term system-level input and the more case specific term

analog
input
#1

digital
input
#M

check
status

#1

check
status

#2

vote
#1

output
#1

output
#2

output
#N

Aj

check
status

#X

AlarmErr
AlarmVal
InhibitIn

Manual
Override

CheckSum

vote
#2

analog
input
#2

Sm

Sm-1

S1

CascOut

CascIn

Fig. 1. Component composition network for an example system.

sensor interchangeably, and similar for system-level output and
activator. We emphasize that the proposed approach can also
be applied to component based systems with other types of
inputs and outputs than sensors and activators.

Concrete software products are assembled in a component-
based fashion from a limited collection of approximately 30
reusable components. The components are implemented in
MISRA C (a safe subset of C [6]). They are relatively small
in size (in the order of 1-2 KLOC) and the computations are
relatively straightforward. Their control logic, however, can be
rather complex and is highly configurable via parameters (e.g.
initialization, thresholds, comparison values etc).

The system’s overall logic is achieved by composing a
network of interconnected component instances (Figure 1).
These processing pipelines receive their input values from
sensors and process it in various ways, such as measuring,
digitizing, voting, and counting before sending the outputs to
drivers for the actuators. Components of the same type can
be cascaded to handle a larger number of input signals than
foreseen in their implementation (shown in Figure 1 for analog
inputs #1 and #2). Similarly, the output of a given pipeline
can be used as input for another pipeline to reuse the safety
conclusions for one area as inputs for a connected area.

Research Question: As installations that are monitored
become bigger, the number of sensors and actuators grows
rapidly, the safety logic becomes increasingly complex and
the induced component networks end up interconnecting thou-
sands of component instances. To give an impression, consider
that in contrast to those 11 instances and 4 stages shown in
Figure 1, a typical real-life installation has 12 to 20 stages in
each pipeline, and approximately 5000 component instances
in its safety system. As a result, it becomes harder and harder
to understand and reason about the overall behavior of the
system. The main question that drives our research is “can we
provide source-based evidence that signals from the system’s
sensors trigger the appropriate actuators?”.

III. APPROACH

The question if signals from the system’s sensors affect
the appropriate actuators can be answered by tracking the
information flow between sensors and actuators using program

144

Source Code Information

Configuration Information

0..*

1..*

from

from
to

to

DataDependence

ControlDependence

ProgramPointPDG

CompilationUnit

Line#

SourceFile

PortInstance

Intercomponent
DataDependence

ConfigurationFile

PortType

declares
todeclares

from
declares

ComponentInstance

Fig. 2. Main elements from artifacts used to track information flow.

slicing [7]. Program slicing is a decomposition technique that
can be used to leave out all parts of the program that are
not relevant to a given point of interest, referred to as the
slicing criterion. In other words, a (backward) slice consists
of all the program elements that potentially affect the values
at the slicing criterion [8]. Thus, by selecting an actuator as
slicing criterion, we can determine which sensors can affect
this actuator since these will be contained in its backward slice.

Note that dynamic analysis (tracing) during real-life opera-
tion is not an option due to safety hazards. In addition, off-site
execution requires advanced stubs and simulators to replace
hardware components and to create realistic execution scenar-
ios. Since this infrastructure is already under high demand for
testing, we investigate alternatives based on static analysis.

There are two challenges that need to be addressed to
successfully apply slicing in our context: (1) program slicing is
typically defined within the closed boundaries of source code,
whereas our case needs system-wide slicing across a network
of interacting components, i.e. including information from
component source code and system configuration artifacts; (2)
the information that is obtained via slicing typically contains
many low level details that can impede comprehensibility.

The first challenge is addressed by reverse engineering
a fine-grained system-wide model of the control- and data
dependencies in the system based on our previous work [4],
which is briefly summarized in Section III-A. To address the
second challenge, we propose a hierarchy of five abstractions
(views). We discuss how these views are constructed from the
system-wide dependence model via a combination of slicing,
transformation (abstraction) and visualization in Section III-B.

A. Reverse Engineering a System-wide Dependence Model

This section summarizes the technique and terminology of
our earlier work on reconstructing system-wide dependence
models [4]. The overall approach is as follows:

1) For each component in the system, we build a component
dependence graph (CDG) by following the method for
constructing inter-procedural dependence graphs [9] and
taking the component source code as “system source”.

2) The system’s configuration artifacts are analyzed to
build an inter-component dependence graph (ICDG). This
graph captures the externally visible interfaces and inter-
connections of the component instances. Construction of
the ICDG is done in the same way as the component com-
position framework uses to set up the correct network.

3) The system-wide dependence graph (SDG) is constructed
by integrating the system’s ICDG with the CDGs for
the individual components. Conceptually, the construction
can be seen as taking the ICDG and substituting each
“component instance node” with a sub-graph formed by
the CDG for the given component.

Figure 2 gives an overview of the main information that we
collect from various source artifacts to build these system-wide
dependence models.

B. Model Abstraction and Visualization

Dependence graphs, and slices through dependence graphs, are
complex, often even more complex than the original source
artifacts. This is because these models reflect all relevant
program points and dependencies from a compiler’s perspec-
tive, an intrinsic characteristic that makes them well-suited for
detailed program analysis, but it makes them less suited for
directly supporting comprehension or visualization [4, 10].

In order to make the detailed information contained in an
SDG or slice more suitable for comprehension, we propose a
hierarchy of five abstractions (views) that are aimed at satisfy-
ing the needs of safety experts and developers, ranging from a
black-box survey of the system, via a number of intermediate
levels, to a hypertext version of the source code. These views
are constructed from the system-wide dependence model via a
combination of slicing, transformation and visualization. The
various levels are interconnected via hyperlinks to enable easy
navigation and support various comprehension strategies [11].
We distinguish the following views:
(1) System Dependence Survey: This view shows the
dependencies between all system-level inputs (sensors) and
outputs (actuators) in one single matrix, with sensors and
actuators as rows and columns respectively (see Figure 3a).
A filled cell indicates that there is at least one path along
which information can flow from that sensor to that actuator.
This view gives a black-box summary of the SDG that hides
all details on how the information flow is realized. Engineers
can use it to quickly find what sensors can affect a specific
actuator, and vice versa.

The System Dependence Survey serves as a starting point
for navigation. To this end, we make the matrix active by
embedding hyperlinks to corresponding views on the next
abstraction level. By clicking one of the cells in the column
for a given actuator (e.g. Aj), the user can zoom in on the
System Information Flow for that specific actuator.
(2) System Information Flow: This view shows the inter-
component information flow from all sensors that can affect a
given actuator, i.e., there is a diagram for each actuator in the
system. The view hides all intra-component level information
in a backward slice through the SDG with actuator Aj as

145

A1 A2 Aj An
S1
S2

Si

Sm

(a) System-wide
dependencies

O1 O2 Oj On
I1
I2

Ii

Im

(b) Component
dependencies

Fig. 3. System- and Component Dependence Surveys.

slicing criterion. The result highlights the actuator and all
related sensors, component instances, and inter-component
connections. Figure 4 shows an example for actuator Aj .

Apart from showing the elements that influence an actuator,
this view serves as an intermediate level between system level
views and component level views. It includes hyperlinks for
navigation so that a user can click on a component instance to
zoom in on a single component, or click outside the diagram
to return to a higher level of abstraction.
(3) Component Dependence Survey: Similar to the Sys-
tem Dependence Survey, the Component Dependence Survey
summarizes the dependencies between a component’s input-
and output ports using filled cells in a matrix (see Figure 3b).
This black-box view shows which input ports can affect which
output ports but hides all details on how the information flow is
realized. There is one dependency matrix for each component,
independent of its instances, because the dependencies are
induced by the component source code. Users can navigate to
more detailed views by clicking one of the cells in a column
(e.g. Oj) to zoom in on the Component Information Flow for
the corresponding output port.
(4) Component Information Flow: For a given component
and output port, this view shows the intra-component infor-
mation flow from all input ports that can affect that output
port (i.e., there is a diagram for each output port of the
component). In addition to the in- and output ports involved,
the graph includes all conditions that control the information
flow towards the selected output port. Note that we combine
sequences of conditions into aggregated conditions wherever
possible to reduce cognitive overhead. The details of this
refinement are described later, in Section IV-B.

Figure 5 shows an example with output port “AlarmErr” as
slicing criterion (red node at the bottom) . The input ports
that can affect AlarmErr are at the top (green nodes) and
the conditions that control the information flow are shown
as yellow squares. The conditional nodes have hyperlinks
embedded to navigate to the corresponding location in the
source code (indicated by marker A in Figure 5).
(5) Implementation View: At the lowest level in our hi-
erarchy, the implementation view shows pretty-printed source
code with hypertext navigation facilities, e.g. cross-referencing
of program entities with their definition. Higher level views

output
#1

output
#N

Aj

check
status

#X

AlarmErr
AlarmVal
InhibitIn

Manual
Override

CheckSum

analog
input
#2

Sm

Sm-1

S1

CascIn

digital
input
#M

check
status

#1

check
status

#2

vote
#1

output
#2

vote
#2

analog
input
#1
CascOut

Fig. 4. System Information Flow highlighted for Aj in example system.

provide links into the source code as a means of traceability
and to help minimize user disorientation.

C. Typical Usage Scenario

A typical scenario to use this hierarchy is sketched below:
1) Users start navigating the system from the System Depen-

dence Survey. In this view, they can immediately identify
those sensors that can (or can not) influence a given
actuator (Figure 3a).

2) By clicking on one of the actuator columns, the users
zoom in on the System Information Flow that helps them
find the components and inter-component connections
that play a role in transferring the values from sensors
to that actuator (Figure 4),

3) By selecting on one of the component instances, they
navigate to the Component Dependence Survey. This
view can be used to identify which input ports can (or
can not) affect which output ports (Figure 3b)

4) By clicking on one of the output port columns, the users
focus on the Component Information Flow, that shows the
conditions that control how information from the input
ports can reach the selected output port (Figure 5).

5) Finally, the user can click on one of the conditions to
navigate to the corresponding location in the source code
for traceability and further (manual) inspection.

IV. PROTOTYPE IMPLEMENTATION

This section discusses the implementation of the approach
described in Section III in a tool named FlowTracker. We
distinguish three stages in the implementation, detailed below:

A. Model Reverse Engineering

We reuse our earlier tool to reverse engineer system-wide
dependence graphs (SDGs) from source artifacts [4]. It builds
on Grammatech’s CodeSurfer [12]1 to create component
dependence graphs (CDGs) for the individual components.
Next, these CDGs are traversed using CodeSurfer’s API to
inject them into OMG’s Knowledge Discovery Metamodel
(KDM) [13]. The traversal uses the Java Native Interface to
drive KDM constructors in the Eclipse Modeling Framework.

1 http://www.grammatech.com/

146

AlarmErr

AlarmVal InhibitIn CheckSum

 AlarmVal != ErrValue

 AlarmVal > -0.0001

 AlarmVal < + 0.0001

 IOErr != FALSE

 Param->LowSetFlag AlarmVal <= Param->Limit

 ((AlarmStat != DisableALL) && (Measure == TRUE))

 Param->PrevInhibitIn

 InhibitCntr < MAX_IDLE
 ManualOverride

 OprMode == MANUAL
 Chk(LValue) > 0

 GlobalResetStat
PrevGlobalResetStat

IOErr! = FALSE
ALType & 0x08
getChkSum(AL)

ManualOverride

 getChSum(AL) != CheckSum

 PrevAlarmStat == AlarmStat

 Param-> InhibitOut Param->instance & DISPLAYOUT

Param->AckALL
 ChkSumIN == getCheckSum(pram->InputVal)

param->IOErr != FALSE
 Param->InhibitOut

 Param->instance & DISPLAYOUT

C

D

 ...
 if (Param->Instance & DISPLAYOUT) {
 ...

 Component.c

AlarmVal = Param->AlarmVal

 foo = AlarmVal

 bar = Fun$Result1

 AlarmVal = bar

 IF AlaramVal > -0.0001

 Fun$Result1

 int AlarmVal = Param->AlarmVal;
 int foo = AlarmVal;
 int bar = fun();
 AlarmVal = bar;
 if (AlaramVal > -0.0001){
 ...

B
 Param->AckALL

 ChkSumIN == getCheckSum(pram->InputVal)

 param->IOErr != FALSE

EA

 call Fun

Fig. 5. Component Information Flow example (markers A-E and the cloud-like fragments are used for explanations in the text)

For each program point, we include a pointer to its origin
in the source code for traceability. Next, we use Xalan-J to
analyze and transform the system configuration artifacts into
the inter-component dependence graph (ICDG). Finally, we
use a straightforward substitution transformation to integrate
the CDGs with the ICDG and create the final SDG.

B. View Construction

During view construction, we enrich the SDG with additional
summary edges and aggregate nodes that capture a number of
view-specific abstractions that will be used in the presentation
stage. Alternatively, we could have defined several “destruc-
tive” transformations that create a new model for each view,
but we prefer to enrich our SDG model in order to reuse
information between views. Our implementation builds on a
simple slicing tool in Java that we have created as part of
our earlier work. Below we discuss the abstractions that were
added for the various views. Their names map trivially on the
view names in Section III-B

The SysDep relation is based on slices for each of the
system’s actuators and includes a summary edge (Si,Aj) if
sensor Si is in the slice for Aj . Similarly, for each component
C, the CompDepC relation is based on slicing all output ports
and including (Im,On) if input port Im is in the slice for On.

For each actuator A, the relation SysInfoFlowA is based
on slicing the enriched SDG on A. For each component Ci in
the slice, we use the summary edges of CompDepCi

to hide
the internals of Ci. What remains of the slice are summary
edges for the connections between (ports of) the component
instances involved and connections from the incoming sensors
and towards the given actuator. Note that it is not possible to
compute this information by simply slicing the ICDG because

the ICDG does not contain information about the dependencies
between a component’s input and output ports.

For each output port O of every component C, the
CompInfoFlowC,O relation is based on three transformations:

(1) Codesurfer splits sub-expressions of a condition over
separate program points to increase precision during slicing.
When presenting results to the user, this creates a cognitive
distance with respect to the original code. We address this issue
by merging the sub-expressions of conditions into aggregate
nodes that resemble the original code (Figure 5, marker B).

(2) We add summary edges that subsume all nodes that are
not input ports, conditions or output ports (Figure 5, marker
C). For example, when we have edges (x,y) and (y,z) and y is
not an input port, condition or output port, we add a summary
edge (x,z). These summary edges are computed transitively,
so that they represent the longest path possible.

(3) finally, we analyze the resulting graph to detect so-called
condition chains. We define condition chains as the (longest
possible) paths in the SDG that exclusively consist of single
entry/single exit conditional nodes. For each condition chain,
we add a special aggregate node to represent the individual
conditions in the chain at a higher level of abstraction. This
aggregate node is labelled based on the conditions it repre-
sents. For an example, see Figure 5, marker D for the aggregate
node, and marker E for the condition cluster it represents.

The Implementation View does not require additional sum-
mary edges or aggregate nodes to be added to the SDG.

C. Presentation

We present the results of our System- and Component De-
pendence Surveys as matrices that have been implemented
as HTML tables with input and output ports as rows and
columns, respectively. This presentation is intentionally chosen

147

to resemble our industrial partner’s specifications of the safety
logic, known as Cause & Effect matrices, to enable easy com-
parison of the implemented dependencies with the specified
safety logic. The matrices are made active by embedding
hyperlinks to the corresponding views on the next lower
abstraction level. By clicking one of the cells below a given
port or actuator, the user can zoom in on the information flow
leading to that port or actuator.

We use the KDM API to traverse the view-specific summary
edges in our enriched SDG and transform the elements of
interest into GDL, a graph description language that can be
processed by the aiSee graph layout software.2 We make use
of GDL’s provisions for collapsable subgraphs to represent
conditional clusters and their aggregate representation so the
user can go back and forth between these representations. We
include navigation between views by embedding hyperlinks
in the nodes representing components and ports. Similarly,
we provide traceability by embedding hyperlinks to source
code locations in Component Information Flow nodes repre-
senting conditions. These hyperlinks are preserved when aiSee
computes the layout and renders the graph in Scalable Vector
Graphics (SVG) format.

Finally, we create a pretty printed version of the source
code using Doxygen.3 Doxygen is a source code document
generator for numerous programming languages, including C.
It can be configured to include the source code as part of
the generated documents in HTML format and embed various
hypertext navigation features.

V. EVALUATION

To evaluate our approach we consider the following three
aspects: accuracy, scalability and usability. In a context of
software certification, the accuracy of our views is of utmost
importance and is determined by the accuracy of our model
reconstruction and of our slicing tool. Both were evaluated in
detail in [4] and showed 100% accuracy when compared to
gold standard results from CodeSurfer. The same paper also
reported that these steps show linear growth of execution time
and model size with respect to program size. This indicates
good overall scalability as the views that we construct in this
paper are all projections of this model (i.e. smaller in size).

In the remainder of this section we focus on the results
of a preliminary qualitative study assessing the usability of
FlowTracker, and in particular of the proposed views.

A. Study Design

Considering that FlowTracker is still a prototype in early
stages of development, our goal is to conduct an exploratory
study to evaluate the usability and effectiveness of the visual-
izations, and their fitness for the needs of our industrial partner.
To this end, we conduct a qualitative evaluation of the tool
with a group of six subjects that were selected so that their
profiles would match with the various roles of prospective
FlowTracker users. We use such a pre-experimental design
as it is a cost-effective way to find out the major positive

2 http://www.aisee.com/ 3 http://www.doxygen.org/

and negative points, and identify missing functionality and
required improvements before the tool can be adopted by
our industry partner [14]. In addition, this design limits the
overhead and impact of our study on the industrial partner, and
it decreases the influence of (negative) anchoring effects that
can rise from having early prototypes evaluated by people that
should later adopt the tool [15] (this effect can be paraphrased
as “first impressions are hard to change”). This is an important
consideration for a domain-specific tool that is dedicated to a
specific audience, like ours.
Participant profiles: Three of the participants are senior
engineers in Kongsberg Maritime (KM) who work daily with
the case study system. Participant P1 is a senior developer who
develops and maintains core modules of the studied system, his
focus is more on individual modules than complete systems.
P2 is both a system integrator and auditor: (a) in some projects,
his role is to audit systems that are built by other teams to
assess their validity and reliability; (b) in other projects, his
role is to compose the overall system logic from components,
which includes verifying correct component inter-connections.
P3 is a safety expert who handles the certification process
together with the third party certifiers such as DNV.4 In
addition, she has prior development experience on the system.

We recruited the other three subjects (P4 to P6) from
colleagues who were in the final stages of their PhD studies
on model-based software verification and validation at Simula
Research Laboratory. These subjects are very familiar with the
notions of component-based design, model-driven engineering,
verification and validation, but they have no previous exposure
to the case study system. However, each of them had two to
four years of industrial experience prior to starting their PhD
study, so we refer to them as junior developers. We include
this second group of subjects with a different perspective to
decrease the potential bias towards the specific traits of the
case study that could be caused by only selecting subjects
from our industrial partner [16].
Preparation: The evaluation sessions were conducted in-
dependently of each other, and the results were aggregated
after all participants finished the evaluation. Each session
started with a brief presentation of FlowTracker (˜10min.).
The presentation included a walk-through of a typical usage
scenario, similar to Section III-C. The junior developers were
given an extra presentation on the studied system, to clarify the
problem statement and the goals of the study. Next, we let the
participants play around with the tool until they felt confident
in their understanding of its functionality. We concluded this
training session with three hands-on exercises which partic-
ipants had to complete before starting the evaluation. The
exercises were designed in a way to engage all the views and
the major features of FlowTracker. There were no time limits
to complete the exercises and discussion was stimulated.
Data Collection: The evaluation itself consists of a structured
interview which was guided by a questionnaire consisting of
30 closed questions that used a 5-point Likert scale and 6

4 http://www.dnv.no/

148

open (discussion) questions. Questions where both positively
and negatively phrased to break answering rhythms and avoid
steering the subjects [17]. In total, each session lasted between
60 and 90 minutes. Researcher-administered interviews were
chosen over self-administered questionnaires to elicit as much
feedback as possible. Participants were instructed to bring
up any question or comment during the training exercises,
questions, and the open-ended discussion, similar to think-
aloud sessions. Based on the answers, the interviewer included
relevant follow-up or clarification questions. We recorded
the complete audio of the sessions (training+interviews) and
transcribed and analyzed them using the ELAN multimodal
annotation tool [18]. This allowed us to collect the answers
to our questions, find deeper reasons behind those answers
and get more insights into the preferred interactions with
FlowTracker.
Workshop: Prior to the evaluation sessions, we organized a
workshop meeting at KM to present FlowTracker to various
stakeholders with different roles and engineering backgrounds.
As the audience of this workshop was different from the eval-
uation participants, we will also discuss the relevant feedback
from this meeting below.

B. Findings

In the remainder of this section we present the major findings,
key questions and, the highlights of the feedback we received
from the participants. The results are aggregated per view,
followed by a discussion of feedback on the overall usage
experience. Whenever there are outliers or noteworthy differ-
ences between the answers of the group of junior developers
versus the group of senior, we will discuss the details.
(1) System Dependence Survey: The responses to questions
regarding this view indicated that the engineers very frequently
need to find out which system inputs affect a certain output.
For example, P2 stated he “needs that kind of information
on a daily basis”. When asked how they would obtain such
information in the absence of FlowTracker, most subjects
responded that they would (and currently did) revert to the
manual inspection of the source code to find these depen-
dencies, except for P4 who preferred “to use UML activity
diagrams to model the message passing in the system”.

Overall, the subjects indicated that they found the presenta-
tion of information in this view to be intuitive, and that the goal
of summarizing system-wide information flow was adequately
achieved. They agreed with our choice to designate this view
as the starting point for navigation in FlowTracker.

The positive response to this view is not surprising consider-
ing that it closely resembles the Cause & Effect specifications
that are already used by our partner. Already from the very first
meetings, there was a request for tooling that would enable
safety domain experts (and certification bodies) to compare
the “as-implemented” system against the “as-specified” safety
logic at a single glance, and this view satisfies that goal.
(2) System Information Flow: The subjects were generally
satisfied with the functionality of this view: indicating which
components, ports and sensors can affect the value of the

selected actuator. FlowTracker currently shows all components
and ports and highlights the elements that affect a given
actuator; the others are dimmed. An alternative could be to
hide these elements from the diagram. Most subjects favored
the current design. P5, for example, remarked that “this view
gives me the big picture as well as the micro answer”.
However, two subjects had some reservations with respect
to the amount of information shown in this view; P4 and
P6 were concerned that the extra information could lead to
confusion. All subjects were positive about the idea of adding
more interactive facilities, such as an option to include or hide
the dimmed elements on demand in this view.

The view was regarded an appropriate navigation intermedi-
ary between the System Dependence Survey and Component
Dependence Survey, except for P5 who preferred to have the
choice to jump directly from System Dependence Survey to
Component Dependence Survey as alternative navigation path.
We had considered this option while designing the navigation
structure but decided against it in favor of a single predictable
navigation structure without shortcuts to avoid disorientation.

The way information is presented was received as intuitive,
and “very beneficial for the needs of system integrators”. This
benefit was also mentioned during the initial workshop where
a participant remarked that this view was useful to inspect
“what is happening when there is no system-wide information
flow between a sensor-actuator pair that is supposed to be
connected”. Examples that were mentioned included analyzing
configuration issues like dangling connections that could, for
example, result from renaming component port names but not
updating existing (external) system configurations.

Subjects also observed that the System Information Flow
to some extent duplicates the functionality of one of our
partner’s current tools, which shows the overall component
composition network based on the configuration information.
However, the FlowTracker view is based on fundamentally
different underlying knowledge: it is based on the system-
wide dependencies across components instead of just using the
configuration information. As such, the System Information
Flow gives a more reliable view regarding the actual inter-
component information flow, because any disruptions that
occur inside components will be rendered as a broken flow
in our view but are not noticed by the existing tool.

During the discussion, P2 (system integrator) pointed out a
promising new feature: he mentioned that KM has (prelimi-
nary) guidelines for inter-connecting components, for example
detailing which port-types are compatible. Although these
guidelines do not guarantee correct behavior, having some
form of automated checking could save a lot of time by signal-
ing apparent connection mistakes. P2 saw good opportunities
for FlowTracker to check such composition guidelines, and to
show deviations in the System Information Flow view.
(3) Component Dependence Survey: Similar to the Sys-
tem Dependence Survey, the subjects agreed that this view
adequately summarizes the dependencies between input and
output terminals. P3 (safety expert dealing with system certifi-
cation) regarded this view as “top priority for the certification

149

process and a facilitator of the discussions with the third-party
certifiers”. Module developer P1 stated that he “must know
the input/output relations of the components at all times, but
I currently only have the source code to read and hopefully
find out about all dependencies”. P1 did not expect that this
view would be beneficial for the certification process, but
he emphasized that he had not been directly involved in the
certification process. P6 preferred that the matrix would distin-
guish between the data dependencies and control dependencies
between inputs and outputs; input terminals whose value is
transferred to the output terminals appear differently from the
inputs whose value is used to control the information flow
toward the same output port.
(4) Component Information Flow: We received mixed
feedback regarding this view. The most positive responses
came from the group of industrial subjects, in particular P1,
the module developer. The variety of opinions about this view
can perhaps be explained by the fact that it uses an unfamiliar
design, which does not resemble the more well-known matrix
or UML diagram styles like our other views. Another potential
cause is the visual complexity of some of the larger diagrams,
which was mentioned by at least one of the subjects.

Five of the subjects agreed that conditions can have a
significant effect on the intra-component information flows
and should be highlighted and put in perspective to improve
comprehension. The subjects also indicated that “such graphs
clearly show the intra-module information flows [and] the
effects of conditions on the information flow”, reportedly
“much better than the source code”. On the other hand,
subject P6 answered that “one might need to see the as-
signment statements in the diagram as well to understand
the information flows”. In addition, she would like to see
the outgoing edges of condition nodes labelled with True or
False to indicate which edge would be used if the condition
would be evaluated during actual execution. Finally, she had
concerns about the intuitiveness of the diagrams when they
grow in size, i.e. she mentioned that “the larger diagrams
are no longer intuitive”. Subject P5 remarked that this view
would “probably not contain enough information to check
safety regulations or design guidelines”.

Prior to our evaluation, we assumed that the Component
Dependence Survey (i.e. one level above this view) would
be the lowest abstraction level that would be useful for non-
developers such as safety experts. However, safety expert P3
actually regarded this Component Information Flow as “a very
good tool to demonstrate to the external certifiers what we
have done”, i.e. to provide evidence for software certification.
During the workshop, participants discussed that this view
would make a good point of reference for discussions between
different engineering roles, they stated that “it acts as a bridge
between the C programmers and integrators”.

The subjects would like to see more interactive facilities,
especially some measures to better deal with the larger dia-
grams. In addition to zooming, a concrete suggestion that was
made is the option to just see the information flow that starts in
a single selected component input port. We foresee that many

of these requests can be achieved quite easily by incorporating
a better graph viewer than currently used in the prototype.
(5) Implementation View: This view is very similar to
the source code in a typical modern IDE (besides not being
editable in our prototype). As such, the view by itself doesn’t
contribute much, but the subjects reported that the inclusion of
this view in FlowTracker helped them to relate more easily to
higher level views since it “helps to remove the gap between
visualizations and the source code”.

In particular, subjects considered the hyperlinks from con-
ditions in the Component Information Flow diagram to the
respective locations in the source code beneficial for compre-
hension and traceability. They were less sure that these links
would support certification purposes equally well: P4 and P6
said they are useful if only the certifier knows the source
code (which they thought unlikely); P1 considered the links
beneficial; P2 and P5 refrained from answering this question
since they felt not sure about the certification process; Safety
expert P3 said that “certifiers generally do not look at the
source code, but in the worst cases where they want to see
more evidence, these links will help to find the right locations”.
Overall Experience: All in all, the subjects were positive
about the intuitiveness of the tool as they “did not need
to learn a lot of things before being able to work with
FlowTracker” and “did not feel that the tool was complex”.

The subjects would like to see the tool closer integrated
into their IDEs, although the junior developers remarked that
they did not see immediate benefits from using the tool
during the early stages of developing the components. They
preferred to “use FlowTracker during the more matured stages
of development, such as integration, testing, or for refreshing
[their] understanding of an existing system”. The industrial
subjects, on the other hand, were “looking forward to use
FlowTracker during the development process, and for post-
development phases, such as auditing and certification”.

Overall, FlowTracker received excellent feedback regarding
component and system comprehension. When we look at the
feedback concerning FlowTracker’s support for the certifica-
tion process, the results were less conspicuous, but still very
positive, most notably from the industrial subjects.5 They
argued that FlowTracker supports the certification process
by “enabling discussions between the developers and safety
experts”, and “demonstrating the safety logic that is actually
implemented in a system to the external certifiers”.

When subjects were asked to think of other tasks where
FlowTracker could be helpful, topics included: 1) source
code maintenance; 2) track ripple effects of modified source
code; 3) track ripple effects of modified configuration files;
4) configuring a new system; 5) debug individual modules;
6) auditing projects; and 7) training new project members.

C. Threats to Validity
We conducted an evaluation study using a group of six

subjects. It could be argued that this amount of subjects is

5 We should add that two junior developers did not comment on this aspect
as they felt that they did not know the certification process well enough.

150

too small to infer generalizable conclusions. We have taken
the following measures to reduce this threat: Considering that
FlowTracker is a domain-specific tool with a specific industrial
target audience, the potential for recruiting a statistically
significant number of subjects is rather limited, so we use an
exploratory qualitative study design to get the best possible
results from a limited group of subjects at an early stage. In
addition, the subjects were selected such that their profiles
would match with the various roles of prospective FlowTracker
users and in addition to the industrial subjects, we added a
second group of subjects with a different perspective to avoid
bias towards the specific traits of the case study.

Since we have conducted researcher-administered inter-
views, subjects might have been inclined to give socially
acceptable positive feedback. We have limited the impact of
this threat by including control- and follow-up questions and
instructing the subjects that honest answers would in the end
give them the most valuable tool. This threat would have
been lower for self-administered questionnaires but from other
experiences we learned that the amount and the quality of
feedback for such studies is much lower.

Another threat is that the reliability of the collected data
depends on the interviewer’s interpretation of the subject’s
answers or actions. We have mitigated this threat in two ways:
(1) we emphasized that the participants should try to give
(or include) closed answers in terms of the Likert categories
whenever possible, to limit subjective interpretation on the
evaluators side; (2) each of the two authors independently
transcribed and analyzed the interviews. Afterwards, the re-
sults were compared and differences were re-analyzed (jointly)
until an agreement was reached. The latter step was obviously
most valuable for the cases where subjects did not (only) give
a closed answer but included more discussion.

A potential concern w.r.t. generalizability is that our evalu-
ation only included one subject for each of the different roles
of module developer, system integrator, and safety expert. As
such, this subject gets a dominant voice in the evaluation and
the answers may be based more on personal opinions than on
what is needed for the role. We have tried to limit the impact
of this threat by organizing a pre-evaluation workshop where
we asked the stakeholders to identify the most qualified senior
engineers that could represent these roles in the evaluation. In
addition, it turned out that subjects with a given role generally
also had experience in some of the other roles, which also
helps to create a more balanced picture.

VI. RELATED WORK

Maletic et al. [19] identify five dimensions of software
visualizations: tasks (why), audience (who), source (what),
representation (how), and medium (where). Our work can be
summarized as why: providing source-based evidence to sup-
port software certification, who: for safety domain experts and
developers, what: of implementation artifacts of component-
based systems, how: by visualizing information flow using a
set of hierarchical views, where: on a computer screen.

Hermans et al. use leveled data flow diagrams to aid
professional spreadsheet users in comprehending large spread-
sheets [20] . Their survey showed that the biggest challenges
occur when spreadsheets are transferred to colleagues or have
to be checked by external auditors. They suggest a hierarchical
visualization of the spreadsheets: starting from coarse-grained
worksheets, expanding worksheets to view the contained data
blocks, and diving into formula view to see “a specific formula
and the cells it depends on”. Our work is similar in providing a
hierarchical visualization of information flow, with each view
having a different trade-off between scope and granularity.
Another similarity is the inclusion of non-developer, domain
experts as users of the visualizations. However, the analysis
subject, technique and the underlying entities to be visualized
are completely different. Our work analyzes source code to
infer system-wide information flows using SDGs that are
based on both control- and data flow information, while they
analyze data flow dependencies in formula-rich spreadsheets.

Krinke reports on various attempts to visualize program
dependence graphs and slices via existing (algorithmic) graph
layout tools [10]. He proposes a declarative graph layout,
tailored to preserve the relative locality of program points
to provide a better cognitive mapping back to the source
code. A survey showed that the standard representations of
program slices were “less useful than expected”, and the
improved layout is “very comprehensible up to medium sized
procedures”, but “overly complex and non-intuitive” for large
procedures. He concludes that a textual visualization of source
code is essential and introduces the distance-limited slice to
assign each program statement a specific color according to
its distance to the slicing criterion. In contrast, we developed
multiple layers of abstraction to reduce the complexity of
system-wide slices and show only the information that is
relevant for the particular task and users. We provide links
between the various views which can be navigated down to a
textual representation of source as a last resort.

Pinzger et al. [21] use nested graphs to represent static
dependencies in source code at various levels of abstrac-
tion. They follow a top-down approach similar to ours for
representing information about the system, and allow users
to adjust the graphs by adding or filtering information, like
adding a caller or “keep callees and remove other nodes”. In
contrast to our approach which creates abstracts from fine-
grained data- and control dependencies, they analyze static
“uses” dependencies in Java programs at a relatively coarse
grained level, considering elements such as package, class,
method, method call and field access.

We refer to our previous work [4] for a detailed discussion
of work related to our method to build system-wide depen-
dence models from heterogeneous source artifacts.

VII. CONCLUDING REMARKS

Component-based software engineering is widely used to
manage the complexity of large scale software development.
Although correctly engineering the composition and configu-
ration of components is crucial for the overall behavior, there

151

is surprisingly little support for incorporating this information
in the analysis of such systems. Moreover, to get a correct
understanding of system’s overall behavior, one needs to
understand how the control and data flow is interlaced through
component sources and configuration artifacts. We found that
support for such a system-wide analyses is lacking, as it is
hindered by the heterogeneous nature of these artifacts.
Contributions: In this paper, we address these issues by
proposing an approach that supports system-wide tracking and
visualization of information flow in heterogeneous component-
based software systems. Our contributions are the following:
(1) we proposed a hierarchy of views that represent system-
wide information flows at various levels of abstraction, aimed
at supporting both safety domain experts and developers; (2)
we presented the transformations that help us to achieve these
views from the system-wide dependence models and discuss
the different trade-offs between scope and granularity; (3)
we discussed how we have implemented our approach in
a prototype tool; (4) we reported on an initial qualitative
evaluation of the effectiveness and usability of the proposed
views for software development and software certification. The
evaluation results indicated that the prototype was already
very useful. In addition, a number of directions for further
improvement were suggested.
Future Work: We see several directions for future work:
First of all, we want to improve the overall user experience by
adding more on-demand interaction facilities such as zooming
and hiding or collapsing groups of nodes. Such facilities
allow users to be more selective in the amount and type of
information they see, according to their information needs at
the moment. As briefly mentioned before, we foresee that this
can be achieved by using a more elaborate graph viewer than
currently used in the prototype. Since the graph presentation is
done using SVG, a promising direction forward is investigating
the inclusion of some additional scripting based on JavaScript
libraries such as Raphäel6 or D37.

Moreover, to improve the scalability of Component Infor-
mation Flow diagrams, we want to investigate if the hierarchi-
cal block structure of the source code can be used to create a
hierarchy of collapsable sub-graphs in the visualizations.

Then there were a number of interesting extensions to
FlowTracker that were brought up during the evaluation. One
example is the possibility to include some kind of automated
type checking for component inter-connections or other forms
of constraint checking on component composition. Another
extension that came up is the ability to analyze and visualize
multiple versions of a system at the same time and highlighting
the modifications and their impact in the version history.

A final direction for future work is the integration of
our tooling with an IDE like the Eclipse platform. Besides
the increased ease of adoption, this would also have the
added benefit of being able to directly navigate to editable
source code and reuse of all existing Eclipse features such as

6 http://raphaeljs.com/ 7 http://mbostock.github.com/d3/

intelligent search, bookmarking etc. Moreover, we will be able
to take advantage of Eclipse perspectives and create separate
perspectives for safety domain experts and developers to
optimize the experience and avoid intimidation or distraction
by unneeded detail.

ACKNOWLEDGMENTS

We would like to thank the participants in our workshop and
interviews for their valuable time and feedback, without their
collaboration the evaluation of this work would not have been
possible.

REFERENCES

[1] A. Abran, J. Moore, P. Bourque, R. Dupuis, and L. Tripp, Guide to the
Software Engineering Body of Knowledge - 2004 Version - SWEBOK.
IEEE-Computer Society Press, 2005.

[2] J. Steele and N. Iliinsky, Beautiful Visualization, Looking at Data
through the Eyes of Experts, 1st ed., J. Steele and N. Iliinsky, Eds.
Sebastopol, CA, USA: O’Reilly Media, 2010.

[3] M. Petre, “Mental imagery and software visualization in high-
performance software development teams,” Journal of Visual Languages
& Computing, vol. 21, no. 3, pp. 171–183, Jun. 2010.

[4] A. R. Yazdanshenas and L. Moonen, “Crossing the Boundaries while
Analyzing Heterogeneous Component-Based Software Systems,” in
IEEE Int’l Conf. on Software Maintenance (ICSM), 2011.

[5] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Addison-Wesley, 2002.

[6] L. Hatton, “Safer language subsets: an overview and a case history,
MISRA C,” Information and Software Technology (IST), vol. 46, no. 7,
pp. 465–472, Jun. 2004.

[7] M. Weiser, “Programmers use slices when debugging,” Communications
of the ACM, vol. 25, no. 7, pp. 446–452, Jul. 1982.

[8] K. Gallagher and D. Binkley, “Program slicing,” in Frontiers of Software
Maintenance (FoSM). IEEE, Sep. 2008, pp. 58–67.

[9] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 12, no. 1, pp. 26–60, Jan. 1990.

[10] J. Krinke, “Visualization of program dependence and slices,” in IEEE
Int’l Conf. on Software Maintenance (ICSM), 2004, pp. 168–177.

[11] M.-A. Storey, “Theories, Methods and Tools in Program Compre-
hension: Past, Present and Future,” in IEEE Int’l Ws. on Program
Comprehension (IWPC), 2005, pp. 181–191.

[12] P. Anderson, “90% Perspiration: Engineering Static Analysis Techniques
for Industrial Applications,” in IEEE Int’l Working Conf. on Source Code
Analysis and Manipulation (SCAM), Sep. 2008, pp. 3–12.

[13] OMG, “Architecture-Driven Modernization (ADM): Knowledge Discov-
ery Meta-Model (KDM) - v1.2,” 2010.

[14] D. T. Campbell and J. Stanley, Experimental and Quasi-Experimental
Designs for Research. Wadsworth, 1963.

[15] A. Tversky and D. Kahneman, “Judgment under Uncertainty: Heuristics
and Biases.” Science, vol. 185, no. 4157, pp. 1124–31, Sep. 1974.

[16] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in
SIGCHI Conf. on Human Factors in Computing Systems, vol. 17, no. 1.
ACM, 1990, pp. 249–256.

[17] A. N. Oppenheim, Questionnaire Design, Interviewing and Attitude
Measurement. Continuum, 1992, vol. 30, no. 3.

[18] H. Brugman and A. Russel, “Annotating Multi-media / Multi-modal
resources with ELAN,” in Fourth Int’l Conf. on Language Resources
and Evaluation (LREC), 2004. http://www.lat-mpi.eu/tools/elan/.

[19] J. Maletic, A. Marcus, and M. Collard, “A task oriented view of
software visualization,” in IEEE Int’l Ws. on Visualizing Software for
Understanding and Analysis (VISSOFT), 2002, pp. 32–40.

[20] F. Hermans, M. Pinzger, and A. V. Deursen, “Supporting Professional
Spreadsheet Users by Generating Leveled Dataflow Diagrams Categories
and Subject Descriptors,” in Int’l Conf. on Software Engineering (ICSE),
2011, pp. 451–460.

[21] M. Pinzger, K. Graefenhain, P. Knab, and H. C. Gall, “A Tool for Visual
Understanding of Source Code Dependencies,” in IEEE Int’l Conf. on
Program Comprehension (ICPC), Jun. 2008, pp. 254–259.

152

