A Model-Driven Engineering Approach to Support the Verification of Compliance to
Safety Standards

Rajwinder Kaur Panesar-Walawege, Mehrdad Sabetzadeh, Lionel Briand
Simula Research Laboratory, Lysaker, Norway
University of Oslo, Norway
Email: {rpanesar, mehrdad, briand}@simula.no

Abstract—Certification of safety-critical systems according to
well-recognised standards is the norm in many industries where
the failure of such systems can harm people or the environment.
Certification bodies examine such systems, based on evidence
that the system suppliers provide, to ensure that the relevant
safety risks have been sufficiently mitigated. The evidence is
aimed at satisfying the requirements of the standards used
for certification, and naturally a key prerequisite for effective
collection of evidence is that the supplier be aware of these
requirements and the evidence they require. This often proves
to be a very challenging task because of the sheer size of the
standards and the fact that the textual standards are amenable
to subjective interpretation. In this paper, we propose an ap-
proach based on UML profiles and model-driven engineering.
It addresses not only the above challenge but also enables the
automated verification of compliance to standards based on
evidence. Specifically, a profile is created, based on a conceptual
model of a given standard, which provides a succinct and
explicit interpretation of the underlying standard. The profile
is augmented with constraints that help system suppliers with
establishing a relationship between the concepts in the safety
standard of interest and the concepts in the application domain.
This in turn enables suppliers to demonstrate how their system
development artifacts achieve compliance to the standard. We
illustrate our approach by showing how the concepts in the
domain of sub-sea control systems can be aligned with the
evidence requirements in the IEC61508 standard, which is one
of the most commonly used certification standard for control
systems.

Keywords-UML; Profile; safety; certification;

I. INTRODUCTION

Safety-critical systems are often subject to a stringent
safety certification process, aimed at providing assurance
that a system is deemed safe by a certification body. In-
creasingly, system suppliers are asked by such bodies to
provide their justification for the safe operation of a system
in the form of a safety case, which provides well-reasoned
arguments based on the collected safety evidence that the
overall safety objectives of a system are being met [1].
One approach to certification is to demonstrate, based on
evidence, compliance to a safety standard, such as IEC61508
for Programmable Electronic Systems (PES) [2].

Verifying compliance to safety standards proves to be a
very challenging task because of their sheer size and the
fact that they are mostly textual and subject to subjective
interpretation. On the supplier side, they run the risk of
missing critical details that need to be recorded during

system development. This means that they will have to
reconstruct the missing evidence after the fact. Doing so
is often very expensive, and the outcomes might be far
from satisfactory. On the certifier side, poorly structured and
incomplete evidence often leads to significant delays and
loss of productivity, and further may not allow the certifier
to develop enough trust in the system that needs to be
certified. It is therefore very important to devise a systematic
methodology, which is amenable to effective automated
support, to specify, manage, and analyze the safety evidence
used to demonstrate compliance to standards.

Motivated by the above challenges, we have studied
in our previous work different facets of the problem of
safety evidence specification and management. Specifically,
we proposed an approach to specify safety evidence using
conceptual modeling [3] and a technique for tailoring generic
evidence requirements according to sector-specific needs
(e.g., in the railways, avionics, and maritime and energy
sectors) [4]. A recurring theme in this earlier work is the use
of standard Model-Driven Engineering (MDE) technologies,
such as UML [5] and OCL [6] for specification, storage, and
analysis of safety evidence information.

In this paper, drawing on the same MDE principles
underlying our previous work, we develop a novel approach
for assisting system designers in relating the concepts of
their application domain to the evidence requirements of
the standards that apply to the domain. The research is
motivated by a natural and real need that we have observed
in software safety certification. Specifically, the majority of
the evidence artifacts that the suppliers record are based
on the supplier’s concepts for the application domain, as
opposed to the concepts of the certification standards. The
absence of an explicit and precise link between the two
conceptual frameworks can pose two main challenges. First,
the certifier may not be able to comprehend the evidence,
and second, it becomes very difficult to verify whether the
evidence collected using the domain concepts is covering all
the evidence aspects mandated by the standard.

To give a concrete example, in the IEC61508 standard,
a Programmable Electronic System (PES) is the system
for controlling or monitoring one or more programmable
electronic devices, including all elements of the system
such as sensors, communication paths, and actuators. It has
software that is used to send commands for controlling

the various different types of equipment. A sub-sea control
system on the other hand, is made up of a Sub-sea Control
Module (SCM) that incorporates a Sub-sea Electronics Mod-
ule(SEM). The SCM executes the commands for opening or
closing valves that control the oil well. These commands
are sent from the Sub-sea Control Unit (SCU) which is
software that run on the oil rig in what is called the Topside
Processing Unit(TPU).[7], [8]. In this scenario, the certifier
needs to know which is the PES, and which is the software
system. The PES in this case is the SCM and the software
controlling and monitoring it, is the SCU. The correlation
of these simple pieces of information provides clarification
to the certifier who needs to understand the system being
certified.

To address the above problem, we propose a novel
technique that guides system designers in establishing a
sound relationship between the domain model for a safety-
critical application and the evidence model for a certification
standard. Our approach makes use of UML profiles. This
enables us to build upon mature MDE technologies and tailor
them for our specific needs, particularly for specifying and
automatically checking the constraints that must hold for
compliance with safety standards.

More precisely, we begin with developing a profile based
on the conceptual model of a given standard. The profile
is then augmented with verifiable constraints that help sys-
tem suppliers to systematically relate the concepts in the
standard to the concepts in the application domain. The
resulting relationship provides a clear route for the supplier
to demonstrate how their development artifacts can be used
for showing compliance to the standard. We illustrate our
approach by showing how the concepts in the domain of
sub-sea control systems can be related to the evidence
requirements in the IEC61508 standard, which is one of
the most commonly used certification standards for control
systems.

The remainder of this paper is structured as follows: In
Section II, we review background information for the paper
and in Section III we outline our overall methodology for
creating certification evidence for compliance. In Section IV,
we present our UML profile for IEC61508 and in Section
V we discuss how the profile can be used for the creation
of certification evidence. Section VI compares our work
with related work. Section VII concludes the paper with a
summary and suggestions for future work.

II. BACKGROUND
In this section, we briefly introduce safety certification and
how the evidence for standards compliance can be structured
through conceptual modeling, and UML profiles.

A. Safety Certification

Safety-critical systems are typically subject to a safety
certification process. The aim of certification is to provide
assurance that the system has been deemed safe for use in a

specific environment. This is usually carried out by a third-
party certification body. The certification is usually based
on a specific standard applicable to the domain in which
the system is operated, e.g., there is the general standard
IEC61508 for the certification of electrical, electronic or
programmable electronic systems that are used in safety-
critical environments, the [IEC61511 standard for the process
industry [9], EN50129 [10] for railways, and NORSOK I-
002 [11] for safety automation systems in the petroleum
industry. All these standards present requirements for how
the system should be created to ensure the quality of the
end product and more specifically to ensure that the system
is safe for operation. The justification for safe operation of
a system is usually presented as a safety case [1].

A safety case is made up of three principal parts [1]:
safety objectives, arguments, and evidence. Demonstrating
the satisfaction of the objectives involves gathering evidence
during the lifecycle of a system and constructing well-
reasoned arguments that relate the evidence to the objec-
tives. With the growing use and complexity of software
in safety-critical systems, licensing and safety regulatory
bodies increasingly require system suppliers to provide an
explicit software safety case. A software safety case is
a part of an overall system safety case, which provides
assurance that the software elements of a system satisfy
the safety aspects stated in the technical and software
requirements specification of the system [12]. While the
argumentation aspects of software safety cases have been
studied before [1], little has been done to precisely specify
the evidence that underlies software safety arguments [13].
As a result, suppliers of safety-critical software have been
left without proper guidance on what evidence to collect
during development. This has led to the suppliers having
to recover the relevant evidence after the fact, which can
be extremely costly or even infeasible. In addition, the
quality of the overall safety case is bound by the quality
of the weakest link. Hence, current practices for managing
software safety evidence can severely limit the effectiveness
of safety cases in general. In this paper, we provide a flexible
methodology for systematically specifying safety evidence
and establishing a precise link between the evidence and
the requirements of relevant standards. This will in turn
help with the construction of more definitive software safety
cases.

B. Conceptual Models

In general, standards, irrespective of the domains they are
targeted at, tend to be expressed as textual requirements.
Since the requirements are expressed in natural language,
they are subject to interpretation by the users of the stan-
dards. To make the interpretation explicit and develop a com-
mon understanding, we propose the development of a con-
ceptual model that formalizes the evidence requirements of a
given standard. Lewis [14] expresses the need for presenting

a safety case as an information model. He highlights the
need for creating a formal structure for a safety case and the
need to present the relationships that exist between atomic
items of information resulting in a web of information that
supports the safety case argument. In order to represent
these relationships as required by a particular standard, we
create a conceptual model that allows us to represent the
main factors that need to be considered for certification and
the relationships amongst them. The fundamental elements
that we need to represent are 1) concepts, 2) attributes, 3)
inter-concept relationships and 4) constraints. Additionally,
as standards can be quite large, it is useful to have a means
to divide the concepts into useful groupings. The UML [5]
class diagram notation can be used to conveniently express
the conceptual model. Concepts are represented as classes
and concept attributes — as class attributes. Relationships are
represented by associations. Generalization associations are
used to derive more specific concepts from abstract ones.
When an attribute assumes a value from a predefined set of
possible values, we use enumerations. Finally, we use the
package notation to make groupings of concepts and thus
better manage the complexity [3].

C. UML Profiles

UML profiles [5] are a lightweight solution for extending
the UML metamodel for a specific domain. They enable the
expression of new concepts, notation and constraints by the
introduction of context-specific stereotypes, attributes and
constraints. Stereotypes are a means of extending a base
metaclass of the UML metamodel. We extend different meta-
classes to create stereotypes for the concepts, their attributes
and their relationships respectively. Moreover, constraints
can be defined in a profile by using the Object Constraint
Language (OCL) [6] to ensure that certain semantics are
maintained in the models to which the profile is applied.
By using profiles the models that employ the profile are still
consistent with the UML metamodel. The profile stereotypes
along with constraints written in OCL provide us with the
mechanism to guide the creation of the evidence require-
ments for a specific standard.

As we describe in the subsequent sections, we use this
mechanism to create a profile of the IEC61508 conceptual
model (Section IV) and then use it to create the evidence
required for the certification of a sub-sea control system in
the petroleum industry.

III. METHODOLOGY

We propose a methodology for assisting system suppliers
in preparing for certification of their systems according to
industry-relevant standards. Our methodology guides system
developers in establishing a relationship between a domain
model of a safety-critical application and the evidence model
of a certification standard. We make use of UML profiles
which allows us to build upon mature MDE technologies

Actors Activities

Construct Conceptual
Model of Standard

Deflne UML Proflle based
on Conceptual Model

Construct Domain Model)

Standard I
Certification Expert

.ﬂ

Elaborate Domain
Model for Compllance

Appl|cat|on
Domain Expert

@ Create Instance for
Specific Certification

Methodology for the Creation of Evidence of a Safety Standard.

Figure 1.

for specifying and automatically checking the constraints
that must hold for compliance with safety standards. The
methodology consists of five main steps as shown in Figure
1, which will be illustrated by our case study.

The first step is the creation of a conceptual model of the
standard according to which a system needs to be certified.
This process involves interpreting the text of the standard
and picking the main concepts presented in it, any attributes
the concepts may have, and any inter-concept relationships.
Note that making these concepts and their relationships
explicit is an important aspect of compliance [13], [15], [14].

The second step is the creation of a UML profile based
on the conceptual model. The profile is in turn used for
stereotyping the elements of a domain model created in
step three. Broadly, a domain model is a representation
of the core concepts in an area of interest. In this paper,
we use the term domain model to refer to concepts that
represent the physical and abstract components of a family
(class) of systems in a particular application area (e.g., sub-
sea control systems), the environment in which this family
of systems function, and the key artifacts built throughout
development. An example of product family [16] is a Fire
and Gas Protection system that will consist of sensors being
used to detect fire or combustible gas, a controller that does
processing based upon the input from the sensors and then
deploys certain actuators such as sprinklers or dampers. This
is a generic description of a class of systems — each variant
of the system will have very specific types of sensors and
actuators with specific actions that should take place upon
the detection of fire or gas. Following the norm in MDE,
we assume domain models are represented as UML class
diagrams[17]. Using a profile makes it possible to establish
a concrete link between the evidence requirements of a given
standard and a domain model. In this paper, we do not
concern ourselves with the construction of domain models.
Good references and guidelines already exist [17].

When a stereotype from the profile of a given standard
is applied to a domain model element, it shows how that

element fulfills the requirements from the standard. The
profile is created by mapping the concepts in the conceptual
model as extensions of the metaclass 'Class’ in the UML
metamodel, the attributes of the concepts are made into
attributes of the class to which the stereotypes are applied
to, the relationships between the concepts are mapped as
extensions of the metaclass ’Association’. Enumerations are
used for describing either standard-specific or user-specific
data types. OCL constraints are added to the stereotypes to
ensure certain properties of the stereotypes as well as to
guide system developers in elaborating the domain model
for the system being developed.

The fourth step requires the elaboration of the domain
model. Specifically, elaboration means the application of
the profile stereotypes to the appropriate domain model
elements, and refining the domain model so that it satisfies
the OCL constraints of the stereotypes. These refinements
could include the addition of new domain model elements
or making changes to the existing ones (e.g., adding new
attributes, revising multiplicities).

The process starts by applying a stereotype to the domain
model itself, stating which standard the domain model needs
to comply with. If the standard of interest is [EC61508, the
stereotype could be 1Ec61508Model. The OCL constraints
associated with this stereotype will start the guidance pro-
cess for augmenting the domain model with other stereo-
types. This in turn may require the domain model to be
updated so that the stereotype constraints are satisfied. Each
new stereotype applied will have further constraints that
will need to be satisfied for the model to be valid. This
chain of constraints will guide the elaboration of the domain
model, so that it will cover all aspects that are necessary for
certification. Ultimately, that elaborated domain model will
represent a precise specification for the safety evidence and
explicit links to the standard’s requirements.

Finally, for certifying a specific system (variant) from a
product family, step five in Figure 1 is performed. This
step creates an instantiation of the UML class diagram
representing the elaborated domain model. In other words,
an object diagram of the domain model is built to represent
the specific properties of a system variant.

Steps one and two and four need input from an expert
who understands the certification process and the standard
to which the system will be certified; whereas, in steps three,
four and five the knowledge of an application domain expert
is required. Finally, we note that steps one and two are
carried out once per standard; steps three and four are done
once per product family; and step five is performed once for
each variant that is subject to certification.

We exemplify this whole process by creating a conceptual
model and then profile of the IEC61508 standard. We present
the profile in Section IV and show how the domain model of
a sub-sea control system is elaborated with the application
of stereotypes from the IEC61508 profile in Section V.

IV. THE IEC61508 PROFILE
A. I[EC61508 Standard

The IEC61508 standard presents requirements
to facilitate the development of safety-related
electrical/electronic/programmable electronic systems

(E/E/PES). The goal of the standard is to ensure the
functional safety of safety-related E/E/PES systems.
Functional safety is a component of overall safety, for
example, the activation of an alarm in response to a fire
detection by a control system is a functional safety measure,
whereas the use of fire resistant walls to control the spread
of fire is not, whilst it is still a part of overall safety
measures. A function that a control system performs to
ensure that the system remains in a safe state is referred
to as a safety function. Each safety function specifies
which safety objective is to be achieved (safety function
requirement) and the level of integrity with which the safety
function is implemented (safety integrity level).

To achieve the required level of safety, the standard rec-
ommends the use of a safety lifecycle. The lifecycle should
contain certain activities such as a hazard analysis and risk
assessment to determine the hazards that can occur and the
risks that they pose. Together, these activities determine what
has to be done to avoid hazardous situations (derivation of
safety requirements) and the level to which safety has to be
provided (derivation of safety integrity levels). The derived
safety requirement are allocated to either certain functions of
a designated E/E/PE safety-related system, other technology
safety-related systems, or to external risk reduction facilities.
The IEC61508 standard is only concerned with the alloca-
tions made to the E/E/PE system. Once the requirements
have been allocated, the realization of the system begins
for both the hardware and software aspects of the E/E/PE
system. The activities concerned with the installation and
commissioning, operation and maintenance, and the final
overall safety validation of the system begin alongside the
realization of the system.

B. IEC61508 Conceptual Model

The conceptual model for the IEC61508 standard was
built in our previous work on IEC61508 [3]. As mentioned
in Section II, we use UML class diagrams to create the
conceptual model where concepts are represented as classes
and concept attributes as class attributes; relationships are
represented by associations. When an attribute assumes a
value from a predefined set of possible values, we use
enumerations. Finally, we use the package notation to make
groupings of concepts and thus better manage the complex-
1ty.

The conceptual model has a total of 10 packages, con-
taining abstractions for modelling the main concepts of
IEC61508. We briefly explain each package. For more
details, see [3]. The system cConcepts package describes

£ Process Concepts

s} i Concepts
1 Issue Concepts P!

Hentied b

[safetyIntegrityLevel

[iz value : Integer
1 Artifact Concepts o
— I pf Hsouree |
» 141 outpuf [
E Artifact lequres .
[state : ArtifactStat o -
Joutpyt fr
in
~lproduces . .
T - il S

Ja\ Ja\

E! AgentType

= Operator
= Supplier
= Integrator
= Certifier

Figure 2. Process Concepts Package of the IEC61508 Conceptual Model

the breakdown of the system and reflects both hardware
and software concepts; the Hazard Concepts package cap-
tures the abstraction for describing the hazards and risks
for the system and leads to the specification of safety
requirements; the Requirements Concepts package captures
the requirements for creating, operating, maintaining and
decommissioning control systems; the Process Concepts
package is for describing the development process for
creating the system; the Artifact Concepts package is
for describing the different types of artifacts created as
supporting evidence during the development of the system;
the Guidance package is for describing the other standards
and recommended practices that will be used to develop
the system, the Issue Concepts package is for describing
the defects or enhancements that may give rise to changes;
the Configuration Management Concepts package is for
describing the unique versions for all the components that
make up the system, the Justification Concepts pack-
age to capture the assumptions and rationale behind the
various decisions that are made during development; and
the Domain-Specific Concepts package for capturing the
enumerations for concept attributes in other packages (e.g.,
requirement type, artifact state).

As a small example, we show in Figure 2 part of the
conceptual model for specifying the process of development.
The main concept in this package is the concept of activity,
this is a unit of work which has specific artifacts as defined
inputs and outputs. An activity can be decomposed into
further activities and is performed within a larger unit of
work called a phase. A phase defines a means to manage
a related set of activities together and a number of phases
are used to manage the development of the entire system.
An activity may have one of more agents that perform it
and there are certain techniques that are utilized to carry
it out. The techniques selected for an activity are based on
the safety integrity level that needs to be achieved. Thus,
module testing alone may be sufficient for a low level
of safety integrity but at higher levels, testing along with
formal proofs may be required. The agents that carry out
the activity need to possess the competence that the activity
requires and may be either individuals or organizations. The
concepts related to the process are together used to show that
competent agents have created the system in an organized
manner. Details for the other packages can be found in [3].

C. IEC61508 Profile

The IEC61508 profile is a means of showing how a
system fulfills the requirements of the IEC61508 standard.
The stereotypes are based on the conceptual model of
the standard that was created in our earlier work [3] and
highlight how a particular aspect of the system fulfils the
IEC61508 standard.

The IEC61508 profile consists of the following:

o | stereotype that extends the metaclass Model, that
characterizes the base domain model as being certified
to the IEC61508 Standard..

o 4 stereotypes that extend the metaclass package, that is
used to organize the evidence at a high level.

o 54 stereotypes that extend the metaclass c1ass, that are
used to characterize the evidence elements.

o 53 stereotypes that extend the metaclass Association,
that are used to characterize the relationships between
the evidence elements.

o 6 stereotypes extend the metaclass Property, that are
used on role names of certain associations.

All stereotypes have documentation attached to them
that explains what the stereotype is meant for and OCL
constraints that perform two main functions: they ensure that
the stereotypes are used in the way intended, and provide
guidance to the user as to which stereotypes need to be
used in the first place, e.g., the stereotype activity has
constraints that ensure that elements with the stereotype
Agent also exist in order to show who is performing the
activity. In this way we create the web of evidence informa-
tion mentioned in Section II. We use OCL constraints for a
number of purposes:

1) To ensure that mandatory aspects of the standard are
accounted for.

2) To ensure the correct type of stereotypes at the two
ends of associations.

3) To ensure that elements with certain stereotypes are
connected to other specific elements.

4) To ensure that elements with certain stereotype have
specific properties - this helps when creating instances
of the model.

5) To help with the creation of user-defined enumerations
defined in the conceptual model.

As it would be difficult to show all stereotype of the
profile within the size constraints of this paper, in Figure
3 we show a fragment of the profile corresponding to the
process concepts package discussed earlier along with the
stereotypes applied at the model and package level. We also
use this fragment to show examples of the five types of
constraints mentioned above.

As we stated earlier, the IEC61508 profile is meant
to be applied to a domain model of the system to
be certified. The first stereotype to be applied is at
the model level: the 1EC61508Model stereotype, which

«stereotype»
[ActivityIncludes

«metaclass»

astereotyper
{2 Encompasses ‘

«stereotype»

[Z 1dentifiedBy i l
stereotype»

emetaclass»
reotype» [Z! outputFrom P—— | Property
[E] possesses Output
‘ estereotype>
slereotype ? £ utilizes stereotype»
ucceeds
otypes

sstereotype»
E2 precedes

reotype»
‘ InputTo

«metaclass»
Class

«stereotype>
[process
otype»
ystem

h estereotyper
[source

Q Package

type» «stereotype»
= 1ssue [E] TechniqueRecommendation

= H T [st H . |
Figure 3. IEC61508 Profile Fragment for the System Development Process

starts the incremental guidance process about which types
of evidence to create. This stereotype has attached to
it the OCL constraints that ensure that at a mini-
mum four specific packages exist in the model with the
stereotypes Process, System, SafetyManagementSystem and
HazardsAndRisks (constraints of type 1). As an example,
we show the constraint on this stereotype for ensuring that
the HazardsAndRisks stereotype exists on a UML package
in the model (for the sake of brevity we have omitted the
name and context of the constraints shown):
self.base_Model.allOwnedElements () -> exists (e |

e.oclIsTypeOf (uml::Package) and not e.getAppliedStereotype
("IEC61508Profile: :HazardsAndRisks’) .oclIsUndefined())

The keyword se1f refers to the element being constrained,
in this case the IEC61508Model stereotype. Properties and
attributes of an element are referenced using the dot notation.
The pase_Model reference is used to access the model to
which the stereotype has been applied, in this case the
domain model. The allownedElements is an operation that
returns all the elements in the model. Exists is an OCL op-
eration that will check that least one element in a collection
of elements satisfies the given constraint. The constraint in
the exists clause specifies that at least one element is of
type Package using the operation oc11sTypeof and that this
element also has the stereotype HazardsandRisks applied to
it (using the operation getAppliedStereotype).

The rationale behind requiring these packages comes from
the IEC61508 standard. The IEC61508 standard advocates
a risk-based approach for determining the required level
of safety measures for safety-relevant systems. Hence the
need for the Hazardsandrisks package. Risks can only be
determined based upon the hazards that will exist when the
system is used, thus it is important to have a breakdown of
the system, bearing in mind both the hardware and software
aspects of the system as well as the role of human users. This
breakdown will be kept in the system package. The standard
also put emphasis on having clearly specified technical

and management activities and a clear identification of all
responsible persons within the organization that perform
these activities. The management information is kept in
the safetyManagementSystem package whereas the technical
activities are specified within a safety life-cycle and kept in
the process package.

The standard does not require a specific kind of life-
cycle but does state which activities should be carried out
and which artifacts should be produced. Thus, we have the
stereotype Phase to model the life-cycle and the stereotype
Activity to model the activities. The pProcess package has
a constraint (type 1) on it that specifies that it should contain
in it elements with the stereotype of pPhase:

self.base_Package.allOwnedElements () —> exists(el:Element |
el.oclIsKindOf (uml::Class)and not (el.getAppliedStereotype (
"TEC61508Profile: :Phase’) .oclIsUndefined()))

The pnase stereotype has a constraint attached to it that
states that every phase must have at least one activity de-
fined for it (a type 3 constraint). This means that there must
be elements that have the stereotype Activity in the same
package and be attached to the element with the stereotype
Phase. This is done through two different constraints, one on
the class stereotype phase and the other on the association
stereotype performedIn (see Figure 2). On the stereotype
Phase, we have a constraint that states that there should
be an association with a stereotype PerformedIn originating
from the element that has this stereotype:

self.base_Class.ownedAttribute-> collect (c:Property |
c.association)-> select (a:Association |

not a.getAppliedStereotype (' IEC61508Profile:
.oclIsUndefined())—->size()>0

:PerformedIn’)

On the stereotype Performedin, there is the constraint
that states that this stereotype can only be applied to an
association that is between a pair of elements that have
the stereotypes Activity and Phase, respectively (a type
2 constraint):

self.base_Association.memberEnd-> select (p:Property not

(p.class.getAppliedStereotype (' IEC61508Profile: :Activity’)
.oclIsUndefined()))->size()=1
and

self.base_Association.memberEnd-> select (p:Property| not
(p.class.getAppliedStereotype (' IEC61508Profile: :Phase’)
.oclIsUndefined()))->size()=1

An activity can include sub activities or it can be linked
to another activity by either preceding or succeeding it,
all these relationships are modelled by the stereotypes
ActivityIncludes and ActivityLink, along with its proper-
ties Precedes and succeeds. Activities are to be performed
by competent agents using recommended techniques, that
are based upon the safety integrity level allocated to a
component. All these aspects are modelled using the stereo-
types Agent, Requires, Competence along with carriesout,
Possesses, Technique and TechniqueRecommendation. An
activity may require certain artifacts as input and upon
completion produce certain artifacts as outputs. The stereo-
types Artifact, InputTo, OutputFrom, Requires, Produces,

Input and output are used to model these concepts. Con-
straints on the stereotype Activity ensure that for every
activity, the agent that carried out the activity is defined as
well as the output from the activity. Constraints are also used
to create properties for the elements on which stereotypes
have been applied or for creating user-defined types, e.g., An
element with the artifact stereotype applied to it should
have a property called ’State’ of type ’ArtifactStateType’
which is a user defined enumeration (this constraint com-
bines both type 4 and 5 constraints):

self.base_Class.ownedAttribute-> one (p:Property|
p.name=’State’ and p.type.name=’ArtifactStateType’ and
p.type.oclIsTypeOf (uml: :Enumeration))

These types of constraints allow the user to define domain-
specific values for the enumeration, the profile only gives
the name and type of the property. An advantage of using
OCL constraints is that they can be automatically checked
using any OCL validation engine, thus providing a means
of efficiently checking large amounts of evidence in terms
of completeness and consistency. The stereotypes together
with the constraints defined on the stereotype guide the user
in creating an information model of the evidence necessary
for certification. This in turn will enable the systematic
collection and automated analysis of evidence. In the next
section, we show how the IEC61508 profile can be used
to manage the certification evidence for a sub-sea control
system in the petroleum industry.

V. CASE STUDY: APPLICATION OF THE IEC61508
PROFILE TO THE SUB-SEA CONTROL DOMAIN

To validate our approach, we have applied it for guiding
the construction of a domain model for sub-sea control
systems in compliance with IEC61508, and to partially
create the evidence for a specific variant of the system. Our
sub-sea domain concepts were defined in close consultation
with experts in a large maritime and energy company and
based on a reading of the relevant literature where the ar-
chitecture and the components of sub-sea systems (including
the control software operating on them) are described [7],
[8], [11], [18]. Due to space constraints, we are unable to
show the entire domain model or to go through all the
guidance steps provided by the profile. Instead, we will focus
in this section on a fragment of the domain model, shown
in Figure 4, and illustrate how our proposed approach is
applied in a concrete way over this fragment.

In a sub-sea system, the wellhead attaches to the sub-sea
oil or gas well and interfaces to the drilling and other pro-
duction equipment housed in what is known as a Christmas
Tree (CT). A CT in this context is an assembly of control
valves, pressure gauges, and chokes put on the top of a well
to control the flow of oil and gas once the well drilling
operation has been completed. The CT controls the flow of
oil or gas to the manifold which provides the connections
to direct the oil or gas away from the production system.

[| HydrocarbonLeakDetector]

PressureTransmitter Template
=]] [([Erempiate)] subseaRouterModule] ([= subseacontrounic]
1
1
supports 0.2 1 1
v PP 1 locatedOn
| Fieldinstrument = Manifold 1
=] subseaC 1
1
congectsT U1
N o0 0.4 Oy lochtedn | = Topside Processing Unit
oll [xmasTree 2 1
] TemperatureTransmitter 1 |2 subseaElectronicModule
fijedTo
1
([& pownholeTemperatureGauge][] WellHead | [[subseaPowerAndCommunicationUnit |~

1

Figure 4. A Domain Model Fragment of a Sub-Sea Control System

4 errors, 0 warnings, 0 others ‘
Description
4 © Errors (4 items)
@ Constraint IEC61 61508Model::C_HazardsAndRisksPack has been violated.
@ Constraint IEC61508Profile:IEC61508Model::C_ProcessPackageExists has been violated.
@ Constraint IEC61508Profile:IEC61508Model::C_SafetyManagementPackageExists has been violated. |
@ Constraint IEC61508Profile:IEC61508Model::C_SystemPackageExists has been violated.

Figure 5. Error Report Showing the Violated OCL Constraints of the
IEC61508Model Stereotype

All this equipment is anchored to the seabed via a structural
frame called the template. Mounted on the CT is the Sub-
sea Control Module (SCM) that receives commands from the
Sub-sea Control Unit (SCU) that is executing in the Topside
Processing Unit (TPU) located in the Sub-sea Power and
Communication Unit (SPCU). The SCM also sends signals
from the sub-sea instruments to the SCU. The signals are
sent from the SCM via the Sub-sea Router Module (SRM)
to a router in the SPCU that passes the signal to the TPU.
A more complete description of these components can be
found in [7], [8].

Once the initial domain model has been created, the
IEC61508Model stereotype is applied to the domain model
and the OCL constraints of this stereotype are validated.
Figure 5 shows the beginning of the guidance process
for creating the evidence. The first thing required is the
creation of four packages that have the stereotypes: process,
System, SafetyManagementSystem and HazardsAndRisks.
The packages themselves can be named using the supplier’s
own terminology, but the specified stereotypes need to be
applied. Once these stereotypes have been applied, the next
set of (failed) constraints will provide guidance on what
stereotypes to apply next.

Figure 6 shows that five constraints have failed once
the package stereotypes have been applied. Hazards have
not yet been identified in the HazardsAndRisks package;
phases have not yet been identified in the process package;
agents and their competence have not been identified in
the safetyManagementSystem package, and blocks have not
been identified in the system package. As an example, we
will show the application of the stereotypes that identify the
system components.

The SCU controls and monitors the sub-sea wells through
the operator station, so the stereotype SoftwareBlock is
applied to this element. The system being controlled is the
SCM that contains the Sub-sea Electronic Module (SEM)
that links to the different instruments. Thus, the stereotype

5 errors, 0 warnings, 0 others

Description

4 @ Errors (5 items)
@ Constraint IEC61508Profile::HazardsAndRisks:C_HazardDefined has been violated.
@ Constraint IEC61508Profile::Process::C_PhaseDefined has been violated.
@ Constraint IEC61508Profile:SafetyManagementSystem::AgentsDefined has been violated.
@ Constraint IEC61508Profile:SafetyManagementSystem::CompetenceDefined has been violated.
@ Constraint IEC61508Profile:System::BlockDefined has been violated.

i Figure 6. Error Report Showing the Violated OCL Constraints After
Application of the Package Stereotypes

«ProgrammableHardwareBlocks|
| subSeaRouterModule

«SoftwareBlock» []
| subseaControlunit

l controlledBy J
Progr i
£ subSeacontrolModule J «ProgrammableHardwareBlock-3|
] Topside Processing Unit

locatedIn

]

Progr eBlo Progr ki
[2] subseaElectronicModule [] subseaPowerAndCommunicationUnit

Figure 7. Fragment of the Domain Model After Application of the System
Stereotypes

ProgrammableElectronicSystem is applied to the SCU and
the stereotype ProgrammableHardwareBlock to the rest of
the elements. If we now validate the model then, we get
new constraints that are violated as the model is now missing
further information.

In Figure 7, all the elements have a cross in their
upper right-hand corner. These element have failed the OCL
constraint validation. For brevity, we show in Figure 8, the
errors generated for the SCU only; similar errors are also
generated for the other elements.

All system blocks need to have requirements allocated
to them. In this model, the allocated requirements have
not been added to the model, leading to the violation of
constraint regarding requirements. Blocks also need to have
unique identifiers, which have not been yet added to the
elements — in the petroleum industry, every components of
a system has a unique identifier called a tag. The standard
also recommends version control of the system components
- a version attribute has not yet been added to the elements
either, thus the violation of that constraint. If we add the
elements to satisfy these constraint violations, then we get
the model depicted in Figure 9. Two requirements at the
system level have been added to the model - SReql and
SReq2. They model two different kinds of requirements that
are common on sub-sea control systems: the shutdown of
parts of the system due to an emergency and the monitoring
of the status of certain instruments. All requirements are
kept in an artifact called the SystemSoftwareRequirements.

A user-defined enumerated type has also been added.
A constraint on the softwareBlock stereotype requires the
need to show the decomposition level of the software. The
constraint specifies the name of the attribute ("Level’) and

4 errors, 0 warnings, 0 others

Description Location
4 € Errors (4 items)
@ Constraint IEC61508Profile::Block::C_BlockHasRequirements has been violated.
@ Constraint IEC61508Profile::Block:C_BlockHasUID has been violated. SubseaControlUnit
@ Constraint IEC61508Profile::Controlleditem::C_VersionExists has been violated. SubseaControlUnit

@ Constraint IEC61508Profile:SoftwareBlock:C_SoftwareLevelDefined has been violated. SubseaControlUnit
Figure 8. Error Report Showing the Violated OCL Constraints for the
Subsea Control Unit

SubseaControlUnit

Regq\ 1tPertainsTo»

«Requirement»

«SoftwareBlock» «Requirement»
[SReqt

IsAllodatedT L
«IsAllog " subseaControlunit “IsAlocatedTo» H sRea2

53, ReqID : String
[Cg Detail : String

3, ReqID : String

g UID : String
[Detail : String

[Version : String
Requirement»

g Level : SoftwareLevel «Requirement»
Description = "Emergency

Description = "Monitoring Function"

«RequlrementPertamsT*»

«Specification» [
[E] systemsoftwareRequirements

«enumeration»
£ SoftwareLevel

= System

«ProgrammableHardwareBlock»3/
|=] subseaRouterModule
I

[] subSeaControlModule } [=] Topside Processing Unit
Qocatean
Progr) prog o @
= =| icationUnit

Figure 9. Fragment of the Domain Model After Application of the System
Stereotypes

=l FunctionModule
= LogicModule
= Driver

To» «SoftwareBlock» «Requirement»

-] subseaControlUnit <lsAllocatpdToa = SReq2
EgUD:string [_ — 3
g Version : string | 2 SoftwareBlock ~ () &~ - @

G Level: Softwa | 1 61 S08Profile:SoftwareBlock
A SoftwareBlock is any entity of software that may be used &
ffor controlling the system -- this may be embedded or
ipplication software or even different levels of software such
{2s module, component, subsystem, system.

m

controlledBy]
— A SoftwareBlock has an attribute called ‘Level of type

SoftwareLeve! - this is the different levels into which a
«ProgrammableHal . t\yare system can be decomposed, e.g. System,
&= Topside Prod i, jhsystem, component and module and can be created as an
lenumerated type. V.

Figure 10. Documentation for a Stereotype

the type ("Enumeration’). The actual literal values are set by
the user as relevant to their industry. In this case the literals
used are ’System’, ’FunctionModule’ , ’LogicModule’ and
"Driver’ - this is the breakdown that is most commonly used
in the sub-sea industry and hence the user is able to use
appropriate domain terminology. Attached to each stereotype
is documentation that can help the user to understand how
to use a particular stereotype, as shown in Figure 10.
Thus all stereotypes are documented in this way to aid the
user in elaborating the domain model with the necessary
stereotypes. The documentation is useful is giving general
guidance as the constraints alone would not be sufficient.
The creation of the profile and the models and the validation
of constraints can be performed using a UML modelling
tool, e.g., Rational Software Architect [19]. We used this
tool in our case study here.

As more stereotypes are added and the constraints are
evaluated, the web of evidence is created for a particular
product family. Once the elaboration of the domain model
is complete with all the generic information, the instance
for a particular system variant can be created. In Figure 11,
we show a small instance model conforming to the domain
model that we present in Figure 9. In this particular instance
there is one template and one manifold. The manifold has
two CT structures on it, each connected to a wellhead. There
are two SCMs, both controlled by a single SCU. The unique
Id given to the SCU is "T1823a’, the version of the software
for the SCU is 1.2 and this is the system level software
version. For hardware equipment, the version would store the
model number or serial number of the piece of equipment.
Three requirements are shown: RQ1.121 and RQ1.212 are
instances of SReql which is the requirement in the domain
model concerning emergency shutdown of the system. There

IQWHQWHQWHQWHQW]

[Qscm;mmmmm stm;smsmmm]

<{ £ titemplats |

] SCU: SubseaC
—{ Eg VID = T1823a

£]RQ1212: SReq1
3 Detail = Performed on ESD Node E02
[& ReaqlD = 1.212

] RQ1121: SReq1
5 ReqID = 1.121
55, Detail = Performed on ESD Node EOL.

[Eg Version = 1.2

«Requirement»
S I Level = System

«Requirement»

£ RQL1:SReq2 — l -
ABC_QilField Requirements :
—Requrements £ : |

ing Function” T

Descriti

Figure 11. Instance Model Created from the Elaborated Domain Model

are two instances in the actual system of this requirement to
deal with the shutdown of the two wells independently. A
further requirement, RQ1.1 is shown that would be for mon-
itoring the status of some piece of equipment - there would
be multiple instances of this requirement in the system to
monitor the various instruments. All requirements are kept
in the specific requirements artifact called theABC_OilField
Requirements. The UID, Version, Level, ReqID and Detail
attributes were added to the elements due to constraints on
the stereotypes, this allows specific values to be set for these
elements in the instance model. The stereotypes can have
attributes as well, as in the case of ’Description’ for the
Requirement stereotype. The value for this stereotype is set
in the domain model and does not change in the instance
model. The use of an elaborated domain model for the
certification evidence of a product family and the instance
model for the evidence for a particular variant allows a high
degree of reuse and helps to reduce the effort needed in
creating the evidence for each particular variant.

VI. RELATED WORK

There are two areas of related work that are important
to mention regarding our work: the creation of electronic
safety cases and the use of UML for the development of
safety-critical systems.

The need for constructing electronic safety cases has been
identified by [20] and [14] in order to manage the complexity
and large amounts of information that needs to be kept for a
safety case. Lewis [14] calls for an underlying information
model to manage the complex links that exist between the
various pieces of safety evidence. We propose an automated
methodology to do so, in the context of the IEC61508
standard. Our conceptual model provides the underlying
information model for the standard and our profile provides
a practical mechanism for using this information in order
to create the relevant artifacts for a safety case. Cockram
and Lockwood [20] present a hypertext linked approach
to linking all the pieces of information for a safety case
in the form of a proprietary tool. We on the other hand
use model-driven engineering technologies, and in particular
UML profiles, to aid with the creation of the safety case for
a particular standard. The profile can be exported and used
in any UML modelling tool. This allows one to keep a set of
inter-related information items which can be viewed directly

from the tool, or can be transformed into different views by
the use of reporting tools.

The use of model-based technologies is gaining pace
in industry. Especially, UML is increasingly used in the
development of safety-critical software. The Object Man-
agement Group (OMG) have standardized the UML Profile
for Modeling and Analysis of Real-time and Embedded
Systems (MARTE) [21] and the UML Profile for Modeling
QoS and Fault Tolerance Characteristics and Mechanisms
(QFTP) [22]. Both these profiles are used for modelling
the real-time and performance properties of safety-critical
systems. Similary, Berkenkotter [23] and Hannemann [24]
have created a profile for the railway domain that aids
the design and verification of interlocking functionality.
However, neither of these are meant to characterise the
evidence requirements of a standard to which safety-critical
systems are certified.

A profile that deals with certain aspect of certification
is proposed by Zoughbi et. al. [25]. Their profile enables
the direct addition of certification information to software
models, for compliance with the RTCA DO-178B standard
[26] used in commercial and military aerospace software.
However, this profile is targeted at maintaining traceability
between requirements, design and code, which is a part of
the requirements of the RTCA DO178B standard. The profile
that we propose deals with a different standard, IEC61508,
and takes into account not only evidence regarding require-
ments and design but also with the wide range of concepts
related to the management of the development process in
safety-critical systems.

Huhn and Hungar [27] discuss the proliferation of UML
in the model-based development of safety-critical software
and mention the profiles discussed above. They propose a
development process where models form an integral part of
the development of a safety-critical system. However, they
do concede that the use of models for the certification aspect
has not been adequately addressed. Our profile is a starting
point for addressing this gap.

Recently, the OMG has put forward a new proposal, called
the Software Assurance Evidence Metamodel (SAEM) [28],
for managing safety assurance evidence. The SAEM is a
standard-independent metamodel and directed towards link-
ing the certification evidence to safety claims and the evalu-
ation of these claims subject to the evidence. The methodol-
ogy that we propose uses a UML profile for characterizing
the evidence of a specific standard. To perform the same
task, the SAEM model will still require a definition of the
specific evidence needed by a particular standard (perhaps
based on a conceptual model was we have proposed). On the
other hand, a profile of the SAEM could be incorporated into
our methodology and cover both the evidence requirements
for compliance to IEC61508, as well as the evaluation of
the evidence to ensure that it is sufficient to substantiate the
safety claims. Together this could be a means to further the

field of model-based certification.

Finally, we have used UML profiles of safety related
standards in prior work [4], where we ensure that a generic
standard can be specialized for a particular domain in a
systematic manner. In contrast to this current paper, profiles
were used in [4] as a way to keep track of the relationships
between a generic standard and a sector-specific one.

VII. CONCLUSION AND FUTURE WORK

In this paper we showed how to use model-driven en-
gineering principles and technology to specify and analyze
safety evidence in order to show conformance to a safety
standard. We start by establishing a sound relationship
between a domain model of a safety-critical application and
the evidence model of a certification standard. We do this
by capturing the relevant standard as a conceptual model
using a UML class diagram and using this as a basis for
creating a UML profile. The profile is augmented with
constraints to aid system suppliers in systematically relating
the concepts in the standard to the concepts in the application
domain. The profile is then applied to a domain model of a
safety-critical application aiding system suppliers in clearly
demonstrating how the development artifacts of their system
fulfill the compliance requirements of a standard. Constraints
can be automatically checked to ensure full compliance. We
illustrate our approach by presenting an excerpt of a case
study that we are conducting to show how the concepts in
the domain of sub-sea control systems can be related to the
evidence requirements in the IEC61508 standard.

In future work we plan to complete the case study and as-
sess the cost-effectiveness of our methodology in the context
of certification. This would mean, creating a full instantiation
of a system with all the certification information included.
This would allow us to compare our methodology with
the current industry practice of preparing for certification.
We intend to check how complete our set of certification
information is - how many details do we include when
using our methodology that are missed with current practice
and how efficient is our methodology in collating all the
required information compared with current practice. We
also plan to extend our methodology so that we can express
how a repository of evidence information can address the
certification of a system to multiple inter-related standards.
Finally, we would like to extend our work to include the
evaluation of evidence as proposed by the SAEM.

REFERENCES

[1] T. P. Kelly, “Arguing safety — a systematic approach to
managing safety cases,” 1998.

[2] International Electrotechnical Commission, ‘“Functional
safety of electrical / electronic / programmable electronic
safety-related systems (IEC 61508),” 2005.

R. K. Panesar-Walawege, M. Sabetzadeh, L. Briand, and
T. Coq, “Characterizing the chain of evidence for software
safety cases: A conceptual model based on the IEC 61508
standard,” in /CST, 2010, to appear.

(3]

10

(4]

[3]
[6]
(71

(8]
(9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]
(20]

(21]

[22]

(23]

[24]

(25]

(26]

[27]

(28]

R. K. Panesar-Walawege, M. Sabetzadeh, and L. Briand, “Us-
ing uml proles for sector-specic tailoring of safety evidence
information,” Simula Research Laboratory, http://simula.no/
publications/Simula.simula.600, Tech. Rep. 2011-10, 2011.
“UML 2.0 Superstructure Specification,” August 2005.
“OMG Object Constraint Language.”

ISO, “Petroleum and natural gas industries - design and
operation of subsea production systems (ISO 13628),” 2005.
Y. Bai and Q. Bai, Subsea Engineering Handbook. Elsevier,
2010.

IEC, “Functional safety - safety instrumented systems for the
process industry sector (IEC 61511).” 2003.

EN, “Railway Applications Safety-related electronic railway
control and protection systems.” 1999.

Norwegian Technology Centre, “Safety and automation sys-
tem (SAS),” 2001.

UK Ministry of Defence, “Defence standard 00-55, require-
ments of safety related software in defence equipment (DS
00-55).” 1997.

D. Jackson, M. Thomas, and L. Millett, Software for Depend-
able Systems: Sufficient Evidence? National Academy Press,
2007.

R. Lewis, “Safety case development as an information mod-
elling problem,” in Safety-Critical Systems: Problems, Pro-
cess and Practice. Springer, 2009, pp. 183-193.

P. Bishop and R. Bloomfield, “A methodology for safety
case development,” in Safety-Critical Systems Symposium.
Springer, 1998.

K. Pohl, G. Bockle, and F. van der Linden, Software product
line engineering - foundations, principles, and techniques.
Springer, 2005.

C. Larman, Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Develop-
ment (3rd Edition). Prentice Hall, Oct. 2004.

Norwegian Oil Industry Association, “Application of
IEC61508 and IEC61511 in the Norwegian Petroleum Indus-
try,” 2004.

“IBM Rational Software Architect,” http://www.ibm.com/
developerworks/rational/products/rsa/.

T. Cockram and B. Lockwood, “Electronic safety cases:
Challenges and opportunities.”

OMG, “UML profile for modeling and
of real-time and embedded systems
http://www.omg.org/spec/MARTE/1.0/, 2009.
——, “UML profile for modeling quality of service and
fault tolerance characteristics and mechanisms specification,”
http://www.omg.org/spec/QFTP/1.1/, 2008.

K. Berkenkotter, “Ocl-based validation of a railway domain
profile,” in MoDELS Workshops, 2006, pp. 159-168.

K. Berkenkotter and U. Hannemann, “Modeling the railway
control domain rigorously with a uml 2.0 profile,” in SAFE-
COMP, 2006, pp. 398-411.

G. Zoughbi, L. Briand, and Y. Labiche, “Modeling safety
and airworthiness (RTCA DO-178B) information: conceptual
model and uml profile,” Software and Systems Modeling, pp.
1-31, 2010.

“DO-178B: Software considerations in airborne systems and
equipment certification,” Radio Technical Commission for
Aeronautics (RTCA), 1982.

M. Huhn and H. Hungar, “8 uml for software safety and
certification,” in Model-Based Engineering of Embedded
Real-Time Systems, ser. Lecture Notes in Computer Science,
H. Giese, G. Karsai, E. Lee, B. Rumpe, and B. Schtz, Eds.
Springer Berlin / Heidelberg, 2011, vol. 6100, pp. 201-237.
OMBG, “Software Assurance Evidence Metamodel (SAEM),”
http://www.omg.org/spec/SAEM/, 2010.

analysis
(marte),”

