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Abstract—In this retrospective we will briefly review the pa-
per “Generating Robust Parsers using Island Grammars” that
was published ten years ago at WCRE. The work addressed
a common challenge in source model extraction and proposed
the use of island grammars to generate robust parsers that
combine the detail and accuracy of syntactical analysis with
the flexibility and development speed of lexical approaches.

In addition to reviewing the WCRE 2001 work, we will
discuss subsequent developments in this area by looking at a
selection of papers that were published in its wake. We conclude
with a discussion of the lessons learned and an overview of
opportunities for further research in this field.
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SUMMARY

The automated extraction of information from system arti-
facts, know as source model extraction or fact extraction,
is a common phase in reverse engineering tools. One of
the major challenges is developing extractors that can deal
with the various artifact irregularities that are typical for this
domain, such as: (1) syntactical errors in the code (e.g. when
building a software maintenance tool); (2) incompleteness,
when (small) parts of the system are lost or mutilated, pre-
venting a full analysis (e.g. missing header file); (3) dialects:
various languages (e.g. COBOL, C) have slightly different,
vendor-specific dialects and a parser for one may not accept
code written in another; (4) embedded languages, used to
“upgrade” legacy languages with features such as database
access, transaction handling, and UI definition (e.g. SQL,
CICS, IDMS); (5) grammar availability, e.g. artifacts in a pro-
prietary language for which a grammar was never disclosed,
or in a language for which the processor was hand-written;
(6) customer-specific programming idioms e.g., assigning
return values to special variables to indirectly interface with
other systems, or to bypass limitations of a compiler or
runtime system; (7) preprocessing: parsers typically build
source models that reflect preprocessed code whereas a
maintainer’s mental model is based on unpreprocessed code;
it can be very hard to map these models onto another,
especially in the presence of conditional compilation.

Traditionally, parser-based approaches are considered too
brittle and inflexible to deal with these irregularities. An
additional challenge are the high costs involved with crafting
a new grammar or parser. Lexical approaches avoid the

brittleness through default behavior that ignores unspecified
constructs and are relative cheap to construct. However,
lexical analysis is generally more error-prone and lacks ex-
pressive power making it hard to specify complex extractors.

Our WCRE 2001 paper proposed a solution in the form of
island grammars: grammars that consist of a number of de-
tailed productions (rules) describing the language constructs
of interest (the islands), and a set of liberal productions
that catch the remainder (the water). By generating parsers
from island grammars, we combine the detailed specification
possibilities of grammars with the liberal behavior of lexical
approaches. The 2001 paper showed how island grammars
can be used to generate robust parsers that join the accu-
racy of syntactical analysis with the speed, flexibility and
tolerance usually only found in lexical analysis.

The island grammar metaphor has shown to create a
compelling image and various researchers have adopted and
extended the concepts in their work. Examples include the
injection of robustness in grammars by allowing “water” at
certain points in a grammar, the addition of error recov-
ery to parsing, and achieving robust multilingual parsing:
simultaneously deriving information from the various parts
of mixed-language artifacts. Island grammars have, amongst
others, been applied for lightweight impact analysis, archi-
tecture reconstruction, software repository mining, example-
driven model reconstruction, and in clone detection.

The retrospective will discuss these developments in more
detail and will conclude with a discussion of lessons learned
and an overview of opportunities for further research.

Acknowledgment: The research described in the WCRE 2001
paper was conducted at Centrum voor Wiskunde en Informatica
(CWI), the Netherlands. The author would like to thank Paul Klint,
Arie van Deursen, Jan Heering, Mark van den Brand, Jurgen Vinju,
Tobias Kuipers, Merijn de Jonge and Joost Visser for fruitful
discussions on the definition, application and merits of island
grammars.

About the author: Leon Moonen is a senior research scientist
at Simula Research Laboratory in Norway. His research is aimed
at developing better techniques and tools for the exploration,
assessment and evolution of large industrial software systems.
His research interests include program comprehension, reverse
engineering, program analysis, software visualization and empirical
software engineering. Current topics include the reconstruction
and visualization of higher level abstractions (models) from the
development artifacts of existing software systems, and the use of
these models in software inspection and certification.



Generating Robust Parsers using Island Grammars*

Leon Moonen

CWI, P.O. Box 94079
1090 GB Amsterdam, The Netherlands

http://www.cwi.nl/ � leon/
leon@cwi.nl

Abstract

Source model extraction—the automated extraction of infor-
mation from system artifacts—is a common phase in reverse
engineering tools. One of the major challenges of this phase is
creating extractors that can deal with irregularities in the ar-
tifacts that are typical for the reverse engineering domain (for
example, syntactic errors, incomplete source code, language
dialects and embedded languages).

This paper proposes a solution in the form of island gram-
mars, a special kind of grammars that combine the detailed
specification possibilities of grammars with the liberal behav-
ior of lexical approaches. We show how island grammars can
be used to generate robust parsers that combine the accuracy
of syntactical analysis with the speed, flexibility and tolerance
usually only found in lexical analysis. We conclude with a
discussion of the development of MANGROVE, a generator
for source model extractors based on island grammars and
describe its application to a number of case studies.

Keywords and phrases: Island grammars, parser generation,
source model extraction, partial parsing, fuzzy parsing, re-
verse engineering, program analysis.

1. Introduction

Software engineers spend a large amount of their time on un-
derstanding the system that is being maintained (estimates of
up to 50% are not uncommon). Consequently, much research
is being invested in the development of tools that assist with
such program understanding and program maintenance activ-
ities. The majority of these tools consist of three phases: (1)
extraction of information (often referred to as source models)
from the system’s artifacts, (2) manipulation, querying and
abstraction of source models, and (3) presentation of the re-
sults. This paper focuses on the first phase: extracting source
models from system artifacts.

One of the challenges reverse engineering tools have to
cope with is parsing the artifacts during the extraction phase.
These artifacts typically contain irregularities that make it
hard (or even impossible) to parse the code using common

parser based approaches. Our goal is to obtain robust parsers
that can handle artifacts with such irregularities. Examples of
the kind of irregularities we want to deal with include:
Syntax errors: In a program maintenance environment, we
want to be able to deal with systems containing syntax errors
(e.g., browse or query code to fix those errors). Most parser
based techniques will fail when encountering syntactic errors.
Completeness: The source code of a system may be incom-
plete. A typical situation is that some of the header files (or
copybooks) of a system are lost or mutilated over the years,
making a full reconstruction impossible.
Dialects: A legacy language like COBOL (but also a lan-
guage like C) has a large number of, slightly different, vendor-
specific dialects. Ideally, we can support them all. However, a
parser for one dialect may not accept code written in another.
Embedded languages: Several programming languages have
been upgraded with embedded languages for database access,
transaction handling, screen definition, etc. COBOL examples
include SQL, CICS, and IDMS. Whether we choose to ana-
lyze or to ignore such extensions, the extraction should not be
hampered by them. However, a standard parser will.
Grammar availability: When supporting legacy systems, we
will come across languages for which there is no grammar
available. These can be proprietary languages, for which a
grammar was never disclosed, or languages for which there
never was a grammar since the parser (or processor) was hand-
written. Reviving such grammars from scratch is expensive,
and may not pay back at all.
Customer-specific idioms. Systems can use specific idioms
(e.g., assigning values to “special” variables) in combination
with libraries to interface with other systems, or to bypass lim-
itations in a compiler or runtime system. Standard parsers will
not recognize such customer-specific idioms and are generally
not flexible enough to be made aware of them. An example re-
garding COBOL CALL analysis is shown in Section 2.1.
Preprocessing: Conceptual problems can arise with analysis
of code that uses a preprocessor: Parsers usually read prepro-
cessed code so the resulting models are based on preprocessed
code. However, a maintainer’s mental model is based on un-
preprocessed code. It can be very hard to map these models
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onto another, especially when conditional compilation is used.
People have tried to bypass these problems by reusing

an existing parser via a common exchange format (e.g.,
GXL [18]), or via interface generation (for example, GENII

[14]). Although these are good solutions from an engineering
perspective (you may not have to write a parser yourself) they
do not solve the problems described above.

Others have proposed to use lexical analysis techniques to
remedy these problems [28, 11]. Lexical analysis provides a
flexible and robust solution that can handle incomplete and
syntactically incorrect code at the cost of losing some accu-
racy and completeness.

An additional advantage of lexical analysis is that it often
takes less time to develop a solution based on lexical analysis
than on syntactical analysis. It is tedious and expensive to
write a parser for a language or to write a grammar that can be
used to generate such a parser. For example, van den Brand
et al. report a period of four months for the development of a
fairly complete COBOL grammar [8].

This paper proposes another solution to remedy these prob-
lems: we describe the use of island grammars to generate ro-
bust parsers that are used to build source model extractors.
Island grammars are grammars that contain detailed produc-
tions (rules) describing the language constructs of interest,
and generic productions that capture the remainder. Island
grammars have been briefly sketched before in [12, 13]. In
this paper, we present a more detailed account.

By generating parsers from island grammars, we combine
the accuracy of syntactical analysis with the speed, flexibility
and robustness of lexical analysis. The remainder of this pa-
per presents island grammars and their use in MANGROVE, a
generator for source model extractors based on island gram-
mars. We propose a reusable framework for defining island
grammars and describe how the mapping from parse results to
source models can be specified using patterns in a term rewrit-
ing language and in JAVA. We conclude with the application
of MANGROVE in a number of case studies and a discussion
of related work.

2. Island Grammars

Parsers for reverse engineering tools have a number of re-
quirements: The parser should recognize certain constructs of
interest in a given language. Additionally, the parser should
be robust: it should not be obstructed by irregularities in the
input. In this paper, we study how such parsers can be gener-
ated from (context-free) grammar definitions.

Recall from compiler class that, given a language L0, we
can give a description of L0 by defining a context-free gram-
mar G such that the language L

�
G � generated by G satisfies

L
�
G ��� L0.1 In order to satisfy the requirements stated above,

we need to describe L0 using a grammar that on the one hand
generates more sentences than available in the actual language

L0 (namely also sentences with irregularities) but on the other
hand should give an exact specification of the interesting parts
of that language. This is what an island grammar amounts to:

Definition 2.1 An island grammar is a grammar that consists
of detailed productions describing certain constructs of inter-
est (the islands) and liberal productions that catch the remain-
der (the water).

or expressed in terms of language properties:

Definition 2.2 Given a language L0, a context free grammar
G � �

V � Σ � P� S � such that L
�
G ��� L0 and a set of constructs of

interest I � Σ � such that � i 	 I : 
 s1 � s2 	 Σ � : s1 i s2 	 L
�
G � .

An island grammar GI � �
VI � ΣI � PI � SI � for L0 has the follow-

ing properties:

1. L
�
G ��� L

�
GI � GI generates an extension of L

�
G � .

2. � i 	 I : 
 v 	 VI : v �� i

 s3 � s4 	 Σ � : s3 i s4 	 L

�
G ��� s3 i s4 	 L

�
GI �

GI can recognize constructs of interest from I in
at least one sentence that is not recognized by G.

3. K
�
G ��� K

�
GI � G has higher complexity than GI .2

Note that island grammars do not require the use of a par-
ticular grammar specification formalism or parsing technique.
However, the limitations of the chosen formalism and tech-
nique may influence the island grammar. In this paper, we
express island grammars in SDF, a syntax definition formal-
ism that is supported by generalized LR parsing [17, 38]. We
benefit from the expressive power of this combo which makes
development of island grammars easier. Other formalisms
and parsing techniques can, and have been used. For exam-
ple, JAVACC (the Java parser generator by MetaMata/Sun Mi-
crosystems) has been used for an island grammar developed
together with our industrial partner, the Software Improve-
ment Group, as part of their documentation generator DOC-
GEN [12, 13]. The requirements originating from the LL pars-
ing technique used in JAVACC made development and exten-
sion of this grammar unwieldy. The tooling described in the
next section enables us to reimplement this grammar based on
SDF and generalized LR parsing.

2.1. Island Grammar Example

Figures 1 and 2 show an example island grammar that de-
scribes COBOL CALL statements. The specification uses the

1 In short: if G ��� V � Σ � P� S � is a context-free grammar with sets of non-
terminals V , terminals Σ and productions P ��� V � Σ ����� V , a start symbol

S � V , and V � Σ � /0, then a string s � Σ � is a sentence of G, iff S �� s
(s can be derived from S by repeatedly applying productions from P). The
language generated by G contains all sentences L � G � �"! s # s � Σ � $ S �� s % .
We refer to [35, pp. 43–64] for more information.

2 The complexity of a context free language K � G � can be computed by
analyzing the productions of G. See [16] for a detailed discussion.



module Layout (1)
lexical syntax (2)

[
� �

t
�
n] � LAYOUT (3)

module Water (4)
imports Layout (5)
context free syntax (6)

Chunk* � Input (7)
Water � Chunk (8)

lexical syntax (9)� [
� �

t
�
n]+ � Water � avoid � (10)

Figure 1. Base for island grammars.

modular syntax definition formalism SDF. Note that produc-
tions in SDF are reversed with respect to BNF: on the right-
hand side of the arrow is the non-terminal that can be pro-
duced by the symbols on the left-hand side. Section 3.1 gives
a short introduction to SDF.

The grammar contains three modules: The module Lay-
out specifies the lexical non-terminal symbol LAYOUT con-
taining whitespace characters. This symbol has special mean-
ing in our parsers since it can be recognized between any two
symbols in a context-free production.

The module Water uses the definitions from module Layout
(line 5) and adds two context-free non-terminals: the symbol
Input that can be produced from a list of zero or more Chunks
(line 7) and the symbol Chunk that can be produced from Wa-
ter (line 8). Later, we will add more productions for Chunk,
thus providing alternatives that can be recognized instead of
Water. The lexical non-terminal Water consists of a list of one
or more characters that are not whitespace (line 10). The at-
tribute “ � avoid � ” prevents the parser from using this produc-
tion if others are applicable. This allows us to specify default
behavior that can be overridden by other productions (without
generating ambiguities).

The grammar specified by module Water is extremely ro-
bust: it describes almost all programming languages. It is,
however, not very useful by itself since the terminal symbols
in a parsed sentence are indistinguishable. We can turn this
into a useful grammar by adding islands that specify con-
structs of interest: The module Call adds such an island by
specifying that a Chunk can also be produced by the literal
CALL followed by an identifier (line 4). Identifiers are charac-
ters followed by zero or more characters or digits (line 7).

This very simple grammar allows us to generate a parser

module Call (1)
imports Water (2)
context free syntax (3)

”CALL” Id � Chunk � cons(Call) � (4)
lexical syntax (6)

[A-Z][A-Z0-9]* � Id (7)

Figure 2. COBOL program calls.

module CallHandler (1)
imports Call (2)
context free syntax (3)

”MOVE” Id ”TO” ”CALLEE” � Chunk � cons(Call) � (4)
”CALL” ”HANDLER” � Chunk � reject � (5)

Figure 3. Dealing with a call-handler.

that searches for program calls in COBOL code. Although this
may not be a spectacular example (something similar could
be done, for example, using a tool like grep), we will show
below how easy it is to extend this grammar to do a much
more complicated analysis. Furthermore, the modularity of
SDF allows us to reuse the base grammar developed here for
other island grammars.

Remember the customer specific idioms described in Sec-
tion 1? We found a good example of that situation when an-
alyzing a COBOL system were program calls were not made
using the CALL statement but by setting a global variable and
then calling a generic call-handler. This call-handler enabled
the run-time system to dynamically load and execute the de-
sired program (instead of static linking supported by the com-
piler). A standard call-graph extractor will not be able to gen-
erate useful graphs for such a system.

We can add support for that situation using the grammar in
Figure 3. Suppose the name of the call-handler is HANDLER
and the name of the global variable is CALLEE. We specify
an assignment to CALLEE as if it is a program call (line 4).
Furthermore, we prevent the parser from recognizing calls to
HANDLER using the “ � reject � ” attribute (line 5).

The “ � cons(Call) � ” attributes in Figures 2 and 3 are used to
explicitly specify the constructor function that has to be used
to create an abstract syntax tree. Using this attribute we can
map different concrete syntax productions to the same abstract
syntax. This will make processing easier.

Note the source for potential errors here: (1) when there
are two subsequent assignments to CALLEE before the call-
handler is called, both will be recognized as calls; (2) when
the value in CALLEE is computed instead of assigned, it will
not be recognized. These problems can be remediated in a
back-end that does a more detailed (data flow) analysis. In
practice, however, we found that such call-handlers were used
in a disciplined manner following strict coding conventions,
so these situations did not occur.

2.2. Island Grammar Applications

The employment of island grammars is especially suitable
for reverse engineering (as opposed to, for example, com-
piler construction) since it takes maximum advantage of the
fact that such applications generally do not need the complete
parse tree. Particularly analyzers that try to arrive at higher
levels of abstraction (for example, architecture extraction) can
profit from this early elimination of detail in the parsing phase.



Systems in this category are A* [23] that provide traversals
over parse trees with AWK-like pattern matching and process-
ing, TAWK [15] that provides similar operations on abstract
syntax trees with processing in C.

Other tools support querying of the abstract syntax trees
such as GENOA [14] that uses its own traversal language, RE-
FINE [26] that allows queries in first order logic and SCRU-
PLE [29] that allows queries using concrete syntax.

The disadvantage of these systems is that they are all
based on a full parse of the complete language making it
hard/impossible to deal with incomplete sources, dialects or
syntax errors. However, with the proper amount of interfac-
ing, it should be possible to connect them to the island parsers
we generate which would remove such problems.
Fuzzy parsing The notion of fuzzy parsing comes in two
flavors. The first flavor are parsers that recognize a sentence
as belonging to a language with a certain degree of correct-
ness (thus allowing for grammatical errors) [24]. This type of
fuzzy parsers is mainly used in computational linguistics for
natural language processing. Productions in a fuzzy grammar
are annotated with correctness degrees that are used to assess
the quality of the input sentence. This can be used to model
grammatical errors by adding special productions with a cor-
rectness degree less than 1 to an ordinary grammar. For more
information, we refer to [3].

The second flavor of fuzzy parsers are parsers that are able
to discard tokens and recognize only certain parts of a pro-
gramming language [21]. The SNIFF programming environ-
ment was the first to use this kind of fuzzy parsing [5]. Since
then, it has been used in a number of other programming envi-
ronments and program browsers such as: CSCOPE3, SOURCE

NAVIGATOR4, SOURCE EXPLORER5, and the CRTAGS6 tool.
These fuzzy parsers are hand crafted to perform a specific
task. They focus mainly on fuzzy parsing C and C++ to sup-
port program browsing. Typically this involves extracting in-
formation regarding references to a symbol, global definitions,
functions calls, file includes, etc.
Parser Reuse Some approaches address the problems as-
sociated with parser or grammar development by reusing ex-
isting parsers (for example, in GENOA/GENII [14]). Others
reuse or retrieve grammars that are used in existing tools [33].
However, both approaches ignore the fact that the structure of
a grammar used in a tool is often tightly coupled to the design
of that tool. Another tool may need a completely different
grammar. Such parser reuse problems were also signaled by
Reubenstein et al. [32]. Furthermore, this does not solve the
robustness issues (dealing with missing code, embedded ex-
tensions or syntactical errors).
Island Parsing The term island parsing is also used in com-
putational linguistics (for example [9, 34]). However, this is

3 http://cscope.sourceforge.net/
4 http://sources.redhat.com/sourcenav/
5 http://www.intland.com/
6 http://www.vital.com/crtags.html

different notion referring to island parsers that start at some
point in a sentence (by recognizing an island) and parse the
complete sentence by extending that island to the left and
right (in contrast to left-to-right scanning done by LL and LR
parsers). This technique is used for example for speech recog-
nition. A similar approach has been applied by Rekers and
Koorn for computer languages to provide error recovery and
completion in syntax directed editors [31].

Island Grammars The term island grammars was coined
in [12] which provides an informal definition and small exam-
ple but does not present a detailed discussion, nor does it de-
scribe tool support. We try to fill those gaps by improving the
definition, describing properties of island grammars and pro-
viding a number of detailed examples that result in a reusable
framework for island grammar definitions. Furthermore, we
present a generator for source model extractors based on is-
land grammars that supports various programming languages
and show how it can be used in a number of case studies. A
case study for COBOL island grammars is described in [37].

7. Conclusions

Robust parsing is a prerequisite for most reverse engineering
tools. This paper shows that island grammars can be used
to generate such parsers. The generated parsers combine the
accuracy of syntactical analysis with the speed, flexibility and
tolerance usually only found in lexical analysis.

Contributions of this paper are the extension of previous
work on island grammars [12, 13] with a detailed discussion
and definition of island grammars. We present MANGROVE,
a generator for source model extractors based on island gram-
mars. We provide a reusable framework for the definition
of island grammars in syntax definition formalism SDF and
support various processing languages allowing a developer to
pick the language that fits his needs. We have shown how
MANGROVE supports JAVA and ASF programmers by provid-
ing generated traversals that ease the mapping from parse re-
sults to source models. We report on the application of MAN-
GROVE to a number of case studies and provide a detailed
discussion of related work.

The combination of island grammars with generated traver-
sals combines two forms of attractive default behavior: (i)
island grammars allow us to limit ourselves that part of the
grammar necessary to describe the problem at hand, and (ii)
generated traversals allow us to treat only those cases for
which we need specific behavior. Consequently, extractor
specifications are small and easy to write, modify and com-
bine resulting in a lightweight, flexible and tolerant approach.

Acknowledgments The author would like to thank Mark
van den Brand, Tobias Kuipers, and Joost Visser for fruitful
discussions. Arie van Deursen, Jan Heering and Paul Klint
provided valuable feedback on earlier versions of this paper.
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Figure 5. MANGROVE instantiation that allows processing in JAVA.

In contrast to most lexical approaches, our approach sep-
arates parsing and analysis instead of attaching semantic ac-
tions to the constructs to be recognized. This has the advan-
tage that the resulting analyzers are easier to adapt and that it
is easier to combine two existing analyzers into a new one.
Most lexical analyzers are hard to adapt since the analysis
logic is entangled with the constructs that have to be recog-
nized. Combining two of these analyzers into a single new
one is even more tricky.

The two inputs are generally small and easy to write down;
therefore, we feel that our approach satisfies the lightweight
requirement. The flexibility and robustness requirements are
satisfied by using island grammars to generate the parser.

The extractor generator in Figure 4 is drawn with a dotted
line to indicate that there are several possible instantiations.
These allow the user to choose the language in which he de-
scribes the mapping of constructs on the source model. We
have made two instantiations of this tool that are described be-
low. One allows the user to write the mapping using traversals
over the AST in Java, the other using concrete syntax patterns
in a simple functional specification.

3.1. Syntax Definition in SDF

MANGROVE reads island grammars that are written in the
syntax definition formalism SDF [17, 38]. These definitions
combine the definition of lexical and context-free syntax in
the same formalism. The definitions are purely declarative
(as opposed to, for example, definitions in YACC that can use
semantic actions to influence parsing) and describe both con-
crete and abstract syntax.

SDF definitions can be modular: productions for the same
non-terminal can be distributed over different modules and a
given module can reuse productions by importing the modules
that define them. This allows for the definition of a base or
kernel grammar that is extended by definitions in other mod-
ules. An example of this is module Water defined in Figure 1
that is extended by module Call in Figure 2.

SDF provides a number of operators to define optional
symbols (S?), alternatives (S1

�
S2), iteration of symbols (S �

and S � ), and more. These operators can be arbitrarily nested
to describe more complex symbols. Furthermore, SDF pro-
vides a number of disambiguation constructs such as relative
priorities between productions, preference attributes to indi-

cate that a production should be preferred of avoided when
alternatives exist, and associativity attributes for binary pro-
ductions (for example, S op S � S � left � ).

SDF is supported by a parser generator that generates gen-
eralized LR (GLR) parsers. Generalized parsing allows defi-
nition of the complete class of context-free grammars instead
of restricting it to a non-ambiguous subclass of the context-
free grammars, such as the LL(k), LR(k) or LALR(1) class
restrictions common to most other parser generators [36, 30].
This allows for a more natural definition of the intended syn-
tax because a grammar developer no longer needs to encode
it in a restricted subclass. Moreover, since the full class of
context-free grammars is closed under composition (the com-
bination of two CF grammars is again a CF grammar), gener-
alized parsing allows for better modularity and syntax reuse.
For more information on SDF, we refer to [17, 38].

3.2. MANGROVE/JAVA

MANGROVE/JAVA allows the extractor builder to process the
results of the island parser using the object-oriented program-
ming language JAVA. An overview of the tool is given in
Figure 5. Apart from the obvious advantage of being able
to process using a mainstream object-oriented programming
language, this also allows the tool builder to reuse the large
amount of tools, libraries and interoperability techniques that
are available for JAVA.

From an island grammar in SDF, we generate JAVA code
for the construction, representation, and manipulation of syn-
tax trees in an object-oriented style. The generated classes re-
late to the abstract syntax of the grammar using the following
scheme: (i) for every non-terminal, an abstract class is gener-
ated and (ii) for every production, a concrete class is generated
that refines the abstract class corresponding to the result of the
production. Factory methods are generated to convert a parsed
input string into an abstract syntax tree (object structure). Fur-
thermore, several variants on the Visitor pattern are generated
that provide tree traversals over these ASTs. We have reused
JJFORESTER for the generation of this JAVA code [22].

The generated code can be extended by a tool builder to
perform the actual mapping between the AST and the desired
source model. This is done by refining the generated visitors
and feeding them to the generated accept method of a given
AST node. These accept methods perform the actual traver-
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sal over the AST and call visit methods defined in the visitor.
This approach has the advantage that the user does not have to
reconstruct the traversal behavior when refining visitors. Con-
sequently, it is easier and less error-prone to write extensions
and refinements of the generated code.

User extensions are compiled together with the generated
code using a standard JAVA compiler to create an extractor
(i.e., byte code that can be executed using the JAVA virtual
machine). This extractor interfaces with the generated island
parser using a utility that implodes the parse tree into an ab-
stract syntax tree.

Example: Figure 6 presents an UML class diagram showing
the classes that are generated for the island grammar presented
in the COBOL program call example (Section 2.1). The grey
class (CallCollect) was not generated but is an example of an
analysis that can be added by a user. This class refines the
standard visitor so that it collects the identifiers of all called
programs. The JAVA code that implements this class is shown
in Figure 7.

3.3. MANGROVE/ASF

MANGROVE/ASF allows the extractor writer to process parse
results in a functional fashion using the term rewriting lan-
guage ASF [4].

Programming in ASF is done by creating specifications that
consist of a number of rewrite rules. These rules are defined
using pattern matching on concrete syntax defined in an SDF

grammar. The use of concrete syntax has the advantage that
the extractor writer does not have to learn a new language for

public class CallCollect extends Visitor {
public Set set = new HashSet();
public void visitCall(Call c) {

set.add(c.getId());
}

}

Figure 7. JAVA visitor for collecting program calls.

module CallCollect (1)
imports CallHandler Set (2)
context free syntax (3)

collect( Input ) � Set (4)
collect( Input , Set ) � Set � traverse � (5)

variables (8)
”in” � Input (9)
”set” � Set (10)

Figure 8. Grammar for collecting program calls.

processing terms. The use of term rewriting allows for a natu-
ral expression of the translation of one language into another.

The combination of syntax definition formalism SDF and
term rewriting language ASF is supported by the ASF+SDF

Meta-Environment [20, 6]. This environment generates par-
sers and syntax directed editors from SDF definitions and pro-
vides an interpreter and compiler for ASF specifications.

In MANGROVE/ASF, we instantiate the extractor generator
using the ASF+SDF Meta-Environment. For an architectural
overview, we refer to the MANGROVE overview in Figure 4.

The ASF+SDF Meta-Environment contains support for the
generation of term traversal functions [7]. When a user at-
taches a “ � traverse � ” attribute to a production in SDF, addi-
tional functionality is inferred that can perform a traversal of
the first argument of the production. Conceptually, adding
such an attribute is shorthand for adding a set of productions
and rewrite rules (which can be calculated from the grammar).
The default behavior of the generated rewrite rules is to do
nothing. A user can override that behavior by adding a con-
crete rewrite rule for a particular (sub)term.

Example: Figures 8 and 9 show an example of the use of
generated traversals for the program call example described
in Section 2.1. Again, we will build a tool to collect the iden-
tifiers of all called programs. The grammar (Figure 8) defines
two functions: one that we will use to start the traversal (line
4) and the actual traversal function in line 5. This traversal
function has two arguments, the first contains the term to tra-
verse, the second is the accumulator in which traversal results
are gathered. The ASF equations in Figure 9 define the rewrite
rules. We see that rule

�
c1 � starts the traversal using a copy

of the input and an empty accumulator. The other two rules
contain patterns for which we want specific behavior: Rule�
c2 � specifies that whenever a CALL statement is matched with

arbitrary identifier, we add that identifier to the accumulated
set. Call-handlers are supported using rule

�
c3 � that collects all

identifiers that are assigned to the CALLEE variable.

equations�
c1 � collect( in ) � collect( in , � � )�
c2 � collect( CALL id , set ) � � id ��� set�
c3 � collect( MOVE id TO CALLEE , set ) � � id ��� set

Figure 9. Equations for collecting program calls.



4. Case Studies

We have done a number of case studies to validate our hypoth-
esis that island grammars can be used to create robust parsers
that allow for construction of lightweight, flexible and tolerant
source model extractors.

The first case uses island grammars to build an analyzer
that computes the cyclomatic complexity of COBOL pro-
grams. The second case was done in cooperation with the
Software Improvement Group and involves the creation of a
source model extractor for UNIFACE systems.

4.1. COBOL Cyclomatic Complexity

McCabe’s cyclomatic complexity measure [27] is one of the
better known software metrics that can be computed from
source code. In this case study we build a simple analyzer
that computes this complexity measure for COBOL programs
using island grammars.

The cyclomatic complexity metric is based on the control
graph of the program. It computes the number of linearly in-
dependent control flow graphs using the number of nodes (n)
and edges (e) in a control flow graph. For a graph with n
nodes and e edges, McCabe defines the cyclomatic complex-
ity as G

�
v � � e � n � 2.

However, there is a simpler definition that does not require
us to construct a control flow graph in advance. In the NIST
report on structured testing, McCabe defines the cyclomatic
complexity by counting the number of decision predicates in
the code [40]. We will use this latter approach in this case.
Our analyzer basically traverses a parse tree and counts oc-
currences of decision predicates. We show how we use MAN-
GROVE/JAVA to build the analyzer in four steps.

First, we create an island grammar for COBOL that
describes the constructs that can influence the cyclo-
matic complexity. In the case of COBOL, these are
standard constructs like IF-THEN, REPEAT-UNTIL, and
EVALUATE-WHEN (COBOL’s case statement) but also con-
structs like GO-DEPENDING that jumps to one of a list of lo-
cations based on the value of a variable. Other constructs of
interest are predicates that surround code that has to be exe-
cuted in case of errors, such as ON-ERROR and ON-OVERFLOW
for computational statements, and INVALID-KEY and AT-END
for access to flat-file databases.

Note that we have to take special precautions to prevent oc-
currences of these constructs in strings or comments from be-
ing recognized as real occurrences (so called false positives).
This can be done by adding specific productions to the island
grammar that specify that strings should be recognized as wa-
ter and that comments should be considered LAYOUT. An
example of such productions can be found in Figure 10.

Second, a parser and JAVA classes are generated from this
island grammar as described in Section 3.

Third, we refine the generated visitor so that computes the

cyclomatic complexity during traversal of the parse tree. This
is done by incrementing a counter every time the abstract syn-
tax tree contains one of the complexity increasing constructs
that were specified in the island grammar.

Finally, we compile the code to build an executable ana-
lyzer. The parts that we had to write to create such an an-
alyzer are small and easy to write: construction, testing and
refinement took 4–5 hours. The grammar consists of 17 pro-
ductions, 10 for describing constructs of interest, 4 we reused
from the base grammar of Figure 1, and 3 were added to pre-
vent false positives. The JAVA code that refines the generated
visitor contains one integer field (the complexity counter) and
seven methods that each perform exactly one statement: in-
crement the complexity.

We have applied our analyzer to a number of COBOL sys-
tems (each around 100 � 000 lines) that were written in different
dialects and contained various extensions (SQL, CICS, IMS).
These irregularities posed no problems for the analysis. Ini-
tial results show that the performance is good but should be
measured in more detail. For example, the implosion proto-
type that converts parse trees to ASTs is slow for very large
inputs. A reimplementation will solve these issues.

4.2. UNIFACE Component Coupling

In a case study performed in cooperation with the Software
Improvement Group (SIG) we developed an island grammar
and source model extractor to parse UNIFACE components
and collect facts about the coupling between them.

UNIFACE is a 4GL application development environment
that is marketed by Compuware [10]. It allows for the de-
velopment of both conventional and web-based applications.
The application development is model-driven and component-
based. Developers create models of business processes. These
models are used to generate components that inherit proper-
ties from the model. Whenever the model is changed, compo-
nents are updated accordingly. To eliminate the need to build
systems from scratch, developers can reuse components from
other systems and standard libraries. Components contain op-
erations that specify behavior. Components can interoperate
with each other by activating operations in other components
(similar to objects and methods in an object-oriented setting).

To get insight in UNIFACE systems, a SIG customer would
like to get information about the components in a system and
the coupling between them. To collect this information, we
have build a source model extractor that analyses UNIFACE

components and gathers facts about the activation of other
components and of the activation parameters.

module StringsAsWater (1)
lexical syntax (2)

[
�
”] � [

�
”]* [

�
”] � Water (3)

Figure 10. Strings as water.



The extractor was generated using an island grammar that
describes module activation and parameter passing in UNI-
FACE. This grammar extends the base grammar from Fig-
ure 1 and was developed without prior knowledge of UNI-
FACE (but with help of activate documentation). It took
approximately one day to develop, test and refine the island
grammar and about the same amount of time to develop the
source model mapping in JAVA.

The complete island grammar contains 38 productions, in-
cluding the base grammar and productions to prevent false
positives. This relatively high number is influenced by the act
that UNIFACE is case insensitive, thus our grammar contains a
number of productions whose sole purpose is to specify case
insensitive variants of keywords that have to be recognized.

The resulting source model extractor can process both
UNIFACE source listings and XML dumps of modules. The
extractor emits a source model that describes component cou-
pling in textual or in GXL format [18].

5. Discussion

5.1. Expressive power

Island grammars do not depend on a particular grammar spec-
ification formalism or parsing technique. However, the ex-
pressive power of an island grammar is limited by the chosen
syntax definition formalism and more important by the chosen
parsing technique. In MANGROVE, we have chosen to express
island grammars in SDF, a syntax definition formalism that is
supported by generalized LR parsing techniques. Since we in-
herit the expressive power, we can express the complete class
of context free languages using our island grammars.

The different MANGROVE instantiations allow an extractor
writer to choose a processing language that fits his needs. The
JAVA instantiation enables processing in a mainstream object-
oriented programming language and allows reuse of the large
amount of tools, libraries and interoperability techniques that
are available for JAVA. The ASF instantiation allows process-
ing using term rewriting with patterns over concrete syntax .
This has the advantage that the extractor writer does not have
to learn a new language and term rewriting allows for natural
expression of translation between languages.

5.2. Accuracy

Island grammars do not give a restrictive description of the
language that is analyzed. On the one hand, we consider this
an advantage since this is, after all, the property that allows
for irregularities, releases structural requirements on the ar-
tifacts and increases development speed. On the other hand,
however, this lack of detail may result in erroneous results.

We distinguish two kinds of extraction errors: (i) false pos-
itives occur when the grammar allows constructs to be recog-
nized in places were they should not have been recognized.

(ii) false negatives occur when the grammar is too restrictive
and does not allows constructs to be recognized in places were
they should been recognized.

False positives can be solved by extending the part of the
grammar that specifies Water. For example, false recognition
of constructs inside of strings can be prevented by adding a
production that specifies string syntax as Water. Figure 10
gives a simple example of such a specification. It specifies
strings as starting with a double quote, a number of characters
and ending with a double quote.

False negatives are not that straightforward to solve. One
needs to reconsider the grammar and look for productions that
are too restrictive. A common source of false negatives are
“nested” constructs, for example statements such as if-the
and while-do that contain statements themselves.

6. Related Work

Related work can be divided into methods that perform lexi-
cal analysis and syntactical analysis. Another division comes
from application domain with research focus-sing on com-
puter language processing or on natural language processing.
Lexical Analysis Several tools are available that perform
lexical analysis of textual files. The most well-known tool
is probably grep and its variants (fgrep, egrep, agrep,
etc.) that allows one to search text for strings matching a reg-
ular expression. These tools generally give little to no support
to process the matched strings, they just print matching lines.

Such support is available in more advanced text processing
languages as AWK [2] and PERL [39] and in the LEX scan-
ner generator [25] that allow a user to execute certain actions
when a specific expression is matched. TLEX provides a pat-
tern matching and parsing library for C++ that generates parse
trees for the strings that match a regular expression [19].
Hierarchical Lexical Analysis Murphy and Notkin de-
scribe the Lexical Source Model Extractor (LSME) [28]. Their
approach uses a set of hierarchically related regular expres-
sions to describe language constructs that have to be mapped
to the source model. By using hierarchical patterns they avoid
some of the pitfalls of plain lexical patterns but maintain the
flexibility and robustness of that approach.

The MULTILEX system of Cox and Clarke [11] uses a sim-
ilar hierarchical approach. The main difference with LSME is
that it focuses at extracting information at the abstract syntax
tree level whereas LSME extracts higher level source models.

This hierarchical technique is related to work in compu-
tational linguistics that divides natural language into chunks
that can be recognized using a finite-state cascade parser [1].
Syntactic Matching Parser based approaches are used to in-
crease the accuracy and level of detail that can be expressed.
Syntactic matchers create a syntax tree of the input and allow
the user to traverse, query or match the tree to look for certain
patterns. This relieves them from having to handle all aspects
of a language and focus on interesting parts.



Systems in this category are A* [23] that provide traversals
over parse trees with AWK-like pattern matching and process-
ing, TAWK [15] that provides similar operations on abstract
syntax trees with processing in C.

Other tools support querying of the abstract syntax trees
such as GENOA [14] that uses its own traversal language, RE-
FINE [26] that allows queries in first order logic and SCRU-
PLE [29] that allows queries using concrete syntax.

The disadvantage of these systems is that they are all
based on a full parse of the complete language making it
hard/impossible to deal with incomplete sources, dialects or
syntax errors. However, with the proper amount of interfac-
ing, it should be possible to connect them to the island parsers
we generate which would remove such problems.
Fuzzy parsing The notion of fuzzy parsing comes in two
flavors. The first flavor are parsers that recognize a sentence
as belonging to a language with a certain degree of correct-
ness (thus allowing for grammatical errors) [24]. This type of
fuzzy parsers is mainly used in computational linguistics for
natural language processing. Productions in a fuzzy grammar
are annotated with correctness degrees that are used to assess
the quality of the input sentence. This can be used to model
grammatical errors by adding special productions with a cor-
rectness degree less than 1 to an ordinary grammar. For more
information, we refer to [3].

The second flavor of fuzzy parsers are parsers that are able
to discard tokens and recognize only certain parts of a pro-
gramming language [21]. The SNIFF programming environ-
ment was the first to use this kind of fuzzy parsing [5]. Since
then, it has been used in a number of other programming envi-
ronments and program browsers such as: CSCOPE3, SOURCE

NAVIGATOR4, SOURCE EXPLORER5, and the CRTAGS6 tool.
These fuzzy parsers are hand crafted to perform a specific
task. They focus mainly on fuzzy parsing C and C++ to sup-
port program browsing. Typically this involves extracting in-
formation regarding references to a symbol, global definitions,
functions calls, file includes, etc.
Parser Reuse Some approaches address the problems as-
sociated with parser or grammar development by reusing ex-
isting parsers (for example, in GENOA/GENII [14]). Others
reuse or retrieve grammars that are used in existing tools [33].
However, both approaches ignore the fact that the structure of
a grammar used in a tool is often tightly coupled to the design
of that tool. Another tool may need a completely different
grammar. Such parser reuse problems were also signaled by
Reubenstein et al. [32]. Furthermore, this does not solve the
robustness issues (dealing with missing code, embedded ex-
tensions or syntactical errors).
Island Parsing The term island parsing is also used in com-
putational linguistics (for example [9, 34]). However, this is

3 http://cscope.sourceforge.net/
4 http://sources.redhat.com/sourcenav/
5 http://www.intland.com/
6 http://www.vital.com/crtags.html

different notion referring to island parsers that start at some
point in a sentence (by recognizing an island) and parse the
complete sentence by extending that island to the left and
right (in contrast to left-to-right scanning done by LL and LR
parsers). This technique is used for example for speech recog-
nition. A similar approach has been applied by Rekers and
Koorn for computer languages to provide error recovery and
completion in syntax directed editors [31].

Island Grammars The term island grammars was coined
in [12] which provides an informal definition and small exam-
ple but does not present a detailed discussion, nor does it de-
scribe tool support. We try to fill those gaps by improving the
definition, describing properties of island grammars and pro-
viding a number of detailed examples that result in a reusable
framework for island grammar definitions. Furthermore, we
present a generator for source model extractors based on is-
land grammars that supports various programming languages
and show how it can be used in a number of case studies. A
case study for COBOL island grammars is described in [37].

7. Conclusions

Robust parsing is a prerequisite for most reverse engineering
tools. This paper shows that island grammars can be used
to generate such parsers. The generated parsers combine the
accuracy of syntactical analysis with the speed, flexibility and
tolerance usually only found in lexical analysis.

Contributions of this paper are the extension of previous
work on island grammars [12, 13] with a detailed discussion
and definition of island grammars. We present MANGROVE,
a generator for source model extractors based on island gram-
mars. We provide a reusable framework for the definition
of island grammars in syntax definition formalism SDF and
support various processing languages allowing a developer to
pick the language that fits his needs. We have shown how
MANGROVE supports JAVA and ASF programmers by provid-
ing generated traversals that ease the mapping from parse re-
sults to source models. We report on the application of MAN-
GROVE to a number of case studies and provide a detailed
discussion of related work.

The combination of island grammars with generated traver-
sals combines two forms of attractive default behavior: (i)
island grammars allow us to limit ourselves that part of the
grammar necessary to describe the problem at hand, and (ii)
generated traversals allow us to treat only those cases for
which we need specific behavior. Consequently, extractor
specifications are small and easy to write, modify and com-
bine resulting in a lightweight, flexible and tolerant approach.
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