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Abstract—Our experience with applying model-based testing 

on industrial systems showed that the generated test suites are 

often too large and costly to execute given project deadlines 

and the limited resources for system testing on real platforms. 

In such industrial contexts, it is often the case that only a small 

subset of test cases can be run. In previous work, we proposed 

novel test case selection techniques that minimize the 

similarities among selected test cases and outperforms other 

selection alternatives. In this paper, our goal is to gain insights 

into why and under which conditions similarity-based 

selection techniques, and in particular our approach, can be 

expected to work. We investigate the properties of test suites 

with respect to similarities among fault revealing test cases. 

We thus identify the ideal situation in which a similarity-based 

selection works best, which is useful for devising more 

effective similarity functions. We also address the specific 

situation in which a test suite contains outliers, that is a small 

group of very different test cases, and show that it decreases 

the effectiveness of similarity-based selection. We then 

propose, and successfully evaluate based on two industrial 

systems, a solution based on rank scaling to alleviate this 

problem.  

Keywords- Test Case Selection; Similarity Measure; 

Distance Function; Adaptive Random Testing; Genetic 

Algorithms; Model Based Testing 

I. INTRODUCTION 

Rewarding diversity in test cases has been shown to 
lead to higher fault detection in numerical applications, 
because failing test cases tend to cluster in contiguous 
regions [1].  In previous work [2-4], we proposed 
similarity-based test case selection (STCS) techniques for 
model based testing (MBT), which applied the idea of 
rewarding diversity on abstract test cases generated from 
UML state machines.  

Our motivation was that running all the system level 
test cases generated by a standard criterion, e.g., round trip 
path for UML state machines, was not feasible, due to the 
high cost of running them on the deployed platform or test 
network. So, from a practical standpoint, to solve the 
testing problems of our industrial partners, it was necessary 
to devise techniques to select smaller test suites. Our 
approach is, given a small budget of test cases that can be 
run, to reward diversity (i.e., penalize similarity) in the 
chosen test cases.  

We assessed different similarity measures and 
diversified test cases using Genetic Algorithms (GAs) and 
Adaptive Random Testing (ART). The proposed techniques 
were applied on one industrial case study where the goal 
was to decrease test execution cost down to an affordable 
number of test cases while preserving, to the maximum 
extent, the fault detection rate (FDR) of the original test 
suite. Results showed that, compared to random and 
coverage-based selection, much higher FDR can be 
achieved when using STCS. 

These promising results motivated the need to gain a 
better understanding of STCS, which is essential to develop 
novel and more effective techniques. Unlike our previous 
work [2-4], where we were exploring alternative STCS 
techniques, in this paper we analyze their variation in 
effectiveness, in a controlled manner and using simulation, 
when varying the relationship between similarity 
distributions and fault detection among test cases. In other 
words, the goal is to investigate under which circumstances 
STCS is more effective. The results shed light on the best 
and worst conditions for STCS, thus preparing the ground 
for improved similarity measures and STCS results.  

The intuition is that STCS would perform better when 
test cases which detect distinct faults are dissimilar and test 
cases that detect a common fault are similar. Such a 
condition was verified [2] in one industrial case study, 
where we found that test cases finding a common fault 
were indeed clustered together in the test case space and 
these clusters were mostly distinct.  

In this paper, to investigate the above intuition in a 
more precise and systematic way, we resort to a large 
number of experiments based on simulation. Two industrial 
case studies were used to guide the simulations and thereby 
obtain more realistic results. On one hand, the results of our 
empirical study confirm our intuition about what drives the 
effectiveness of STCS, though they provide insights that 
are more complex than what was originally expected. On 
the other hand, such analyses pointed out a particular 
characteristic of MBT (compared to numerical 
applications) that can make STCS less effective. The 
situation appears when there is a small clustered set of test 
cases that is far away from all the others (referred to as 
outliers), which is not uncommon, for example, in state 
machine-based testing when a small group of transition 
paths is mostly disconnected from the rest of the state 
machine. Our empirical analyses show that, in that case, the 



FDR of STCS can significantly decrease. We hence 
propose an approach, based on rank scaling, to manipulate 
similarity values so as to alleviate this problem. 

The rest of the paper is organized as follows. The next 
section provides background information about similarity-
based test case selection. Section 3 discusses the problems 
related to outliers and outlines our solution to alleviate it. 
Section 4 describes the experiment design and reports the 
results. Section 5 provides a brief overview of related 
works covering similarity-based selection techniques. 
Finally, Section 6 concludes the paper and outlines our 
future work plan.  

II. SIMILARITY BASED TEST CASE SELECTION 

Unlike coverage-based selection, where the goal is 
maximizing the coverage of a test model (e.g., transition 
coverage in a state machine) by the selected test cases to 
maximize chances of fault detection, STCS techniques 
maximize diversity among the selected test cases. Diversity 
is calculated using a (dis)similarity measure between pairs 
of test cases. A similarity measure is a value that a 
similarity function assigns to the pair. Inputs of the function 
are usually an encoded test case as a set or sequence of 
elements. In the context of MBT, the inputs are abstract test 
cases defined on the test model rather than concrete test 
cases. We do not use the execution information of the test 
case as, in our context, the goal is to select them before 
execution. Abstract test cases are naturally generated as a 
first step by MBT and can hide the unnecessary information 
for similarity comparisons. For example, in state machine-
based testing, an abstract test case representation can be a 
path in the state machine specifying the software under test 
(SUT). In general, different faults can be detected by the 
same test path instantiated with different test data (e.g., 
event parameter values). Therefore, to calculate the FDR of 
a technique, it is necessary to run the selected test paths 
with different input data and analyze its FDR distribution. 

A.  Encoding and similarity functions 

The representation (encoding) of test cases has an 
important effect on a similarity measure. Though in MBT a 
test path represents an encoded version of a test case, the 
test path can be described at different levels of details. In 
[4], we studied three encodings for a test path in UML state 
machines: state-based, transition-based, and trigger-guard-
based. We reported that trigger-guard-based encoding is the 
most effective one in terms of fault detection, where a test 
path (tp) is represented as: 

<tp>      ::= <TrGu> | <TrGu> “,” <tp> 
< TrGu > ::= trig |guard | id | guard “+” trig 

where trig is the identification of a trigger, and guard is 
the identification of a guard in the state machine. In this 
representation, a transition is identified by its trigger, a 
guard, or both. If there is a transition with no guard and 
trigger, we use the transition id (id) as its identifier.  

Given an encoding, one may use different similarity 
functions to calculate the similarity value. In [3] we studied 
six set-based and sequence-based similarity functions. We 

proposed Jaccard Index [5] as the most cost-effective set-
based and Needleman-Wunsch (NW) [6] as the best 
sequence-based similarity function. The Jaccard Index is 
defined as the size of the intersection divided by the size of 
the union of the two encoded test cases, whereas the NW 
algorithm assigns a similarity value based on the global 
alignment [6] of the two encoded test cases by arranging 
the sequences of elements in the test cases to identify 
regions of similarity between the sequences. 

From an STCS point of view, the only required 
constraints on the similarity measures are that they must be 
positive and symmetric, which is true for all proposed set 
and sequence based measures. This means that properties 
such as reflexivity (Sim(    ,     )=maximum iff        ) 

and triangular inequality (D(    ,     )+ D(    ,     )>= 

D(    ,     ) where D(    ,     ) = 1/ Sim(    ,     )) do not 

necessarily hold among different pairs of test cases [7]. For 
example, NW values can be in any range and, except for 
symmetry, does not feature any other well-known property 
of distance/similarity measures [8].  

Given a set of n encoded test cases (sn) and a similarity 
function (Sim), the test case selection problem is 
reformulated as minimizing SimMsr(sn): 

                    ,     

    ,             

 

where Sim(tpi , tpj) returns the similarity of two test 
paths (encoded abstract test cases in MBT) in sn represented 
by tpi and tpj. The last step in STCS is using a strategy to 
select a subset of test cases with minimum average pair-
wise similarity (SimMsr). This test case selection problem 
is NP hard (traditional set cover) [9] and using an 
exhaustive search in our cases (and for most realistic cases) 
is not an option, since the search space size for selecting a 
subset of size n is equal to the number of  possible n-
combinations within a test suite of a given size. As an 
example from our case studies, the search space size for 
n=28 in a test suite of size 281 (~10% of the test suite) is 

 
   
  

  2.9*10^38. 

In [2] we have examined GA, ART, and a hierarchal 
clustering algorithm as selection algorithms and found out 
that GA was the most cost-effective technique among them. 
In this paper, we show our analyses when both using GA as 
our proposed technique (called STCS_GA) and ART as the 
most well-known algorithm (called STCS_ART) for 
diversifying test cases. The algorithms are introduced in the 
following subsections. 

B.  Adaptive random testing 

ART has been proposed as an extension to Random 
Testing [1]. Its main idea is that diversity among test cases 
should be rewarded, because failing test cases tend to be 
clustered in contiguous regions of the input domain. This 
has been shown to be true in empirical analyses regarding 
applications whose input data are of numerical type [1]. 
Therefore, ART is a candidate selection strategy in our 
context as well. In this paper, we use the basic ART 
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algorithm described in [1], but we ensure that no replicated 
test case is given in output. The pseudo-code for ART is: 
(1) Z={} 

(2) Add a random test case to Z  

(3) Repeat until |Z|= sampleSize 

(4) Sample K random test cases that are different from Z 

(5)  For each of these test cases k  

(6)   k.maxSim = max(Sim(k , z   Z)) 

(7)   Add the k with minimum maxSim to Z 

C.  Genetic Algorithms 

In this paper, we use a steady state GA with the same 
settings as it has been used in [2], in which only the 
offspring that are not worse than their parents are added to 
the next generations. An individual in our context is a 
subset of size n from the original test suite (denoted sn). 
Given a similarity function Sim(tpi , tpj), the fitness 
function f to minimize is the sum, for all pairs (tpi , tpj) in 
sn, of Sim(tpi , tpj), denoted SimMsr. We use a single point 
crossover with probability of Pxover to combine two different 

parents   
  and    

 
. A mutated test path is replaced by a test 

path that is selected at random from the set of all possible 
test paths. A valid solution is a set of test cases in which 
there is no duplicate. The stopping criterion is 10,000 
fitness evaluations, which is equal to the cost of 1,000 runs 
of ART with a candidate size 10 in terms of the resulting 
number of distance calculations. The pseudo-code of the 
employed GA is as follows: 
(1) Sample a population G of m sets of test cases uniformly 

from the search space (i.e., the set of all possible valid sets 
with a given size n) 

(2) Repeat until the stopping criterion is met 
(3)  Choose   

  and   
 

 from G  

(4)     
  ,    

 
    crossover (  

  ,   
 
,       ) 

(5) Mutate (   
 ,    

 
) 

(6)   If valid (   
  ,    

 
)    

                                        min (     
  ,      

 
))   min (    

  ,     
 

)) 

(7)  Then   
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(8) Else If valid (   
 

)    

                                        min (    
  ,      

 
))   min (    

  ,     
 

)) 

(9)            Then   
 
     

 
 

(10)           Else If valid (   
 )    

                                        min (     
  ,     

 
))   min (    

  ,     
 

)) 
(11)                     Then   

      
  

III. IMPACT OF OUTLIERS AND RANK SCALING SOLUTION 

Unlike test suites for numerical applications, where the 
population of all possible input test data is distributed with 
similar density in the input space, it is not uncommon in 
MBT that a subset of test cases be very dissimilar to the 
rest of the test suite (outliers). For example, if the test suite 
is derived from a state machine and (1) the state machine 
contains a partition which is initiated by a transition from 
the initial state, (2) this partition has no transition to/from 
the rest of the state machine and (3) the triggers of the 
transitions in the segment are very different than the 
triggers of the transitions in the main part of the state 

machine, then the test suite generated from such a model 
will contain a small set of test cases, which will be very 
dissimilar to the rest of the test suite, that covers that 
segment. Investigating the behavior of STCS in such a 
situation is necessary in order to gain confidence about 
STCS effectiveness in the context of MBT. But because we 
are evaluating STCS on industrial case studies, and such 
artifacts are difficult to obtain in large numbers to support a 
systematic investigation, we perform simulations based on 
industrial case studies to increase realism. 

We can show that both STCS_GA and STCS_ART will 
try to select half of the test cases from the outlier clusters 
(for simplicity, we will assume the presence of only one 
outlier cluster). The reason is that the similarity between 
any pair, in which one test case is from the main set of test 
cases and the other from the outlier set, would have a very 
low value compared to the other similarity values in the 
matrix. Therefore, to minimize           , the selection 
algorithm is guided to select as many as possible of these 
pairs. Given a minimized test suite of size n, there will be m 
test cases from the main set, and o test cases from the 
outlier set, with the constraint m+o=n. The number of pairs 
in which the two test cases are from different sets would be 
m*o. Under the constraint m+o=n, the term m*o is 
maximized when m=o, from which it follows o=n/2 
(Schur-concave function [10]). Therefore, nearly half of 
test cases will be chosen from the outlier cluster regardless 
of the proportion of the cluster sizes. Consequently, if the 
outlier cluster is small and does not contain any fault 
revealing test case, the FDR of STCS will likely be low.  

Since we expect poor results in the presence of no-fault 
revealing outlier, we suggest using a rank scaling technique 
to alleviate the problem. In this technique, the raw values in 
a similarity matrix are replaced by their rank. The rank is 
simply the index of the value after ordering all similarity 
values of the matrix in an array. This rank scaling approach 
is derived from solutions for solving outlier problem in 
statistics [11] and help decreases the large similarity 
differences between test cases from the outlier cluster and 
the rest of the test suite.   

Notice that, in this paper, we are assuming N (test suite 
size) small enough such that a N*N matrix can be stored 
without significant overheads (this was the case for the two 
industrial case studies analyzed in this paper). When this is 
not possible, and we need to compute the similarity values 
on the fly each time we evaluate the similarity of a set of 
test cases, a dynamic rank scaling is needed. For example, a 
data structure (e.g., a hash-table) could be used to store all 
the unique similarity values encountered so far during the 
search (e.g., while using STCS_GA). Rank scaling would 
hence be based on those values. 

IV. EMPIRICAL STUDY 

In this section we report the design and results of our 
empirical analysis. The high-level goal of this study is to 
investigate under which circumstances, characterized by the 
correlation between similarities of test cases and their fault 
detection, and the distribution of test cases in their 



definition space, a STCS is most effective in terms of fault 
detection rate (FDR).  

A.  Test suites description 

In this study, we test different hypotheses regarding the 
effectiveness of STCS on different input test suites to 
minimize. Given a test suite of size N, we can consider a 
N*N matrix to represent the test suite in which all similarity 
pairs are stored (actually, only half of it is necessary, due to 
the symmetric property of the similarity functions).  

These matrices are all based on the modification of test 
suites from two industrial case studies. However, we had to 
manipulate the matrices to create all the possible situations 
of a test suite with respect to the properties we want to 
investigate, as further explained below.  

The SUT in case study A is a safety monitoring 
component in a safety-critical control system implemented 
in C++. A flattened version of the state machine 
representing the SUT consists of 70 states and 349 
transitions. There are 15 real faults in the SUT which are 
detectable by a test suite automatically generated from a 
UML state machine representing the SUT’s behaviour. The 
test suite, which is generated using our MBT tool (TRUST) 
[12], contains 281 abstract test cases (test paths) covering 
all round trip paths [13] in the state machine. Each test path 
either detects a certain fault or not regardless of its input 
data. In other word, the FDR values of the test paths of this 
case study are independent from input data.  

The SUT in case study B is the core subsystem of a 
video-conference system which manages sending and 
receiving of multimedia streams implemented in C. As the 
previous case study, we deal with real faults detectable by 
an automatically generated test suite using TRUST. Case 
study B is smaller than A with 11 states, 70 transitions, 59 
test cases (covering all round trip paths in the state 
machine) and only four detectable faults. But unlike case 
study A, the FDR of the test paths are not independent from 
input data. Depending on which data are chosen as input 
parameters for the events on the state machine, a fault may 
or may not be detected.  

B. Research questions 

The high level goal of this study leads to the following 
research questions: 
RQ1. Under which conditions, with respect to the 
similarity of fault revealing test cases in a test suite, STCS 
performs best?  

RQ1.1. Is STCS more effective if test cases which 
detect distinct faults are dissimilar? 
RQ1.2. Is STCS more effective if test cases which 
detect common faults are similar? 
These questions directly target the hypothesis on 

rewarding diversity, as discussed in Section 1, and seek to 
confirm it in the context of MBT. The diversity hypothesis 
is investigated with respect to two distinct properties 
through RQ1.1 and RQ1.2.  
RQ2. Is rewarding diversity robust to small clusters of test 

case outliers (test cases which are very dissimilar to the rest 

of test suite)? 

RQ3. What is the effect of rank scaling in the presence and 
absence of outliers? 

RQ3.1. Does using rank scaled similarities improve 
STCS effectiveness in the presence of outliers? 
RQ3.2. Does using rank scaled similarities impact 

negatively STCS effectiveness when there is no outlier? 
The problem of outliers, discussed in Section 3, is being 

examined in RQ2. Our motivation, as mentioned above, is 
that in contrast to numerical applications, outliers are not a 
rare feature of test suites when they are generated using 
MBT. In question RQ3, the first sub-question RQ3.1 asks 
whether rank scaling is useful to alleviate the effect of 
outliers. RQ3.2 investigates whether rank scaling can 
reduce FDR when there is no outlier. If RQ3.2 shows that 
rank scaling does not reduce the FDR in such situations and 
RQ3.1 shows that rank scaling alleviates the outlier’s 
problem, it is wise to always apply rank scaling in STCS. If 
results show that rank scaling does not reduce the FDR in 
such situations and that rank scaling alleviates the outlier 
problem, then it would be recommended to always apply 
rank scaling in STCS. 

C. General settings of the experiments 

We designed two experiments Exp1 to answer RQ1 and 
Exp2 to answer RQ2 and RQ3. In both experiments we use 
STCS_GA and STCS_ART based on trigger-guard 
encoding and NW as similarity function when it must be 
specified. Note that the results of our study in [3], which 
was based on only case study A, showed the same level of 
effectiveness for both NW and Jaccard Index. We had 
recommended the Jaccard Index in that study since it is 
easier to apply than NW. However, in case study B, NW 
provides much better results since the sequence of test path 
elements matters regarding fault detection in this study and 
NW is a sequence-based function. Therefore, in this paper 
NW is used for both case studies.  

Since we have built this study based on our previous 
work, the overall settings of the algorithms are the same as 
our previous study settings. For GA, the stopping criterion 
is 10,000 fitness evaluations, the crossover probability is 
0.75 and the population size is 50. For ART, the candidate 
size is 10 and 1000 repetitions (from which we select the 
best) are performed for each run of the algorithm to ensure 
fair comparisons with GA. More details regarding the 
settings and rationale behind our choices can be found in 
[2].  

Each experiment uses input matrices which are 
generated by modifying similarity matrices of the case 
studies A and B, which we refer to as simulations. We 
repeat the experiments on different sample sizes (four for 
case study A and six for case study B) to check whether the 
results are consistent across the size range. Although the 
actual sizes for the sample sets are different for the two 
case studies, the percentage of selected test cases among all 
test suites is almost the same: sample sizes for experiments 
driven from case study A are equal to 5, 15, 25, and 35, and 
sample sizes for the experiments driven from case study B 
range from 3 to 8. The important point here is running the 
experiments on relatively small sample sizes, since this is 



the most interesting case in practice, when it is not possible 
to run many test cases on the actual hardware and platform 
(as for the industrial systems used as a case study in this 
paper). Furthermore, for larger sizes all techniques 
converges to 100% FDR and differences will not be 
significant.  

For both algorithms and all sample sizes, each 
experiment is repeated 1000 times (100 runs for search 
technique with different random seeds and 10 different 
input matrices per each matrix type to account for random 
variation in both search techniques and matrix generation). 
A rigorous statistical procedure has been used to evaluate 
and compare the effectiveness of these randomized 
algorithms [14]. 

D. Design and results of Exp1 

To answer RQ1, we designed Exp1 where STCS_GA 
and STCS_ART, are applied on nine different types of 
input similarity matrices. These similarity matrices are 
artificially built—though based on case study A—to 
simulate all possible combinations of two properties of a 
test suite with respect to its test cases’ similarities. Property 
X denotes the similarity between test cases that detect a 
common fault and Property Y denotes the similarity 
between test cases that detect distinct faults. In other words, 
RQ1.1 and RQ1.2 address the effect of Property Y and X 
on STCS effectiveness. In our simulations, each of these 
two properties can have three values: High (top 10%: 
[0.9,1.0]), Low (bottom 10%: [0.0,0.1]), and Random 
(randomly picked from the valid range: [0.0,1.0]), which 
makes nine possible combinations of the properties as an 
identifier for a test suite. For example, a test suite where 
test cases that detect a common fault are highly similar and 
those that detect different faults are very dissimilar, is 
identified by Property X=High and Property Y=Low. Note 
that, since the similarity functions we use only need to be 
positive and symmetric, when we generate matrices for our 
experiments, we do not need to validate each similarity 
value by checking its relationship with other values for 
other test case pairs in the same matrix.  

To generate matrices with different property 
combinations while remaining as realistic as possible, we 
kept the original number of faults (15) and same failure rate 
as in case study A (74/281) and built matrices with sizes 
300, 600, 6,000, and 12,000 (nine matrices for each matrix 
size). Recall that the reason for using different sizes is to 
test the independence of the results from test suite size and 
therefore help the generalization of the results to larger case 
studies (i.e., does the technique scale?). Though this is only 
realistic when the system under test has already undergone 
significant verification, to make the analysis tractable, we 
assumed that each test case can find at most one fault. At 
this stage it is difficult to assess the consequences of this 
assumption and it therefore constitutes a threat to validity.  

For each matrix type, 10 instances are generated. Both 
STCS_GA and STCS_ART are applied on these matrices 
100 times, which yields a total of 1000 runs. In total, given 
that there are four sample sizes, nine matrix types, 1000 

runs, and two selection techniques, then 288,000 
(4*9*10*2*100*4) observations are collected in Exp1, each 
with an FDR value for the selected test cases. The FDR is 
the average number of faults detected by the selected test 
cases, for each run of the STCS, divided by the total 
number of faults (15). 

Figures 1 shows partial results for Exp1. Due to space 
constraints, we chose to present only the FDR results for 
two sample set sizes (15 and 25) and two matrix sizes (300 
and 12000) for each of the STCSs, but the same trend was 
observed over all sample sets and matrices as illustrated in 
Figure 2 for effect sizes. The first observation is that, 
regardless of the type of SCTS, sample size, and matrix 
size, test suites with a Low value for Property Y show 
higher FDR. This means that the most important factor for 
ensuring the success of STCS is having test cases detecting 
distinct faults as far (dissimilar) as possible from each 
other. This confirms our hypothesis and answers RQ1.1.  

To answer RQ1.2, if we first look at cases where 
Property Y has a Low value, we can see significant 
differences in test suites with High values for Property X 
when compared to the others. This means that the 
combination of High/Low values for property X/Y is the 
best combination for STCS. This directly confirms the 
hypothesis discussed in RQ1. However, Property Y seems 
to have stronger effect since its value completely overrides 
the effect of Property X.  

To gain more confidence in the conclusions drawn from 
this empirical study, we also carried out a series of 
statistical tests. For each of the 16 combinations of matrix 
sizes and test sample sizes, we used a Mann-Whitney U-
test to compare the performance of the property 
combination High/Low against the other eight 
combinations. This test verifies whether two FDR 
distributions are statistically different. For STCS_GA, the 
p-values were always lower than our selected level of 
significance (0.05). For STCS_ART, resulting p-values 
were lower than 0.05 in all cases but four out of the 
16*8=128 comparisons. This provides strong statistical 
evidence to support the claim that High/Low is the best 
condition under which to use STCS.  

To quantify the magnitude of improvement in a 
standardized way, in Figure 2 we plot the effect size 
measure of STCS_GA and STCS_ART for different sample 
and matrix sizes using the Vargha-Delaney’s A statistic. 
This statistic estimates the probability that a data point 
randomly taken from a set (i.e., a probability distribution) 
will have higher value than another point randomly taken 
from a second data set. When the two distributions are the 
same, we would have A=0.5. The results in Figure 2 show 
that, most of the time, the A values are close to 1. This 
means that, for the High/Low combination, it is nearly 
certain that STCS will yield better results than in the other 
eight cases, even when we take into account the variance of 
the results due to the randomized nature of these 
algorithms.   
 



 

 

 

   

  

 

Figure 1. FDR of a sample set (of size 15 and 25) of test cases selected by STCS_GA and STCS_ART from different matrix types of size 300 and 

12000. Matrix types on X_Axis are identified as Property X/Property Y where each property can be random (r), low (l) or high (h). Each boxplot 

shows 1000 observations (100 STCS runs per matrix on 10 different matrix instances). 
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(b) 

Figure 2. Effect size measure A (each calculated out of 1000 observations) for FDR of a sample set selected by STCS_GA (a) and STCS_ART 

(b) shown as boxplots for the eight comparisons. The effect size compares the High/Low matrix type with the all other eight matrix types of 

Figure 1. X_Axis shows the sample size/matrix size. 

E. Design and results of Exp2 

For Exp2, we apply STCS_GA and STCS_ART on four 
types of matrices per case study. We manipulated the 
original matrices from each case study to examine the 
effect of outliers on the FDR of the test suites. We did so 
by adding extra percentages of outlier test cases. For case 
study A and B, respectively, we built matrices with 1, 2, 5, 
10, and 20 and 5, 10, and 20 percent extra test cases (1 and 
2 percent would not make sense for the smaller case study 
B with only 59 test cases). Four types of matrices are 
generated for each case study and size: (1) Random/Base: 
The original matrix from the case study plus extra test cases 
with random similarity values in the same range of 
similarity values as in the original matrix. This matrix is the 
baseline for the FDR comparisons; (2) Cluster/Base: The 
original matrix plus extra test cases with random similarity 
to each other but very low similarity (outliers) to the rest of 
the test suite (original test cases). This low similarity value 
must be set to be much lower than the minimum values 
within each of the groups containing the original and 
additional test cases. If min and max are the minimum and 
maximum values in the original matrix, we first change the 
matrix by replacing every value x with x+10*(max-min) to 
ensure much higher NW similarity values among the 
original test cases compared to such values with outliers. 
The NW values between outliers are then generated to be in 
the same range as the original matrix. Last, to simulate a 
low similarity between the outliers and the original test 
cases, we set the NW value between them to zero. The 
constructed matrix therefore represents the situation where 
outlier test paths are present in the test suite; (3) 
Random/Ranking: The same matrix as Random/Base but 
after applying rank scaling as introduced in the research 
question subsection; (4) Cluster/Ranking: The same matrix 
as Cluster/Base but after applying rank scaling.   

To answer RQ2, we compare the FDR of a selected 
subset of test cases (for four different sizes) from a test 
suite represented by the Cluster/Base matrix with the FDR 
of a same size subset using the Random/Base matrix. This 
comparison investigates the effect of outliers on the STCS 
effectiveness. 

To investigate RQ3, we compare STCS effectiveness on 
the matrices from Cluster/Ranking and Cluster/base, we 
will assess whether rank scaling has significantly alleviated 
the effect of the outliers (RQ3.1). We also compare the 
effectiveness of STCS on the Random/Ranking and 
Random/Base matrices to check for possible negative 
effects of rank scaling when there is no outlier (RQ3.2). 

We generate 10 instances of each of the 32 matrices 
(four matrix types and eight outlier percentages in the two 
case studies) to account for random variation in matrix 
generation. Both STCS_GA and STCS_ART are applied on 
these matrices 100 times to account for random variation in 
search techniques. In total, given that there are four sample 
sizes in case study A and six sample sizes in case study B, 
320 matrices, 100 runs, and two selection techniques, then 
640,000 (10*320*100*2) observations are collected for 
Exp2. Each observation has an FDR value for the selected 
test cases. The FDR calculation for case study A is the 
same as for Exp1 but is different for case study B, since, in 
the latter case, whether each test path detects a fault 
depends on which input data is used. For case study B, we 
randomly (with equal probability for each input data value) 
generated 10 different test cases per test path. Therefore, 
probability    of finding a specific fault   with the selected 

subset of test paths is equal to one minus the probability of 
not finding the fault by any of the test paths in the chosen 
set:    (         

 
   ) where n is the size of the 

subset and    is the estimated probability of detecting fault 
  with test path i in the subset: number of times the fault is  



 

(a) 

 

(b) 

Figure 3. FDR of a sample set selected by STCS_GA from test suites based on case study A with size 35 (a) and case study B with size 8 (b). 

Four combinations are compared: with (Clustered) or without outliers (Random), and using rank scaling (Ranking) or not (Base). The graphs 

show the average FDR over 1000 STCS_GA runs. X_Axis shows the percentage of outliers. 

detected by the 10 test cases generated for that test path 
divided by 10. The FDR is hence computed by averaging 
these probabilities        , where     is the number of 

faults. From the results of Exp2, answering RQ2 and RQ3, 
Figure 3 and Figure 4 are chosen to show one 
representative example since the trend is again the same 
over different sample sizes and algorithms for case study A. 
In Figure 3.a, the clear gap between Cluster/Base and 
Random/Base shows a strong drop in STCS effectiveness in 
the presence of outliers (RQ2). Comparing Cluster/Base 
and Cluster/Ranking we can clearly see that rank scaling 
helps STCS improve its effectiveness in the presence of 
outliers (RQ3.1) and comparing Random/Base and 
Random/Ranking clearly shows there is no reduction in 
FDR when there is no outlier in the test suite (RQ3.1).  

In case study B, outliers also decrease effectiveness of 
STCS, though to a lesser extent (RQ2), and rank scaling 
once again does not compromise the potential FDR for test 
suites without outliers (RQ3.2). However, as it can be seen 
in the Figure 3.b, the improvement for case study B when 
comparing Cluster/Base and Cluster/Ranking is relatively 
small (RQ3.1), perhaps in part because the impact of 
outliers is already smaller to start with in this case study.  

As in the previous experiment, to get more reliable 
results, we also carried out a rigorous statistical procedure 
using Mann-Whitney U-tests and Vargha- Delaney’s A 
statistics (effect size) to compare FDR distributions across 
the four types of matrices. Comparing the performance of 
Random/Base with Random/Ranking (RQ3.2) yields p-
values lower than 0.05 in only one case out of 20 
comparisons (five extra test case percentages time four 

matrices) for STCS_GA and two out of 20 comparisons for 
STCS_ART, where, even in those cases, the FDR 
difference between Random/Base and Random/Ranking is 
practically negligible. This statistically confirms that rank 
scaling is not particularly harmful in most cases when no 
outlier is present. However, when we compare Cluster/Base 
against Cluster/Ranking (RQ3.1), we obtain 11 cases with 
significant p-values for STCS_GA, and six cases for 
STCS_ART.  

In Figure 4, we plot the effect size measure of 
STCS_GA for different sample and matrix sizes when we 
compare Cluster/Base against Cluster/Ranking (RQ3.1) in 
case study A. For small sample sizes and small outlier 
cluster, the effect is minimal (i.e., very close to 0.5). 
However, for larger sizes, the effect gets much stronger 
(close to 0.7). 

As explained before, the main reason for which we 
apply rank scaling is to balance the distribution of the 
selected test cases from each cluster of outliers (if present). 
To examine this phenomenon, we considered one scenario 
(case study A with 20% extra test cases forming a cluster of 
56 test case outliers) and applied STCS_GA for selecting 
test case subsets (four sample sizes). Table 1 shows the 
average number of test cases taken from the outlier cluster 
with and without rank scaling. The best column shows the 
optimal number of test cases if we would select by only 
considering the size of the test suite and its outlier cluster, 
as expressed by the formula below. 
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Figure 4. The effect size measure A for FDR of sample sets selected by 

STCS_GA from the test suite driven from case study A. X and Y axes 

show the outliers percentage and the sample set size.  

TABLE 1. AVERAGE NUMBER OF TEST CASES SELECTED BY STCS_GA 

FROM THE OUTLIER CLUSTER (20% EXTRA TEST CASES ON THE CASE 

STUDY A) WITH AND WITHOUT RANK SCALING. 

Sample Size Best No Ranking Ranking 

5 1 2.95 2.94 

15 3 7.06 6.77 

25 4 12.01 10.61 

35 6 17.00 14.41 

 
Based on the results in Table 1—Note the relation 

between Table 1 and Figure 3: the last row of Table 1 
corresponds to Figure 3.a, with 20% extra test cases — it is 
clear that without rank scaling roughly half of the sample 
set is taken from the outlier cluster. The data suggest that 
rank scaling partially alleviates the problem for larger 
sample sizes. We get better improvement for larger sample 
sizes and the reason why this is the case will require further 
investigation.  

One possible alternative to rank scaling for solving the 
outlier problem could be an approach that can be 
summarized as (1) finding the outlier cluster(s) using a 
clustering technique and identifying an outlier cluster based 
on the ratio of the inter-cluster distances to the intra-cluster 
distances (2) assigning a sample size to the outlier cluster 
based on the proportion of its size to the entire test suite 
size (3) and finally applying the STCS separately on the 
outlier and the main test cases.  In previous work [2], we 
found that clustering techniques were less effective than 
STCS. Furthermore, rank scaling is easier and 
computationally cheaper than clustering techniques. 
However, hybrid combinations would be promising areas 
for further research. 

F. Discussion on threats to validity of the results 

This study was conducted according to recently proposed 
guidelines for conducting empirical studies in search-based 

testing [15] and using statistical tests to assess randomized 

algorithms in software engineering [14]. Regarding construct 
validity of the experiments, the most important factor is the 
validity of the measures used for assessing FDR and 
similarity comparisons. These measures are taken from 
previously published studies [2-4] and their validity are 
already discussed there. Another remaining concern is the 
artificially generated similarity values in the experiments. 
As discussed in the background section, we are using the 
NW similarity measure, which entails no constraint on the 
different pairs of similarities. Therefore, the assignment of 
High, Low, and Random values cannot lead to incorrect 
matrices. However, the assumption in Exp1 that each test 
case can find at most one fault constitutes a threat to 
validity of the results. A more general experiment where 
each test case can find each fault with a certain probability 
should be conducted to achieve more reliable results. 

The randomized nature of the employed algorithms 
poses a threat to internal validity. To account for it, the 
experiments were run many times with different random 
seeds, thus leading 1000 observations for each case 
study/sample size/search technique/matrix type 
combination (100 runs of search technique on 10 randomly 
generated input matrices). In addition, a rigorous statistical 
procedure (comprising significance tests and effect size 
measures) has been used to strengthen the conclusion 
validity of the results.  

To cope with external validity, we conducted 
experiments using many different combinations of sample 
sizes, test suite sizes, case studies, and STCS techniques. In 
particular, the use of two industrial systems to drive the 
simulations (by retaining some of their characteristics such 
as failure rate of test cases and number of faults) provides 
stronger support to the applicability of our approach to 
other industrial systems. But, as for all empirical studies, 
our results might not generalize to other case studies and 
only replications will help build confidence.  

V. RELATED WORK 

STCS for MBT was first introduced in [16], where 
sequences of transitions in a Labeled Transition System 
model of the SUT are used for representing test paths. The 
similarity function is simply counting the common 
transitions in two test paths and a Greedy Search is used for 
minimizing the sum of pair similarities. Later, Hemmati et 
al. [4] introduced and improved STCS for UML based 
testing by using a trigger-guard based encoding of test 
paths, by using better similarity measures [3] and by 
resorting to more powerful search techniques [2]. 

Except for these works on model-based STCS, 
diversifying test cases has been studied on code-based test 
case selection, minimization and prioritization, mostly in 
the context of regression testing. The basis for computing 
test case similarity in these studies is usually on code 
coverage or on some other execution information. For 
example, in [17] and in [18], all def-use pairs coverage and 
a sequence of memory operations are used to calculate the 
similarities, respectively. 



To the best of authors’ knowledge, no existing study 
systematically investigates the impact of test suite 
properties on STCS in the context of MBT. Similar studies 
published to date have been conducted in the numerical 
application domain to examine the effect of test suite 
properties, with respect to test case similarities and their 
fault detection, on the ART algorithm. Several papers have 
been published on this subject [1], in which for example 
optimal conditions for ART have been theoretically studied 
[19]. However, as discussed in Section 3, MBT is very 
different from the unit-testing of numerical applications in 
terms of the distribution of input test data in the input space 
(e.g., clusters of outliers are unlikely in the numerical 
application domain). 

VI. CONCLUSION AND FUTURE WORK 

In previous studies we proposed similarity-based test 
case selection (STCS) techniques to reduce the cost of 
model-based testing (MBT) [2-4]. Though the technique 
was successfully applied on one industrial system, we 
needed more empirical evidence to support the idea that 
maximizing the diversity of test cases was a good principle 
for test case selection and understand under which 
conditions.  

In this paper, we conducted a large scale simulation, 
based on two industrial case studies, to investigate, in a 
controlled manner, how relevant properties of a test suite 
affect the effectiveness of STCS. When considering 
properties are about the relationship between fault detection 
and similarity distributions among test cases, our results 
showed that the most ideal situation for a STCS is when, in 
a test suite, (1) test cases that detect a common fault are 
similar and (2) test cases which detect distinct faults are 
dissimilar. Our empirical study shows that property (2) is 
much more important than property (1). This result will 
help us devise improved similarity functions in the future, 
which in turn will result into more effective STCS. 

In this paper, we also investigated the problem of 
outliers in a test suite—which are not unlikely to happen in 
MBT—that could compromise the performance of STCS. 
Results confirmed the significant impact of outliers and an 
approach, based on using rank scaling measurement instead 
of raw similarity values, was proposed to address the 
outlier problem. Though rank scaling had a positive effect, 
it only partially addressed the outlier problem and 
additional strategies remain to investigate.  

Future work will examine other solutions for the outlier 
problem based on combining clustering and STCS 
techniques. We will also use the insights that we gained 
from this study to develop techniques to improve STCS.   
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