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Abstract— This paper presents a practical approach and tool 
(DART) for functional black-box regression testing of complex 
legacy database applications. Such applications are important 
to many organizations, but are often difficult to change and 
consequently prone to regression faults during maintenance. 
They also tend to be built without particular considerations for 
testability and can be hard to control and observe. We have 
therefore devised a practical solution for functional regression 
testing that captures the changes in database state (due to data 
manipulations) during the execution of a system under test. 
The differences in changed database states between 
consecutive executions of the system under test, on different 
system versions, can help identify potential regression faults. In 
order to make the regression test approach scalable for large, 
complex database applications, classification tree models are 
used to prioritize test cases. The test case prioritization can be 
applied to reduce test execution costs and analysis effort. We 
report on how DART was applied and evaluated on business 
critical batch jobs in a legacy database application in an 
industrial setting, namely the Norwegian Tax Accounting 
System (SOFIE) at the Norwegian Tax Department (NTD). 
DART has shown promising fault detection capabilities and 
cost-effectiveness and has contributed to identify many critical 
regression faults for the past eight releases of SOFIE.  

Keywords: regression testing; legacy database applications; 
industrial context; 

I.  INTRODUCTION 
There exist many large legacy systems with a long, often 

unforeseeable life span as they continue to provide core 
business value to their organization. A commonality of these 
systems is that they are difficult to change and consequently 
prone to regression faults. They were built on old technology 
and usually not constructed with consideration for testability.  

For example, SOFIE is a legacy system in the Norwegian 
Tax Department (NTD) that has been maintained for several 
years. As a result of extensive internal testing and a large 
user base over a long period of time, the core system features 

are reasonably dependable. However, changes will always 
take place due to changed taxation laws, changed user 
requirements, fault corrections, and refactoring. Furthermore 
the release cycle of the project is rather ambitious with 
continuous production fixes, monthly releases for less critical 
fixes along with overlapping releases for new features. This 
continuous change process combined with the growing size 
and complexity of the system has increased the need for 
systematic regression testing over and above what the current 
manual testing processes can handle.  

Unfortunately, existing tools and large parts of the 
research in the area of regression test automation focus on 
solutions for systems that are designed to be highly testable. 
This motivated NTD to establish a cooperation project with 
Simula Research Laboratory, in order to investigate the 
possibilities for more cost-effective solutions for regression 
testing of large legacy database applications. Through this 
cooperation project we have developed a novel tool, that 
addresses the particular needs for regression testing in NTD 
and, we believe, those of many legacy database applications. 
The tool is called DART, which is an acronym for DAtabase 
Regression Testing.  

 
The main contributions of this paper are: 

• A practical approach and tool (DART) for 
regression testing of database applications, with 
a focus on generating and prioritizing black-box 
test cases, automatically identifying potential 
regression faults and then prioritizing their 
inspections for early fault detection. 

• Application and evaluation of DART for 
business critical batch jobs in a legacy database 
application in an industrial setting. 

 
The remainder of this paper is organized as follows. 

Section 2 describes the SOFIE system and what we consider 
to be the major testing needs of the system. Section 3 
elaborates on the testing requirements and how they are 



related to existing work. Section 4 describes our proposed 
solution, the DART tool, whereas Section 5 presents 
practical experiences. Finally, Section 6 concludes and 
describes future work. 

 

II. TESTING REQUIREMENTS FOR THE SOFIE SYSTEM 
SOFIE is the tax accounting system in Norway, handling 

yearly tax revenues of approximately 500 Billion NOK. It 
has evolved over the past 10 years to provide dependable, 
automated, efficient and integrated services to all 430 tax 
municipalities and more than 3,000 end users (e.g., taxation 
officers). The system is still evolving and the maintenance 
project currently staffs more than 100 employees and 
consultants.  

The system was mainly designed to handle large amounts 
of data, which requires high throughput and a continuous 
focus on performance related aspects. The system has to 
keep historical data for all taxpayers in Norway for at least 
ten years, and some of the system tables currently hold more 
than 500,000,000 rows of data. To handle the enormous 
amounts of data, the system was built as a database 
application on the Oracle platform. To ensure efficient data 
processing the business logic of the system was organized 
into batch jobs, along with graphical user interfaces to drive 
the work processes of the end users. Both system 
components are tightly coupled with the underlying 
database. 

SOFIE has approximately 380 batch jobs constituting 1.7 
million lines of PL/SQL code. There are four categories of 
batch jobs: 

• Interface jobs, which read and write files and 
transform data between SOFIE and external systems. 

• Document production jobs, which produce 
documents to taxpayers. 

• Report jobs, which produce reports for end users. 
• Core business jobs, which carry out the core 

business logic of the system and drives the work 
processes of the end users. 

 
The batch jobs are continuously changing, and in general 

they are very complex, hard to test, and prone to regression 
faults. It is vital for NTD to avoid releasing defects in the 
core of the system. As the system serves all taxpayers in 
Norway, even “minor” defects can potentially harm 
Norwegian society and cause nationwide, bad press. Hence, 
one main testing requirement of SOFIE is the need for 
efficient, cost effective and reliable regression testing of the 
batch jobs in the system.  
 

III. PROBLEM DEFINITION AND RELATED WORK 
In our context, a regression test solution must handle the 

following properties of the system under test: 
• A batch job consists of a large number of tightly 

integrated set of operations, which makes it hard to 
control the job during test. A batch job can only be 
started, without further mechanisms of control. Then 

it runs to completion, typically in multiple, parallel 
job streams. Thus, you can control the input of the 
batch, and check the end result of it, but what 
happens in between is difficult to observe, and even 
more difficult to control.  

• For the very same reasons it is very hard to build an 
automated test oracle (predicting the “expected 
result”) for the system under test.  

• Given the amount of batch jobs in the system, it is 
unrealistic to refactor them for improved testability. 
It would simply not be cost effective. Hence, they 
must be tested as they are. 

 
Yoo and Harman [1] recently conducted a survey on 

regression testing minimization, selection and prioritization, 
constituting nearly 200 papers. It encompasses the main 
research results around regression testing, addressing the 
problems of identifying obsolete, reusable and re-testable test 
cases (selection), eliminate redundant test cases 
(minimization) and order test cases to maximize early fault 
detection (prioritization). The survey shows that the majority 
of the works focuses on white-box testing strategies, 
concerning relatively small stand-alone programs written in 
C or Java, or for spreadsheets, GUIs and web applications. 
The techniques surveyed presuppose an already existing, 
effective test suite on which to select, minimize and 
prioritize test cases for the regression test. Before addressing 
these issues, we needed to take one step back to figure out 
how we should collect a test baseline, and how to perform 
regression testing. 

Chays et al. [2] noted the lack of uniform methods and 
testing tools for verifying the correct behavior of database 
applications, despite their crucial role in the operation of 
nearly all modern organizations. Most literature in the field 
was aimed at assessing performance of database 
management systems rather than testing the database 
application system for functional correctness, let alone 
regression testing. The authors proposed a framework for 
functional testing of database applications called AGENDA 
[3-5]. However, the framework was not intended for 
regression testing and we found some of the ideas hard to 
scale, which had only been evaluated for smaller examples. 

The most relevant work we found targeting regression 
testing for database applications was the SIKOSA project [6-
8]. The authors proposed a capture-and-replay tool for 
carrying out black-box regression testing of database 
applications. This aligned well with our objectives regarding 
database regression testing, namely a capture-and-replay 
approach, similar to what has been more commonly used for 
GUI testing, to automatically identify differences between 
the results of two identical test runs (referred to as 
deviations). Because it is hard to build a precise test oracle 
for database applications with very complex queries, a more 
practical strategy is to capture a set of test case executions of 
the system under test, under the assumption that it currently 
works correctly (the baseline), and then use the replay run 
after modifications (the delta) to identify deviations and thus 
potential regression faults. Note that because such deviations 
only indicate potential faults, as they may also be due to 



valid changes, a technique is also needed to identify actual 
faults in a cost-effective manner.  

The SIKOSA project restricted their work to checking 
input-output relations of database applications, as they stated 
that checking the state of the database after each test run was 
prohibitively expensive and difficult to implement for black-
box regression testing. In our context, however, the outputs 
of the batch jobs are reflected directly in the database state 
and must therefore be monitored. The SIKOSA project 
provided some experimental performance measures for their 
tool, but did not refer to any evaluations regarding fault-
detection effectiveness or cost-effectiveness, let alone in an 
industrial setting. Furthermore, neither of the proposed tools 
from the AGENDA framework or the SIKOSA project are 
publically available. 

We also needed a specification-based, black-box testing 
technique to help specify test input data (test cases) with 
adequate coverage, based on an analysis of the input domain 
for a given batch job. There are many suitable tools for this 
purpose, but we found that the classification tree modeling 
technique and the supporting tool CTE-XL [9], which is built 
on the well-known category-partition approach [10], was 
both easy to use and scaled up to the kinds of input domains 
under consideration (e.g., more than 100 categories or 
classifications in one model).  

We also investigated Oracles Real Application Testing 
(RAT) [11], but found that it was mainly targeted towards 
performance testing and not easily adaptable for functional 
testing. 

In summary, the research literature provided us with a 
useful starting point, but none of the related works fully and 
directly addressed our needs, and except for CTE-XL, we 
could find no accessible tools to apply directly into our 
project context. 

 

IV. DART 
The above discussions motivated the development of the 

DART tool, which is a tool for regression testing of database 
applications, and mainly targeted towards database intensive 
batch jobs.  

The basic principle of the tool is straightforward: Execute 
the system under test twice on the exact same input data and 
initial database state, once with the original version of the 
system (baseline), and once with the changed version of the 

system (delta). Compute the difference in database state 
between the two runs. A difference is either due to a valid 
change, or a regression fault.   

Note that DART can be used to identify regression faults 
in any system or program unit performing Create, Read, 
Update and Delete (CRUD) operations on a database, and is 
not restricted to batch testing only. But in our context the 
system under test consist of batch jobs that perform complex 
CRUD operations on a database, guided by business logic 
that implements sequences of the taxation laws and rules. 
There are two properties of these batch jobs that make the 
DART approach suitable: 

• Batch jobs are built to run to completion without any 
manual intervention. This eases the test execution 
and ensures consistency between the baseline and 
delta run of the test. 

• Batch jobs operate on a limited set of database 
entities. This simplifies the test setup, as the tables to 
monitor can be easily identified prior to the test 
execution. 

 
Figure 1 shows the main steps in the testing process with 

DART. In the following sections, these steps will be 
described in detail. 

 

A. Running example 
Throughout the description of DART, a running example 

will be used to demonstrate the various steps of the test 
process. The example is intentionally kept very simple to fit 
size constraints. The system under test used as example is the 
program P shown in Figure 3. We use a Java-like syntax 
augmented with directly executable SQL statements in order 
to make it easier to understand for readers not acquainted 
with PL/SQL. It is a program that contains features for 
maintaining customer orders, more specifically adding and 
deleting items from a customer order. As an example 
execution of the program, one item is added to a customer 
order, while an item is removed from another customer order 
in the main method.  

The relational entity model of the example program is 
shown in Figure 2, along with the initial state of the database 
prior to test execution. It consists of three entities containing 
information about customers and their orders. A customer 
can have zero to many orders with zero to many items. 
 

 
Figure 1: A UML Activity Diagram of the DART regression test process. 

 



 
Figure 2: The relational entity model and initial 

state for program P. 
 

Program P 
 
void removeItemFromOrder(Long orderNr, String itemName)	
  { 
   Long orderId = select Id from Order  

          where Order.orderNr = orderNr; 
   if(orderId != null)	
  { 
      delete from Item where Item.itemName = itemName and  
      Item.orderId = orderId; 
      update Order set Order.changedDate = tomorrow  
      where Order.Id = orderId; 
   } else{ 
      reportOrderDoNotExistError(); 
   } 
} 
 
void addItemToOrder(Long orderNr, String itemName)	
  { 
   Long orderId = select Id from Order  

          where Order.orderNr = orderNr; 
   if(orderId != null) 
      insert into Item (ItemName, OrderId) values ( itemName orderId); 
      update Order set Order.changedDate = tomorrow  
      where Order.Id = orderId; 
   } else{ 
      reportOrderDoNotExistError(); 
   } 
} 
 
void main()	
  { 
   addItemToOrder(12345, “USB stick”); 
   removeItemFromOrder(34567, “Mouse”); 
} 
 

Figure 3: The example program P. 

B. Test configuration 
A test with DART is set up by selecting the database 

tables and more specifically the table columns to monitor 
during the test execution. DART obtains and presents the 
database schema(s) of the system under test and a test 
engineer selects the ones to monitor during the test 
execution. In our example the tester would be presented with 
the three tables Customer, Order and Item, which all 
are a part of the database schema for program P. Since the 
program P performs operations on the two tables Order and 
Item, these are the ones that make sense to monitor while 
testing P. The tester selects the two tables and more 
specifically the underlying table columns to monitor.  

Additionally the test engineer specifies how CRUD-
operations on the selected entities should be grouped 
together as “logical test cases” based on a meaningful, 

common test case identifier, e.g., a social security number. 
Such identifier is defined using table attributes such as 
primary keys, foreign keys and/or SQL queries. The goal is 
to logically group related rows in the tables monitored in a 
test execution to facilitate the comparison between the 
baseline and delta test executions. A meaningful common 
test case identifier in our example would be the customer 
name (assumed to be unique), as all orders and items can be 
traced back to its customer. In that case one customer will 
make out one test case and all data manipulations that are 
logged during test execution will be grouped by customer 
name. A test configuration for program P would then look 
like the one shown in Table I. 

It is also possible to give aliases to the tables and table 
columns in the test configuration as some tables might come 
from external parties and have non-intuitive names. The 
aliases defined in the test configuration will later on be used 
in the presentation of the test results. In summary a test 
configuration denotes the set of table columns (and their 
aliases) to monitor during test execution and the 
corresponding specification of the test case grouping scheme. 

TABLE I.  TEST CONFIGURATION FOR PROGRAM P. 

Table Table column Test case identifier 
OrderNr Order ChangedDate Customer.Name 

Item ItemName Order.Customer.Name 
 

C. Domain modeling 
Prior to test execution, test data have to be prepared for 

the specific system component to be tested. Whether the test 
data is real system data, or generated synthetically, the 
output of the test data preparation process is a test suite on 
which the system under test can be executed. A test suite can 
potentially contain a large number of test cases, and there 
may not be enough resources available to execute all of 
them, or to analyze all the resulting deviations during 
regression testing. In particular, test suites based on real 
system data tend to contain large amounts of redundant test 
cases (as will be elaborated in Section V.B), which will 
result in duplicate deviations causing unnecessary 
inspections. Hence, to alleviate this problem, we would like 
to prioritize the test cases in a test suite to ensure that we 
execute first test cases that are most likely to reveal distinct 
regression faults.  

In order to prioritize the test cases in the test suite, a 
model of the domain under test is made using the tool CTE-
XL. The model is a classification tree (defining equivalence 
classes), which is used to generate domain partitions (also 
called test case specifications or abstract test cases) 
according to a coverage criterion of your choice, for example 
pairwise coverage of the equivalence classes. A domain 
model for the example program P can look like the one 
shown in Figure 5. The root node Program P, the 
classifications Number of orders for customer, Item added 
and Item deleted, and the classes (0, 1, >1) and (Y, N) 
constitute the classification tree model, whereas the bottom 
six lines each represent partitions. In this case the pairwise 



 
Figure 5: A classification tree model for program P. 

Input:  T is the set of tables in the configuration 
 C is the set of columns from all tables in the configuration 

TC: 2T×C is the set of  (table, column) pairs  
 TR is a test run 
  
Algorithm generateTriggers(TC, TR)  
begin 
1.   for each table t ∈ T do 
2.      testCaseID ← getTestCaseID(t, TR, oldValue, newValue); 
3.      triggerStatement ← “Create trigger on table t that fires after  
                                            insert, delete or update ”; 
 
4.      for each (t,c) ∈ TC do 
5.         triggerStatement.append(“if insert operation then insert  
                         (testCaseNr, t, c, inserted value) into DART log table”); 
6.         triggerStatement.append(“if update operation then  
                         if update on column c then insert(testCaseID,  
                         t, c, old value, new value) into DART log table”); 
7.         triggerStatement.append( “if delete operation then insert      
                         (testCaseID, t, c, deleted value) into DART log table”); 
         end loop; 
      end loop; 
8.  execute triggerStatement; 
end 
 
Figure 4: Algorithm for trigger generation in DART. 

coverage criterion was used to generate the partitions, which 
ensures that each pair of classes are represented in at least 
one partition. The test model emphasize the following 
aspects regarding the program P: 

• The number of orders for a particular customer 
matters. If a customer has zero orders an error 
should be reported, otherwise the item should be 
added or deleted. It is also interesting to 
differentiate the case of a customer having more 
than one order, to make sure items are removed and 
added to the right order and only that. 

• It is also interesting to test different variations of 
adding and deleting items for different numbers of 
customer orders. 

 
Given a test suite and a domain model of the system, 

DART provides the capability of matching the data in the 
test suite with the partitions in the domain model. In the 
initial state of program P shown in Figure 2, there are two 
test cases, namely customer Andy Smith and John Johnson. 
DART will match the test case Andy Smith with Partition 3 
as he has one order in which an item will be added, and the 
test case John Johnson with Partition 4 as he has one order in 
which an item will be deleted. When the test cases have been 
matched to partitions, DART prioritizes the test cases as 
follows: Among the partitions containing test cases, select a 
random partition, and a random test case within the partition. 
Next, select again a random partition among the remaining 
ones, and again a random test case within the partition. 
Continue until all partitions have been selected. Then start 
the process again and select test cases among the ones that 
have not been selected yet. Stop the process when all test 
cases have been selected. The resulting ordering of the test 
case selection determines the priority of the test cases. The 
rationale is to ensure that all partitions be covered as quickly 
as possible during test execution and that, for cases where 
there is a deviation, the inspection of such deviations are 
more likely to uncover dissimilar regression faults as quickly 
as possible. This strategy should be considered as a first step 
to be improved upon, as further described in the conclusion.  

In the trivial running example the prioritization is 
meaningless as there are only two test cases from two 
different partitions. However, this is important in realistic 
database applications, as test cases can be numerous, 

expensive to run, and manual inspections of deviations are 
time-consuming, as reported in Section V.A. We refer to this 
process as a partition-based approach for test case 
prioritization.  

 

D. Test execution 
During test execution DART will log all data 

manipulations related to the specific test configuration. The 
way data manipulations are recorded and logged is through 
dynamically generated database triggers on the tables 
specified in the test configuration. A trigger is procedural 
code that is automatically executed in response to certain 
events on a table or view in a database. Pseudo-code for 
generating the triggers is shown in Figure 4. As the 
algorithm shows, a trigger is generated for each table in the 
test configuration. Each of the generated table triggers is 
defined to insert a row into the DART log table for each data 
manipulation on the columns specified in the test 
configuration for the given table. Insert and delete operations 
are always done at the row level and DART will log values 
for all table columns in the test configuration when an insert 
or delete operation takes place. Update operations can be 
attribute specific, so DART will only log the table columns 
in the test configuration that is actually updated. The triggers 
are dynamically generated as a Data Definition Language 
(DDL) string, which is executed in the end to store the actual 
triggers in the database. 

Thus, DART dynamically instruments the database of the 
system under test by generating test-configuration specific 
database triggers when the test is started. During test 
execution these triggers will fire on any insert, delete or 
update on the table columns in the test configuration and 
store the database operations into a DART log table. One 
data manipulation operation results into one row in the log 



table matching the format <test case identifier, table name, 
column name, old value, new value>. The test case identifier 
(e.g., the customer name) is what uniquely identifies the test 
case that causes the operation to be executed. It is devised on 
the fly according to the specification in the test 
configuration. Table name and column name are the names 
of the table and column the operation is executed on, 
respectively. Old value and new value refer to the values of 
the attribute prior to and after the operation execution, 
respectively. Old value is given the static value “Inserted” 
for insert operations, while new value is given the static 
value “Deleted” for delete operations. After test execution 
the triggers are deleted from the database of the system under 
test.  

A test run is done once with the original version of the 
system (baseline) and once with the changed version of the 
system (delta), which is subject to regression faults. Before 
the delta test run the database is reset to the initial (baseline) 
state to ensure that both runs start out with the same database 
state. Various mechanisms are available to reset the database. 
We have used the flashback to restore point feature of Oracle 
in the particular case of SOFIE. This is done by creating a 
restore point in the database after the test configuration is 
defined and the test data is prepared, but before the execution 
of the baseline run starts. The restore point defines the state 
of the database at the time it is created and will ensure 
consistency between the test runs. 

In our example, a test run on program P, with the test 
configuration from Table I and the initial state from Figure 2, 
would result in the DART log data shown in Table II. For the 
test case Andy Smith, one insert operation and one update 
operation is executed, as logged in row 1 and 2 of Table II, 
respectively. For the test case John Johnson one delete 
operation and one update operation is executed, as logged in 
row 3 and 4 of Table II, respectively. 

TABLE II.  EXAMPLE DART LOG TABLE AFTER THE BASELINE RUN. 

Id Test 
Run 
Id 

Test 
Case 
ID 

Table 
Name 

Column 
Name 

Old 
Value 

New 
Value 

1 1 Andy 
Smith Item Item 

Name Inserted USB Stick 

2 1 Andy 
Smith Order Changed 

Date 12.05.11 14.05.11 

3 1 John 
Johnson Item Item 

Name Keyboard Deleted 

4 1 John 
Johnson Order Changed 

Date 12.05.11 14.05.11 

 
It turns out that program P contains a fault. The 

changedDate of the order should be updated to today’s 
date when an order is changed. Currently it is updated to 
tomorrow’s date. The fault is corrected (underlined) and a 
new version of P, called P’ is shown in Figure 6. For 
illustration purposes let us assume a regression fault in P’: 
the update of the order in removeItemFromOrder 
method is completely removed, rather than fixed (line struck 
through). After resetting the database into the same initial 

state as before the first test run, the test is executed again on 
the changed program version P’.  

 
After both test runs, the DART log table contains the 

information shown in Table III. Three additional rows are 
logged for the delta run. An insert and an update operation 
for the test case Andy Smith in row 5 and 6, and a delete 
operation for the test case John Johnson in row 7. 

TABLE III.  EXAMPLE DART LOG TABLE AFTER BOTH TEST RUNS ARE 
EXECUTED 

Id Test 
Run 
Id 

Test 
Case 

Table 
Name 

Column 
Name 

Old 
Value 

New 
Value 

1 1 Andy 
Smith Item Item 

Name Inserted USB 
Stick 

2 1 Andy 
Smith Order Changed 

Date 12.05.11 14.05.11 

3 1 John 
Johnson Item Item 

Name Keyboard Deleted 

4 1 John 
Johnson Order Changed 

Date 12.05.11 14.05.11 

5 2 Andy 
Smith Item Item 

Name Inserted USB 
Stick 

6 2 Andy 
Smith Order Changed 

Date 12.05.11 13.05.11 

7 2 John 
Johnson Item Item 

Name Keyboard Deleted 

Program P’ 
 
void removeItemFromOrder(Long orderNr, String itemName)	
  { 
   Long orderId = select Id from Order  

          where Order.orderNr = orderNr; 
   if(orderId != null)	
  { 
      delete from Item where Item.itemName = itemName and  
      Item.orderId = orderId; 
      update Order set Order.changedDate = tomorrow  
      where Order.Id = orderId; 
   } else{ 
      reportOrderDoNotExistError(); 
   } 
} 
 
void addItemToOrder(Long orderNr, String itemName)	
  { 
   Long orderId = select Id from Order  

          where Order.orderNr = orderNr; 
   if(orderId != null) 
      insert into Item (ItemName, OrderId) values ( itemName orderId); 
      update Order set Order.changedDate = today  
      where Order.Id = orderId; 
   } else{ 
      reportOrderDoNotExistError(); 
   } 
} 
 
void main()	
  { 
   addItemToOrder(12345, “USB stick”); 
   removeItemFromOrder(34567, “Mouse”); 
} 
 
Figure 6: The example program P', which is a 
modified version of program P. 



 

E. Test analysis 
After a test is executed on two different versions of the 

system under test, the two test runs are compared with each 
other. The output of the test execution is a DART log table 
filled with all data manipulation operations of the respective 
test runs. The comparison uses the SQL set operations minus 
and union to compute the difference between the two runs, as 
follows: 

 
<Log data from baseline> MINUS <Log data from delta>  
UNION ALL 
<Log data from delta> MINUS <Log data from baseline> 

 
The comparison operation will reveal all differences 

between the baseline and delta runs with regards to the test 
configuration. The deviations, grouped by the test case 
identifier, are presented to the tester, which in turn has to 
determine whether the deviation is a regression fault or not.  

In our example the output of the test is the deviations 
between the two runs as shown in Table IV. There is one 
deviation due to the changed update in addItemToOrder 
(row 1-2) and one deviation due to the missing update in the 
delta version of removeItemFromOrder (row 3). By 
analyzing the deviations in Table IV, the test engineer can 
verify that the change in test case Andy Smith is due to 
correct changes in P’, whereas the missing update in the test 
case John Johnson is due to a regression fault.  

As the baseline run essentially serves as the test oracle, 
DART will identify regression faults introduced in the delta 
version of the system, but will not identify faults that are 
present in both the baseline and delta run. In practice, the 
same baseline is used for testing several consecutive deltas. 
After each test, the deviations that are correct in the delta are 
updated into the baseline. Thus, the baseline is continually 
improved and the test oracle increasingly more accurate.  

 

TABLE IV.  THE DEVIATIONS BETWEEN THE TEST RUNS FOR P AND P'. 

Id Test 
Case 

Table 
Name 

Column 
Name 

Old 
Value 

New 
Value 

Test 
Run 

1 Andy 
Smith Order Changed 

Date 12.05.11 14.05.11 Baseline 

2 Andy 
Smith Order Changed 

Date 12.05.11 13.05.11 Delta 

3 John 
Johnson Order Changed 

Date 12.05.11 14.05.11 Baseline 

 

V. PRACTICAL EXPERIENCES 

A. Pilot evaluation 
During the development of DART we conducted a pilot 

evaluation of the tool to investigate its regression fault 
detection capabilities. In our pilot study we chose to focus on 
one particular functional area of the system, the most 
complex and business critical one. Due to its complexity this 

is an area that has been prone to regression faults in the past. 
Since all taxpayers in Norway could be affected, it is of great 
importance to avoid faults. This particular functional area 
consists of 19 different batch jobs.  

For the pilot we chose to test a previous system release, 
which had already undergone the regular, manual testing and 
QA activities. One part of the selected functional domain had 
been refactored in that release. As a result, five regression 
faults had been identified during the regular testing routines 
in the project. Additionally five regression faults had been 
discovered in the production environment after it was 
released. As a pilot evaluation, we were interested to see if 
we could identify the same ten regression faults, and possibly 
additional, undiscovered faults, with the DART tool. We 
compared the last version of the system prior to the 
refactoring with the version that was delivered to the system 
test in that particular release.  

For the pilot we had three sets of real system test data 
available. The test suites were of different sizes and for 
evaluation purposes we chose to run the regression test for 
all three of them. The test data in the three test suites 
consisted of non-overlapping test cases, where each test case 
represented one taxpayer. Table VII summarizes the three 
test runs. Column two shows the number of test cases 
contained in the test suites, column three shows how many of 
the test cases deviated between the baseline and delta run, 
column four shows how many of the deviations were due to 
valid changes, column five shows how many of the 
deviations were due to regression faults, column six shows 
the number of distinct functional faults among the faulty 
deviations, column seven shows the number of faults that 
had been detected during testing and operation, which were 
rediscovered with DART, column eight shows the new 
regression faults detected by DART and column nine shows 
the inspection effort spent determining whether the 
deviations were correct or faulty.  

DART revealed eight of the ten faults that were 
previously found during testing and operation, but also 
helped identify nine undiscovered faults, that is, nine faults 
that were still present in the production system and needed to 
be corrected. In total, the three test runs uncovered 17 
distinct faults. The two previously detected faults missed by 
DART were not found due to the insufficient coverage of the 
test suites; none of the test cases in the three test suites 
exercised the two faulty situations.  

As expected, the largest number of faults was found in 
the largest test suite, but its set of detected faults did not 
subsume those of the smaller test suites; two of the faults 
discovered in the smaller test suites were not present in the 
largest one. This suggested that we needed a more systematic 
way to specify the regression test cases, as elaborated in the 
next section (V.B). Nevertheless, as a result of the pilot we 
registered nine new defects in the defect tracking system. 
One of them was registered as a “A defect”, seven as “B 
defects” and one as a “C defect” on a criticality scale ranging 
from A to C, where A is the most critical one. Broadly 
speaking, A defects are critical, B defects are serious, while C 
defects are less important. 



For the purpose of the evaluation, we analyzed all 
deviations in the three test runs to ensure that we found as 
many defects as possible. However, this required a 
considerable amount of manual effort, as shown in Table VII 
(Inspection time); on average we used about 12 minutes per 
deviation. This suggests that, in order to use DART for large-
scale regression testing in a system release, we would need a 
way to prioritize test cases to increase the likelihood of early 
fault detection and reduce the number of redundant 
deviations to analyze. The same functional fault was present 
in several deviations, and ideally we would only like to 
inspect one deviation for each unique functional fault. Thus, 
a classification tree model of the input domain was 
developed and applied to prioritize test cases, as described in 
Section IV.C.  

We applied the prioritization to the test cases in test suite 
3 as it was the largest. Figure 7 shows the results of using the 
partition-based approach for prioritizing test cases to execute 
n test cases and analyze the resulting deviations in their 
given priority order for various values of n. The results are 
then compared to the average resulting from the random 
selection of test cases. To obtain the results in Figure 7, we 
repeated the prioritization procedure 100 times and averaged 
the percentage of faults detected (the Y-axis) for a given 
percentage of test cases in the test suite (the X-axis). Though 
the results are very clear just by looking at Figure 7, to check 
the statistical significance of the difference between the 
partition-based approach over the random approach, we 
conducted non-parametric Mann-Whitney U-Tests [12] to 
test the difference in fault detection for each test suite size 
value. We computed p-values for all sizes that were sampled 
and all of them were below α= 0.05, showing that the two 
approaches are significantly different. More precisely the p-
value was less than 0.0000002 from 1 to 90 percent of the 
test cases, and 0.01381 for 95 percent. We tested the entire 
set of sample data from the two approaches, which yielded a 
p-value of 0.00019.  

In practice this means that for example by only executing 
eight percent of the test cases and analyze the resulting 
deviations, the test engineer would on average find more 
than 80 percent of the faults. This corresponds to executing 
approximately 450 test cases, which on average resulted in 
80 deviations uncovering 12 out of 15 faults that could be 
uncovered by the test suite. In terms of effort that is 16 hours 
of inspection time for revealing 12 out of 15 faults. In 
comparison, with a random selection strategy, we would on 
average have found less than 35 percent of the faults for a 
similarly sized test suite. We consider this to be a substantial, 
practically important cost saving.  

To summarize, the pilot evaluation showed that DART 
could help detect significantly more regression faults and 
that the test case prioritization using DART could yield 
significant savings in terms of number of test case executions 
and the effort involved in analyzing deviations.  

 

B. Test coverage and synthetic test data 
As mentioned in the previous section, the test suites in 

the pilot evaluation uncovered a total of 17 faults. These test 
suites were based on live data input files provided by the 
operation environment.  It turned out that none of the three 
test suites were, in isolation, adequate to reveal all the 17 
faults. Neither did they uncover all the ten faults previously 
identified during test and operation, indicating that not even 
combining the three test suites yields satisfactory coverage. 
Considering the complexity of the domain model for the 
system under test, this is not surprising when the test data 
were not derived in a systematic manner. 

By applying the all combination coverage criterion on 
the domain model for that particular functional area, as many 
as 17,100 partitions were generated. To assess how well live 
test data would cover those partitions, we selected a large, 
representative test suite consisting of 211,837 “live” test 
cases (actual tax payers), provided by the production 
environment, and compared it with the partitions. We found 
that the test suite covered only 226 out of 17,100 partitions, a 
model coverage of only 1.32 percent! The two largest 
partitions of the test suite contained 86,743 and 36,296 test 
cases, respectively, showing huge numbers of redundant test 
cases while showing serious shortcomings in covering 
exceptional cases (rare patterns of taxpayers). Live test data 
also entail practical concerns. Confidentiality issues must be 
addressed. They are not always available, as one may depend 
on third parties to deliver them and they are hard to reuse, as 
they are dependent on a given database state.  

The lack of model coverage achieved with live test data 
along with their associated practical concerns motivated the 
generation of synthetic test data. To drive the generation of 
synthetic test data, we use the same domain model as we use 
for partition-based test case prioritization. Adapter code is 

TABLE VII    SUMMARY OF TEST RUNS IN THE PILOT EVALUATION 

Test # Test 
cases 

# Deviations # Correct 
deviations 

# Faulty 
deviations 

# Distinct 
faults 

# Previous 
faults found 

# New faults 
found 

Inspection 
time 

1 711 33 19 14 7 5 2 7 hours 
2 3144 182 136 46 11 7 4 35 hours 
3 5670 522 386 136 15 6 9 105 hours 
    Total 17 8 9  

 

 

 
Figure 7: A comparison of partition-based-, and 

random test case selection. 
 



written to map the abstract values of the leaf classes in the 
classification tree model to actual parameter values of the 
real test cases for the system under test. Using the adapter 
code, test cases can be automatically generated according to 
the model. This makes it easy to generate different test 
suites, providing different levels of model coverage, e.g., 
two-wise, three-wise, or all combinations. The usage of 
synthetically generated test data with DART is still in its 
initial phase. A few system faults were identified while 
developing the adapter code, as rare system scenarios got 
executed.  We are confident that the generation of synthetic 
test data will allow us to increase test coverage and make 
testing more efficient and predictable when applied in 
DART. 

 

C. Deployment into project setting 
DART has been used to support regression testing of 

batch jobs in the core functional areas of the SOFIE 
application for the past eight releases. So far we have used 
DART as a supplement to manual testing, not as a 
replacement. We thus had the opportunity to compare the 
fault detection effectiveness of DART with the regular 
(manual) system testing routines in the project. Table V 
shows the faults detected in the eight releases during regular 
system testing and the additional faults detected by DART, 
within the particular functional area of interest. It also shows 
the number of faults that slipped through both testing 
activities, but were later on detected during operation in the 
production environment. 

The figures in Table V are meant to give a rough picture 
of the impact of DART during its initial lifetime in the 
SOFIE project. Unfortunately, we do not have exact 
information about the effort spent for uncovering the faults 
by the different testing approaches, as we faced 
organizational challenges in the project while trying to get 
the time reported at a satisfactory level for evaluation. 
However, the faults uncovered by regular testing are 
typically the result of weeks of testing, while the faults 
uncovered by DART result from days of testing. It is also 
worth stressing that we had no regression test environment in 
place in the first six releases shown in Table V. 
Consequently, DART was not used during the test period, 
but rather as a final verification of the releases after the 

acceptance test was finished and the release was ready to 
ship. Therefore, the figures provided in Table V should not 
be used to strictly compare the fault detection capabilities of 
DART with those of the regular testing routines, as DART 
could only detect the leftover faults in the first six releases. 
Table V show that DART has helped uncover more than a 
third of the defects found during regression testing (22 out of 
59), within the batches of the core functional domain. Put in 
other words DART has helped identify approximately 60% 
more regression faults than what would have been detected 
without it. We consider this to be of substantial impact, 
especially since DART was only used as a “last check” in the 
first six releases. Such results combined with the savings 
discussed in Section V.A, make us confident that the test 
team can now rely on DART for regression testing of the 
batch jobs in SOFIE, while reassigning some of their 
resources on other types of testing. For example, faults in the 
graphical user interfaces, documents and reports within the 
same functional domain were discovered by regular testing 
routines, but would not have been found by DART. The 
same applies to the extensive testing required to verify the 
correctness of new functionality. An example of the latter is 
release six in Table V, where substantial new functionality 
was introduced, and thoroughly tested, revealing several 
faults in the regular testing routines.  

Even when combining manual testing with DART, some 
faults still slipped through into production, as shown in Table 
V. As an evaluation of the DART tool, we went through the 
defects reported from the production environment to 
understand why they were not discovered prior to being 
released. Table VI lists the findings. 

Six of the defects were actually discovered by DART. 
One was not found as we ran the test on a limited scope in 
the beginning, before broadening our horizon the whole 
batch process of the functional domain in the later releases. 
Two of the faults were performance-related issues only 
present in the production environment (due to different 
settings). Besides the two currently unknown defects, that 
leaves us with three defects that should have been detected, 
but were not due to insufficient partition coverage. We hope 
to address this issue in the future by synthetically generating 
test data, as discussed in the previous section.  

For the sake of the evaluation we also investigated the 
criticality distribution of the defects reported from manual 

TABLE V.  DEFECTS DETECTED IN THE PAST EIGHT RELEASES OF 
SOFIE 

  
Release # Faults detected 

by regular 
testing 

# Additional 
Faults 

detected by 
DART 

# Faults discovered 
in production 

1 6 9 6 
2 3 1 1 
3  1 1 1 
4 6 2 3 
5 0 0 0 
6 19 3 2 
7 1 5 1 
8 1 1 0 

Total 37 22 14 

TABLE VI.  REASONS WHY DEFECTS REPORTED FROM PRODUCTION 
WERE NOT FOUND BY DART. 

  
# Defects Cause of not being detected by DART prior to release 

3 Unsufficient test partition coverage to reveal the fault; no 
test cases that executed the faulty situations. 

1 Did not execute that part of the functional domain in that 
particular test. 

2 
Found and reported by DART, but there were not enough 
time to fix them prior to release. Also reported from the 
production environment before they got fixed. 

2 Performance issue specific to the production environment. 

4 Found and reported by DART, but the test was executed 
after the release (pilot evaluation). 

2 Currently unknown due to lacking information regarding 
the faults. 



testing, DART, and production. No conclusion could be 
drawn regarding the relationship between the criticality of 
defects and how they were detected.  

Another important contribution of DART in practice is 
that it has impacted the prioritization of defects in the 
project. Since DART enables more thorough and cost-
effective regression testing, less defect corrections are 
postponed due to their high risk of generating regression 
faults. In practice that means that more faults are corrected 
more quickly, while still remaining confident that they do not 
introduce new regression faults. 

 

VI. CONCLUSION AND FUTURE WORK 
We have reported our experience with a practical 

approach and tool (DART) for functional black-box 
regression testing of legacy database applications. The tool 
uses dynamically generated database triggers to capture the 
data manipulations in the database during execution of the 
system under test. The difference between consecutive 
executions on different versions of the system under test is 
used to identify regression faults. The tool makes use of 
CTE-XL classification tree models to prioritize test cases and 
minimize their redundancy, so as to make our approach 
scalable to real system releases. The prioritization 
mechanism increases the likelihood of early fault detection 
and can be used to both reduce execution time and the effort 
involved in analyzing differences. 

In this paper, our approach was applied on batch jobs in 
the Norwegian Tax Accounting System SOFIE, a very large 
database application. However, we believe our results are 
applicable outside this context, and for any program 
performing CRUD operations on a database. DART has 
shown good fault detection capabilities on multiple SOFIE 
releases. In the pilot evaluation, where DART was applied to 
a system release that had already been tested and released, 
DART found eight of the ten regression faults that were 
uncovered during regular testing and system operation, but 
also detected nine additional regression faults. For the past 
eight releases of SOFIE, DART has been used as a support 
tool for regression testing, and has helped identified 60 % 
additional faults, that would have been released otherwise. 
Thanks to DART, the business critical batch jobs in SOFIE 
are more thoroughly, yet efficiently tested, causing less 
regression faults to be released. This enables NTD to take 
more risks by correcting more bugs in shorter periods of 
time.  

Current work in progress is to fully integrate DART with 
the daily test operation of the project, and ideally as a 
continuous part of the development process, as a means for 
early fault detection. We will continue to work on generation 
of synthetic test data and use them for test execution with 
DART to ensure better test coverage and more efficient and 
predictable testing.  

We have applied a relatively simple, yet efficient method 
for test case prioritization. More work is required to 

determine the optimal way for test case prioritization based 
on a classification tree model. For example, similarity 
measurement between partitions and test cases could be used 
to refine the prioritization of test cases.  

Finally our ambition is to replace the current Oracle 
specific version of DART with a fully implemented open 
source Java version, to address the lack of good tool support 
for regression testing of database applications. 
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