
Industrial Experiences with Automated Regression Testing of a Legacy Database
Application

Erik Rogstad, Lionel Briand
Simula Research Laboratory, Lysaker, Norway

University of Oslo, Dept. of Informatics, Oslo, Norway
erik.rogstad@simula.no, lionel.briand@simula.no

Ronny Dalberg, Marianne Rynning
The Norwegian Tax Department, Oslo, Norway

ronny.dalberg@skatteetaten.no,
marianne.rynning@skatteetaten.no

Erik Arisholm
Testify AS, Oslo, Norway

University of Oslo, Department of Informatics, Oslo, Norway
erik.arisholm@testify.no

Abstract— This paper presents a practical approach and tool
(DART) for functional black-box regression testing of complex
legacy database applications. Such applications are important
to many organizations, but are often difficult to change and
consequently prone to regression faults during maintenance.
They also tend to be built without particular considerations for
testability and can be hard to control and observe. We have
therefore devised a practical solution for functional regression
testing that captures the changes in database state (due to data
manipulations) during the execution of a system under test.
The differences in changed database states between
consecutive executions of the system under test, on different
system versions, can help identify potential regression faults. In
order to make the regression test approach scalable for large,
complex database applications, classification tree models are
used to prioritize test cases. The test case prioritization can be
applied to reduce test execution costs and analysis effort. We
report on how DART was applied and evaluated on business
critical batch jobs in a legacy database application in an
industrial setting, namely the Norwegian Tax Accounting
System (SOFIE) at the Norwegian Tax Department (NTD).
DART has shown promising fault detection capabilities and
cost-effectiveness and has contributed to identify many critical
regression faults for the past eight releases of SOFIE.

Keywords: regression testing; legacy database applications;
industrial context;

I. INTRODUCTION
There exist many large legacy systems with a long, often

unforeseeable life span as they continue to provide core
business value to their organization. A commonality of these
systems is that they are difficult to change and consequently
prone to regression faults. They were built on old technology
and usually not constructed with consideration for testability.

For example, SOFIE is a legacy system in the Norwegian
Tax Department (NTD) that has been maintained for several
years. As a result of extensive internal testing and a large
user base over a long period of time, the core system features

are reasonably dependable. However, changes will always
take place due to changed taxation laws, changed user
requirements, fault corrections, and refactoring. Furthermore
the release cycle of the project is rather ambitious with
continuous production fixes, monthly releases for less critical
fixes along with overlapping releases for new features. This
continuous change process combined with the growing size
and complexity of the system has increased the need for
systematic regression testing over and above what the current
manual testing processes can handle.

Unfortunately, existing tools and large parts of the
research in the area of regression test automation focus on
solutions for systems that are designed to be highly testable.
This motivated NTD to establish a cooperation project with
Simula Research Laboratory, in order to investigate the
possibilities for more cost-effective solutions for regression
testing of large legacy database applications. Through this
cooperation project we have developed a novel tool, that
addresses the particular needs for regression testing in NTD
and, we believe, those of many legacy database applications.
The tool is called DART, which is an acronym for DAtabase
Regression Testing.

The main contributions of this paper are:

• A practical approach and tool (DART) for
regression testing of database applications, with
a focus on generating and prioritizing black-box
test cases, automatically identifying potential
regression faults and then prioritizing their
inspections for early fault detection.

• Application and evaluation of DART for
business critical batch jobs in a legacy database
application in an industrial setting.

The remainder of this paper is organized as follows.

Section 2 describes the SOFIE system and what we consider
to be the major testing needs of the system. Section 3
elaborates on the testing requirements and how they are

related to existing work. Section 4 describes our proposed
solution, the DART tool, whereas Section 5 presents
practical experiences. Finally, Section 6 concludes and
describes future work.

II. TESTING REQUIREMENTS FOR THE SOFIE SYSTEM
SOFIE is the tax accounting system in Norway, handling

yearly tax revenues of approximately 500 Billion NOK. It
has evolved over the past 10 years to provide dependable,
automated, efficient and integrated services to all 430 tax
municipalities and more than 3,000 end users (e.g., taxation
officers). The system is still evolving and the maintenance
project currently staffs more than 100 employees and
consultants.

The system was mainly designed to handle large amounts
of data, which requires high throughput and a continuous
focus on performance related aspects. The system has to
keep historical data for all taxpayers in Norway for at least
ten years, and some of the system tables currently hold more
than 500,000,000 rows of data. To handle the enormous
amounts of data, the system was built as a database
application on the Oracle platform. To ensure efficient data
processing the business logic of the system was organized
into batch jobs, along with graphical user interfaces to drive
the work processes of the end users. Both system
components are tightly coupled with the underlying
database.

SOFIE has approximately 380 batch jobs constituting 1.7
million lines of PL/SQL code. There are four categories of
batch jobs:

• Interface jobs, which read and write files and
transform data between SOFIE and external systems.

• Document production jobs, which produce
documents to taxpayers.

• Report jobs, which produce reports for end users.
• Core business jobs, which carry out the core

business logic of the system and drives the work
processes of the end users.

The batch jobs are continuously changing, and in general

they are very complex, hard to test, and prone to regression
faults. It is vital for NTD to avoid releasing defects in the
core of the system. As the system serves all taxpayers in
Norway, even “minor” defects can potentially harm
Norwegian society and cause nationwide, bad press. Hence,
one main testing requirement of SOFIE is the need for
efficient, cost effective and reliable regression testing of the
batch jobs in the system.

III. PROBLEM DEFINITION AND RELATED WORK
In our context, a regression test solution must handle the

following properties of the system under test:
• A batch job consists of a large number of tightly

integrated set of operations, which makes it hard to
control the job during test. A batch job can only be
started, without further mechanisms of control. Then

it runs to completion, typically in multiple, parallel
job streams. Thus, you can control the input of the
batch, and check the end result of it, but what
happens in between is difficult to observe, and even
more difficult to control.

• For the very same reasons it is very hard to build an
automated test oracle (predicting the “expected
result”) for the system under test.

• Given the amount of batch jobs in the system, it is
unrealistic to refactor them for improved testability.
It would simply not be cost effective. Hence, they
must be tested as they are.

Yoo and Harman [1] recently conducted a survey on

regression testing minimization, selection and prioritization,
constituting nearly 200 papers. It encompasses the main
research results around regression testing, addressing the
problems of identifying obsolete, reusable and re-testable test
cases (selection), eliminate redundant test cases
(minimization) and order test cases to maximize early fault
detection (prioritization). The survey shows that the majority
of the works focuses on white-box testing strategies,
concerning relatively small stand-alone programs written in
C or Java, or for spreadsheets, GUIs and web applications.
The techniques surveyed presuppose an already existing,
effective test suite on which to select, minimize and
prioritize test cases for the regression test. Before addressing
these issues, we needed to take one step back to figure out
how we should collect a test baseline, and how to perform
regression testing.

Chays et al. [2] noted the lack of uniform methods and
testing tools for verifying the correct behavior of database
applications, despite their crucial role in the operation of
nearly all modern organizations. Most literature in the field
was aimed at assessing performance of database
management systems rather than testing the database
application system for functional correctness, let alone
regression testing. The authors proposed a framework for
functional testing of database applications called AGENDA
[3-5]. However, the framework was not intended for
regression testing and we found some of the ideas hard to
scale, which had only been evaluated for smaller examples.

The most relevant work we found targeting regression
testing for database applications was the SIKOSA project [6-
8]. The authors proposed a capture-and-replay tool for
carrying out black-box regression testing of database
applications. This aligned well with our objectives regarding
database regression testing, namely a capture-and-replay
approach, similar to what has been more commonly used for
GUI testing, to automatically identify differences between
the results of two identical test runs (referred to as
deviations). Because it is hard to build a precise test oracle
for database applications with very complex queries, a more
practical strategy is to capture a set of test case executions of
the system under test, under the assumption that it currently
works correctly (the baseline), and then use the replay run
after modifications (the delta) to identify deviations and thus
potential regression faults. Note that because such deviations
only indicate potential faults, as they may also be due to

valid changes, a technique is also needed to identify actual
faults in a cost-effective manner.

The SIKOSA project restricted their work to checking
input-output relations of database applications, as they stated
that checking the state of the database after each test run was
prohibitively expensive and difficult to implement for black-
box regression testing. In our context, however, the outputs
of the batch jobs are reflected directly in the database state
and must therefore be monitored. The SIKOSA project
provided some experimental performance measures for their
tool, but did not refer to any evaluations regarding fault-
detection effectiveness or cost-effectiveness, let alone in an
industrial setting. Furthermore, neither of the proposed tools
from the AGENDA framework or the SIKOSA project are
publically available.

We also needed a specification-based, black-box testing
technique to help specify test input data (test cases) with
adequate coverage, based on an analysis of the input domain
for a given batch job. There are many suitable tools for this
purpose, but we found that the classification tree modeling
technique and the supporting tool CTE-XL [9], which is built
on the well-known category-partition approach [10], was
both easy to use and scaled up to the kinds of input domains
under consideration (e.g., more than 100 categories or
classifications in one model).

We also investigated Oracles Real Application Testing
(RAT) [11], but found that it was mainly targeted towards
performance testing and not easily adaptable for functional
testing.

In summary, the research literature provided us with a
useful starting point, but none of the related works fully and
directly addressed our needs, and except for CTE-XL, we
could find no accessible tools to apply directly into our
project context.

IV. DART
The above discussions motivated the development of the

DART tool, which is a tool for regression testing of database
applications, and mainly targeted towards database intensive
batch jobs.

The basic principle of the tool is straightforward: Execute
the system under test twice on the exact same input data and
initial database state, once with the original version of the
system (baseline), and once with the changed version of the

system (delta). Compute the difference in database state
between the two runs. A difference is either due to a valid
change, or a regression fault.

Note that DART can be used to identify regression faults
in any system or program unit performing Create, Read,
Update and Delete (CRUD) operations on a database, and is
not restricted to batch testing only. But in our context the
system under test consist of batch jobs that perform complex
CRUD operations on a database, guided by business logic
that implements sequences of the taxation laws and rules.
There are two properties of these batch jobs that make the
DART approach suitable:

• Batch jobs are built to run to completion without any
manual intervention. This eases the test execution
and ensures consistency between the baseline and
delta run of the test.

• Batch jobs operate on a limited set of database
entities. This simplifies the test setup, as the tables to
monitor can be easily identified prior to the test
execution.

Figure 1 shows the main steps in the testing process with

DART. In the following sections, these steps will be
described in detail.

A. Running example
Throughout the description of DART, a running example

will be used to demonstrate the various steps of the test
process. The example is intentionally kept very simple to fit
size constraints. The system under test used as example is the
program P shown in Figure 3. We use a Java-like syntax
augmented with directly executable SQL statements in order
to make it easier to understand for readers not acquainted
with PL/SQL. It is a program that contains features for
maintaining customer orders, more specifically adding and
deleting items from a customer order. As an example
execution of the program, one item is added to a customer
order, while an item is removed from another customer order
in the main method.

The relational entity model of the example program is
shown in Figure 2, along with the initial state of the database
prior to test execution. It consists of three entities containing
information about customers and their orders. A customer
can have zero to many orders with zero to many items.

Figure 1: A UML Activity Diagram of the DART regression test process.

Figure 2: The relational entity model and initial

state for program P.

Program P

void removeItemFromOrder(Long orderNr, String itemName)	
 {
 Long orderId = select Id from Order

 where Order.orderNr = orderNr;
 if(orderId != null)	
 {
 delete from Item where Item.itemName = itemName and
 Item.orderId = orderId;
 update Order set Order.changedDate = tomorrow
 where Order.Id = orderId;
 } else{
 reportOrderDoNotExistError();
 }
}

void addItemToOrder(Long orderNr, String itemName)	
 {
 Long orderId = select Id from Order

 where Order.orderNr = orderNr;
 if(orderId != null)
 insert into Item (ItemName, OrderId) values (itemName orderId);
 update Order set Order.changedDate = tomorrow
 where Order.Id = orderId;
 } else{
 reportOrderDoNotExistError();
 }
}

void main()	
 {
 addItemToOrder(12345, “USB stick”);
 removeItemFromOrder(34567, “Mouse”);
}

Figure 3: The example program P.

B. Test configuration
A test with DART is set up by selecting the database

tables and more specifically the table columns to monitor
during the test execution. DART obtains and presents the
database schema(s) of the system under test and a test
engineer selects the ones to monitor during the test
execution. In our example the tester would be presented with
the three tables Customer, Order and Item, which all
are a part of the database schema for program P. Since the
program P performs operations on the two tables Order and
Item, these are the ones that make sense to monitor while
testing P. The tester selects the two tables and more
specifically the underlying table columns to monitor.

Additionally the test engineer specifies how CRUD-
operations on the selected entities should be grouped
together as “logical test cases” based on a meaningful,

common test case identifier, e.g., a social security number.
Such identifier is defined using table attributes such as
primary keys, foreign keys and/or SQL queries. The goal is
to logically group related rows in the tables monitored in a
test execution to facilitate the comparison between the
baseline and delta test executions. A meaningful common
test case identifier in our example would be the customer
name (assumed to be unique), as all orders and items can be
traced back to its customer. In that case one customer will
make out one test case and all data manipulations that are
logged during test execution will be grouped by customer
name. A test configuration for program P would then look
like the one shown in Table I.

It is also possible to give aliases to the tables and table
columns in the test configuration as some tables might come
from external parties and have non-intuitive names. The
aliases defined in the test configuration will later on be used
in the presentation of the test results. In summary a test
configuration denotes the set of table columns (and their
aliases) to monitor during test execution and the
corresponding specification of the test case grouping scheme.

TABLE I. TEST CONFIGURATION FOR PROGRAM P.

Table Table column Test case identifier
OrderNr Order ChangedDate Customer.Name

Item ItemName Order.Customer.Name

C. Domain modeling
Prior to test execution, test data have to be prepared for

the specific system component to be tested. Whether the test
data is real system data, or generated synthetically, the
output of the test data preparation process is a test suite on
which the system under test can be executed. A test suite can
potentially contain a large number of test cases, and there
may not be enough resources available to execute all of
them, or to analyze all the resulting deviations during
regression testing. In particular, test suites based on real
system data tend to contain large amounts of redundant test
cases (as will be elaborated in Section V.B), which will
result in duplicate deviations causing unnecessary
inspections. Hence, to alleviate this problem, we would like
to prioritize the test cases in a test suite to ensure that we
execute first test cases that are most likely to reveal distinct
regression faults.

In order to prioritize the test cases in the test suite, a
model of the domain under test is made using the tool CTE-
XL. The model is a classification tree (defining equivalence
classes), which is used to generate domain partitions (also
called test case specifications or abstract test cases)
according to a coverage criterion of your choice, for example
pairwise coverage of the equivalence classes. A domain
model for the example program P can look like the one
shown in Figure 5. The root node Program P, the
classifications Number of orders for customer, Item added
and Item deleted, and the classes (0, 1, >1) and (Y, N)
constitute the classification tree model, whereas the bottom
six lines each represent partitions. In this case the pairwise

Figure 5: A classification tree model for program P.

Input: T is the set of tables in the configuration
 C is the set of columns from all tables in the configuration

TC: 2T×C is the set of (table, column) pairs
 TR is a test run

Algorithm generateTriggers(TC, TR)
begin
1. for each table t ∈ T do
2. testCaseID ← getTestCaseID(t, TR, oldValue, newValue);
3. triggerStatement ← “Create trigger on table t that fires after
 insert, delete or update ”;

4. for each (t,c) ∈ TC do
5. triggerStatement.append(“if insert operation then insert
 (testCaseNr, t, c, inserted value) into DART log table”);
6. triggerStatement.append(“if update operation then
 if update on column c then insert(testCaseID,
 t, c, old value, new value) into DART log table”);
7. triggerStatement.append(“if delete operation then insert
 (testCaseID, t, c, deleted value) into DART log table”);
 end loop;
 end loop;
8. execute triggerStatement;
end

Figure 4: Algorithm for trigger generation in DART.

coverage criterion was used to generate the partitions, which
ensures that each pair of classes are represented in at least
one partition. The test model emphasize the following
aspects regarding the program P:

• The number of orders for a particular customer
matters. If a customer has zero orders an error
should be reported, otherwise the item should be
added or deleted. It is also interesting to
differentiate the case of a customer having more
than one order, to make sure items are removed and
added to the right order and only that.

• It is also interesting to test different variations of
adding and deleting items for different numbers of
customer orders.

Given a test suite and a domain model of the system,

DART provides the capability of matching the data in the
test suite with the partitions in the domain model. In the
initial state of program P shown in Figure 2, there are two
test cases, namely customer Andy Smith and John Johnson.
DART will match the test case Andy Smith with Partition 3
as he has one order in which an item will be added, and the
test case John Johnson with Partition 4 as he has one order in
which an item will be deleted. When the test cases have been
matched to partitions, DART prioritizes the test cases as
follows: Among the partitions containing test cases, select a
random partition, and a random test case within the partition.
Next, select again a random partition among the remaining
ones, and again a random test case within the partition.
Continue until all partitions have been selected. Then start
the process again and select test cases among the ones that
have not been selected yet. Stop the process when all test
cases have been selected. The resulting ordering of the test
case selection determines the priority of the test cases. The
rationale is to ensure that all partitions be covered as quickly
as possible during test execution and that, for cases where
there is a deviation, the inspection of such deviations are
more likely to uncover dissimilar regression faults as quickly
as possible. This strategy should be considered as a first step
to be improved upon, as further described in the conclusion.

In the trivial running example the prioritization is
meaningless as there are only two test cases from two
different partitions. However, this is important in realistic
database applications, as test cases can be numerous,

expensive to run, and manual inspections of deviations are
time-consuming, as reported in Section V.A. We refer to this
process as a partition-based approach for test case
prioritization.

D. Test execution
During test execution DART will log all data

manipulations related to the specific test configuration. The
way data manipulations are recorded and logged is through
dynamically generated database triggers on the tables
specified in the test configuration. A trigger is procedural
code that is automatically executed in response to certain
events on a table or view in a database. Pseudo-code for
generating the triggers is shown in Figure 4. As the
algorithm shows, a trigger is generated for each table in the
test configuration. Each of the generated table triggers is
defined to insert a row into the DART log table for each data
manipulation on the columns specified in the test
configuration for the given table. Insert and delete operations
are always done at the row level and DART will log values
for all table columns in the test configuration when an insert
or delete operation takes place. Update operations can be
attribute specific, so DART will only log the table columns
in the test configuration that is actually updated. The triggers
are dynamically generated as a Data Definition Language
(DDL) string, which is executed in the end to store the actual
triggers in the database.

Thus, DART dynamically instruments the database of the
system under test by generating test-configuration specific
database triggers when the test is started. During test
execution these triggers will fire on any insert, delete or
update on the table columns in the test configuration and
store the database operations into a DART log table. One
data manipulation operation results into one row in the log

table matching the format <test case identifier, table name,
column name, old value, new value>. The test case identifier
(e.g., the customer name) is what uniquely identifies the test
case that causes the operation to be executed. It is devised on
the fly according to the specification in the test
configuration. Table name and column name are the names
of the table and column the operation is executed on,
respectively. Old value and new value refer to the values of
the attribute prior to and after the operation execution,
respectively. Old value is given the static value “Inserted”
for insert operations, while new value is given the static
value “Deleted” for delete operations. After test execution
the triggers are deleted from the database of the system under
test.

A test run is done once with the original version of the
system (baseline) and once with the changed version of the
system (delta), which is subject to regression faults. Before
the delta test run the database is reset to the initial (baseline)
state to ensure that both runs start out with the same database
state. Various mechanisms are available to reset the database.
We have used the flashback to restore point feature of Oracle
in the particular case of SOFIE. This is done by creating a
restore point in the database after the test configuration is
defined and the test data is prepared, but before the execution
of the baseline run starts. The restore point defines the state
of the database at the time it is created and will ensure
consistency between the test runs.

In our example, a test run on program P, with the test
configuration from Table I and the initial state from Figure 2,
would result in the DART log data shown in Table II. For the
test case Andy Smith, one insert operation and one update
operation is executed, as logged in row 1 and 2 of Table II,
respectively. For the test case John Johnson one delete
operation and one update operation is executed, as logged in
row 3 and 4 of Table II, respectively.

TABLE II. EXAMPLE DART LOG TABLE AFTER THE BASELINE RUN.

Id Test
Run
Id

Test
Case
ID

Table
Name

Column
Name

Old
Value

New
Value

1 1 Andy
Smith Item Item

Name Inserted USB Stick

2 1 Andy
Smith Order Changed

Date 12.05.11 14.05.11

3 1 John
Johnson Item Item

Name Keyboard Deleted

4 1 John
Johnson Order Changed

Date 12.05.11 14.05.11

It turns out that program P contains a fault. The

changedDate of the order should be updated to today’s
date when an order is changed. Currently it is updated to
tomorrow’s date. The fault is corrected (underlined) and a
new version of P, called P’ is shown in Figure 6. For
illustration purposes let us assume a regression fault in P’:
the update of the order in removeItemFromOrder
method is completely removed, rather than fixed (line struck
through). After resetting the database into the same initial

state as before the first test run, the test is executed again on
the changed program version P’.

After both test runs, the DART log table contains the

information shown in Table III. Three additional rows are
logged for the delta run. An insert and an update operation
for the test case Andy Smith in row 5 and 6, and a delete
operation for the test case John Johnson in row 7.

TABLE III. EXAMPLE DART LOG TABLE AFTER BOTH TEST RUNS ARE
EXECUTED

Id Test
Run
Id

Test
Case

Table
Name

Column
Name

Old
Value

New
Value

1 1 Andy
Smith Item Item

Name Inserted USB
Stick

2 1 Andy
Smith Order Changed

Date 12.05.11 14.05.11

3 1 John
Johnson Item Item

Name Keyboard Deleted

4 1 John
Johnson Order Changed

Date 12.05.11 14.05.11

5 2 Andy
Smith Item Item

Name Inserted USB
Stick

6 2 Andy
Smith Order Changed

Date 12.05.11 13.05.11

7 2 John
Johnson Item Item

Name Keyboard Deleted

Program P’

void removeItemFromOrder(Long orderNr, String itemName)	
 {
 Long orderId = select Id from Order

 where Order.orderNr = orderNr;
 if(orderId != null)	
 {
 delete from Item where Item.itemName = itemName and
 Item.orderId = orderId;
 update Order set Order.changedDate = tomorrow
 where Order.Id = orderId;
 } else{
 reportOrderDoNotExistError();
 }
}

void addItemToOrder(Long orderNr, String itemName)	
 {
 Long orderId = select Id from Order

 where Order.orderNr = orderNr;
 if(orderId != null)
 insert into Item (ItemName, OrderId) values (itemName orderId);
 update Order set Order.changedDate = today
 where Order.Id = orderId;
 } else{
 reportOrderDoNotExistError();
 }
}

void main()	
 {
 addItemToOrder(12345, “USB stick”);
 removeItemFromOrder(34567, “Mouse”);
}

Figure 6: The example program P', which is a
modified version of program P.

E. Test analysis
After a test is executed on two different versions of the

system under test, the two test runs are compared with each
other. The output of the test execution is a DART log table
filled with all data manipulation operations of the respective
test runs. The comparison uses the SQL set operations minus
and union to compute the difference between the two runs, as
follows:

<Log data from baseline> MINUS <Log data from delta>
UNION ALL
<Log data from delta> MINUS <Log data from baseline>

The comparison operation will reveal all differences

between the baseline and delta runs with regards to the test
configuration. The deviations, grouped by the test case
identifier, are presented to the tester, which in turn has to
determine whether the deviation is a regression fault or not.

In our example the output of the test is the deviations
between the two runs as shown in Table IV. There is one
deviation due to the changed update in addItemToOrder
(row 1-2) and one deviation due to the missing update in the
delta version of removeItemFromOrder (row 3). By
analyzing the deviations in Table IV, the test engineer can
verify that the change in test case Andy Smith is due to
correct changes in P’, whereas the missing update in the test
case John Johnson is due to a regression fault.

As the baseline run essentially serves as the test oracle,
DART will identify regression faults introduced in the delta
version of the system, but will not identify faults that are
present in both the baseline and delta run. In practice, the
same baseline is used for testing several consecutive deltas.
After each test, the deviations that are correct in the delta are
updated into the baseline. Thus, the baseline is continually
improved and the test oracle increasingly more accurate.

TABLE IV. THE DEVIATIONS BETWEEN THE TEST RUNS FOR P AND P'.

Id Test
Case

Table
Name

Column
Name

Old
Value

New
Value

Test
Run

1 Andy
Smith Order Changed

Date 12.05.11 14.05.11 Baseline

2 Andy
Smith Order Changed

Date 12.05.11 13.05.11 Delta

3 John
Johnson Order Changed

Date 12.05.11 14.05.11 Baseline

V. PRACTICAL EXPERIENCES

A. Pilot evaluation
During the development of DART we conducted a pilot

evaluation of the tool to investigate its regression fault
detection capabilities. In our pilot study we chose to focus on
one particular functional area of the system, the most
complex and business critical one. Due to its complexity this

is an area that has been prone to regression faults in the past.
Since all taxpayers in Norway could be affected, it is of great
importance to avoid faults. This particular functional area
consists of 19 different batch jobs.

For the pilot we chose to test a previous system release,
which had already undergone the regular, manual testing and
QA activities. One part of the selected functional domain had
been refactored in that release. As a result, five regression
faults had been identified during the regular testing routines
in the project. Additionally five regression faults had been
discovered in the production environment after it was
released. As a pilot evaluation, we were interested to see if
we could identify the same ten regression faults, and possibly
additional, undiscovered faults, with the DART tool. We
compared the last version of the system prior to the
refactoring with the version that was delivered to the system
test in that particular release.

For the pilot we had three sets of real system test data
available. The test suites were of different sizes and for
evaluation purposes we chose to run the regression test for
all three of them. The test data in the three test suites
consisted of non-overlapping test cases, where each test case
represented one taxpayer. Table VII summarizes the three
test runs. Column two shows the number of test cases
contained in the test suites, column three shows how many of
the test cases deviated between the baseline and delta run,
column four shows how many of the deviations were due to
valid changes, column five shows how many of the
deviations were due to regression faults, column six shows
the number of distinct functional faults among the faulty
deviations, column seven shows the number of faults that
had been detected during testing and operation, which were
rediscovered with DART, column eight shows the new
regression faults detected by DART and column nine shows
the inspection effort spent determining whether the
deviations were correct or faulty.

DART revealed eight of the ten faults that were
previously found during testing and operation, but also
helped identify nine undiscovered faults, that is, nine faults
that were still present in the production system and needed to
be corrected. In total, the three test runs uncovered 17
distinct faults. The two previously detected faults missed by
DART were not found due to the insufficient coverage of the
test suites; none of the test cases in the three test suites
exercised the two faulty situations.

As expected, the largest number of faults was found in
the largest test suite, but its set of detected faults did not
subsume those of the smaller test suites; two of the faults
discovered in the smaller test suites were not present in the
largest one. This suggested that we needed a more systematic
way to specify the regression test cases, as elaborated in the
next section (V.B). Nevertheless, as a result of the pilot we
registered nine new defects in the defect tracking system.
One of them was registered as a “A defect”, seven as “B
defects” and one as a “C defect” on a criticality scale ranging
from A to C, where A is the most critical one. Broadly
speaking, A defects are critical, B defects are serious, while C
defects are less important.

For the purpose of the evaluation, we analyzed all
deviations in the three test runs to ensure that we found as
many defects as possible. However, this required a
considerable amount of manual effort, as shown in Table VII
(Inspection time); on average we used about 12 minutes per
deviation. This suggests that, in order to use DART for large-
scale regression testing in a system release, we would need a
way to prioritize test cases to increase the likelihood of early
fault detection and reduce the number of redundant
deviations to analyze. The same functional fault was present
in several deviations, and ideally we would only like to
inspect one deviation for each unique functional fault. Thus,
a classification tree model of the input domain was
developed and applied to prioritize test cases, as described in
Section IV.C.

We applied the prioritization to the test cases in test suite
3 as it was the largest. Figure 7 shows the results of using the
partition-based approach for prioritizing test cases to execute
n test cases and analyze the resulting deviations in their
given priority order for various values of n. The results are
then compared to the average resulting from the random
selection of test cases. To obtain the results in Figure 7, we
repeated the prioritization procedure 100 times and averaged
the percentage of faults detected (the Y-axis) for a given
percentage of test cases in the test suite (the X-axis). Though
the results are very clear just by looking at Figure 7, to check
the statistical significance of the difference between the
partition-based approach over the random approach, we
conducted non-parametric Mann-Whitney U-Tests [12] to
test the difference in fault detection for each test suite size
value. We computed p-values for all sizes that were sampled
and all of them were below α= 0.05, showing that the two
approaches are significantly different. More precisely the p-
value was less than 0.0000002 from 1 to 90 percent of the
test cases, and 0.01381 for 95 percent. We tested the entire
set of sample data from the two approaches, which yielded a
p-value of 0.00019.

In practice this means that for example by only executing
eight percent of the test cases and analyze the resulting
deviations, the test engineer would on average find more
than 80 percent of the faults. This corresponds to executing
approximately 450 test cases, which on average resulted in
80 deviations uncovering 12 out of 15 faults that could be
uncovered by the test suite. In terms of effort that is 16 hours
of inspection time for revealing 12 out of 15 faults. In
comparison, with a random selection strategy, we would on
average have found less than 35 percent of the faults for a
similarly sized test suite. We consider this to be a substantial,
practically important cost saving.

To summarize, the pilot evaluation showed that DART
could help detect significantly more regression faults and
that the test case prioritization using DART could yield
significant savings in terms of number of test case executions
and the effort involved in analyzing deviations.

B. Test coverage and synthetic test data
As mentioned in the previous section, the test suites in

the pilot evaluation uncovered a total of 17 faults. These test
suites were based on live data input files provided by the
operation environment. It turned out that none of the three
test suites were, in isolation, adequate to reveal all the 17
faults. Neither did they uncover all the ten faults previously
identified during test and operation, indicating that not even
combining the three test suites yields satisfactory coverage.
Considering the complexity of the domain model for the
system under test, this is not surprising when the test data
were not derived in a systematic manner.

By applying the all combination coverage criterion on
the domain model for that particular functional area, as many
as 17,100 partitions were generated. To assess how well live
test data would cover those partitions, we selected a large,
representative test suite consisting of 211,837 “live” test
cases (actual tax payers), provided by the production
environment, and compared it with the partitions. We found
that the test suite covered only 226 out of 17,100 partitions, a
model coverage of only 1.32 percent! The two largest
partitions of the test suite contained 86,743 and 36,296 test
cases, respectively, showing huge numbers of redundant test
cases while showing serious shortcomings in covering
exceptional cases (rare patterns of taxpayers). Live test data
also entail practical concerns. Confidentiality issues must be
addressed. They are not always available, as one may depend
on third parties to deliver them and they are hard to reuse, as
they are dependent on a given database state.

The lack of model coverage achieved with live test data
along with their associated practical concerns motivated the
generation of synthetic test data. To drive the generation of
synthetic test data, we use the same domain model as we use
for partition-based test case prioritization. Adapter code is

TABLE VII SUMMARY OF TEST RUNS IN THE PILOT EVALUATION

Test # Test
cases

Deviations # Correct
deviations

Faulty
deviations

Distinct
faults

Previous
faults found

New faults
found

Inspection
time

1 711 33 19 14 7 5 2 7 hours
2 3144 182 136 46 11 7 4 35 hours
3 5670 522 386 136 15 6 9 105 hours
 Total 17 8 9

Figure 7: A comparison of partition-based-, and

random test case selection.

written to map the abstract values of the leaf classes in the
classification tree model to actual parameter values of the
real test cases for the system under test. Using the adapter
code, test cases can be automatically generated according to
the model. This makes it easy to generate different test
suites, providing different levels of model coverage, e.g.,
two-wise, three-wise, or all combinations. The usage of
synthetically generated test data with DART is still in its
initial phase. A few system faults were identified while
developing the adapter code, as rare system scenarios got
executed. We are confident that the generation of synthetic
test data will allow us to increase test coverage and make
testing more efficient and predictable when applied in
DART.

C. Deployment into project setting
DART has been used to support regression testing of

batch jobs in the core functional areas of the SOFIE
application for the past eight releases. So far we have used
DART as a supplement to manual testing, not as a
replacement. We thus had the opportunity to compare the
fault detection effectiveness of DART with the regular
(manual) system testing routines in the project. Table V
shows the faults detected in the eight releases during regular
system testing and the additional faults detected by DART,
within the particular functional area of interest. It also shows
the number of faults that slipped through both testing
activities, but were later on detected during operation in the
production environment.

The figures in Table V are meant to give a rough picture
of the impact of DART during its initial lifetime in the
SOFIE project. Unfortunately, we do not have exact
information about the effort spent for uncovering the faults
by the different testing approaches, as we faced
organizational challenges in the project while trying to get
the time reported at a satisfactory level for evaluation.
However, the faults uncovered by regular testing are
typically the result of weeks of testing, while the faults
uncovered by DART result from days of testing. It is also
worth stressing that we had no regression test environment in
place in the first six releases shown in Table V.
Consequently, DART was not used during the test period,
but rather as a final verification of the releases after the

acceptance test was finished and the release was ready to
ship. Therefore, the figures provided in Table V should not
be used to strictly compare the fault detection capabilities of
DART with those of the regular testing routines, as DART
could only detect the leftover faults in the first six releases.
Table V show that DART has helped uncover more than a
third of the defects found during regression testing (22 out of
59), within the batches of the core functional domain. Put in
other words DART has helped identify approximately 60%
more regression faults than what would have been detected
without it. We consider this to be of substantial impact,
especially since DART was only used as a “last check” in the
first six releases. Such results combined with the savings
discussed in Section V.A, make us confident that the test
team can now rely on DART for regression testing of the
batch jobs in SOFIE, while reassigning some of their
resources on other types of testing. For example, faults in the
graphical user interfaces, documents and reports within the
same functional domain were discovered by regular testing
routines, but would not have been found by DART. The
same applies to the extensive testing required to verify the
correctness of new functionality. An example of the latter is
release six in Table V, where substantial new functionality
was introduced, and thoroughly tested, revealing several
faults in the regular testing routines.

Even when combining manual testing with DART, some
faults still slipped through into production, as shown in Table
V. As an evaluation of the DART tool, we went through the
defects reported from the production environment to
understand why they were not discovered prior to being
released. Table VI lists the findings.

Six of the defects were actually discovered by DART.
One was not found as we ran the test on a limited scope in
the beginning, before broadening our horizon the whole
batch process of the functional domain in the later releases.
Two of the faults were performance-related issues only
present in the production environment (due to different
settings). Besides the two currently unknown defects, that
leaves us with three defects that should have been detected,
but were not due to insufficient partition coverage. We hope
to address this issue in the future by synthetically generating
test data, as discussed in the previous section.

For the sake of the evaluation we also investigated the
criticality distribution of the defects reported from manual

TABLE V. DEFECTS DETECTED IN THE PAST EIGHT RELEASES OF
SOFIE

Release # Faults detected

by regular
testing

Additional
Faults

detected by
DART

Faults discovered
in production

1 6 9 6
2 3 1 1
3 1 1 1
4 6 2 3
5 0 0 0
6 19 3 2
7 1 5 1
8 1 1 0

Total 37 22 14

TABLE VI. REASONS WHY DEFECTS REPORTED FROM PRODUCTION
WERE NOT FOUND BY DART.

Defects Cause of not being detected by DART prior to release

3 Unsufficient test partition coverage to reveal the fault; no
test cases that executed the faulty situations.

1 Did not execute that part of the functional domain in that
particular test.

2
Found and reported by DART, but there were not enough
time to fix them prior to release. Also reported from the
production environment before they got fixed.

2 Performance issue specific to the production environment.

4 Found and reported by DART, but the test was executed
after the release (pilot evaluation).

2 Currently unknown due to lacking information regarding
the faults.

testing, DART, and production. No conclusion could be
drawn regarding the relationship between the criticality of
defects and how they were detected.

Another important contribution of DART in practice is
that it has impacted the prioritization of defects in the
project. Since DART enables more thorough and cost-
effective regression testing, less defect corrections are
postponed due to their high risk of generating regression
faults. In practice that means that more faults are corrected
more quickly, while still remaining confident that they do not
introduce new regression faults.

VI. CONCLUSION AND FUTURE WORK
We have reported our experience with a practical

approach and tool (DART) for functional black-box
regression testing of legacy database applications. The tool
uses dynamically generated database triggers to capture the
data manipulations in the database during execution of the
system under test. The difference between consecutive
executions on different versions of the system under test is
used to identify regression faults. The tool makes use of
CTE-XL classification tree models to prioritize test cases and
minimize their redundancy, so as to make our approach
scalable to real system releases. The prioritization
mechanism increases the likelihood of early fault detection
and can be used to both reduce execution time and the effort
involved in analyzing differences.

In this paper, our approach was applied on batch jobs in
the Norwegian Tax Accounting System SOFIE, a very large
database application. However, we believe our results are
applicable outside this context, and for any program
performing CRUD operations on a database. DART has
shown good fault detection capabilities on multiple SOFIE
releases. In the pilot evaluation, where DART was applied to
a system release that had already been tested and released,
DART found eight of the ten regression faults that were
uncovered during regular testing and system operation, but
also detected nine additional regression faults. For the past
eight releases of SOFIE, DART has been used as a support
tool for regression testing, and has helped identified 60 %
additional faults, that would have been released otherwise.
Thanks to DART, the business critical batch jobs in SOFIE
are more thoroughly, yet efficiently tested, causing less
regression faults to be released. This enables NTD to take
more risks by correcting more bugs in shorter periods of
time.

Current work in progress is to fully integrate DART with
the daily test operation of the project, and ideally as a
continuous part of the development process, as a means for
early fault detection. We will continue to work on generation
of synthetic test data and use them for test execution with
DART to ensure better test coverage and more efficient and
predictable testing.

We have applied a relatively simple, yet efficient method
for test case prioritization. More work is required to

determine the optimal way for test case prioritization based
on a classification tree model. For example, similarity
measurement between partitions and test cases could be used
to refine the prioritization of test cases.

Finally our ambition is to replace the current Oracle
specific version of DART with a fully implemented open
source Java version, to address the lack of good tool support
for regression testing of database applications.

ACKNOWLEDGMENT
We are grateful to Hilde Lyngstad, Trond Andreassen,

Thor-Otto Thuresson and Bjørn-Erik Godøy for their
contributions in the project.

REFERENCES

[1]. Yoo, S. and M. Harman, Regression testing minimisation, selection
and prioritisation: A survey. Journal of Software Testing, Verification and
Reliability, 2011, 2011. To appear.
[2]. Chays, D., et al., A Framework for Testing Database Applications.
ACM SIGSOFT Software Engineering Notes, 2000. 25(5): p. 10.

[3]. Chays, D. and Y. Deng, Demonstration of AGENDA tool set for
testing relational database applications, in International Conference on
Software Engineering. 2003, IEEE Computer Society: Portland, Oregon. p.
802-803.

[4]. Chays, D., et al., An AGENDA for testing relational database
applications. Software Testing, Verification & Reliability, 2004. 14(1): p.
28.
[5]. Deng, Y., P. Frankl, and D. Chays, Testing database transactions
with AGENDA, in International Conference of Software Engineering. 2005,
ACM: Association for Computing Machinery: St. Louis, MO, USA. p. 78-
87.
[6]. Haftmann, F., D. Kossmann, and A. Kreutz. Efficient regression
tests for database applications. in The Conference on Innovative Data
Systems Research (CIDR). 2005. Asilomar Conference Grounds, Monterey
Peninsula in Pacific Grove, CA, USA.
[7]. Binning, C., D. Kossmann, and E. Lo. Testing database
applications. in International Conference on Management of Data. 2006.
Chicago, IL, USA: Association for Computing Machinery (ACM).

[8]. Haftmann, F., D. Kossmann, and E. Lo, A framework for efficient
regression tests on database applications. The VLDB Journal — The
International Journal on Very Large Data Bases, 2007. 16(1): p. 145-164.
|9]. CTE XL and CTE XL Professional - Overview. Available from:
http://www.berner-mattner.com/en/berner-mattner-home/products/cte-xl/.

|10]. Ostrand, T.J. and M.J. Balcer, The category-partition method for
specifying and generating fuctional tests. Magazine Communications of the
ACM, 1988. 31(6).
|11]. Oracle Real Appliaction Testing. Available from:
http://www.oracle.com/us/products/database/options/real-application-
testing/index.html.
[12]. Arcuri, A. and L. Briand. A practical guide for using statistical tests
to assess randomized algorithms in software engineering. in International
conference on Software engineering. 2011.

