
A Demonstration Of a Lockless, Relaxed Atomicity
State Parallel Game Server (LEARS)

Kjetil Raaen, Håvard Espeland, Håkon Kvale Stensland, Andreas Petlund, Pål Halvorsen, Carsten Griwodz

NITH, Norway Simula Research Laboratory, Norway IFI, University of Oslo, Norway

Email: raakje@nith.no, {haavares, haakonks, apetlund, paalh, griff}@ifi.uio.no

Abstract—Games where thousands of players can interact
concurrently pose many challenges with regards to the massive
parallelism. Earlier work within the field suggests that this is
difficult due to synchronization issues. In this paper, we present
an implementation of a game server architecture based on a
model that allows for massive parallelism. The system is evaluated
using traces from live game sessions that has been scaled up
to generate massive workloads. We measure the differences in
server response time for all objects that need timely updates.
We also measure how the response time for the multithreaded
implementation varies with the number of threads used. Our
results show that the case of implementing a game-server can
actually be highly parallel problem.

I. INTRODUCTION

Online multi-player gaming has experienced an amazing

growth. Providers of the popular online games must deliver

a reliable service to thousands of concurrent players meeting

strict processing deadlines in order for the players to have an

acceptable quality of experience (QoE). In order to achieve

this, game worlds are partitioned into areas-of-interest to min-

imize message passing between players with no interaction,

and allow the game world to be divided between servers.

However, players still tend to cluster together at interesting

spots making dynamic area rescaling and migration between

servers challenging.

There is a prevailing belief in the need for single threaded

execution of the game event loop in order to preserve what

is seen as critical dependencies in the game [1]. Due to

this constriction, even when provisioning for scalability in

designing an online game, service providers still find that the

processing power on the server side is becoming scarce [3].

Latency is an important metric for online multiplayer games.

Claypool at al. [4] classify different types of games, and

conclude that for first person shooter (FPS) and racing games,

the threshold for an acceptable latency is 100ms. Furthermore,

Abdelkhalek et al. [2] discuss the behavior and performance

of multiplayer game servers. They find that in terms of

benchmarking methodology, game servers are very different

from other scientific workloads. Most of the sequentially

implemented game servers can only support a limited num-

bers of players, and the bottlenecks in the servers are both

game-related and network-related. In [1], the authors extend

their work and use the computer game Quake to study the

behavior of parallelism. When running on a server with up

to eight processing cores the game suffers because of lock

synchronization during request processing. High wait times

due to workload imbalances at global synchronization points

are also a challenge.

The industry is now experimenting with implementations

that allow for a greater level of parallelization as a response

to the lack of growth of single-processor hardware speedup.

We take this model even further and propose a design that

allows a game server to be classified as an embarrassingly

parallel workload.

In this demonstration, we show a game server model

that allows for better resource utilization of multi-processor

systems. We have implemented a prototype game using this

design. The multithreaded implementation is compared with

a single threaded implementation in order to measure the

overhead of parallelizing the implementation and showing the

experienced benefits of parallelization. Our results indicate that

it is possible to design a game server to make it embarrassingly

parallel. We can also see that the implementation is able to

handle the quadratic increase of in- server communication that

develops as many players interact in a game world hotspot.

II. DESIGN AND IMPLEMENTATION

Traditionally, game servers have been implemented much

like game clients. They are based around a main loop, which

updates every active element in the game. These elements

include for example player characters, non-player characters

and projectiles. The simulated world has a list of all the

active elements in the game, and typically calls an "update"

method on each element. In this method, the active element

will perform all its actions for the time-slot. Since these are

sequential operations all actions can be performed directly.

The character reads input from the network, performs updates

on itself according to the input, and updates other elements

with the results of its actions.

To make a parallel game server with minimal locking,

the system needs to be redesigned from the ground up with

parallelism in mind.

A. Parallel main loop

The system demonstrated here uses a threadpool executor as

the core of the main loop. When an active element is created

in the world, it is scheduled for execution by the thread pool

executor. When it executes, the active element updates its state

exactly as in the single threaded case. When the task is finished

for one time slot, it can reschedule itself for the next slot,

delayed by a specified time. This allows active elements to



Position

Update
Cone

Attack

Projectile

Attack

Character

Update

Execute 

Workload

Network

Worker

Network

Selector

Thread Pool

Dispatch
C

P
U

 1

Figure 1. Design of the Game Server

have any lifetime from one-shot executions to the duration of

the program. It also allows different elements to be updated

at different rates, depending on the requirements of the game

developer.

The demo setup allows the user to interactively change the

number of threads in the threadpool. By setting the number

of threads below the number of cores it is, by means of the

real-time monitoring, possible to examine how well the cores

are utilized.

B. Use of locking

The thread pool executor used as described above does not

constrain which tasks are executed in parallel. Therefore, all

systems elements must allow any of the other elements to

execute concurrently. This places one simple constraint on

what an element can do; i.e., Elements can only update their

own state, but read any state.

This is sufficient because there is no need to establish

consistent ordering of events. This might sound counter in-

tuitive, but it works since the gameworld already is a simple

simulation with a whole series of approximations. All clients

are connected to the server through individual network links,

with vastly different latencies. The clients are also run on dif-

ferent computers, with different update frequencies. If player

A performs an action slightly before player B, this ordering is

not necessarily kept by the server in the multi-threaded case.

Running client update requests in parallel does not aggravate

this problem.

Another potential reason for locking is to keep state changes

atomic. This is also unnecessary due to the nature of the

problem. Consider the following example: Character A moves

while character B attacks. If only the X coordinate of character

A is updated at the point in time when the attack is executed,

the attack will see character A at position (Xt+∆T , Yt). This
position is within the accuracy of the simulation which in any

case is no better than the distance an object can move within

the timeline ∆T . The only requirement for this to work is that

assignment operations are atomic.

The end result of our proposed design philosophy is that

there is no synchronization in the server under normal running

conditions.

C. Message passing

Blocking queues [?] are queue implementations that are

synchronized separately at each end. This means that elements

can be removed from the queue simultaneously with elements

being added. Each of these operations is also extremely quick,

so the probability of blocking is low.

These are used by the implementation to allow information

to be passed between active objects. Each active object that

can be influenced by others has a blocking queue of messages.

During its update, it will read and process the pending mes-

sages from its queue. Other active elements put messages in

the queue to be processed when they need to change the state

of other elements in the game.

III. EXAMPLE GAME

This demonstration uses an implementation of a very simple

game which nonetheless contains all typical elements of a

full Massively Multiplayer Online game, with the exception of

persistent state. The game itself is simple. Each player controls

a small circle ("the character") with an indicator for which

direction they are heading. The characters are moved around

by pressing keyboard buttons. They also have two attacks: One

projectile and one instant area of effect attack. Both attacks are

aimed straight ahead. If an attack hits another player character,

the attacker gets a positive point, and the character that was

hit gets a negative point. This simple game provides examples

of all the elements of the design described above:

• The player character is a long lifetime active object.

It processes messages from clients, updates states and

potentially produces other active objects (attacks). In

addition to position, which all objects have, the player

also has information about how many times it has been

hit and how many times it has hit others as part of its

state. The player character also has a message queue to

receive messages from other active objects. At the end

of its update, it will enqueue itself for the next update

unless the client has disconnected.

• The frontal attack is a one shot task that finds player

characters in its designated area and sends messages to

those hit so they can update their counters, as well as

back to the attacking player informing about how many

were hit.

• The projectile is a short lifetime object that moves in the

world, checks if it has hit anything and reschedules itself

for another update, unless it has hit something or ran to

the end of its range. The projectile can only hit one target.

Our implementation has no spatial partitioning, we are

interested in the worst case, hence the numbers presented in

this paper assume all players can see each other at all times.

This means that the number of messages and interactions by

necessity grows by the number of clients squared.



Figure 2. Setup of the demonstration

To simulate workload that grow linearly with number of

players, especially collision checks with the ground and other

static objects, we have included a synthetic load. The synthetic

load is designed to emulate collision checks with a grid

representing the ground in the virtual world. To achieve this,

we have created an array of floating point values representing

a part of the gameworld. For each scheduled update, each char-

acter has to perform a square operation on a given number of

elements in the array. The operation is seeded with a randomly

generated value in order to avoid runtime optimizations in the

virtual machine. Which elements are processed depends on the

player’s position in the gameworld. How many array elements

are processed determines the severity of the load. By adding

the synthetic load, the cache is dirtied and the game server

processes becomes more realistic compared to a large-scale

MMORPG. The demo setup allows the user to experiment

with different levels of synthetic load.

IV. DEMONSTRATION

The demo setup consists of three machines and is illustrated

in figure 2. One machine is the game server. For this purpose,

we are using a four-core CPU, which gives us enough par-

allel processing power to illustrate improvements over single

threaded implementations. Another machine plays back a trace

of actual gameplay in as many instances needed to emulate

high loads on the server. The client simulation machine is

not a bottleneck, since simulating clients requires very little

calculation. The last machine is for running the real game

client, so the experimenter can see what is going on on the

server and play the actual game.

The demo setup also includes a wireless router and and

a web-server for sharing the game client with interested

attendees. This setup allows others to download the client and

play the game during the demo session.

For the purposes of this demonstration, the game server

has been updated with an interactive graphical user interface.

Using this interface, an experimenter can configure the condi-

tions for the experiment on the fly, while watching the results

in real-time.

The GUI, shown in figure 3 has two plots, both updated once

every second. The left plot shows CPU usage vs. time. The

right plot displays the interval between updates. The system

is designed to do an update every 100ms. Increases above

Figure 3. Screenshot of the game server GUI

this level is considered deadline misses. The red line shows

the average value for the current measurement interval, the

pink outline shows the highest and lowest values. This is the

main performance metric for the server system, and any value

above approximately 250ms will severely deteriorate the QoE

for players of the game.

Below the plots there are three sliders. One controls the

number of iterations for the synthetic load. The experimenter

can adjust this to change the intesnity of the load generated

by each player. The next slider sets the number of threads

available to the thread pool. The final slider instructs the

playback client to start or stop playback instances in order

to reach the chosen number.

V. CONCLUSION

Using this setup it is possible to study, in real-time, how

our Lockless, Relaxed Atomicity State Parallel Game Server

(LEARS) handles different conditions, by varying the number

of players, the number of threads and the synthetic load

associated with each player. The demo allows us to thoroughly

investigate how the system reacts when the described param-

eters are changed.

Using this demonstration we can see clear indications that,

if designed from the ground up with parallelism in mind, game

servers can scale well with the number of cores on a unified

memory multiprocessor system, even in the case where all

players must be aware of all other players and their actions.

ACKNOWLEDGEMENTS

This work has been performed in the context of the iAD

centre for Research-based Innovation (project number 174867)

funded by the Norwegian Research Council.

REFERENCES

[1] A. Abdelkhalek and A. Bilas. Parallelization and performance of interac-
tive multiplayer game servers. In Proceedings of the 18th International

Parallel and Distributed Processing Symposium, page 72, Washington,
DC, USA, april 2004. IEEE Computer Society.

[2] A. Abdelkhalek, A. Bilas, and A. Moshovos. Behavior and performance
of interactive multi-player game servers. Cluster Computing, 6:355–366,
October 2003.

[3] W. Cai, P. Xavier, S. J. Turner, and B.-S. Lee. A scalable architecture
for supporting interactive games on the internet. In Proceedings of the

sixteenth workshop on Parallel and distributed simulation, PADS ’02,
pages 60–67, Washington, DC, USA, 2002. IEEE Computer Society.

[4] M. Claypool and K. Claypool. Latency and player actions in online
games. Communications of the ACM, 49(11):40–45, Nov. 2005.


