
Using SysML for Modeling of Safety-Critical Software–Hardware Interfaces:

Guidelines and Industry Experience

Mehrdad Sabetzadeh1 Shiva Nejati1 Lionel Briand1 Anne-Heidi Evensen Mills2

1Certus Software V&V Center, Simula Research Laboratory, Norway
2Kongsberg Maritime, Kongsberg, Norway

Email: {mehrdad,shiva,briand}@simula.no anne-heidi.evensen.mills@kongsberg.com

Abstract—Safety-critical embedded systems often need to
undergo a rigorous certification process to ensure that the
safety risks associated with the use of the systems are ade-
quately mitigated. Interfaces between software and hardware
components (SW/HW interfaces) play a fundamental role in
these systems by linking the systems’ control software to
either the physical hardware components or to a hardware ab-
straction layer. Subsequently, safety certification of embedded
systems necessarily has to cover the SW/HW interfaces used
in these systems. In this paper, we describe a Model Driven
Engineering (MDE) approach based on the SysML language,
targeted at facilitating the certification of SW/HW interfaces
in embedded systems. Our work draws on our experience
with maritime and energy systems, but the work should
also apply to a broader set of domains, e.g., the automotive
sector, where similar design principles are used for (SW/HW)
interface design. Our approach leverages our previous work
on the development of SysML-based modeling and analysis
techniques for safety-critical systems [4]. Specifically, we tailor
the methodology developed in our previous work to the
development of safety-critical interfaces, and provide step-by-
step and practical guidelines aimed at providing the evidence
necessary for arguing that the safety-related requirements of
an interface are properly addressed by its design. We describe
an application of our proposed guidelines to a representative
safety-critical interface in the maritime and energy domain.

Keywords. Safety-Critical Systems, Software–Hardware Interfaces, Safety

Certification, Model Driven Engineering, SysML, Traceability.

I. INTRODUCTION

Many safety-critical systems, e.g., those used in the

avionics, railways, maritime, and energy sectors, are be-

coming ever more reliant on software to increase devel-

opment productivity, enable more complex operations, and

provide flexibility in handling evolving needs. While the

opportunities and gains offered by the use of software in

safety-critical systems are significant, there are also risks

associated with the impact and the performance of the

software. It is therefore crucial to be able to assess the safety

of the software elements of a system throughout the system’s

entire life-cycle, starting from the inception to operation and

all the way to decommissioning. An increasingly common

activity performed to this end is software safety certification,

aimed at providing an assurance that the software-controlled

behaviors of a system are deemed safe by a certification

body.

Unfortunately, little work has been done to date on accom-

modating the additional demands that certification imposes

on how the design of systems should be expressed. Our

experience indicates that certification is often (incorrectly)

viewed as an after-the-fact activity. This can give rise

to various problems during certification, because a large

fraction of the safety evidence necessary for certification

has to be gathered during the design phase and embodied

in the design specification. Failing to make the design

“certification-aware” will inevitably lead to major omissions

and effectively make the design “unauditable” for certifica-

tion purposes.

In the past three years, we have been exploring the use

of Model Driven Engineering (MDE) in system design to

improve the cost-effectiveness and accuracy of software

safety certification. The use of MDE in this context has been

motivated by three main principles: (1) Models expressed in

standard notations, such as UML [7], SysML [6] and their

extensions, avoid the ambiguity and redundancy problems

associated with text-based specifications. (2) Models provide

an ideal vehicle for preserving traceability and the chain of

evidence between hazards, requirements, design elements,

implementation, and test cases; (3) Models present oppor-

tunities for partial or full automation of many laborious

safety analysis tasks (e.g., impact analysis, completeness and

consistency checking, and test case generation).

Realizing the full potential of MDE for certification re-

quires methodological guidance that allows safety engineers

to understand and apply MDE concepts within their domain

of application. In previous work [4], we have developed

an MDE methodology based on SysML to enable more

efficient auditing of embedded software designs during the

certification process. In particular, the framework provides

a “certification-aware” methodology for embedded system

design along with mechanisms to establish traceability be-

tween safety requirements and the design elements. This

framework was developed based on observing actual certi-

fication projects, consultation with certification experts, and

reviewing major safety standards, most notably IEC 61508

[3].

In this paper, we tailor the general framework of [4]

for the design of safety-critical interfaces between software



and hardware components (SW/HW interfaces). Note that

one often needs to distinguish between an actual SW/HW

interface and the software implementation of the SW/HW

interface. The latter is what we focus on in this paper, but

for brevity, we use the term SW/HW interface (interface, for

short where there is no ambiguity) to refer to the software

implementation of an actual interface. Interface (implemen-

tations) are arguably one of the most complex classes of

software components in safety-critical systems: They may

need to bridge the timing discrepancies between hardware

devices and software control components, and may need to

be implemented in different versions so that they can work

with different communication protocols, be deployed on

different execution platforms, or communicate with different

devices. Although interfaces can be small in size, they can

have a profound impact on the behavior and stability of

embedded systems. As a result, certification bodies regularly

ask for accurate design specifications for (SW/HW) inter-

faces and carefully scrutinize the specifications. Our tailored

framework provides a series of concrete and practitioner-

oriented design guidelines, aimed at reducing the number

and criticality of certification issues related to interfaces.

We illustrate our tailored methodology using a simplified

and sanitized version of a real safety-critical interface. For

anonymity, we will refer to the interface by the fictitious

name of MarineShield (MS). MS is widely used in a certain

class of maritime systems for communicating signals from

the software control components to a monitoring device.

This interface was chosen primarily because its structure

and behavior was deemed representative of a large majority

of interfaces developed in the maritime and energy sector.

As the result of our study, a complete set of design models

with traceability to requirements have been developed for

MS.

The remainder of this paper is structured as follows:

We begin in Section II with a description of the context

and motivation for our work. Section III briefly introduces

SysML – the language we use for modeling. In Section IV,

we describe our tailored methodology for SW/HW interface

design and establishing traceability from requirements to

design. In Section V, we describe the modeling experience

gained over MS and our observations. We conclude the

report in Section VI with a summary and a highlight of

topics for future work.

II. CONTEXT AND MOTIVATION

To better understand the difficulties in software safety

certification, we observed a number of certification meetings

between various leading industry suppliers and certification

bodies. Throughout these meetings, we observed that many

difficulties could be attributed to the use of text-based

documents. Text is prone to ambiguity, incompleteness, and

redundancy. This leads to the suppliers and certifiers having

to invest a considerable amount of time and human re-

sources resolving the ambiguities, identifying and addressing

the areas of incompleteness, and ensuring that overlapping

information across multiple documents remains consistent.

Using diagrammatic illustrations that are not represented

in standardized notations (or their extensions) helps little

to address the problem, because the notations would most

likely be unfamiliar to the certification bodies. Hence, the

diagrams could well become another source of ambiguity,

incompleteness, and redundancy.

Further, text is hard to query and manipulate automati-

cally. In particular, although the majority of the informa-

tion necessary for safety certification naturally results from

regular development activities (requirement, design, and

verification and validation), it takes developers significant

manual effort to extract the safety-relevant information from

the documents built during these activities, and put the

information in an appropriate form.

Our position is that models represented in standard no-

tations, and not text-based documents, should serve as the

main sources of certification information – documents, when

needed, should be generated from these models. Our work

in this report provides a concrete example of how MDE can

be applied in safety certification.

III. BACKGROUND ON SYSML

The appeal of SysML in our work comes from the fact

that safety-critical software is typically embedded into some

greater technical system (one with electronic and mechanical

parts). Hence, it is crucial to consider the interactions of

software with the non-software elements as well. Since

SysML is quickly becoming a de-facto standard for systems

engineering [5], it was a natural choice to base our work

on. SysML extensively reuses UML 2, while also providing

certain extensions to it. Compared to UML, SysML offers

the following advantages for embedded systems [6]:

• SysML expresses systems engineering semantics (in-

terpretations of modeling constructs) better than UML,

thereby reducing the bias UML has towards software.

In particular, UML classes are replaced with a concept

called block in SysML. Block is a modular unit of sys-

tem description. Blocks are used to describe structural

concepts in a system and its environment.

• SysML has built-in cross-cutting links for interrelating

requirement and design elements. This allows engineers

to relate requirements and design elements/models de-

scribed at different levels of abstraction.

Our methodology in Section IV utilizes four SysML

diagrams, namely Block Definition Diagrams (BDDs), Inter-

nal Block Diagrams (IBDs), Activity Diagrams (ADs), and

Requirement Diagrams (RDs). For a detailed specification

of these diagrams and SysML in general, see [1].



Describe the design

(1) Specify 

the context

Context Model(BDD)

(2) Specify the 

architecture

Architectural

Model(s) (IBD)

(3) Specify 

the structure

Initial Structural

Model (BDD)

(4) Specify activities 

and their allocations 

Activity Decomposition

Model (BDD)

(5) Elaborate 

behaviours

Behaviour 

Models (AD)

Detailed Structure

Model (BDD)

Driver Requirements Specification

Establish

traceability

(6) Link requirements 

and design

Requirement Traceability

Models (RD)

Figure 1. Methodology overview

IV. METHODOLOGY FOR MODELING OF INTERFACES

In this section, we describe a tailored methodology and

concrete guidelines for modeling of SW/HW interfaces,

based on a more general methodology developed in our

previous work [4]. The main objective pursued here is to fa-

cilitate safety certification of interfaces by providing design

specifications that are unambiguous and precise at the level

required for inspecting how (safety-related) requirements are

addressed in the interfaces’ designs.

Figure 1 shows an overview of our proposed methodol-

ogy for model-driven development of SW/HW interfaces.

We assume that the requirements for the interface under

development have been already specified and provided as

input. From a certification standpoint, one may elect to

leave out the requirements that have no safety implications.

In other words, the requirements specification provided

as input in Figure 1 can be restricted to safety-relevant

requirements, i.e., requirements that in some way contribute

to the satisfaction of the overall system safety goals. Our

experience indicates however that the significant majority

of the interface requirements are safety-relevant. Hence, it

seems reasonable to have a complete set of requirements.

This ensures that a complete design of the interface will

be developed (as opposed to just the safety-relevant design

aspects), which is highly beneficial for other development

activities such as maintenance, communication and testing.

Our methodology is composed of two parallel but inter-

related tasks. The high-level task on the left of Figure 1

(“Describe the design”) is concerned with the construction

of design models, and the one on the right (“Establish

traceability”) is concerned with the creation of traceability

links between the requirements and design.

The design is carried out in five steps. These steps are

depicted as being conducted sequentially in the diagram

of Figure 1, but it is important to note that in reality, the

discoveries made at later stages of the development may

affect the decisions made in earlier stages. As a result,

the SysML diagrams developed in the process will co-

evolve and none will be considered final until the design

is complete.

The design steps are interleaved with the traceability step

(Step 6 in Figure 1). If the interface being modeled is

sufficiently small and the modeling activities span only a

few days, the modeler may choose to establish the trace-

ability links after the design is complete. However, for a

complex interface with a longer development life cycle, it

is recommended that the traceability links be created during

design. Specifically, once a design fragment relevant to a

particular requirement is completed, the traceability between

the fragment and the requirement should be modeled.

In the remainder of this section, we describe each of the

6 steps in the methodology of Figure 1. We illustrate each

step using examples from the MS interface1 and provide

guidelines about how to carry out these steps for other

interfaces.

Step 1. Specify the Interface’s Context

The first step in the modeling of an interface is defining its

context using a context diagram. This context diagram shows

the main system blocks that are related to the interface but

are external to it. In SysML, contexts are expressed using

Block Definition Diagrams (BDDs). Figure 2 shows the con-

text for MS. As seen from the figure, the Domain is defined

as being composed of a collection of ControlComponents

and a collection of Interfaces. The MSInterface is a

specialization of the Interface block. It receives input from

a particular type of component, named ComponentX. Instead

of sending the data received from the ComponentX directly to

the target hardware device, MSInterface relays the data to a

particular implementation of the FieldBus protocol [2]. We

refer to this FieldBus driver implementation as FBDriverY.

The diagram also captures the fact that both the control

components and the interfaces are executed within an overall

execution framework, using a Scheduler. To implement

their function, the interfaces predominantly rely on facilities

provided by the Run Time System (RTS) of the operating

system. This is modeled using a dependency link from

Interface to RTS.

The diagram in Figure 2 uses three stereotypes: The

“block” stereotype denotes SysML blocks. For a given

block, the “allocated” stereotype indicates that some require-

ment, function, activity, etc. has been allocated to the block.

We use allocations for assigning activities to blocks (see

Step 4). And, the “requirementRelated” stereotype indicates

1All element names in the diagrams are sanitized for confidentiality.



Figure 2. Context for the MS interface described as a SysML BDD

that a given block contributes to the satisfaction of some

requirement, i.e., a requirement is traceable to the given

block (see Step 6).

Guidelines on Describing Interfaces’ Context. The sub-

stantial part of the context diagram is shared amongst the

interfaces in the whole system and can thus be reused with-

out change. What needs to be revisited for every interface

are the following:

1) The control component(s), interface(s), and periphery

or third-party software unit(s) that communicate with

the interface in question. For MSInterface, there is

one communicating control component, ComponentX,

and one periphery software unit, FBDriverY.

2) The utility blocks and elements of the execution

framework that the interface in question depends on.

In the case of MSInterface, only some basic facilities

in the operating system and the execution framework

were used. Other interfaces could have additional

dependencies that are not shared by all interfaces.

This could require the inclusion of more blocks from

the execution framework, the operating system, and

periphery or third-party modules, and then adding

appropriate dependency links.

Once the context diagram is complete, we can move on

to Step 2 of the process shown in Figure 1, where we

elaborate the communication links between the interface and

other blocks and describe the architectural connections of the

interface.

Figure 3. Architectural connections of the interface described in a SysML
IBD

Step 2. Specify the Interface’s Architecture

In this step, we refine the conceptual relationships that

we defined between the interface and other system blocks

in the context diagram (Figure 2) into a set of architectural

connectors with specific communication ports. Making the

links between different system blocks explicit and free from

ambiguity is a major concern during safety certification.

We use SysML Internal Block Diagrams (IBDs) for ex-

pressing architectural connections. Figure 3 shows the IBD

developed for the MS interface. The central component in

the diagram is an instance of the MSInterface block (named

ms).

In the IBD, we express several important points about the

communication between ms and instances of other blocks,

particularly: (1) What are the ports for communication?

(2) What data and signals are being communicated over

the ports? (3) What is the direction of communication? (4)

How many instances of each block are participating in the

communication? and (5) How many ports (of a certain type)

does each block instance have?

The MSInterface communicates with three types of

blocks: Scheduler, ComponentX, and FBDriverY. We use

multiplicity constraints to describe how many instances of

a given block are involved in the communication. The

default multiplicity is 1 and is left implicit. In Figure 3,

there is exactly one instance of each block involved except

for ComponentX, which has at least one but possibly more

instances, denoted by the [1..*] multiplicity constraint.

Inter-block communications are modeled using ports. The

MSInterface exposes four types of ports as shown in Fig-

ure 3:

• XPort for reading data from (one or more) instances

of type ComponentX. The direction of the arrow from

compx (instance of ComponentX) to ms indicates that

the communication link is unidirectional. The number

of instances of XPort that an individual instance of

MSInterface has depends on how many control com-

ponents are connected to the interface instance. Hence,



there is a multiplicity constraint of [1..*] assigned

to the XPort type. The modeling tool that we use

in this study does not visually show the multiplicity

constraints for port types, but provides means to record

this important piece of information.

• YPort defines a unidirectional port for forwarding the

control components’ data onto the FBDriverY.

• data channel is a bidirectional port for communication

between schlr (instance of Scheduler) and ms. To in-

dicate that the port combines several information flows,

we apply a (user-defined) stereotype “complexflow”.

The data channel port only handles non-signal data

communications, e.g., reading and writing of interface

parameters. System control signals (such as the scan

signal described below) need to be modeled individu-

ally and separately. This is because of the important

role that these signals play in synchronizing and or-

chestrating the components of an embedded system.

System control signals are frequently referenced in the

behavioral design of the components and hence need

to be explicitly modeled for certification purposes.

• scan is a periodic and global clock signal used for

synchronization.

Lastly, we need to note that an IBD captures one specific

architectural configuration, not all the possible configura-

tions of an interface. For example, it is possible and also

common for an interface to communicate with different

components in different deployments. In such cases, each

communication architecture is expressed using an individ-

ual IBD. For example, an interface may be configurable

to provide both serial and Ethernet connections, and to

communicate with different blocks in these two different

modes of operation. A good model of such an interface

would then need to have two IBDs, one for each mode

of operation. This is why the methodology in Figure 1

envisages the construction of multiple IBDs. If there is a

large or infinite number of configurations, we model only

those configurations used in the system being certified.

Guidelines on Elaborating Interfaces’ Architecture.

1) Determine if the interface has multiple alternative

configurations and communicates with different sets

of blocks depending on the configuration. If this is the

case, one IBD must be created per configuration. The

remaining steps are given for a single configuration

(i.e., a single IBD). Generalization to multiple IBDs

is straight-forward.

2) Add to the IBD the blocks that directly communicate

with the interface. These blocks are readily identifiable

from the interface’s context diagram. Any block that

has an association link to the interface block in the

context diagram is included in the IBD. Specify the

number of participating instances of each of these

blocks using multiplicity constraints.

Figure 4. Describing MS’s internal structure using a BDD

3) Refine the association links incident to the interface

block in the context diagram into information flows in

the IBD. Specify the directionality of each information

flow. It is possible (and likely) for an association link

in the interface’s context diagram to give rise to several

flows in the IBD.

4) For each flow, specify the communication ports on

both ends. Distinguish system signals from regular

information flows using the “signal” stereotype.

5) The datatype and multiplicity for each port must be

defined. If the port uses a custom data structure, the

data structure must be specified as a block (e.g., XPort

and YPort in MS). These blocks will be included in

the interface’s structural diagram (see Step 3).

Once an architectural view(s) on the operation of the

interface is developed, we can move on to Step 3 where

we specify the basic internal structure of the interface.

Step 3. Describe the Interface’s Internal Structure

In the previous steps, we defined some of the structural

design elements of the interface. In particular, we defined

a block representing the interface itself and also blocks for

the complex datatypes used by the ports. In this step, we

extend the structural design of the interface with controller

sub-blocks that encapsulate the behavior of the ports. Most

port types, except those denoting primitive signals (e.g., the

clock) require an explicit controller.

In Figure 4, we have shown the BDD describing the

internal structure of the MS interface. The XPorts and

YPorts are each controlled by their own controller. No

controller is created for the (primitive) scan signal.

Guidelines on Elaborating Interfaces’ Structure.

1) Define a BDD initially including the interface block

from the context diagram and the port data types



specified during the architectural elaboration of the

interface (Step 2).

2) For each interface port type from the IBD (developed

in Step 2) that has a non-primitive data type:

a) Define a controller block.

b) Establish a composition link from the interface

block to the controller block, and from the con-

troller block to the port data block.

c) Add the necessary multiplicity constraints to the

composition links, if known. These constraints

specify how many instances (minimum, maxi-

mum) of a controller block the interface can

have, and how many instances of a port a sin-

gle controller can manage. These multiplicity

constraints can be added at later stages of de-

velopment as well (e.g., when decisions about

interface’s performance are being made).

Step 4. Specify Interface’s Activities and their Allocations

The goal of this step is to specify the activities to be

performed by the interface and state how these activities

are distributed over the interface’s blocks. In Figure 5, we

provide a hierarchical decomposition tree for the activities

of the MS interface expressed as a BDD. The immediate

descendants of the root node (MS Overall) represent the

interface’s main activities. These activities are the creation

and deletion of an interface instance (Create MS Interface,

Delete MS Interface), handling of communication with

the Scheduler (Process Scheduler Request), and the in-

terface’s core function (Transfer Data), which is transfer-

ring data from instances of ComponentX to the FieldBus

driver (FBDriverY). This last activity itself is decomposed

into three finer-grained activities: (1) Reading data from

instances of ComponentX (Pull Data from Module), (2) for-

warding the X data to the FieldBus driver (Push Data

onto FieldBus), and (3) adjusting the data rate for sending

information onto the FieldBus (Monitor Data Rate).

The leaf activities in the decomposition tree are allocated

to the structural blocks of the interface. The allocation of

an activity to a block means that the activity is to be

fulfilled by the operations of that block. To allow for the

allocations to be made, leaf-level activities should be fine-

grained enough to be fulfilled by an individual block of the

BDD developed earlier in Step 3. More precisely, a leaf-

level activity should be small enough to be implementable by

one or more operations in one block. We do not decompose

activities past block operations. In other words, the finest-

grained activity possible is one whole block operation.

As the result of activity decomposition, some of the block

operations can be directly decided. For example, the creation

and deletion activities in Figure 5 give rise to two operations

in the MSInterface block. But not all the operations might

be known until the behavioral elaboration in Step 5 is

Figure 5. Decomposing MS’s activities and allocation to blocks using a
BDD

complete.

Guidelines on Identifying and Allocating Interfaces’ Ac-

tivities.

1) Specify the top-level activities of the interface. These

should at least include: (1) lifecycle activities for cre-

ating and deletion of interface instances; (2) high-level

activity(ies) to enable the reading and modification of

interface parameters; and (3) one or more activities

capturing the core functions of the interface.

2) Iteratively decompose the top-level activities. The

specifics of the decomposition will vary depending

on how the interface is structured and is thus based

mainly on human judgment. Generally, decomposition

should be necessary only for the core functions.

3) Update the interface’s internal structure (initially de-

fined in Step 3) with any newly identified block

operations. The structure will be further elaborated in

Step 5.

The interactions between activities are not modeled in the

activity decomposition tree, nor are concurrency and se-

quencing of activities. These will be modeled using activity

diagrams, as we discuss in Step 5.

Step 5. Elaborate the Interface’s Behavior

The goal of this step is to describe the detailed behavior

of the interface. During this step, new block operations

may be identified as well and added to the structural model

previously constructed and refined in Steps 3–4.



Figure 6. Defining the Interface’s overall behavior

SysML offers two different notations for describing the

behavioral aspects of a system. These are state diagrams

and activity diagrams. A state diagram shows the possible

set of states a block instance can be in and how the

instance transitions between different states in response to

internal events or events received from the environment.

State diagrams are typically not developed for all system

blocks, but rather only for those with internal states (or

modes of operation) and complex transitions between these

states.

Due to space reasons, we only illustrate the application

of activity diagrams. The choice of whether to use state

machines or activity diagrams (or a combination) depends

mainly on what type of behavior is being modeled. For

the stateful behaviors of the interfaces, modeling the states

and the transitions between them is an important part of

the development process. In contrast, stateless behaviors are

more naturally captured using activity diagrams.

Figure 6 shows the activity diagram for MS Overall

– the root activity in the activity decomposition tree of

Figure 5. In the figure, we can see the sequencing and

interactions between the immediate descendant activities of

MS Overall. The process begins with the creation of an

interface instance. Once an instance has been created, two

parallel activities begin: Process Scheduler Request and

Transfer Data. These activities do not terminate until a

delete signal is delivered by the Scheduler, upon which the

delete activity is executed.

The same process illustrated above has to be performed

for all composite activities. Once the behavioral elaboration

has been performed, the structural model for the interface

needs to be refined with the new knowledge from the

behavioral design phase. Particularly, this knowledge may

lead to the introduction of new blocks (e.g., various types

of buffers) to enable communication between the different

activities as well as new block operations. In particular, each

Figure 7. MS’s detailed structure expressed as a BDD

activity that is not decomposed any further will be captured

as a block operation (e.g., the interface creation activity).

Higher-level activities if necessary can be turned into block

operations as well (using these more basic operations), but

in our example, this was not needed. The BDD capturing

the detailed structure of the interface is shown in Figure 7.

Guidelines on Behavioral Elaboration of Interfaces.

1) Define the behavior of each composite activity in terms

of its sub-activities.

2) Update the interface’s internal structure (initially de-

fined in Step 3 and further refined in Step 4) with any

new blocks needed for inter-activity communication

and any newly-identified block operations.

To maintain quality and consistency in behavioral design,

the following rules need to be considered:

• The activity diagram for a composite activity should

involve all the sub-activities of that activity (defined in

the activity decomposition tree). This ensures that all

lower-level activities remain reachable from the root

activity in the activity decomposition tree.

• The input and output of each activity must be specified

using parameter nodes. An activity parameter node is

an object node at either end of a flow for providing

input to an activity or getting output from it [7]. For

the root activity in the decomposition tree (Step 4), the

parameter nodes correspond to the ports defined in the

IBD(s) of Step 2.

• System signals are more suitably modeled as events

within the activity diagrams rather than activity param-

eter nodes, e.g., see the delete signal in Figure 6.



Requirement

«satisfy»

Fragment 

Requirement

«satisfy»

Diagram

Requirement

Diagram Y

Diagram X

Fragment A

Fragment B

«enable»

«enable»

«enable»

«enable»

(a) (b) (c)

Figure 8. Patterns for traceability links between the requirements and the
design

Next, we are going to explain how the design models de-

veloped in Steps 1–5 above can be linked to the requirements

of the interface.

Step 6. Link the Requirements and Design

In this step, we establish traceability links between the

interface’s requirements and its design using SysML Re-

quirements Diagrams (RD). The traceability links specify

which parts of the design contribute to the satisfaction of

each requirement. We use three general patterns, shown in

Figure 8, for defining the links.

In the first case, Figure 8(a), a complete diagram (usually

an activity diagram) is connected to a requirement using

a “satisfy” link. This means that the design elements in

the diagram fully satisfy the requirement and there is no

need for linking further evidence from the design to argue

that the requirement is properly addressed. The second case,

Figure 8(b), is the same as case (a) except that a diagram

fragment, as opposed to an entire diagram, provides relevant

evidence for the satisfaction of a requirement. In the final

case, Figure 8(c), we need to deal with the situation where

no single design diagram contains all the evidence necessary

to show the satisfaction of a requirement and the evidence is

distributed over multiple diagrams. In such a case, we link

all the relevant pieces of evidence (diagrams and/or diagram

fragments) to the requirement in question using “enable”

links.

All three patterns were used in the MS interface, but due

to space constraints, we illustrate only case (c), which is

the most complex one: one of the interface’s requirements

states that “The MS interface shall be able to run in parallel

with other interfaces running on the same CPU”. The exe-

cution framework has built-in mechanisms for parallelizing

different interfaces on the same CPU and for specifying

the multiplicities and the types of interfaces, but for these

mechanisms to work, the interfaces have to register with

the execution framework. Hence, the satisfaction of the

requirement in the diagram will depend both on proper

Figure 9. Enabling links from multiple design diagrams to a requirement

registration by the MS interface during creation as well as

the runtime facilities provided by execution framework. The

details of the execution framework are outside the scope

of our analysis; therefore, the “enable” link in Figure 9 is

made from the Execution Framework package (which is a

fragment of the interface’s structural diagram).

V. EXPERIENCE

We applied our methodology to a real safety-critical

SW/HW interface and built a complete SysML design with

traceability to the interface’s requirements. The resulting

design and traceability links were iteratively validated and

refined in collaboration with a domain expert (last author).

The SysML design in this study includes all the SysML

diagrams envisaged in our methodology. Specifically, the

design consists of 23 diagrams, 194 elements having 186

relations and 57 attributes. The interface under study in-

cluded 30 requirements all of which were safety-relevant. All

these requirements were related to the SysML design using

appropriate traceability links. Through the application of our

methodology to the MS interface we aimed to investigate

two questions: Q1: Is our methodology applicable in a

realistic setting? Q2: Does the methodology address the

needs of design audits during certification?

Q1. Throughout the design, we created the following

SysML diagrams: one context diagram (BDD), one architec-

ture diagram (IBD), one detailed structure diagram (BDD),

one activity decomposition diagram (BDD), one overall

behavior model (AD), and 19 detailed behavior models

(ADs). To trace the interface’s requirements to the design, a

total of 65 traceability links were created manually for the

30 requirements (RDs). The entire study (design and estab-

lishing traceability) was done over three weeks, involving

approximately 40 man-hours of effort. This was considered

worthwhile because the developed models provide a precise

and convenient way for exchanging information within a

team, with suppliers, and last but not least with the certifiers.

Further, as the certification process and all its associated

activities are costly and may take a long time even for small

SW/HW interface implementations, three weeks is very little

in comparison. A yet another perceived benefit of the models



Table I
SOME RECURRING ISSUES RAISED DURING CERTIFICATION.

Issue Certifier’s Demand

Relationships between the software
blocks and whether they are at the
same or different levels (subsystem,
component) are not clear.

Provide a diagram to show the de-
composition of the software sys-
tem into its constituent blocks.

Interactions between components
and subsystems have not been
made explicit.

A detailed description of the ar-
chitecture must be developed. The
interfaces between software com-
ponents, input and output bits for
terminals, and logical information
flows between terminals must be
specified.

The semantics of diagrams in the
documentation are ambiguous.

Elements on each diagram need to
be clearly labeled and the mean-
ing of each box and arrow needs
to be specified.

Application workflows are difficult
to understand from the (textual) de-
scriptions provided.

A sequence diagram or an activity
diagram needs to be provided for
easier understanding of the work-
flows.

It is hard to identify which blocks
are involved in meeting each re-
quirement.

Traceability between
requirements and design must be
clearly stated.

Different modes of the system and
admissible transitions between dif-
ferent modes are not documented.

Different states in the system,
and the conditions and events for
moving from one mode to another
must be captured using a model.

is that they will simplify impact analysis on modifications

made at a later stage.

Q2. Table I represents a list of recurring issues raised

during the certification meetings we attended (see Sec-

tion II), and the certifier’s demands. The application of

our methodology would have avoided the majority of the

observed issues noted in Table I by prescribing what kind

of diagrams must be created, guiding engineers to iteratively

define and expand these diagrams, providing heuristics about

the level of detail that must be included, and giving explicit

guidelines on creating traceability links.

VI. CONCLUSION

Building on our previous work on SysML-based design

of safety-critical embedded systems [4], we developed in

this paper a set of methodological guidelines specifically

aimed at SysML-based modeling of safety-critical SW/HW

interfaces. Our primary focus was improving the safety

certification process, by avoiding recurrent design specifi-

cation issues identified in the design inspections and audits

conducted by the certification bodies. As a case study and a

way to validate our methodology, we built a detailed SysML

design for a real safety-critical interface for maritime and

energy systems.

Within the work conducted so far, there are several topics

that need further investigation. Key topics for future research

include:

Writing better requirements: Design quality is necessarily

influenced by the quality of the requirements. We plan to

develop guidelines on writing and classification of interface

requirements. This will result in both a more accurate design,

and more precise requirements-to-design links.

Non-functional requirements: Our work is currently lim-

ited to functional requirements. We are now working on

generalizing our approach to non-functional requirements

(e.g., performance and availability).

Further case studies: While we have attempted to ensure

as much generalizability as possible through working on

representative examples, we are aware of the diversity of the

SW/HW interfaces used in different systems and different

domains. Our focus has been mainly on systems in the

maritime and energy sector. The extent to which our work

applies to other domains, and whether the resulting models

provide enough detail for certification audits in these other

domains requires further investigation which we plan to do

in the future. Also, although our methodology is aligned

with real problems observed during certification, we have

not yet conducted a thorough evaluation of the usefulness

of the resulting models during certification. This too will be

tackled as part of our future work.

REFERENCES

[1] S. Friedenthal, A. Moore, and R. Steiner. A Practical Guide to
SysML: The Systems Modeling Language. Morgan Kaufmann,
2008.

[2] Iec 61158: Industrial communication networks - fieldbus spec-
ifications. International Electrotechnical Commission, 2010.

[3] IEC 61508: Functional safety of electrical / electronic / pro-
grammable electronic safety-related systems. International
Electrotechnical Commission, 2005.

[4] S. Nejati, M. Sabetzadeh, D. Falessi, L. Briand, and T. Coq.
A SysML-based approach to traceability management and
design slicing in support of safety certification: Framework,
tool support, and case studies. Information and Software
Technology (forthcoming), 2011. http://modelme.simula.no/
assets/IST11.pdf.

[5] W. Schafer and H. Wehrheim. The challenges of building
advanced mechatronic systems. In FOSE ’07, pages 72–84,
2007.

[6] OMG Systems Modeling Language (SysML).
http://www.omg.org/docs/formal/08-11-02.pdf, 2008. Object
Management Group (OMG), version 1.1.

[7] UML 2.0 Superstructure Specification, 2005.


