
Empirical Investigation of the Effects of Test Suite Properties on Similarity-

Based Test Case Selection

Hadi Hemmatia,b, Andrea Arcuria, Lionel Brianda,b
aSimula Research Laboratory

bDepartment of Informatics, University of Oslo
{hemmati, arcuri, briand} @simula.no

Abstract—Our experience with applying model-based testing

on industrial systems showed that the generated test suites are

often too large and costly to execute given project deadlines

and the limited resources for system testing on real platforms.

In such industrial contexts, it is often the case that only a small

subset of test cases can be run. In previous work, we proposed

novel test case selection techniques that minimize the

similarities among selected test cases and outperforms other

selection alternatives. In this paper, our goal is to gain insights

into why and under which conditions similarity-based

selection techniques, and in particular our approach, can be

expected to work. We investigate the properties of test suites

with respect to similarities among fault revealing test cases.

We thus identify the ideal situation in which a similarity-based

selection works best, which is useful for devising more

effective similarity functions. We also address the specific

situation in which a test suite contains outliers, that is a small

group of very different test cases, and show that it decreases

the effectiveness of similarity-based selection. We then

propose, and successfully evaluate based on two industrial

systems, a solution based on rank scaling to alleviate this

problem.

Keywords- Test Case Selection; Similarity Measure;

Distance Function; Adaptive Random Testing; Genetic

Algorithms; Model Based Testing

I. INTRODUCTION

Rewarding diversity in test cases has been shown to
lead to higher fault detection in numerical applications,
because failing test cases tend to cluster in contiguous
regions [1]. In previous work [2-4], we proposed
similarity-based test case selection (STCS) techniques for
model based testing (MBT), which applied the idea of
rewarding diversity on abstract test cases generated from
UML state machines.

Our motivation was that running all the system level
test cases generated by a standard criterion, e.g., round trip
path for UML state machines, was not feasible, due to the
high cost of running them on the deployed platform or test
network. So, from a practical standpoint, to solve the
testing problems of our industrial partners, it was necessary
to devise techniques to select smaller test suites. Our
approach is, given a small budget of test cases that can be
run, to reward diversity (i.e., penalize similarity) in the
chosen test cases.

We assessed different similarity measures and
diversified test cases using Genetic Algorithms (GAs) and
Adaptive Random Testing (ART). The proposed techniques
were applied on one industrial case study where the goal
was to decrease test execution cost down to an affordable
number of test cases while preserving, to the maximum
extent, the fault detection rate (FDR) of the original test
suite. Results showed that, compared to random and
coverage-based selection, much higher FDR can be
achieved when using STCS.

These promising results motivated the need to gain a
better understanding of STCS, which is essential to develop
novel and more effective techniques. Unlike our previous
work [2-4], where we were exploring alternative STCS
techniques, in this paper we analyze their variation in
effectiveness, in a controlled manner and using simulation,
when varying the relationship between similarity
distributions and fault detection among test cases. In other
words, the goal is to investigate under which circumstances
STCS is more effective. The results shed light on the best
and worst conditions for STCS, thus preparing the ground
for improved similarity measures and STCS results.

The intuition is that STCS would perform better when
test cases which detect distinct faults are dissimilar and test
cases that detect a common fault are similar. Such a
condition was verified [2] in one industrial case study,
where we found that test cases finding a common fault
were indeed clustered together in the test case space and
these clusters were mostly distinct.

In this paper, to investigate the above intuition in a
more precise and systematic way, we resort to a large
number of experiments based on simulation. Two industrial
case studies were used to guide the simulations and thereby
obtain more realistic results. On one hand, the results of our
empirical study confirm our intuition about what drives the
effectiveness of STCS, though they provide insights that
are more complex than what was originally expected. On
the other hand, such analyses pointed out a particular
characteristic of MBT (compared to numerical
applications) that can make STCS less effective. The
situation appears when there is a small clustered set of test
cases that is far away from all the others (referred to as
outliers), which is not uncommon, for example, in state
machine-based testing when a small group of transition
paths is mostly disconnected from the rest of the state
machine. Our empirical analyses show that, in that case, the

FDR of STCS can significantly decrease. We hence
propose an approach, based on rank scaling, to manipulate
similarity values so as to alleviate this problem.

The rest of the paper is organized as follows. The next
section provides background information about similarity-
based test case selection. Section 3 discusses the problems
related to outliers and outlines our solution to alleviate it.
Section 4 describes the experiment design and reports the
results. Section 5 provides a brief overview of related
works covering similarity-based selection techniques.
Finally, Section 6 concludes the paper and outlines our
future work plan.

II. SIMILARITY BASED TEST CASE SELECTION

Unlike coverage-based selection, where the goal is
maximizing the coverage of a test model (e.g., transition
coverage in a state machine) by the selected test cases to
maximize chances of fault detection, STCS techniques
maximize diversity among the selected test cases. Diversity
is calculated using a (dis)similarity measure between pairs
of test cases. A similarity measure is a value that a
similarity function assigns to the pair. Inputs of the function
are usually an encoded test case as a set or sequence of
elements. In the context of MBT, the inputs are abstract test
cases defined on the test model rather than concrete test
cases. We do not use the execution information of the test
case as, in our context, the goal is to select them before
execution. Abstract test cases are naturally generated as a
first step by MBT and can hide the unnecessary information
for similarity comparisons. For example, in state machine-
based testing, an abstract test case representation can be a
path in the state machine specifying the software under test
(SUT). In general, different faults can be detected by the
same test path instantiated with different test data (e.g.,
event parameter values). Therefore, to calculate the FDR of
a technique, it is necessary to run the selected test paths
with different input data and analyze its FDR distribution.

A. Encoding and similarity functions

The representation (encoding) of test cases has an
important effect on a similarity measure. Though in MBT a
test path represents an encoded version of a test case, the
test path can be described at different levels of details. In
[4], we studied three encodings for a test path in UML state
machines: state-based, transition-based, and trigger-guard-
based. We reported that trigger-guard-based encoding is the
most effective one in terms of fault detection, where a test
path (tp) is represented as:

<tp> ::= <TrGu> | <TrGu> “,” <tp>
< TrGu > ::= trig |guard | id | guard “+” trig

where trig is the identification of a trigger, and guard is
the identification of a guard in the state machine. In this
representation, a transition is identified by its trigger, a
guard, or both. If there is a transition with no guard and
trigger, we use the transition id (id) as its identifier.

Given an encoding, one may use different similarity
functions to calculate the similarity value. In [3] we studied
six set-based and sequence-based similarity functions. We

proposed Jaccard Index [5] as the most cost-effective set-
based and Needleman-Wunsch (NW) [6] as the best
sequence-based similarity function. The Jaccard Index is
defined as the size of the intersection divided by the size of
the union of the two encoded test cases, whereas the NW
algorithm assigns a similarity value based on the global
alignment [6] of the two encoded test cases by arranging
the sequences of elements in the test cases to identify
regions of similarity between the sequences.

From an STCS point of view, the only required
constraints on the similarity measures are that they must be
positive and symmetric, which is true for all proposed set
and sequence based measures. This means that properties
such as reflexivity (Sim(,)=maximum iff)

and triangular inequality (D(,)+ D(,)>=

D(,) where D(,) = 1/ Sim(,)) do not

necessarily hold among different pairs of test cases [7]. For
example, NW values can be in any range and, except for
symmetry, does not feature any other well-known property
of distance/similarity measures [8].

Given a set of n encoded test cases (sn) and a similarity
function (Sim), the test case selection problem is
reformulated as minimizing SimMsr(sn):

 ,

 ,

where Sim(tpi , tpj) returns the similarity of two test
paths (encoded abstract test cases in MBT) in sn represented
by tpi and tpj. The last step in STCS is using a strategy to
select a subset of test cases with minimum average pair-
wise similarity (SimMsr). This test case selection problem
is NP hard (traditional set cover) [9] and using an
exhaustive search in our cases (and for most realistic cases)
is not an option, since the search space size for selecting a
subset of size n is equal to the number of possible n-
combinations within a test suite of a given size. As an
example from our case studies, the search space size for
n=28 in a test suite of size 281 (~10% of the test suite) is

 2.9*10^38.

In [2] we have examined GA, ART, and a hierarchal
clustering algorithm as selection algorithms and found out
that GA was the most cost-effective technique among them.
In this paper, we show our analyses when both using GA as
our proposed technique (called STCS_GA) and ART as the
most well-known algorithm (called STCS_ART) for
diversifying test cases. The algorithms are introduced in the
following subsections.

B. Adaptive random testing

ART has been proposed as an extension to Random
Testing [1]. Its main idea is that diversity among test cases
should be rewarded, because failing test cases tend to be
clustered in contiguous regions of the input domain. This
has been shown to be true in empirical analyses regarding
applications whose input data are of numerical type [1].
Therefore, ART is a candidate selection strategy in our
context as well. In this paper, we use the basic ART

http://en.wikipedia.org/wiki/Intersection_%28set_theory%29
http://en.wikipedia.org/wiki/Union_%28set_theory%29

algorithm described in [1], but we ensure that no replicated
test case is given in output. The pseudo-code for ART is:
(1) Z={}

(2) Add a random test case to Z

(3) Repeat until |Z|= sampleSize

(4) Sample K random test cases that are different from Z

(5) For each of these test cases k

(6) k.maxSim = max(Sim(k , z Z))

(7) Add the k with minimum maxSim to Z

C. Genetic Algorithms

In this paper, we use a steady state GA with the same
settings as it has been used in [2], in which only the
offspring that are not worse than their parents are added to
the next generations. An individual in our context is a
subset of size n from the original test suite (denoted sn).
Given a similarity function Sim(tpi , tpj), the fitness
function f to minimize is the sum, for all pairs (tpi , tpj) in
sn, of Sim(tpi , tpj), denoted SimMsr. We use a single point
crossover with probability of Pxover to combine two different

parents
 and

. A mutated test path is replaced by a test

path that is selected at random from the set of all possible
test paths. A valid solution is a set of test cases in which
there is no duplicate. The stopping criterion is 10,000
fitness evaluations, which is equal to the cost of 1,000 runs
of ART with a candidate size 10 in terms of the resulting
number of distance calculations. The pseudo-code of the
employed GA is as follows:
(1) Sample a population G of m sets of test cases uniformly

from the search space (i.e., the set of all possible valid sets
with a given size n)

(2) Repeat until the stopping criterion is met
(3) Choose

 and

 from G

(4)
 ,

 crossover (

 ,

,)

(5) Mutate (
 ,

)

(6) If valid (
 ,

)

 min (
 ,

)) min (

 ,

))

(7) Then

 and

(8) Else If valid (

)

 min (
 ,

)) min (

 ,

))

(9) Then

(10) Else If valid (
)

 min (
 ,

)) min (

 ,

))
(11) Then

III. IMPACT OF OUTLIERS AND RANK SCALING SOLUTION

Unlike test suites for numerical applications, where the
population of all possible input test data is distributed with
similar density in the input space, it is not uncommon in
MBT that a subset of test cases be very dissimilar to the
rest of the test suite (outliers). For example, if the test suite
is derived from a state machine and (1) the state machine
contains a partition which is initiated by a transition from
the initial state, (2) this partition has no transition to/from
the rest of the state machine and (3) the triggers of the
transitions in the segment are very different than the
triggers of the transitions in the main part of the state

machine, then the test suite generated from such a model
will contain a small set of test cases, which will be very
dissimilar to the rest of the test suite, that covers that
segment. Investigating the behavior of STCS in such a
situation is necessary in order to gain confidence about
STCS effectiveness in the context of MBT. But because we
are evaluating STCS on industrial case studies, and such
artifacts are difficult to obtain in large numbers to support a
systematic investigation, we perform simulations based on
industrial case studies to increase realism.

We can show that both STCS_GA and STCS_ART will
try to select half of the test cases from the outlier clusters
(for simplicity, we will assume the presence of only one
outlier cluster). The reason is that the similarity between
any pair, in which one test case is from the main set of test
cases and the other from the outlier set, would have a very
low value compared to the other similarity values in the
matrix. Therefore, to minimize , the selection
algorithm is guided to select as many as possible of these
pairs. Given a minimized test suite of size n, there will be m
test cases from the main set, and o test cases from the
outlier set, with the constraint m+o=n. The number of pairs
in which the two test cases are from different sets would be
m*o. Under the constraint m+o=n, the term m*o is
maximized when m=o, from which it follows o=n/2
(Schur-concave function [10]). Therefore, nearly half of
test cases will be chosen from the outlier cluster regardless
of the proportion of the cluster sizes. Consequently, if the
outlier cluster is small and does not contain any fault
revealing test case, the FDR of STCS will likely be low.

Since we expect poor results in the presence of no-fault
revealing outlier, we suggest using a rank scaling technique
to alleviate the problem. In this technique, the raw values in
a similarity matrix are replaced by their rank. The rank is
simply the index of the value after ordering all similarity
values of the matrix in an array. This rank scaling approach
is derived from solutions for solving outlier problem in
statistics [11] and help decreases the large similarity
differences between test cases from the outlier cluster and
the rest of the test suite.

Notice that, in this paper, we are assuming N (test suite
size) small enough such that a N*N matrix can be stored
without significant overheads (this was the case for the two
industrial case studies analyzed in this paper). When this is
not possible, and we need to compute the similarity values
on the fly each time we evaluate the similarity of a set of
test cases, a dynamic rank scaling is needed. For example, a
data structure (e.g., a hash-table) could be used to store all
the unique similarity values encountered so far during the
search (e.g., while using STCS_GA). Rank scaling would
hence be based on those values.

IV. EMPIRICAL STUDY

In this section we report the design and results of our
empirical analysis. The high-level goal of this study is to
investigate under which circumstances, characterized by the
correlation between similarities of test cases and their fault
detection, and the distribution of test cases in their

definition space, a STCS is most effective in terms of fault
detection rate (FDR).

A. Test suites description

In this study, we test different hypotheses regarding the
effectiveness of STCS on different input test suites to
minimize. Given a test suite of size N, we can consider a
N*N matrix to represent the test suite in which all similarity
pairs are stored (actually, only half of it is necessary, due to
the symmetric property of the similarity functions).

These matrices are all based on the modification of test
suites from two industrial case studies. However, we had to
manipulate the matrices to create all the possible situations
of a test suite with respect to the properties we want to
investigate, as further explained below.

The SUT in case study A is a safety monitoring
component in a safety-critical control system implemented
in C++. A flattened version of the state machine
representing the SUT consists of 70 states and 349
transitions. There are 15 real faults in the SUT which are
detectable by a test suite automatically generated from a
UML state machine representing the SUT’s behaviour. The
test suite, which is generated using our MBT tool (TRUST)
[12], contains 281 abstract test cases (test paths) covering
all round trip paths [13] in the state machine. Each test path
either detects a certain fault or not regardless of its input
data. In other word, the FDR values of the test paths of this
case study are independent from input data.

The SUT in case study B is the core subsystem of a
video-conference system which manages sending and
receiving of multimedia streams implemented in C. As the
previous case study, we deal with real faults detectable by
an automatically generated test suite using TRUST. Case
study B is smaller than A with 11 states, 70 transitions, 59
test cases (covering all round trip paths in the state
machine) and only four detectable faults. But unlike case
study A, the FDR of the test paths are not independent from
input data. Depending on which data are chosen as input
parameters for the events on the state machine, a fault may
or may not be detected.

B. Research questions

The high level goal of this study leads to the following
research questions:
RQ1. Under which conditions, with respect to the
similarity of fault revealing test cases in a test suite, STCS
performs best?

RQ1.1. Is STCS more effective if test cases which
detect distinct faults are dissimilar?
RQ1.2. Is STCS more effective if test cases which
detect common faults are similar?
These questions directly target the hypothesis on

rewarding diversity, as discussed in Section 1, and seek to
confirm it in the context of MBT. The diversity hypothesis
is investigated with respect to two distinct properties
through RQ1.1 and RQ1.2.
RQ2. Is rewarding diversity robust to small clusters of test

case outliers (test cases which are very dissimilar to the rest

of test suite)?

RQ3. What is the effect of rank scaling in the presence and
absence of outliers?

RQ3.1. Does using rank scaled similarities improve
STCS effectiveness in the presence of outliers?
RQ3.2. Does using rank scaled similarities impact

negatively STCS effectiveness when there is no outlier?
The problem of outliers, discussed in Section 3, is being

examined in RQ2. Our motivation, as mentioned above, is
that in contrast to numerical applications, outliers are not a
rare feature of test suites when they are generated using
MBT. In question RQ3, the first sub-question RQ3.1 asks
whether rank scaling is useful to alleviate the effect of
outliers. RQ3.2 investigates whether rank scaling can
reduce FDR when there is no outlier. If RQ3.2 shows that
rank scaling does not reduce the FDR in such situations and
RQ3.1 shows that rank scaling alleviates the outlier’s
problem, it is wise to always apply rank scaling in STCS. If
results show that rank scaling does not reduce the FDR in
such situations and that rank scaling alleviates the outlier
problem, then it would be recommended to always apply
rank scaling in STCS.

C. General settings of the experiments

We designed two experiments Exp1 to answer RQ1 and
Exp2 to answer RQ2 and RQ3. In both experiments we use
STCS_GA and STCS_ART based on trigger-guard
encoding and NW as similarity function when it must be
specified. Note that the results of our study in [3], which
was based on only case study A, showed the same level of
effectiveness for both NW and Jaccard Index. We had
recommended the Jaccard Index in that study since it is
easier to apply than NW. However, in case study B, NW
provides much better results since the sequence of test path
elements matters regarding fault detection in this study and
NW is a sequence-based function. Therefore, in this paper
NW is used for both case studies.

Since we have built this study based on our previous
work, the overall settings of the algorithms are the same as
our previous study settings. For GA, the stopping criterion
is 10,000 fitness evaluations, the crossover probability is
0.75 and the population size is 50. For ART, the candidate
size is 10 and 1000 repetitions (from which we select the
best) are performed for each run of the algorithm to ensure
fair comparisons with GA. More details regarding the
settings and rationale behind our choices can be found in
[2].

Each experiment uses input matrices which are
generated by modifying similarity matrices of the case
studies A and B, which we refer to as simulations. We
repeat the experiments on different sample sizes (four for
case study A and six for case study B) to check whether the
results are consistent across the size range. Although the
actual sizes for the sample sets are different for the two
case studies, the percentage of selected test cases among all
test suites is almost the same: sample sizes for experiments
driven from case study A are equal to 5, 15, 25, and 35, and
sample sizes for the experiments driven from case study B
range from 3 to 8. The important point here is running the
experiments on relatively small sample sizes, since this is

the most interesting case in practice, when it is not possible
to run many test cases on the actual hardware and platform
(as for the industrial systems used as a case study in this
paper). Furthermore, for larger sizes all techniques
converges to 100% FDR and differences will not be
significant.

For both algorithms and all sample sizes, each
experiment is repeated 1000 times (100 runs for search
technique with different random seeds and 10 different
input matrices per each matrix type to account for random
variation in both search techniques and matrix generation).
A rigorous statistical procedure has been used to evaluate
and compare the effectiveness of these randomized
algorithms [14].

D. Design and results of Exp1

To answer RQ1, we designed Exp1 where STCS_GA
and STCS_ART, are applied on nine different types of
input similarity matrices. These similarity matrices are
artificially built—though based on case study A—to
simulate all possible combinations of two properties of a
test suite with respect to its test cases’ similarities. Property
X denotes the similarity between test cases that detect a
common fault and Property Y denotes the similarity
between test cases that detect distinct faults. In other words,
RQ1.1 and RQ1.2 address the effect of Property Y and X
on STCS effectiveness. In our simulations, each of these
two properties can have three values: High (top 10%:
[0.9,1.0]), Low (bottom 10%: [0.0,0.1]), and Random
(randomly picked from the valid range: [0.0,1.0]), which
makes nine possible combinations of the properties as an
identifier for a test suite. For example, a test suite where
test cases that detect a common fault are highly similar and
those that detect different faults are very dissimilar, is
identified by Property X=High and Property Y=Low. Note
that, since the similarity functions we use only need to be
positive and symmetric, when we generate matrices for our
experiments, we do not need to validate each similarity
value by checking its relationship with other values for
other test case pairs in the same matrix.

To generate matrices with different property
combinations while remaining as realistic as possible, we
kept the original number of faults (15) and same failure rate
as in case study A (74/281) and built matrices with sizes
300, 600, 6,000, and 12,000 (nine matrices for each matrix
size). Recall that the reason for using different sizes is to
test the independence of the results from test suite size and
therefore help the generalization of the results to larger case
studies (i.e., does the technique scale?). Though this is only
realistic when the system under test has already undergone
significant verification, to make the analysis tractable, we
assumed that each test case can find at most one fault. At
this stage it is difficult to assess the consequences of this
assumption and it therefore constitutes a threat to validity.

For each matrix type, 10 instances are generated. Both
STCS_GA and STCS_ART are applied on these matrices
100 times, which yields a total of 1000 runs. In total, given
that there are four sample sizes, nine matrix types, 1000

runs, and two selection techniques, then 288,000
(4*9*10*2*100*4) observations are collected in Exp1, each
with an FDR value for the selected test cases. The FDR is
the average number of faults detected by the selected test
cases, for each run of the STCS, divided by the total
number of faults (15).

Figures 1 shows partial results for Exp1. Due to space
constraints, we chose to present only the FDR results for
two sample set sizes (15 and 25) and two matrix sizes (300
and 12000) for each of the STCSs, but the same trend was
observed over all sample sets and matrices as illustrated in
Figure 2 for effect sizes. The first observation is that,
regardless of the type of SCTS, sample size, and matrix
size, test suites with a Low value for Property Y show
higher FDR. This means that the most important factor for
ensuring the success of STCS is having test cases detecting
distinct faults as far (dissimilar) as possible from each
other. This confirms our hypothesis and answers RQ1.1.

To answer RQ1.2, if we first look at cases where
Property Y has a Low value, we can see significant
differences in test suites with High values for Property X
when compared to the others. This means that the
combination of High/Low values for property X/Y is the
best combination for STCS. This directly confirms the
hypothesis discussed in RQ1. However, Property Y seems
to have stronger effect since its value completely overrides
the effect of Property X.

To gain more confidence in the conclusions drawn from
this empirical study, we also carried out a series of
statistical tests. For each of the 16 combinations of matrix
sizes and test sample sizes, we used a Mann-Whitney U-
test to compare the performance of the property
combination High/Low against the other eight
combinations. This test verifies whether two FDR
distributions are statistically different. For STCS_GA, the
p-values were always lower than our selected level of
significance (0.05). For STCS_ART, resulting p-values
were lower than 0.05 in all cases but four out of the
16*8=128 comparisons. This provides strong statistical
evidence to support the claim that High/Low is the best
condition under which to use STCS.

To quantify the magnitude of improvement in a
standardized way, in Figure 2 we plot the effect size
measure of STCS_GA and STCS_ART for different sample
and matrix sizes using the Vargha-Delaney’s A statistic.
This statistic estimates the probability that a data point
randomly taken from a set (i.e., a probability distribution)
will have higher value than another point randomly taken
from a second data set. When the two distributions are the
same, we would have A=0.5. The results in Figure 2 show
that, most of the time, the A values are close to 1. This
means that, for the High/Low combination, it is nearly
certain that STCS will yield better results than in the other
eight cases, even when we take into account the variance of
the results due to the randomized nature of these
algorithms.

Figure 1. FDR of a sample set (of size 15 and 25) of test cases selected by STCS_GA and STCS_ART from different matrix types of size 300 and

12000. Matrix types on X_Axis are identified as Property X/Property Y where each property can be random (r), low (l) or high (h). Each boxplot

shows 1000 observations (100 STCS runs per matrix on 10 different matrix instances).

(a)

(b)

Figure 2. Effect size measure A (each calculated out of 1000 observations) for FDR of a sample set selected by STCS_GA (a) and STCS_ART

(b) shown as boxplots for the eight comparisons. The effect size compares the High/Low matrix type with the all other eight matrix types of

Figure 1. X_Axis shows the sample size/matrix size.

E. Design and results of Exp2

For Exp2, we apply STCS_GA and STCS_ART on four
types of matrices per case study. We manipulated the
original matrices from each case study to examine the
effect of outliers on the FDR of the test suites. We did so
by adding extra percentages of outlier test cases. For case
study A and B, respectively, we built matrices with 1, 2, 5,
10, and 20 and 5, 10, and 20 percent extra test cases (1 and
2 percent would not make sense for the smaller case study
B with only 59 test cases). Four types of matrices are
generated for each case study and size: (1) Random/Base:
The original matrix from the case study plus extra test cases
with random similarity values in the same range of
similarity values as in the original matrix. This matrix is the
baseline for the FDR comparisons; (2) Cluster/Base: The
original matrix plus extra test cases with random similarity
to each other but very low similarity (outliers) to the rest of
the test suite (original test cases). This low similarity value
must be set to be much lower than the minimum values
within each of the groups containing the original and
additional test cases. If min and max are the minimum and
maximum values in the original matrix, we first change the
matrix by replacing every value x with x+10*(max-min) to
ensure much higher NW similarity values among the
original test cases compared to such values with outliers.
The NW values between outliers are then generated to be in
the same range as the original matrix. Last, to simulate a
low similarity between the outliers and the original test
cases, we set the NW value between them to zero. The
constructed matrix therefore represents the situation where
outlier test paths are present in the test suite; (3)
Random/Ranking: The same matrix as Random/Base but
after applying rank scaling as introduced in the research
question subsection; (4) Cluster/Ranking: The same matrix
as Cluster/Base but after applying rank scaling.

To answer RQ2, we compare the FDR of a selected
subset of test cases (for four different sizes) from a test
suite represented by the Cluster/Base matrix with the FDR
of a same size subset using the Random/Base matrix. This
comparison investigates the effect of outliers on the STCS
effectiveness.

To investigate RQ3, we compare STCS effectiveness on
the matrices from Cluster/Ranking and Cluster/base, we
will assess whether rank scaling has significantly alleviated
the effect of the outliers (RQ3.1). We also compare the
effectiveness of STCS on the Random/Ranking and
Random/Base matrices to check for possible negative
effects of rank scaling when there is no outlier (RQ3.2).

We generate 10 instances of each of the 32 matrices
(four matrix types and eight outlier percentages in the two
case studies) to account for random variation in matrix
generation. Both STCS_GA and STCS_ART are applied on
these matrices 100 times to account for random variation in
search techniques. In total, given that there are four sample
sizes in case study A and six sample sizes in case study B,
320 matrices, 100 runs, and two selection techniques, then
640,000 (10*320*100*2) observations are collected for
Exp2. Each observation has an FDR value for the selected
test cases. The FDR calculation for case study A is the
same as for Exp1 but is different for case study B, since, in
the latter case, whether each test path detects a fault
depends on which input data is used. For case study B, we
randomly (with equal probability for each input data value)
generated 10 different test cases per test path. Therefore,
probability of finding a specific fault with the selected

subset of test paths is equal to one minus the probability of
not finding the fault by any of the test paths in the chosen
set: (

) where n is the size of the

subset and is the estimated probability of detecting fault
 with test path i in the subset: number of times the fault is

(a)

(b)

Figure 3. FDR of a sample set selected by STCS_GA from test suites based on case study A with size 35 (a) and case study B with size 8 (b).

Four combinations are compared: with (Clustered) or without outliers (Random), and using rank scaling (Ranking) or not (Base). The graphs

show the average FDR over 1000 STCS_GA runs. X_Axis shows the percentage of outliers.

detected by the 10 test cases generated for that test path
divided by 10. The FDR is hence computed by averaging
these probabilities , where is the number of

faults. From the results of Exp2, answering RQ2 and RQ3,
Figure 3 and Figure 4 are chosen to show one
representative example since the trend is again the same
over different sample sizes and algorithms for case study A.
In Figure 3.a, the clear gap between Cluster/Base and
Random/Base shows a strong drop in STCS effectiveness in
the presence of outliers (RQ2). Comparing Cluster/Base
and Cluster/Ranking we can clearly see that rank scaling
helps STCS improve its effectiveness in the presence of
outliers (RQ3.1) and comparing Random/Base and
Random/Ranking clearly shows there is no reduction in
FDR when there is no outlier in the test suite (RQ3.1).

In case study B, outliers also decrease effectiveness of
STCS, though to a lesser extent (RQ2), and rank scaling
once again does not compromise the potential FDR for test
suites without outliers (RQ3.2). However, as it can be seen
in the Figure 3.b, the improvement for case study B when
comparing Cluster/Base and Cluster/Ranking is relatively
small (RQ3.1), perhaps in part because the impact of
outliers is already smaller to start with in this case study.

As in the previous experiment, to get more reliable
results, we also carried out a rigorous statistical procedure
using Mann-Whitney U-tests and Vargha- Delaney’s A
statistics (effect size) to compare FDR distributions across
the four types of matrices. Comparing the performance of
Random/Base with Random/Ranking (RQ3.2) yields p-
values lower than 0.05 in only one case out of 20
comparisons (five extra test case percentages time four

matrices) for STCS_GA and two out of 20 comparisons for
STCS_ART, where, even in those cases, the FDR
difference between Random/Base and Random/Ranking is
practically negligible. This statistically confirms that rank
scaling is not particularly harmful in most cases when no
outlier is present. However, when we compare Cluster/Base
against Cluster/Ranking (RQ3.1), we obtain 11 cases with
significant p-values for STCS_GA, and six cases for
STCS_ART.

In Figure 4, we plot the effect size measure of
STCS_GA for different sample and matrix sizes when we
compare Cluster/Base against Cluster/Ranking (RQ3.1) in
case study A. For small sample sizes and small outlier
cluster, the effect is minimal (i.e., very close to 0.5).
However, for larger sizes, the effect gets much stronger
(close to 0.7).

As explained before, the main reason for which we
apply rank scaling is to balance the distribution of the
selected test cases from each cluster of outliers (if present).
To examine this phenomenon, we considered one scenario
(case study A with 20% extra test cases forming a cluster of
56 test case outliers) and applied STCS_GA for selecting
test case subsets (four sample sizes). Table 1 shows the
average number of test cases taken from the outlier cluster
with and without rank scaling. The best column shows the
optimal number of test cases if we would select by only
considering the size of the test suite and its outlier cluster,
as expressed by the formula below.

 +

Figure 4. The effect size measure A for FDR of sample sets selected by

STCS_GA from the test suite driven from case study A. X and Y axes

show the outliers percentage and the sample set size.

TABLE 1. AVERAGE NUMBER OF TEST CASES SELECTED BY STCS_GA

FROM THE OUTLIER CLUSTER (20% EXTRA TEST CASES ON THE CASE

STUDY A) WITH AND WITHOUT RANK SCALING.

Sample Size Best No Ranking Ranking

5 1 2.95 2.94

15 3 7.06 6.77

25 4 12.01 10.61

35 6 17.00 14.41

Based on the results in Table 1—Note the relation

between Table 1 and Figure 3: the last row of Table 1
corresponds to Figure 3.a, with 20% extra test cases — it is
clear that without rank scaling roughly half of the sample
set is taken from the outlier cluster. The data suggest that
rank scaling partially alleviates the problem for larger
sample sizes. We get better improvement for larger sample
sizes and the reason why this is the case will require further
investigation.

One possible alternative to rank scaling for solving the
outlier problem could be an approach that can be
summarized as (1) finding the outlier cluster(s) using a
clustering technique and identifying an outlier cluster based
on the ratio of the inter-cluster distances to the intra-cluster
distances (2) assigning a sample size to the outlier cluster
based on the proportion of its size to the entire test suite
size (3) and finally applying the STCS separately on the
outlier and the main test cases. In previous work [2], we
found that clustering techniques were less effective than
STCS. Furthermore, rank scaling is easier and
computationally cheaper than clustering techniques.
However, hybrid combinations would be promising areas
for further research.

F. Discussion on threats to validity of the results

This study was conducted according to recently proposed
guidelines for conducting empirical studies in search-based

testing [15] and using statistical tests to assess randomized

algorithms in software engineering [14]. Regarding construct
validity of the experiments, the most important factor is the
validity of the measures used for assessing FDR and
similarity comparisons. These measures are taken from
previously published studies [2-4] and their validity are
already discussed there. Another remaining concern is the
artificially generated similarity values in the experiments.
As discussed in the background section, we are using the
NW similarity measure, which entails no constraint on the
different pairs of similarities. Therefore, the assignment of
High, Low, and Random values cannot lead to incorrect
matrices. However, the assumption in Exp1 that each test
case can find at most one fault constitutes a threat to
validity of the results. A more general experiment where
each test case can find each fault with a certain probability
should be conducted to achieve more reliable results.

The randomized nature of the employed algorithms
poses a threat to internal validity. To account for it, the
experiments were run many times with different random
seeds, thus leading 1000 observations for each case
study/sample size/search technique/matrix type
combination (100 runs of search technique on 10 randomly
generated input matrices). In addition, a rigorous statistical
procedure (comprising significance tests and effect size
measures) has been used to strengthen the conclusion
validity of the results.

To cope with external validity, we conducted
experiments using many different combinations of sample
sizes, test suite sizes, case studies, and STCS techniques. In
particular, the use of two industrial systems to drive the
simulations (by retaining some of their characteristics such
as failure rate of test cases and number of faults) provides
stronger support to the applicability of our approach to
other industrial systems. But, as for all empirical studies,
our results might not generalize to other case studies and
only replications will help build confidence.

V. RELATED WORK

STCS for MBT was first introduced in [16], where
sequences of transitions in a Labeled Transition System
model of the SUT are used for representing test paths. The
similarity function is simply counting the common
transitions in two test paths and a Greedy Search is used for
minimizing the sum of pair similarities. Later, Hemmati et
al. [4] introduced and improved STCS for UML based
testing by using a trigger-guard based encoding of test
paths, by using better similarity measures [3] and by
resorting to more powerful search techniques [2].

Except for these works on model-based STCS,
diversifying test cases has been studied on code-based test
case selection, minimization and prioritization, mostly in
the context of regression testing. The basis for computing
test case similarity in these studies is usually on code
coverage or on some other execution information. For
example, in [17] and in [18], all def-use pairs coverage and
a sequence of memory operations are used to calculate the
similarities, respectively.

To the best of authors’ knowledge, no existing study
systematically investigates the impact of test suite
properties on STCS in the context of MBT. Similar studies
published to date have been conducted in the numerical
application domain to examine the effect of test suite
properties, with respect to test case similarities and their
fault detection, on the ART algorithm. Several papers have
been published on this subject [1], in which for example
optimal conditions for ART have been theoretically studied
[19]. However, as discussed in Section 3, MBT is very
different from the unit-testing of numerical applications in
terms of the distribution of input test data in the input space
(e.g., clusters of outliers are unlikely in the numerical
application domain).

VI. CONCLUSION AND FUTURE WORK

In previous studies we proposed similarity-based test
case selection (STCS) techniques to reduce the cost of
model-based testing (MBT) [2-4]. Though the technique
was successfully applied on one industrial system, we
needed more empirical evidence to support the idea that
maximizing the diversity of test cases was a good principle
for test case selection and understand under which
conditions.

In this paper, we conducted a large scale simulation,
based on two industrial case studies, to investigate, in a
controlled manner, how relevant properties of a test suite
affect the effectiveness of STCS. When considering
properties are about the relationship between fault detection
and similarity distributions among test cases, our results
showed that the most ideal situation for a STCS is when, in
a test suite, (1) test cases that detect a common fault are
similar and (2) test cases which detect distinct faults are
dissimilar. Our empirical study shows that property (2) is
much more important than property (1). This result will
help us devise improved similarity functions in the future,
which in turn will result into more effective STCS.

In this paper, we also investigated the problem of
outliers in a test suite—which are not unlikely to happen in
MBT—that could compromise the performance of STCS.
Results confirmed the significant impact of outliers and an
approach, based on using rank scaling measurement instead
of raw similarity values, was proposed to address the
outlier problem. Though rank scaling had a positive effect,
it only partially addressed the outlier problem and
additional strategies remain to investigate.

Future work will examine other solutions for the outlier
problem based on combining clustering and STCS
techniques. We will also use the insights that we gained
from this study to develop techniques to improve STCS.

VII. ACKNOWLEDGEMENT

The authors wish to thank Marius Liaaen, from
Tandberg AS, now part of Cisco, for helping us in
conducting experiments.

VIII. REFERENCES

[1] T. Y. Chen, F.-C. Kuoa, R. G. Merkela, and T. H. Tseb,

"Adaptive Random Testing: The ART of test case diversity,"

Journal of Systems and Software, vol. 83, pp. 60-66, 2010.

[2] H. Hemmati, A. Arcuri, and L. Briand, "Reducing the Cost of

Model-Based Testing through Test Case Diversity," in 22nd

IFIP International conference on Testing Software and Systems

(ICTSS), formerly TestCom/FATES, 2010.

[3] H. Hemmati and L. Briand, "An Industrial Investigation of

Similarity Measures for Model-Based Test Case Selection," in

21st IEEE International Symposium on Software Reliability

Engineering (ISSRE), 2010.

[4] H. Hemmati, L. Briand, A. Arcuri, and S. Ali, "An Enhanced

Test Case Selection Approach for Model-Based Testing: An

Industrial Case Study," in 18th ACM International Symposium

on Foundations of Software Engineering (FSE), 2010.

[5] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data

Mining: Addison Wesley, 2006.

[6] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological

Sequence Analysis: Probabilistic Models of Proteins and

Nucleic Acids: Cambridge University Press, 1999.

[7] R. Xu and D. C. Wunsch II, "Survey of Clustering

Algorithms," IEEE Transactions on Neural Netwoks, vol. 16,

pp. 645-678, 2005.

[8] G. Dong and J. Pei, Sequence Data Mining: springer, 2007.

[9] A. P. Mathur, Foundations of Software Testing, 1 ed.: Addison-

Wesley Professional, 2008.

[10] P. J. Boland, H. Singh, and B. Cukic, "Comparing partition and

random testing via majorization and Schur functions," IEEE

Transactions on Software Engineering, vol. 29, pp. 88-94,

2003.

[11] D. J. Sheskin, Handbook of Parametric and Nonparametric

Statistical Procedures, 3 ed.: Chapman & Hall, 2003.

[12] S. Ali, H. Hemmati, N. E. Holt, E. Arisholm, and L. Briand,

"Model Transformations as a Strategy to Automate Model-

Based Testing - A Tool and Industrial Case Studies," Simula

Research Laboratory, Technical Report(2010-01)2010.

[13] R. V. Binder, Testing Object-Oriented Systems: Models,

Patterns, and Tools: Addison-Wesley Professional, 1999.

[14] A. Arcuri and L. Briand, "A practical guide for using statistical

tests to assess randomized algorithms in software engineering,"

Simula Research Laboratory (2010-10) 2010.

[15] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-

Walawege, "A Systematic Review of the Application and

Empirical Investigation of Search-based Test-Case

Generation," IEEE Transactions on Software Engineering,

Special issue on Search-Based Software Engineering (SBSE),

in press, 2010.

[16] E. G. Cartaxo, P. D. L. Machado, and F. G. O. Neto, "On the

use of a similarity function for test case selection in the context

of model-based testing," Software Testing, Verification and

Reliability, 2009.

[17] A. d. S. Simão, R. F. d. Mello, and L. J. Senger, "A Technique

to Reduce the Test Case Suites for Regression Testing Based

on a Self-Organizing Neural Network Architecture," in 30th

Annual International Computer Software and Applications

Conference (COMPSAC), 2006.

[18] M. K. Ramanathan, M. Koyutürk, A. Grama, and S.

Jagannathan, "PHALANX: a graph-theoretic framework for

test case prioritization," in 23rd Annual ACM Symposium on

Applied Computing, 2008.

[19] T. Y. Chen and R. Merkel, "An upper bound on software

testing effectiveness," ACM Transactions on Software

Engineering and Methodology, vol. 17, 2008.

