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Abstract—Adaptive HTTP streaming is frequently used for
both live and on-Demand video delivery over the Internet.
Adaptiveness is often achieved by encoding the video stream
in multiple qualities (and thus bitrates), and then transparently
switching between the qualities according to the bandwidth
fluctuations and the amount of resources available for decoding
the video content on the end device. For this kind of video delivery
over the Internet, H.264 is currently the most used codec, but VP8
is an emerging open-source codec expected to compete with H.264
in the streaming scenario. The challenge is that, when encoding
video for adaptive video streaming, both VP8 and H.264 run once
for each quality layer, i.e., consuming both time and resources,
especially important in a live video delivery scenario.

In this paper, we address the resource consumption issues
by proposing a method for reusing redundant steps in a video
encoder, emitting multiple outputs with varying bitrates and
qualities. It shares and reuses the computational heavy analysis
step, notably macro-block mode decision, intra prediction and
inter prediction between the instances, and outputs video in
several rates. The method has been implemented in the VP8
reference encoder, and experimental results show that we can
encode the different quality layers at the same rates and qualities
compared to the VP8 reference encoder, while reducing the
encoding time significantly.

I. INTRODUCTION

The number of video streaming services, both live and

on-demand, is quickly increasing. For example, consider the

emergent and rapid deployment of public available Internet

video archives providing a wide range of content like news-

casts, movies and scholarly videos. Furthermore, all major

(sports) events like NFL Hockey, NBA basket ball, NFL

football, European soccer leagues, etc. are streamed live with

only a few seconds delay, e.g., bringing the 2010 Winter

Olympics [1], 2010 FIFA World Cup [2] and NFL Super

Bowl [2] to millions of concurrent users over the Internet

supporting a wide range of devices ranging from mobile

phones to HD displays. The number of videos streamed from

such services is in the order of tens of billions per month [3],

and leading industry movers conjecture that traffic on the

mobile-phone networks will also soon be dominated by video

content [4].

The currently de facto video delivery solution in these

scenarios is adaptive streaming over HTTP [1], [2], [5]–[7].

In these systems, the bitrate (and thus video quality) can

be changed dynamically to match an oscillating bandwidth,

giving a large advantage over non-adaptive systems that are

frequently interrupted due to buffer underruns or data loss. The

video is thus encoded in multiple bitrates matching different

devices and different network conditions.

Today, H.264 is the most frequently used codec. However,

an emerging alternative is the simpler VP8 which is very sim-

ilar to H.264’s baseline profile and supposed to be well suited

for web-streaming with native support in major browsers,

royalty free use and similar video quality as H.264 [8], [9].

For both codecs, the challenge in the multi-rate scenario is

that each version of the video require a separate processing

instance of the encoding software, and especially in the live

scenario, where all the rates must be delivered in real-time.

This process is both time and resource consuming.

To reduce the large video overheads in multi-rate scenar-

ios, we investigate possibilities for reusing the output from

different steps in the encoding pipeline as the same video

elements are processed multiple times with only slightly

different parameters. As a case study, we have analyzed and

experimented with VP8’s processing pipeline and implemented

support for running multiple VP8 encoder instances in parallel.

Inspired by several transcoding approaches trying to reuse

motion vectors [10]–[12], our initial idea is to allow the

encoder to share and reuse the computational heavy interme-

diate steps from analysis computations, notably macro-block

mode decision, intra prediction and inter prediction between

the instances. Furthermore, the proposed method has been

implemented in the VP8 reference encoder, and we have

performed a wide range of experiments using various rates,

resolutions and content types. We show that we can encode the

different videos at the approximately same rates and qualities

compared to the VP8 reference encoder, while reducing the

encoding time significantly.

The rest of this paper is organized as follows. Section II

describes some related work. In section III, we briefly outline

the VP8 processing pipeline before investigating how we

can build an efficient multi-rate VP8 encoder in section IV.

Section V presents our experimental results, and section VI

gives a discussion of the solution and the results. Finally, we

summarize, conclude and give direction for further research in

section VII.

II. RELATED WORK

The idea of running multiple VP8 encoder instances in

parallel is inspired by transcoding approaches, trying to

reuse motion vectors [10]–[13]. In [10], the authors discuss

transcoding with the reuse of motion vectors in the context

of spatial downscaling. The paper investigates the statistical

characteristics of the macroblocks associated with the best



matching motion vectors and define a likelihood score, which

is then used for picking the motion vectors.

Zhou et al. [11] propose an algorithm for reusing motion

vectors in the context of spatial downscaling. Methods for syn-

thesizing a new motion vector by reuse of the original motion

vectors from the higher resolution bitstream are discussed. A

more advanced method for refining the synthesized vectors is

also discussed. Senda et al. [12] describes a real time software

transcoder with motion vector reuse. They discuss a method

for reusing downscaled motion vectors, which evaluate the

scaled motion vectors and their neighbors. A new method for

reducing the number of candidate motion vectors is proposed,

and the best one is picked by finding the one with the lowest

mean absolute error.

Youn at al. [13] also investigates transcoding. They have

observed that reusing the incoming motion vectors become non

optimal, due to the reconstruction errors. They are proposing

to use a fast-search adaptive motion vector refinement to

improve the motion vectors. In [14], the authors also propose

a new algorithm to do fast inter-mode decision and motion

estimation for H.264. Both these approaches are different from

our proposed solution. We are reusing data from the motion

estimation, however, we are not using any new algorithms to

refine the analysis data before reusing it for other bitrates.

None of these papers reuse the analysis step for use with

several encoder instances. We want to investigate the possibil-

ity for reusing data from parts of the encoding pipeline to be

able to output multiple video streams. Thus, we next present

a brief overview of the VP8 codec where we show the basic

processing pipeline and some profiling results to identify the

most expensive operations.

III. THE VP8 CODEC

The VP8 codec [15], developed by On2 Technologies as a

successor to VP7, is a modern codec for storing progressive

video. On2 was acquired by Google in 2010, which subse-

quently released VP8 as a royalty-free alternative to H.264 as

part of the open source webm project. The webm format was

later added as a supported format in the upcoming HTML5

standard, and all major browsers have implemented playback

support for the format since webm is expected to be a major

streaming format on the web in the coming years.

The VP8 codec is heavily influenced by H.264. It has

similar functionality as the H.264 Baseline Profile, but with

the additional benefit of having an adaptive binary arithmetic

coder instead of CAVLC. VP8 is not designed to be an all-

purpose codec, but instead targets web and mobile application.

Hence, VP8 has omitted features such as interlacing, scalable

coding, slices and color spaces other than 4:2:0. This reduces

encoder and decoder complexity while retaining video quality

for the most common use case, i.e., making VP8 a good choice

for lightweight devices with limited resources.

A VP8 frame are either of type intra-frame or inter-

frame, corresponding to I- and P-frames in H.264, and it

has no equivalent to B-frames. In addition, VP8 introduces

the concept of tagging a frame as altref and golden frames,

which are stored for reference in the decoder. When predicting,

blocks may use regions from the immediate previous, from the

last golden or from the last altref frame. Every key frame is

both a golden and altref frame; other frames can optionally be

marked as golden or altref. Altref frames are special and never

shown to the user, instead they are only used for prediction.

Furthermore, the encoding loop of VP8 is similar to that of

H.264 consisting of intra/inter prediction, DCT, quantization,

dequantization, iDCT, followed by an in-loop deblocking filter.

The result of the quantization step is entropy coded using

a context adaptive boolean entropy coder and stored as the

output bitstream. The output bitrate of the resulting video is

thus dependent on prediction parameters in the bitstream and

quantization parameter.

IV. MULTI-RATE ENCODING

Our multi-rate encoder is based on the reference VP8

encoder, released as part of the webm project. Provided in

figure 1 is a call graph of the VP8 reference encoder. In the

call graph, we can see the flow of the program, how many

times a function have been called, and how large percentage

of the execution time is spent in different parts of the code.

The basic flow of the entire encoder is illustrated in the upper

part of figure 2.

The analysis part consists of macroblock mode

decision and intra/inter prediction, this corresponds to

vp8_rd_pick_inter_mode in figure 1. The encode

part refers to transform, quantization, dequantization

and inverse transform, corresponding to the functions

vp8_encode_inter* and vp8_encode_intra* for

Figure 1. Profile of the main parts of the reference VP8 encoder
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Figure 2. Basic flow for the ”multi-rate” VP8 encoder

the various block modes chosen. Output involves entropy

coding and writing the output bitstream to file, this part of

the encoder is not shown in the call graph. Profiling of the

VP8 encoding1 process shows that during encoding of the

foreman test sequence, over 80 percent of the execution time

is spent in the analysis part of the code, i.e., if this part can

be reused for encoding operations for other rates, the resource

consumption can be greatly reduced.

Our modifications to the VP8 encoder only considers

one-pass encoding, which is the predominant mode used

for streaming live video. When starting the encoder, a

prediction bitrate is specified which is used as input to

the analysis step for finding intra- and inter-prediction

parameters. The encoding instance for the prediction bi-

trate is considered the main encoder instance; this is the

only encoder instance that will run the analysis compu-

tations. In the profile of the VP8 encoder seen in figure

1, this step is labeled as vp8_rd_pick_inter_mode.

After the analysis step is completed, the main encoder

instance feeds images and the prediction data from the

target bitrate to the other encoder instances, which will

only run the vp8cx_encode_intra_macro_block and

vp8_encode_inter16x16 part of the code.

Additionally, as seen in figure 2, the encoding instances

select different target bitrates (giving different quantization

parameters). The encoder starts one thread for each specified

bitrate where each of these threads correspond to a separate

encoding instance. The instances have identical encoding

parameters such as keyframe interval, subpixel accuracy, etc.,

except for the target bitrate provided. Since the bitrate varies,

each instance must maintain its own state and reconstruc-

tion buffers. The threads are synchronized on a frame by

frame basis, where the main encoding instance analyses the

frame before the analysis computations are made available

to the other threads. This involves macroblock mode de-

cision, intra- and inter-prediction. The non-main encoding

instances reuse these computations directly without doing

the computationally intensive analysis steps. Most notably

vp8_rd_pick_inter_mode (figure 1) is only performed

by the main encoding instance.

1We have also earlier analyzed the x264 processing pipeline and found
similar results [16].

V. EXPERIMENTS

We have performed experiments for several scenarios. One

example is streaming to mobile devices over 3G networks.

Here, Akamai [17] recommends that video should be encoded

at 250 kbps for low quality and 450 kbps for high quality.

Typical 3G networks can deliver bandwidths of 384 kbps

(UMTS) to 7.2 Mbps (HSDPA), and we have here measured

the resource consumption for coding the standard foreman test

sequence in CIF resolution using bitrates of 250, 450, 750

and 1000 kbps. Furthermore, to also test the other end of

the scale, we have evaluated HD resolution videos. Typical

ADSL lines can deliver from about 750 kbps to 8 Mbps, and

for this scenario, we have performed experiments using the

1080p resolution standard test sequences pedestrian and blue

sky encoded at 1500, 2000, 2500 and 3000 kbps. To measure

the performance, we have used time to measure the consumed

CPU time. Additionally, to evaluate the resulting video quality,

the PSNR values are measured by the VP8 video encoder.

Bitrates shown in the plots are the resulting bitrates achieved

in output bitstreams, and not the specified target bitrates.

Resulting bitrates are generally a bit lower than target bitrates

because of a conservative rate estimator. All experiments were

run on a 4-core Intel Core i5 750 processor.

A. Encoding results

To evaluate our multi-rate encoder, we have first plotted the

total CPU time used when encoding the foreman sequence

in figure 3(a) for the four different output rates. To see if

there is a difference for different chosen prediction bitrates

when using the multi-rate encoder, we have included one test

for each prediction bitrate. These results are compared to the

combined CPU time used when encoding the videos for the

same rates using the reference encoder with both a single

thread and multiple threads. The CPU time used in the multi-

rate approach is more than 2.5 times faster than encoding the

four sequences using the reference encoder. The multi-rate

approach scales further if the number of encoded streams is

increased. In addition, the time spent in kernel space is far less

in the multi-rate approach compared to the reference encoder,

and we believe this is a result of reading the source video from

disk only once.

To see if there are differences between low and high

resolution videos, we have also looked at HD sequences to

validate our approach. Figure 4(a) shows the “pedestrian” test

clip with a prediction bitrate of 2000 kbps. We observe a 2.06

times reduction in CPU time for the multi-rate encoder as we

saw for the foreman sequence.

Finally, since we reuse motion vectors for the encoding,

we looked at different videos with different amount and

kind of motion. The “pedestrian” has a fixed camera with

objects (people) moving. The “blue sky” video has more

or less fixed objects, but with a moving camera. The “blue

sky” results are plotted in figure 5(a) with a performance

gain of 2.47 the performance of the reference encoder. Thus,

for all our experiments using different rates, resolutions and
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Figure 3. CIF streaming scenario (“foreman”)
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Figure 4. HD streaming scenario (“pedestrian”)
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Figure 5. HD streaming scenario (“blue sky”)

content types, our multi-rate encoder reduce the total resource

consumption.

B. Quality assessment

Using prediction parameters generated from a different

bitrate than the target bitrate does have implications for the

video quality. To investigate the trade off between reduced

processing time versus degraded video quality, we have plot-

ted a rate-distortion curve for the foreman sequence with a

prediction bitrate of 450 kbps in figure 3(b). We can see that

reference encoder produces about 1 dB higher peak signal-

to-noise ratio (PSNR) at the same bitrate than the multi-rate

encoder. Depending on the intended usage, the significantly

reduced CPU time might outweigh the small reduction in



(a) Reference encoder (b) Multi-rate encoder

Figure 6. Quality difference for the “worst-case” scenario in figure 4(b) of 1.32 dB PSNR of 1500 kbps

(a) Reference encoder (b) Multi-rate encoder

Figure 7. Quality difference for the “worst-case” scenario in figure 3(b) of 0.99 dB PSNR of 250 kbps

quality.

The degradation in video quality is due to the instances’

reuse of analysis computations. As described in section IV,

the analysis part of the encoder pipeline is only carried out

by the encoder instance targeting the prediction bitrate, and

is hence only subject to the constraints of this instance. The

mode decisions and motion vectors for the other instances will

differ from how they would have been had they been chosen

by separate analysis, leading to a degradation in video quality.

Similarly, when considering the distortion of the HD se-

quences, we have plotted rate-distortion curves in figure 4(b)

and 5(b) for pedestrian and blue sky, respectively. The refer-

ence encoder produces output that has 1.0 to 1.5 dB higher

PSNR than the multi-rate encoder and distortion achieved for

the two HD clips are very similar.

The suitability of PSNR for video quality assessment is

frequently discussed, and it is often unclear what the difference

mean in terms of the logarithmic scale. From the plot in

figure 4(b), we can see that the PSNR of the output from the

reference encoder is up to 1.32 dB better than the multi-stream

encoder outputs for the pedestrian sequence, in the range of

1500 kbps to 3000 kbps. To see what this really means, a

sample output of the “worst-case” scenario from figure 4(b)

can be seen in figure 6. From this output, we can see that there

is little visual difference between the reference encoder output

and the multi-stream encoder. We also looked at the average

structural similarity (SSIM) index number for the reference

encoder and the multi-stream encoder. The SSIM numbers

are 0.861 and 0.837, respectively, i.e., the difference is small.

Thus, the quality reduction is small (we did not see a difference

viewing the resulting videos, but it might be different for

other types of content). In figure 7, the “worst-case” scenario

from figure 3(b) can be seen. In this sequence, the PSNR

for the reference encoder is of 0.99 dB better than the multi-

rate encoder. The SSIM index numbers for this scenario are

0.873 for the reference encoder and 0.856 for the multi-stream

encoder.

C. Choosing the prediction bitrate

To evaluate which prediction bitrate gives the minimal

distortion of the videos, we have plotted rate-distortion curves

for foreman with various prediction rates in figure 8. We can

see that the resulting bitrate is lower for the multi stream

encoder than the reference encoder, except for when the

prediction bitrate exactly matches the target bitrate, resulting

in a small spike in the plot.

The lowest prediction bitrate (250 kbps) incurs the largest

distortion difference of 2 dB for the 1000 kbps resulting bi-
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(b) prediction bitrate: 450
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(c) prediction bitrate: 750
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(d) prediction bitrate: 1000

Figure 8. Rate-distortion curve for CIF test sequence ”foreman” with different prediction bitrate (in kbps)

trate. When using a 450 kbps prediction bitrate, the distortion

difference is about 1 dB for bitrates between 250 kbps and

1000 kbps. By further increasing the prediction bitrate, we

see that the distortion difference between the multi stream

and reference increases to 4 dB for the lowest output 250

kbps. Thus, the smallest distortion can be observed when using

a prediction bitrate close to the average of the smallest and

highest output bitrate, and we get a smaller penalty when the

prediction bitrate is smaller than the output bitrate than vice

versa.

Similar results can be observed when evaluating the pedes-

trian sequence, shown in figure 9. Lower prediction bitrates

incur less distortion difference than higher prediction bitrates

compared to the target bitrate. The distortion difference is

further reduced by choosing a bitrate closer to the average of

the extremes.

We have shown that choosing the correct prediction bitrate

when doing multi-rate encoding has a profound effect on the

quality of the output videos. Although CPU time was also

affected as shown in figure 3(a), the difference was much less

considerable. Because of the distortion, having a too wide

range of target bitstreams when doing multi-rate encoding

is discouraged (see for example figure 9(d)), but for quality

ranges typically used in segmented streaming as shown in our

test sequences, the results prove that multi-rate encoding are

useful.

VI. DISCUSSION AND OPEN ISSUES

To support a wide range of devices and network conditions,

most video service providers today use an adaptive, multi-

rate HTTP streaming solution. In this respect, encoding the

video into multiple qualities is an expensive operation. The

idea investigated here is to reuse the results from the most

expensive operations, share and reuse the computational heavy

intermediate steps from analysis computations, in order to

reduce the processing requirement.

To prove the idea, we have implemented a prototype trying

to reuse the most expensive operations based on profiling

of the encoding pipeline. In particular, our multi-rate en-

coder reuses the analysis part consisting of macroblock mode

decision and intra/inter prediction. The experimental results

indicate that we can encode the different videos at the same

rates with approximately the same qualities compared to the

VP8 reference encoder, while reducing the encoding time

significantly. However, our prototype is a small proof-of-

concept, and there are numerous open issues.
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(a) prediction bitrate: 1500
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(b) prediction bitrate: 2000
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(c) prediction bitrate: 2500
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Figure 9. Rate-distortion curve for HD test sequence ”pedestrian” with different prediction bitrate (in kbps)

In the prototype, we used VP8 as a case study since it is

an emerging open-source codec. However, VP8 is for example

very similar to the baseline profile in H.264, and in general,

most video codecs use similar ideas for compression. Thus,

our ideas are not implementation specific to VP8, but also

applicable for other codecs like MPEG-1/2/4, H.263/4, VC-

1/2/../8, Theora, etc., which compress the video data in a

similar way.

One open issue is looking into solutions for improving the

quality for the other bitrates, aside from correctly choosing the

prediction bitrate. By virtue of our method of reusing analysis

computations directly, the quality will suffer when the target

bitrate is not equal to the prediction bitrate. One potential

quality improvement could be to do predictor refinement,

inspired by the approach taken in [11]. This would however

lead to increased complexity in the encoder. Section V-C

demonstrates how reuse of the analysis computations impacts

the quality/complexity trade off for encoding the same input at

different rates. It would also be interesting to look at this using

a more systematic approach, and see how it affects specific

prediction modes. A limitation with our multi-rate encoder is

that all the bitstreams encoded must use the same number of

reference frames, or in the case of VP8, the same golden frame

for the method to be viable. Another potential for further work

is to investigate if there are other parts of the VP8 encoder

where the processing can be fanned out like in the analysis

step.

VII. CONCLUSION

Encoding video into multiple bitrates for adaptive streaming

over various networks to different end-devices is a resource

expensive task. We have investigated the effect of running

multiple encoding instances in parallel, where the different

instances reuse intermediate results. This way, several encod-

ing steps are avoided for the sub-sequent encoding operations.

In particular, we have analyzed and performed experiments

with Google’s VP8 encoder, encoding different types of video

to multiple rates for various scenarios. Our main contribution

is that we propose a way of reusing decisions from intra and

inter prediction in the video encoder to avoid computational

expensive steps that are redundant when encoding for multiple

target bitrates of the same video object. The method can be

used in any video codec comprising an analysis and encoding

step with similar structure as H.264 and VP8. Furthermore,

The method has been implemented in the VP8 reference

encoder as a case study, and the experimental results show

that the computational demands are significantly reduced at



the same rates and approximately the same qualities compared

to the VP8 reference implementation, i.e., for a negligible

quality loss in terms of PSNR, the processing costs can be

greatly reduced. However, the quality loss is dependent on the

distance from the initial bitrate, i.e., if the gap between the

output bitrates is too large, the quality loss become larger. In

such scenarios, we still need multiple instances of the whole

operation.
Since the VP8 codec has a very similar encoding pipeline

as H.264, our approach should be suitable for H.264 (and

similar codecs) as well, but showing the same experimental

results is left as further work. Additionally, our aim has been

to point at an operation that potentially can be optimized, and

we suggested one possible solution. However, as indicated in

section VI, there are several open issues where potentially

other steps that can be improved with respect to the resource

consumption – all promising research topics to pursue.
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