
Combining Congested-Flow Isolation and Injection Throttling in HPC
Interconnection Networks

Jesus Escudero-Sahuquillo∗, Ernst Gunnar Gran†, Pedro Javier Garcia∗, Jose Flich‡,
Tor Skeie†, Olav Lysne†, Francisco Jose Quiles∗ and Jose Duato‡
∗Dept. of Computing Systems, University of Castilla-La Mancha, Spain.

Email:{jesus.escudero, pedrojavier.garcia, francisco.quiles}@uclm.es
†Simula Research Laboratory, Norway. Email:{ernstgr, tskeie, olav.lysne}@simula.no

‡Dept. of Computer Engineering, Technical University of Valencia, Spain. Email:{jflich,jduato}@gap.upv.es

Abstract—Existing congestion control mechanisms in inter-
connects can be divided into two general approaches. One is
to throttle traffic injection at the sources that contribute to
congestion, and the other is to isolate the congested traffic
in specially designated resources. These two approaches have
different, but non-overlapping weaknesses. In this paper we
present in detail a method that combines injection throttling
and congested-flow isolation. Through simulation studies we
first demonstrate the respective flaws of the injection throttling
and of flow isolation. Thereafter we show that our combined
method extracts the best of both approaches in the sense that
it gives fast reaction to congestion, it is scalable and it has good
fairness properties with respect to the congested flows.

Keywords-Interconnection Networks; Congestion Manage-
ment; HoL-blocking;

I. INTRODUCTION

In interconnection networks [1], traffic congestion may
degrade the network and overall system performance if no
countermeasures are taken [2]–[4]. Congestion is simply a
result of high load of traffic fed into a network link, exceed-
ing the link capacity at that point. Hot spot traffic patterns,
network burstiness, re-routing around faulty regions, and
conducting link frequency/voltage scaling (lowering the link
speed in order to save power), can all lead to congestion.
If all these factors are known in advance, the network
administrator may alleviate the consequences by effective
load balancing of the traffic, but typically this is not the
case. Furthermore, in cases where multiple nodes send more
data to a single destination than the node can handle, no
dynamic re-routing can be done to avoid network congestion.
It becomes even more severe when a parallel computer is
running multiple different jobs as an on-demand service
(e.g. cloud computing), where the resulting traffic pattern
becomes unpredictable.

Congestion control (CC) as a countermeasure for relieving
the effects of congestion has been widely studied. In partic-
ular, this problem is well understood and solved by dropping
packets in traditional lossy networks such as local area
networks (LANs) and wide area networks (WANs). In these
environments packet loss and high latency are indications
of network congestion. Herein it is mainly TCP that imple-
ments end-to-end CC, either by a traditional window control
mechanism [5] for detecting dropped packets or through
changes in latency [6], [7]. Very often those networks are
also over-provisioned in order to avoid congestion.

In high performance computing (HPC) data centers low
latency is crucial, and packet dropping and retransmission

are not allowed under regular circumstances due to loss of
performance. Lossless behavior is achieved with credit based
link-level flow control, which prevents a node or a switch
from transmitting packets if the downstream node or switch
lacks buffer space to receive them.

Typically, when congestion occurs in a lossless network,
a congestion tree starts to build up due to the backpressure
effect of the link-level flow control. The switch where the
congestion starts will be the root of a congestion tree that
grows towards the source nodes contributing to the conges-
tion. This effect is known as congestion spreading. The tree
grows because buffers fill up through the switches in the
network as the switches run out of credits (not necessarily
in the root). As the congestion tree grows, it introduces
head-of-line (HoL) blocking [8] that slows down packet
forwarding. HoL-blocking appears when the packet of the
head of a queue is blocked and prevents packets behind
it from advancing. This effect also affects flows which
are not contributing to the congestion, severely degrading
the entire network performance. The HoL- blocked flows
become victims of congestion [8].

CC for link-level flow controlled networks cannot be
based on a traditional window control mechanism as de-
ployed in TCP, though it effectively limits the amount of
buffer space that a flow can occupy in the network [9].
The reason for this is the relatively small bandwidth-delay
product in this environment, where even a small window
size may saturate the network [8]. A rate control (throttling)
based CC mechanism is more appropriate for link-level flow
controlled networks, since it increases the range of control
compared to a window-based system. The mechanism relies
on the switches to detect congestion, and inform the sources
that contribute to the congestion they must reduce their
corresponding injection rates. By reducing the injection rate,
the sources remove the congestion tree and by that the HoL-
blocking as well.

A problem associated with throttling-based CC is that it
takes time from a switch detects congestion until the sources
contributing to congestion are notified about congestion.
During that time HoL-blocking degrades network perfor-
mance. This slow reaction has inspired Duato et. al. to take
a completely different approach for CC [10], [11]. Instead of
removing the congestion tree itself, this approach strives to
relieve the unfortunate side effects the congestion tree has on
flows not contributing to the congestion. That is, the HoL-
blocking is removed by using special set-aside-queues for
contributors to congestion, effectively making it possible for

2011 International Conference on Parallel Processing

0190-3918/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPP.2011.80

662



victim flows to bypass the congested flows without actually
removing the congestion tree. Such an approach has the
advantage of being able to react immediately and locally
at each switch, at the cost of the extra buffers needed for
the set aside queues and the added complexity in the switch
to manage them. Isolating the congested flows in this way
does, however, not address the real cause of the problem,
sources injecting too much traffic into the network. The
congestion trees themselves are left untouched. This poses a
scalability challenge as the number of congestion trees could
exceed the resources available for the set aside queues in the
switches. If this happens, congestion trees will grow inside
the queues supposed to be used only for victim flows, and
by this reintroduce HoL-blocking and lead to performance
degradation in the network.

Summing up, an injection throttling mechanism is able to
remove the congestion tree, and by that the introduced HoL-
blocking, but the mechanism has a challenge when it comes
to reaction time. It operates behind schedule. A mechanism
based on congested-flow isolation, on the other hand, reacts
immediately but faces scalability issues as the number of
congestion trees increases. In addition, there is another less
obvious difference between the two CC mechanisms. A
throttling mechanism has been shown to have the potential
of improving fairness in the network by solving the well
known parking lot problem [12]. This problem arises when
several flows are stored in a queue at a switch while another
flow addressed to the same output port is the sole user of
another different queue. The flows sharing the same queue
are granted access to the requested output port with less
frequency, than the flow being the sole user of the queue.
The throttling mechanism solves the parking lot problem
by decreasing the injection rate on a per flow basis at
the sources. On the other hand, a congested-flow isolation
mechanism can actually have a negative effect on fairness
depending on the arbitration in the switches.

In this paper we present Combined Congested-Flow Iso-
lation and Throttling (CCFIT), a novel mechanism which
combines the ideas of congested-flow isolation with a throt-
tling mechanism. Using simulations, we show that CCFIT is
able to remove HoL-blocking immediately, assure scalability
by removing the congestion trees, improve fairness in the
network, and last but not least, CCFIT achieves an allover
higher throughput than injection throttling and congested-
flow isolation do as standalone concepts.

The remainder of the paper is organized as follows:
In Section II we discuss previous work related to CC in
interconnection networks, to place our proposed CCFIT
mechanism into the proper context. Section III contains a
thorough description of the CCFIT mechanism, while in
Section IV we evaluate the mechanism using results from
simulation studies. In Section V we conclude the paper.

II. RELATED WORK

Congestion control (CC) based on injection throttling is
a popular approach to congestion handling. As aforemen-
tioned, the basic idea is to detect congestion in the network
at the switches, then to notify the contributing sources

about the congestion, and finally for the contributors to
stop or cease traffic injection. This closed-loop feedback
control philosophy is the basic approach of several proposals
which, on the other hand, differ in several aspects. For
instance, notifications could be sent to all the sources [13]
or just to the sources contributing to congestion [14]. Other
proposed mechanisms [15] notify congestion just to the
local endpoints attached to the switch where congestion is
detected. Furthermore, the switches can mark the packets
contributing to congestion in order to notify the destinations
about the situation, which subsequently notify the sources
(the forward explicit notification approach), or the switches
can themselves generate notification packets that are sent
directly to the source nodes (the backward explicit notifica-
tion approach). The InfiniBand (IB) network [16] applies the
former approach, while the emerging Data Center Bridging
standard [17] is implementing the latter.

There is also a body of work that propose different
strategies for congestion notification and marking, e.g. a
congested packet can be marked both in the input and output
switch buffer, as well as being tagged with information
about the severity of the congestion. Moreover, there are
some different approaches for designing sources response
function, i.e. the actions taken to reduce the injection rate,
later followed by an increase in the rate when congestion is
resolved [9], [18]–[20].

The injection throttling part of the CCFIT mechanism
is inspired by the injection throttling mechanism specified
for InfiniBand (IB), one of the most successful interconnect
technologies. The IB Architecture Specification [16] defines
two bits in the packet header for congestion notification.
Specifically, if a packet is considered to contribute to con-
gestion at a switch port, the Forward Explicit Congestion
Notification (FECN) bit in the packet header is set. The
FECN bit is then carried through the network to the desti-
nation node by the packet contributing to congestion. Upon
reception of a “FECN-marked” packet, a destination will
return back to the source a packet whose header will have
the Backward Explicit Congestion Notification (BECN) bit
set. Any source receiving a BECN packet will reduce its
injection rate of the corresponding congested traffic flow,
thus alleviating congestion.

The performance of IB CC depends on several con-
figurable parameters. For instance, a threshold parameter
mapped to a buffer fill ratio at a switch port1 determines
when the port is considered to be congested. If the buffer
fill ratio is above the threshold the corresponding switch
port is moved into the Congestion State, given that the port
is also considered to be at the root of the congestion tree,
that is, the port has available credits to forward packets.
However, in order not to generate too many BECNs, not
all the packets crossing a port in the Congestion State are
“FECN-marked”: Only those whose size is greater than
the value of the Packet Size parameter, and among them
again, only a fraction corresponding to the Marking Rate

1For simplicity, the concept of Virtual Lanes (VL) has been left out of
this explanation of the IB CC.

663



parameter, are finally marked.
Similarly, the exact reaction of a source node upon

the reception of a BECN also depends on a set of CC
parameters. Specifically, the injection rate of a congested
flow is reduced by introducing a injection rate delay (IRD)
between consecutive packets of that flow. Source nodes store
a list of possible IRD values in a Congestion Control Table
(CCT), each congested flow holding an index (CCTI) into
this table. CCT values are typically arranged in such a
way that the higher the index, the greater the IRD. Upon
reception of a BECN the index of a flow is increased by
a value stated by the CCTI Increase parameter. The CCTI
is decremented again by one when a timer (whose value
is stated by the CCTI Timer parameter) expires. In this
way, flows contributing to congestion will be throttled while
congestion is present, and being released when congestion
vanishes. More details about the IB CC mechanism can be
found in [8].

While the IB CC mechanism, like injection throttling tech-
niques in general, has the potential to remove the congestion
tree and even improve fairness [8], the mechanism has a
major drawback. The delay between congestion detection
and reaction at the sources results in a CC mechanism
operating behind schedule, where oscillating sources are
adjusting their injection rates based on “old” information.

An alternative approach to the injection throttling mech-
anism is to remove the HoL-blocking without removing the
congestion tree, e.g. using a congested-flow isolation tech-
nique. If HoL-blocking produced by congested flows to non-
congested ones is eliminated, congestion turns harmless [4].

Many techniques have been proposed to reduce or elim-
inate HoL-blocking, most of them relying on having dif-
ferent queues at each switch port, in order to separately
store packets belonging to different flows. For instance, a
well-known HoL-blocking elimination technique is Virtual
Output Queues (VOQs), either at switch level (VOQsw) [21]
or at network level (VOQnet) [22]. The latter requires at
each port as many queues as destinations in the network.
Then, at each port, all the packets addressed to a specific
destination are exclusively stored in the queue assigned to
that destination, and they never share that queue with packets
addressed to other destinations, thus completely removing
HoL-blocking. Note, however, that VOQnet does not scale
with network size. VOQsw uses as many queues at each port
as output ports in the switch, so that each incoming packet
is stored in the queue assigned to its output port. VOQsw
scales with network size, and eliminates HoL-blocking in
a switch if it is directly caused by packets contending for
output ports in the same switch. Unfortunately, in switches
affected by congestion spreading from other switches, VO-
Qsw can not guarantee that congested packets do not share
queues with non-congested ones, thus VOQsw just partially
eliminates HoL-blocking. Other similar techniques that also
reduce HoL-blocking, but do not completely eliminate it,
are Dynamically Allocated Multi-queues (DAMQs) [23],
Destination-Based Buffer Management (DBBM) [24], Dy-
namic Switch Buffer Management (DSBM) [25] and Output-
Based Queue-Assignment (OBQA) [26].

All the mentioned HoL-blocking elimination techniques
do not explicitly identify congested flows, but they rely on
separating packets from different flows as much as possible
with the available queues at each port. Their effectiveness
then greatly depend on the number of queues per port.
By contrast, other techniques explicitly detect and keep
track of congested flows in order to isolate them in spe-
cial, dynamically-assigned queues, while the non-congested
flows may share queues without suffering significant HoL-
blocking. In this way, the number of queues required to
efficiently eliminate HoL-blocking is reduced. This is the
main strategy followed by Regional Explicit Congestion No-
tification (RECN) [10], [27], Regional Explicit Congestion
Notification-Input Queued (RECN-IQ) [28] and Flow-Based
Implicit Congestion Notification (FBICM) [11].

In order to identify congested flows, these techniques
implement some mechanism to locate congested points (i.e.
to detect congestion), then identifying congested packets as
those whose route crosses a congested point. In general, like
the IB mechanism, these techniques detect congestion by
locally monitoring queue occupancy at each switch port, and
comparing it with a Detection Threshold. Once congestion is
detected in a port, a special queue is immediately allocated
to store congested packets crossing that port. Additionally,
these techniques also require a set of queues, at each
port, devoted to store congested packets2, and some control
memory to manage them, mainly to store the location of
the congested point each special queue is assigned to. This
control memory is implemented by means of a Content-
Addressable Memory (CAM) present at each port. In the
case of RECN and RECN-IQ, designed for source-based
routing networks, each CAM line stores (among other infor-
mation) the explicit path towards the root of the congestion
tree assigned to a specific SAQ, while in the case of FBICM,
designed for deterministic distributed-based routing, stores
a set of destinations. If the occupancy of any SAQ (or
CFQ) in a port reaches a specific threshold, the conges-
tion information stored in its corresponding CAM line is
propagated (by control packets) to the switch connected
to that port, which in turn will allocate a new SAQ (or
CFQ) for this specific congestion tree. In this way, special
queues are allocated all along the way of congested flows to
separate them from non-congested ones, thereby eliminating
HoL-blocking. SAQs (or CFQs) are dynamically deallocated
when the corresponding congestion tree vanishes, and later
reallocated if a new congestion tree appears.

As mentioned in the introduction, although these solutions
are quite effective, they also present some flaws, probably
the most important one being the limited number of special
queues per port, which may not be enough to handle all
the possible congestion trees simultaneously present at a
port. Note, however, that it is unlikely that many congestion
trees are present in many ports at the same time, thus in
most cases only a small fraction of ports would run out of
SAQs. Nevertheless, any congestion tree may partially spoil

2These queues are called Set-Aside-Queues, SAQs, in RECN and RECN-
IQ, and Congested-Flow-Queues, CFQs, in FBICM.

664



network performance if not suitably managed in a port.
To conclude, note that two of the most popular strate-

gies for CC in high-performance interconnection networks,
injection throttling and HoL-blocking elimination based on
congested-flow isolation in dynamically-allocated queues,
present different drawbacks. The initial idea behind CCFIT
was that a combination of both approaches would alleviate
the respective flaws. On one hand, congested-flow isolation
eliminates HoL-blocking even if sources are not yet aware
of the appearance of congestion. On the other hand, the
throttling of congested flows would reduce the probability
of having many of them simultaneously present in any port,
i.e. also reducing the probability of running out of special
queues in any port. In the following sections we describe
and evaluate CCFIT, our new proposal to combine these
approaches to CC. In addition, we also show that CCFIT in
certain situations greatly improves fairness, both compared
to a CC mechanism based on congested-flow isolation alone,
as well as compared to a network configuration running
without CC.

III. CCFIT DESCRIPTION

In this section, we describe the CCFIT mechanism, de-
tailing the switch and end-node architecture, as well as
their specific operation. After that, we analyze the CCFIT
parameters.

A. Switch Architecture

The injection throttling part of the CCFIT mechanism is
heavily influenced by the CC throttling mechanism specified
for IB, evaluated in [8], [12]. This throttling mechanism
is then combined with FBICM to achieve congested-flow
isolation in switches using distributed routing. That is, the
CCFIT switches are responsible for both detecting conges-
tion and notifying the contributing sources, as well as isolat-
ing congested-flow packets, eliminating the HoL-blocking:
When detecting congestion, a CCFIT switch moves the
corresponding output port into the congestion state, mark
packets using this output port by setting the FECN bits, and
allocates a CFQ for packets belonging to the corresponding
congestion point.

Regarding switch architecture, CCFIT does not limit the
number of switch ports. Specifically, it has been developed
for Input Queued (IQ) switches, where memories are only
present at input ports. The current and popular IQ-switches
are simpler and cheaper than the CIOQ ones, offering high
bandwidth and low latency if Virtual Output Queues (VOQ)
are used [29].

Regarding switch routing logic, CCFIT has been designed
for networks using distributed deterministic routing (In-
finiBand being a prominent example), thus routing logic
can be implemented using any distributed deterministic
routing hardware solution, like tabled-based routing, look-
ahead routing, etc. The unique routing information packets
need to include in their header is the destination they are
addressed to, instead of a explicit, complete route as source
routing does. Actually, this routing information and the

Figure 1. CCFIT Input Port Organization Diagram.

stored congestion information allow CCFIT to detect if a
packet is congested or not.

In order to deal with the HoL-blocking effect, CCFIT uses
the input port organization shown in Fig. 1. Specifically,
RAM is organized in queues, dynamically managed: CCFIT
assumes two types of queues per input port: a normal flow
queue (NFQ), where non-congested packets are stored, and
a small number of congested flow queues (CFQs), where
congested packets are isolated, thereby, not delaying the
advance of non-congested ones. Moreover, CCFIT uses a
post-processing mechanism (see Section III-C), similar to
the FBICM one, in order to move congested packets from the
NFQ to the CFQs. As we describe latter, the post-processing
mechanism is in charge of moving an output port into the
congestion state.

Like FBICM, CCFIT uses content addressable memories
(CAMs) [30], in order to both keep track of the congestion
information and store the CFQ status. Notice that each CAM
line is associated with one CFQ. Although switch output
ports have neither NFQs nor CFQs, CCFIT requires a CAM
per output port, in order to propagate congestion information
from a given input port CAMs to upstream input port CAMs.
In that sense, CCFIT follows the same approach used in
FBICM for congestion information propagation and resource
deallocation.

Regarding switch scheduling, CCFIT uses iSlip [31], a
Round-Robin (RR) algorithm achieving a fair arbitration
inside the switch (as demonstrated in [12]). Specifically, all
the switch input ports are served in a round robin fashion.
An input port currently accessing an output port, will not
get access to the same output port again until all other input
ports requesting the same output port have been granted
access. In particular, when a congestion tree arises inside
the switch this scheduling policy allows a complete fairness
between all the input ports which have allocated CFQs,
even if several flows are sharing the same CFQ. Introducing
injection throttling, however, may break the fairness property
of RR if care is not taken. As shown in [12] it is important
to use two thresholds (“high” and “low”) for congestion
detection to maintain fairness in RR-based switches. CCFIT
follows this approach, though comparing the thresholds
against the fill ratio of the CFQs rather than the VOQs. This
is further described in Section III-C.

Although RR scheduling combined with the use of two
thresholds allows fairness between input ports, it does not
achieve fairness between traffic flows if some flows are
exclusive users of their CFQs while other flows are sharing
a CFQ (the parking lot problem). This problem is, however,
solved by introducing the injection throttling [12]. All in

665



Figure 2. CCFIT Input Adapter Architecture.

all, CCFIT is able to achieve fairness at two levels: among
different flows arriving at a hot spot switch from different
input port CFQs, and by solving the parking lot problem.
The fairness of CCFIT is further addressed in the evaluation
Section IV-C.

Summing up, by using the architecture outlined above, the
CCFIT switches are, as we describe in Section III-C, able
to detect congestion, move output ports into the congestion
state, marking packets contributing to congestion, isolating
congested flows in the CFQs, and finally, release the required
congestion information resources when congestion vanishes.
The next section describes the end-nodes architecture.

B. End-nodes Architecture
An end-node receiving a packet with the FECN bit active

should, as soon as possible, notify to the packet source about
the congestion in order to throttle the injection. Similar to the
IB CC mechanism, CCFIT returns a congestion notification
packet (CNP) with the BECN bit active. The BECN packet
has priority in the switches for being transmitted, and it
only uses NFQs. Fig. 2 shows a diagram of the end-node
architecture in charge of generating traffic, receiving BECNs
and throttling the injection. For the sake of simplicity, we
have omitted end-node structures in charge of receiving data
packets and generating BECNs. In the following, we will
refer this part of the end-node as the Input Adapter (IA).

Basically, CCFIT IAs have a fixed number of admittance
queues (AdVOQs) equal to the network end-nodes, each
AdVOQi storing packets addressed to destination i, thus
avoiding the HoL-blocking that may arise while generating
traffic. Like the switch input ports, IAs have an output buffer
organized in queues: one NFQ storing non-congested pack-
ets, and a small number of CFQs storing congested packets.
Moreover, IA has a CAM with the same behavior as the ones
located at switches. The CCFIT post-processing mechanism
moves congested packets to the corresponding CFQ, so the
HoL-blocking elimination is assured. Furthermore, CCFIT
IAs include specific structures for the injection throttling,
following an IB approach (see Section II). Specifically, the
Congestion Control Table (CCT) stores a list of Injection
Rate Delays (IRDs) which can be applied to any AdVOQi

in order to reduce its injection rate. The CCT indexes
array (CCTI) stores a CCT index for each AdVOQi and,
by that, the IRD for a given AdVOQi can be found at
CCT [CCTI[i]]. Each CCTI index is increased when a
BECN is received at the IA, thus increasing the value of
the IRD applied to the AdVOQi. Notice that, during heavy
congestion situations the IA will receive a lot of BECNs
which will increase the CCTI index, and therefore the IRD
value. In this way, the IA reduces the injection for the
congested destinations.

For a given AdVOQi, the Timer array is used to decrease
in one unit the CCTI[i] when the timer expires. In this
way the IRD is reduced for that AdVOQi. A Last Time
of Injection (LTI) array is in charge of storing the last time
an AdVOQi injected a packet in the network. This value is
used by the arbitration together with the IRD in order to
calculate if the next packet of the corresponding AdVOQi

could be sent or not. That is, the IA arbiter selects a packet
from a specific AdVOQi by applying a RR policy, making
the “arbitration decision” based on the CAM, Timer, LTI
and CCTI structures.

Finally, the most important effect of using CCFIT is
achieved by the injection throttling since the CAM lines and
CFQs, which were allocated when congestion appeared, are
released quickly. As we show in the CCFIT evaluation (sec-
tion IV) the network throughput is increased in comparison
with the RECN-like and injection throttling techniques. In
order to clarify the overall behavior of CCFIT at the IAs,
an operation example is described in Section III-D.

C. Switch Behavior

Fig. 3 shows an example of CCFIT switches behavior.
The switch stores an incoming packet (Event #1) in the cor-
responding NFQ. After that, CCFIT may detect congestion
(Event #2) based on the NFQ occupancy level. When the
NFQ fill ratio exceeds the congestion detection threshold,
a congestion situation is detected and a CFQ is allocated
in the input port, together with a CAM line containing the
information related to the new congestion point.3 Therefore,
the CAM line information is used to detect if an incoming
packet is addressed to the same destination. 4

Like FBICM, CCFIT moves congested packets from the
NFQ to the corresponding CFQ by means of the packet
post-processing mechanism (Event #3). Basically, when a
packet reaches the head of the NFQ, CCFIT looks up in
the input port active CAM lines if the packet destination
is stored in one of them. In the case of a match, the
packet is moved to the CFQ the CAM line is referred
to, otherwise, the packet crosses to the requested output
port. Note, the post-processing mechanism leaves in the
head of the NFQ only non-congested packets, thus avoiding
the HoL-blocking problem between congested and non-
congested packets. Moreover, this mechanism decides which
input port queue (NFQ or CFQs) can request the output

3Notice that CCFIT, like FBICM, only requires to store in the CAM the
destination the congested packet is addressed to.

4More information about FBICM CAMs can be found in [11], [32].

666



Figure 3. Example of the CCFIT Operation at Switches.

port. In that sense, it will create the crossing-requests that
the arbiter will use for crossing packets to their requested
output port. As we have described, the switch uses the iSlip
scheduling algorithm.

CCFIT follows the FBICM scheme for propagating
the congestion information. A CFQ Stop/Go flow control
(Events #4 and #5) is used between every two switches
containing allocated CFQs belonging to the same congestion
tree. In this way, CCFIT separates congested and non-
congested flows in different CFQs along any path followed
by congested packets, thus isolating them and minimizing
the HoL-blocking effect.

The dynamic and distributed resource deallocation process
begins when a CFQ satisfies some conditions: it is empty
and its associated CAM line is in Go status. When a CFQ
is deallocated (Event #6), and it is part of one congestion
tree branch (a previous “allocation” notification was sent to
the upstream switch), a “deallocation” message is sent to the
upstream switch to notify about the new situation. A similar
process takes place between deallocated output port CAM
lines and its linked input port CFQs+CAM lines.

As previously described, an important feature of the post-
processing mechanism is that it is in charge of deciding if
some output port should be moved into the congestion state.
For each CFQ allocated in the root of the congestion tree
(it is 1-hop away from the congested point), CCFIT looks
at the CFQ occupancy level and, if that CFQ occupancy
level exceeds the “High” threshold, the post-processing
mechanism moves the output port, pointed to by the CFQ,
into the congestion state. However, it may occur that the
output port was already in the congestion state. When this
happens CCFIT keeps track of the number of CFQs which
have an occupancy level above the “High” threshold. Packets
crossing an output port in the congestion state will be
marked (Event #7) as congested (FECN bit set). If the CFQ
occupancy level decreases below the “Low” threshold the

output port counter is decreased, until it reaches the value
0, then moving the output port out of the congestion state.
From this moment, no more packets are marked at the output
port. Notice that, a CFQ which is placed 2-hops away from
the congestion state (e.g. in Fig.3 CFQ0 of P2 at Switch A)
does not move its referred output into the congestion state,
thus packets are not marked.

As it has been described in Section II, a FECN bit
will be set or not depending on Packet Size and Mark-
ing Rate parameters. The influence of the Packet Size and
Marking Rate parameters in the accuracy of the injection
throttling mechanism is described in Section III-E.

D. Input Adapter Behavior

Fig. 4 shows an example of CCFIT IAs behavior. Ba-
sically, the IA is connected to switch A, which has just
detected a congestion situation, which in turn, has been
triggered by an incoming packet (Events #1 and #2). The
post-processing mechanism moves all the congested packets
to the CFQ (Event #3), and the CFQ flow control (Event
#4) propagates the congestion information to the IA.

As the packets crossing through port P3 at Switch A are
marked, the IA will receive BECN notifications indicating
the injection throttling must start. When a BECN is received
at the IA (Event #6), CCFIT obtains the AdVOQi (i being
the destination generating the BECN) which is sending pack-
ets to the destination this BECN belongs to. At this moment,
CCFIT increases the CCTI[i] by one, thus increasing the
IRDi for the AdVOQi. Moreover, the Timer[i] (see Fig. 2)
is initialized with the CCTI Timer value. When the timer
expires (Event #7) the CCTI[i] is decreased by one and the
IRDi is reduced, thus the IA increases the injection rate.

The IA arbiter makes the decision of which packet must
be moved from the AdVOQi to the NFQ (Event #8) based
on a RR policy among all the AdVOQs. For each AdVOQi

667



Figure 4. Example of the CCFIT operation at IAs.

the arbiter checks if the IRDi value applied to that AdVOQ
is greater than the current time, thus allowing the injection.

In this way CCFIT reduces the injection for congested
destinations during congested situations, thus reducing the
congestion trees and releasing the required resources for
storing congestion information (mainly CFQs and CAMs) in
a fast way. The injection rate is increased when congestion
vanishes. As the evaluation shows (see Section IV), CC-
FIT significantly improves the overall network throughput
achieved by RECN-like approaches, such as FBICM, and
injection throttling ones.

E. Parameter Tuning Discussion
As it has been mentioned throughout the paper, CC-

FIT requires several parameters to be configured in the
switches and IAs. These parameters are Congestion de-
tection threshold, CFQ stop/go thresholds, CFQ High/Low
Thresholds, CCTI Timer, Marking Rate and Packet Size.
We have made the same experiences as in [8] for the
CCTI Timer, Marking Rate and Packet Size parameters,
thus a further description has been omitted. The remainder
of the parameters need to be established taking into account
the following ideas: The CFQ “High/Low” thresholds, as
it is described in [12], should have a distance of at least
one packet MTU. As one CFQ moves the corresponding
output port into the congestion state when its occupancy
level exceeds the “High” threshold, the “Stop” flow control
threshold should be greater than the “High” one, in order to
not block congested packets being transmitted from upward
switch CFQs. On its side, the difference between “Stop”
and “Go” thresholds needs to be sufficient for neither
blocking too much upward congested flows, or allowing too
much forwarding of congested traffic. Finally, the detection
threshold value should allow to detect congestion not too
early and not too late.

IV. EVALUATION

In this Section CCFIT is evaluated in terms of network
performance and fairness. It is important to note that the CC-

FIT main contribution is the significant good performance
in comparison to FBICM, which is achieved especially in
congestion situations where the latter has not a sufficient,
available number of CFQs for storing congested packets.
First of all, we describe the simulation tool, modeled traffic
patterns and network configurations used in the experiments.
Next, we analyze CCFIT performance results and fairness.

A. Simulation Model

The simulation tool used in our experiments is an event-
driven simulator written in the programing language C++,
which models interconnection networks at the cycle level,
end-nodes and links. In our experiments, we model different
network configurations which are shown in table I.

Table I
EVALUATED INTERCONNECTION NETWORK CONFIGURATIONS

Config. #1 Config. #2 Config. #3

# Nodes 7 8 64

Topology Ad-hoc (Fig. 5) 2-ary 3-tree (Fig. 6) 4-ary 3-tree

# Switches 2 12 48

Crossbar BW 5 GBytes/s 2.5 GBytes/s

Switching Virtual Cut-Through

Scheduling iSlip algorithm [31]

Packet MTU 2048 Bytes

Memory Size 64 KBytes

Link Bandwidth 2.5, 5 GBytes/s 2.5 GBytes/s

Flow Control Credit-based

Routing Algorithm Deterministic Deterministic (referred as DET [33])

Routing Logic Table-Based

Config. #1 (Fig.5) and Config. #2 (Fig.6) are used to study
throughput and fairness when several traffic flows create
congestion. Config. #2 is furthermore used for studying
congestion when uniform (random) traffic is generated. As
congestion appears/disappears in a fast fashion, congested-
flows need to be isolated immediately, while the fairness
is maintained. A third configuration, Config. #3, is used for

668



Figure 5. Configuration #1 Diagram.

Figure 6. Configuration #2 Diagram.

testing CCFIT’s reaction against heavy congestion situations,
where several congestion trees overflows the number of
available CFQs. In addition, the modeled traffic patterns for
the above configurations are:

• Case #1 (Config. #1). Five flows (F0, F1, F2, F5 and
F6, see Fig. 5) are injected in the network. The injection
rate is 100% of the link bandwidth (2.5 GBytes/s).
Specifically, F0 (the victim flow) is active during the
whole simulation period, while the other flows are
activated in a sequential way. F1 is active during the
time interval [2ms, 10ms], F2 between [4ms, 10ms],
F5 between [6ms, 10ms], and finally F5 is activated in
the interval [6ms, 10ms]. This traffic pattern generates
a congestion point in the link connecting switch 1 with
end-node 4.

• Case #2 (Config. #2). Like the Case #1, five flows (F0-
F4) are sequentially injected in the network at 100% of
the link speed. In this case the flow F1 remains active
during the whole simulation period. F0 is activated in
the interval [2ms, 10ms], F4 between [4ms, 10ms],
F2 between [6ms, 10ms], and F3 in the interval [6ms,
10ms]. This traffic pattern creates several congestion
points in the network which divide the link bandwidth
among all the flows contributing to congestion.

• Case #3 (Config. #2). Here the situation is the same as
for the Case #2, but three uniform traffic flows (sending
packets to random destinations) are now active during
the simulation (from nodes 5, 6 and 7). All the flows
are injected at 100% of the link bandwidth. In particular
this traffic pattern may add short lived congestion
situations which quickly appear and disappear. Such

congestion situations require a fast CC mechanism.
• Case #4. (Configuration #3) 75% of the sources inject

uniform traffic at 100% rate of the link bandwidth.
Suddenly, the remaining 25% of the sources generate
congested traffic during the time interval [1ms,2ms].
These sources stop injecting traffic after this time
period. This configuration tests if CCFIT copes with
heavy congestion situations where more congestion
trees than the number of CFQs are present. We have
introduced 1, 4 and 6 congestion trees in the network
during the congested traffic period of time.

We have modeled an IQ-switch architecture, thus RAM
memories are only added at each switch input port, with
different sizes depending on the CC technique. Specifically,
the simulator models the following CC techniques:

• Single Queue (1Q). This is the simplest case, with
only one queue at each input port storing all the
incoming packets. Hence, there is no HoL-blocking
reduction policy at all. Note that this scheme is used
for evaluating the performance of the DET routing
algorithm “alone”.

• FBICM. We use 2 CFQs per input port. Moreover, there
are CAMs both at input and output ports.

• Injection Throttling (ITh). We have fixed the
CCTI Timer to 8000 ns, and the Marking Rate to
85% of packets. We assume 8 Virtual Output Queues
(VOQs) per input memory. High/Low thresholds are
respectively set to 4 and 2 packets (2 MTUs as it is
discussed in [12]).

• CCFIT. We assume 2 CFQs per input port. Like ITh
technique, the same values for the CCTI Timer and
Marking Rate are assumed. Only uses 2 CFQs per
queue are defined for congested packets and entering
output ports in the congestion state as a difference
with ITh which has been configured with 8 VOQs.
Moreover, the “Stop” threshold is established to 10
packets MTUs while the “Go” one is set to 4 MTUs.

• VOQnet. This scheme (theoretically the most effective
one) requires greater memory sizes per input port,
because each memory must be divided into as many
queues as network end-nodes, and each queue requires
a minimum size. Considering flow control restrictions,
packet size, and link bandwidth and delay, we fix
minimum queue size to 4 KB, which implies port
memories of 256 KB for configuration #3 networks.
This scheme is actually almost unfeasible, but it is used
to show the theoretical maximum efficiency in HoL-
blocking elimination.

Finally, although the simulator offers many metrics, we
base our evaluation on two metrics: Flow Bandwidth, which
shows the throughput achieved by each traffic flow, and
network throughput, which shows network efficiency when
normalized. In the following subsections we analyze, by
means of these metrics, the obtained network performance.

B. Throughput Results
Fig. 7 and 8 show the overall network throughput as

a function of time for the network configuration #1, #2

669



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  2e+06  4e+06  6e+06  8e+06  1e+07

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t 
(n

o
rm

a
liz

e
d
)

Time (nanoseconds)

1Q
ITh

FBICM-2CFQ
CCFIT-2CFQ

(a) Configuration #1. Traffic Case #1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  2e+06  4e+06  6e+06  8e+06  1e+07

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t 
(n

o
rm

a
liz

e
d
)

Time (nanoseconds)

1Q
ITh

FBICM-2CFQ
CCFIT-2CFQ

(b) Configuration #2. Traffic Case #2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  2e+06  4e+06  6e+06  8e+06  1e+07 1.2e+07

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t 
(n

o
rm

a
liz

e
d
)

Time (nanoseconds)

1Q
ITh

FBICM-2CFQ
CCFIT-2CFQ

(c) Configuration #2. Traffic Case #3

Figure 7. Throughput versus Time. Flow-Based Traffic Configuration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1e+06  2e+06  3e+06  4e+06  5e+06

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t 
(n

o
rm

a
liz

e
d
)

Time (nanoseconds)

1Q
ITh

FBICM-2CFQ
CCFIT-2CFQ

VOQnet

(a) 1 Congestion Tree.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1e+06  2e+06  3e+06  4e+06  5e+06

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t 
(n

o
rm

a
liz

e
d
)

Time (nanoseconds)

1Q
ITh

FBICM-2CFQ
CCFIT-2CFQ

VOQnet

(b) 4 Congestion Trees.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1e+06  2e+06  3e+06  4e+06  5e+06

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t 
(n

o
rm

a
liz

e
d
)

Time (nanoseconds)

1Q
ITh

FBICM-2CFQ
CCFIT-2CFQ

VOQnet

(c) 6 Congestion Trees.

Figure 8. Throughput versus Time (Configuration #3, Traffic Case #4).

and #3, using different traffic patterns. Considering all the
plots, we clearly see how CCFIT outperforms the other
CC techniques, even FBICM in some of the configurations.
Specifically, in the plots shown in Fig. 7, the three CC
techniques all show similar results, while 1Q struggles as
soon as congestion is introduced in the network. In these
scenarios the injected traffic is small, leaving the congestion
less severe, making it rather easy for the different techniques
to cope with the situation. In Fig. 7a ITh experience a drop
in performance in the [4ms, 6ms] time frame due to conges-
tion detection at the left switch (Fig. 5). In configuration #2
case #3, Fig. 7c, we observe the tendency of ITh operating
too slow as it takes time for this throughput to reach the
level of the others.

In Fig. 8, we clearly see how CCFIT benefit from both
doing congested-flow isolation and injection throttling as we
increase the number of congestion trees from 1 to 4 and 6
in the network. In Fig. 8a, having one congestion tree in
the network, CCFIT achieves excellent performance, at the
level of FBICM. In this case FBICM, using 2 CFQs, have
sufficient resources to isolate packets belonging to the single
congestion tree. Notice that VOQnet, which achieves the
maximum performance, has 64 queues per input port and
uses 256 KB of memory, while the other CC techniques
use less queues and uses less memory. The ITh scheme is
not able to cope well with the situation. This could partly
be caused by unfortunate CC parameter values for ITh, but
then again finding optimal CC parameters for throttling is a
challenging task [8], and is probably the main reason for CC
not being in widespread use in IB networks today. Notice,
however that the CCFIT is not as sensitive to the parameters
(see in Fig. 8a), ITh reacts slow, even though the switches

are VOQsw based, while CCFIT only has 1 NFQ and 2
CFQs per input port.

Fig. 8b shows the network throughput when 4 congestion
trees are present in the network. Now FBICM struggles as it
has not enough resources to isolate all the congested flows in
a switch (FBICM uses only 2 CFQs per port): HoL-blocking
is happening in the NFQs. CCFIT, on the other hand,
shows a significant throughput improvement with respect to
FBICM. The CCFIT injection throttling is able to release
the resources used for isolating congestion flows (CFQs
and CAMs) before the congestion-flow isolation part of the
mechanism runs out of resources. Resources are released and
made available to handle new congestion situations before
the new situations arise. If we look at the ITh technique
alone, it is in this scenario able to better cope with the
congestion even though it still shows sign of instability
and oscillation; the “saw-shape” effect. The 1Q scheme,
which does not implement any HoL-blocking elimination
mechanism at all, again achieves the worst results.

Finally, when 6 congestion trees appear in the network
(Fig. 8c) we obtain similar results. This traffic pattern rep-
resents a situation where congested traffic is better balanced
in the network. Again, CCFIT outperforms FBICM, while
ITh needs more time to adjust the injection rate.

In conclusion, CCFIT significantly outperforms the other
CC techniques, even FBICM, especially as the number of
congestion trees grows, as the throttling part of CCFIT
is able to release the resources used for congested flow
isolation, preventing the congested-flow isolation part of the
mechanism to run out of resources.

670



C. Fairness Study

Fig. 9 shows the throughput as a function of time for each
individual traffic flow of config. #1 using traffic pattern case
#1 (Fig. 5). In Fig. 9a, when no CC mechanism is present,
not only does the throughput of the victim flow, F0, suffer
from HoL-blocking, but the contributors to congestion also
suffers from the parking lot problem as some contributors
(the ones being the sole users of their input buffers) got
more than their fair share of the link between switch 1
and end node 4. Enabling ITh, we not only improve the
performance of the victim flow, but at the same time the
parking lot problem is solved as the throttling happens at a
per flow basis. A flow exploiting the parking lot problem will
in return get more packets marked with a FECN (and then
receive more BECNs), and then slow down. The improved
fairness is clearly visible in Fig. 9b. Enabling FBICM, on
the other hand, improves the throughput of the victim, even
compared to ITh, but the parking lot problem prevails. The
flows being the sole users of their respective CFQs still get
more than their fair share of the bottleneck link towards
end node 4. Actually, the unfairness has increased when
using FBICM, as priority has been given to the victim flow
addressed to the end-node 3.

Similar fairness study results, for network configuration
#2, traffic case #2, are shown in Fig. 10. As can be seen
in Fig. 6, there are now 4 congestion points, the parking lot
problem possibly being present at two of them (switch 4 and
switch 6). Again, both HoL-blocking and the parking plot
problem leads to poor throughput and unfairness in the 1Q
scenario (Fig. 10a), while the introduction of ITh improves
performance in both aspects (Fig. 10b). FBICM improves
the throughput even further, but again the unfairness in the
network is dominant (Fig. 10c). Finally, Fig. 10d shows that
both the best throughput and the highest degree of fairness is
achieved by the CCFIT mechanism. It reacts fast due to the
congested-flow isolation and improves fairness by reducing
the injection rate on a per flow basis.

Summing up, besides efficiently eliminating HoL-
blocking, CCFIT improves fairness in the network by solv-
ing the parking lot problem.

V. CONCLUSIONS

The link-level flow control of interconnection networks
makes congestion spread from the oversubscribed link to the
rest of the network. This has the adverse effect that flows that
do not contribute to congestion will suffer from it. For this
reason mechanisms that handle congestion are important.

The two classes of congestion control mechanisms pre-
viously described, attack the problem in different ways.
Injection throttling approaches try to remove congestion
by reducing the amount of traffic that is injected. On the
other hand, congested-flow isolation methods lets conges-
tion prevail, but confines the traffic that goes through the
oversubscribed link to specially designated resources. This
ensures that flows that do not contribute to congestion do
not fall victim to it. These two approaches have different
strengths and weaknesses.

In this paper we have presented three insights. Firstly,
we have demonstrated that the weakness of injection throt-
tling mechanisms is the reaction time of congestion events
Secondly, we have shown that the weakness of congested-
flow isolation is that it has limited scalability with respect
to the number of congested points, and that it displays
poor fairness between congested flows. Finally, and most
importantly, we describe in detail CCFIT a mechanism that
combines congested-flow isolation with injection throttling.

Our simulation results demonstrate that CCFIT extracts
the best features of its two predecessors. In particular,
injection throttling works in a way that limits the number
of congested points that are alive in the network, and thus
removes the scalability problem of congested-flow isolation.
Furthermore, congested-flow isolation provides a quick and
local response to congestion that removes the problems
created by the slow reaction time of injection throttling.
Finally, the good fairness properties of injection throttling
are preserved in the combined method.

ACKNOWLEDGMENTS

This work is jointly supported by the MEC, MICINN and
European Commission under projects Consolider Ingenio-
2010-CSD2006-00046 and TIN2009-14475-C04, and by the
JCCM under projects PCC08-0078 (PhD. grant A08/048)
and POII10-0289-3724.

REFERENCES

[1] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Net-
works An Engineering Approach, revised edition ed. Morgan
Kaufmann, 2003.

[2] G. F. Pfister and V. A. Norton, “”Hot Spot” contention and
combining in multistage interconnection networks,” IEEE
Trans. Computers, vol. 34, no. 10, pp. 943–948, 1985.

[3] W. Dally, “Virtual-channel flow control,” IEEE Transactions
on Parallel and Distributed Systems, vol. 3, no. 2, pp. 194–
205, 1992.

[4] P. J. Garcı́a, J. Flich, J. Duato, I. Johnson, F. J. Quiles, and
F. Naven, “Dynamic evolution of congestion trees: Analysis
and impact on switch architecture,” Proc. 1st HiPEAC Conf.,
pp. 266–285, November 2005.

[5] V. Jacobson, “Congestion avoidance and control,” in SIG-
COMM. ACM, 1988, pp. 314–329.

[6] L. S. Brakmo and L. L. Peterson, “TCP vegas: End to end
congestion avoidance on a global internet,” IEEE Journal on
selected Areas in communications, vol. 13, pp. 1465–1480,
1995.

[7] C. Parsa and J. Garcia-Luna-Aceves, “Improving TCP con-
gestion control over internets with heterogeneous transmis-
sion media,” in 7th International Conferance on Network
Protocols (ICNP99). IEEE Computer Society, 1999, pp.
213–221.

[8] E. Gran, M. Eimot, S.-A. Reinemo, T. Skeie, O. Lysne,
L. Huse, and G. Shainer, “First experiences with congestion
control in InfiniBand hardware,” in Parallel Distributed Pro-
cessing (IPDPS), 2010 IEEE International Symposium on,
2010, pp. 1–12.

[9] J. R. Santos, Y. Turner, and G. J. Janakiraman, “End-to-end
congestion control for InfiniBand,” in INFOCOM, 2003.

[10] J. Duato, I. Johnson, J. Flich, F. Naven, P. J. Garcı́a, and
T. Nachiondo, “A new scalable and cost-effective congestion
management strategy for lossless multistage interconnection
networks,” in Proceedings of the 11th Symposium on High
Performance Computer Architecture (HPCA), 2005.

671



 0

 0.5

 1

 1.5

 2

 2.5

 0  2e+06  4e+06  6e+06  8e+06  1e+07

B
a

n
d

w
id

th
 (

G
B

y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F5
F6

(a) 1Q.

 0

 0.5

 1

 1.5

 2

 2.5

 0  2e+06  4e+06  6e+06  8e+06  1e+07

B
a

n
d

w
id

th
 (

G
B

y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F5
F6

(b) ITh.

 0

 0.5

 1

 1.5

 2

 2.5

 0  2e+06  4e+06  6e+06  8e+06  1e+07

B
a

n
d

w
id

th
 (

G
B

y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F5
F6

(c) FBICM 2-CFQ.

 0

 0.5

 1

 1.5

 2

 2.5

 0  2e+06  4e+06  6e+06  8e+06  1e+07

B
a

n
d

w
id

th
 (

G
B

y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F5
F6

(d) CCFIT 2-CFQ.

Figure 9. Flow Bandwidth versus Time (Configuration #1, Traffic Case #1).

 0

 0.5

 1

 1.5

 2

 2.5

 0  2e+06  4e+06  6e+06  8e+06  1e+07

B
a

n
d

w
id

th
 (

G
B

y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F3
F4

(a) 1Q.

 0

 0.5

 1

 1.5

 2

 2.5

 0  2e+06  4e+06  6e+06  8e+06  1e+07

B
a

n
d

w
id

th
 (

G
B

y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F3
F4

(b) ITh.

 0

 0.5

 1

 1.5

 2

 2.5

 0  2e+06  4e+06  6e+06  8e+06  1e+07

B
a

n
d

w
id

th
 (

G
B

y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F3
F4

(c) FBICM 2-CFQ.

 0

 0.5

 1

 1.5

 2

 2.5

 0  2e+06  4e+06  6e+06  8e+06  1e+07

B
a

n
d

w
id

th
 (

G
B

y
te

s
/s

)

Time (nanoseconds)

F0
F1
F2
F3
F4

(d) CCFIT 2-CFQ.

Figure 10. Flow Bandwidth versus Time (Configuration #2, Traffic Case #2).

[11] J. Escudero-Sahuquillo, P. J. Garcı́a, F. J. Quiles, J. Flich,
and J. Duato, “FBICM: Efficient congestion management
for high-performance networks using distributed determin-
istic routing,” in LNCS Series - 15th Conference on High
Performance Computing - (HiPC 2008), Bangalore, India,
December.

[12] E. G. Gran, E. Zahavi, S.-A. Reinemo, T. Skeie, G. Shainer,
and O. Lysne, “On the relation between congestion control,
switch arbitration and fairness,” in International Symposium
on Cluster, Cloud and Grid Computing (CCGrid 2011).

[13] M. Thottetodi, A. Lebeck, and S. Mukherjee, “Self-tuned
congestion control for multiprocessor networks,” in Proc. of
7th. HPCA, February 2001.

[14] J. Kim, Z. Liu, and A. Chien, “Compressionless routing: a
framework for adaptive and fault-tolerant routing,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 8, no. 3,
pp. 229 –244, Mar. 1997.

[15] E. Baydal and P. López, “A robust mecahnism for congestion
control: Inc,” in Euro-Par, 2003, pp. 958–968.

[16] InfiniBand architecture specification. Release 1.2.1, Infini-
Band Trade Association, Nov. 2007.

[17] IEEE Standard for Local and Metropolitan Area Networks—
Virtual Bridged Local Area Networks - Amendment: 10:
Congestion Notification., IEEE 802.1Qau-2010 ed., IEEE 802
LAN/MAN Standards Committee, 2010. [Online]. Available:
http://www.ieee802.org/1

[18] J. R. Santos, Y. Turner, and G. J. Janakiraman, “Evaluation
of congestion detection mechanisms for InfiniBand switches,”
in IEEE GLOBECOM – High-Speed Networks Symposium,
2002.

[19] J.-L. Ferrer, E. Baydal, A. Robles, P. López, and J. Duato,
“Congestion management in MINs through marked and vali-
dated packets,” in PDP, 2007, pp. 254–261.

[20] ——, “On the influence of the packet marking and injection
control schemes in congestion management for MINs,” in
Euro-Par, 2008, pp. 930–939.

[21] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-speed
switch scheduling for local-area networks,” ACM Transac-
tions on Computer Systems, vol. 11, no. 4, pp. 319–352,
November 1993.

[22] W. Dally, P. Carvey, and L. Dennison, “Architecture of the
Avici terabit switch/router,” in Proc. of 6th Hot Interconnects,
1998, pp. 41–50.

[23] Y. Tamir and G. Frazier, “Dynamically-allocated multi-queue

buffers for vlsi communication switches,” IEEE Transactions
on Computers, vol. 41, no. 6, June 1992.

[24] T. Nachiondo, J. Flich, and J. Duato, “Buffer management
strategies to reduce hol blocking,” IEEE Transactions on
Parallel and Distributed Systems, vol. 21, pp. 739–753, 2010.

[25] W. Olesinski, H. Eberle, and N. Gura, “Scalable alternatives
to virtual output queueing,” in Proc. IEEE International
Conference on Communications, 2009.

[26] J. Escudero-Sahuquillo, P. J. Garcı́a, F. J. Quiles, and J. Duato,
“An efficient strategy for reducing head-of-line blocking in
fat-trees,” in LNCS Series. Parallel Processing, 16th Inter-
national Euro-Par Conference, Ischia, Italy, september 2010,
pp. 413–427.

[27] P. J. Garcı́a, J. Flich, J. Duato, I. Johnson, F. J. Quiles,
and F. Naven, “Efficient, scalable congestion management for
interconnection networks,” IEEE Micro, vol. 26, no. 5, pp.
52–66, September 2006.

[28] G. Mora, P. J. Garcı́a, J. Flich, and J. Duato, “RECN-
IQ: A cost-effective input-queued switch architecture with
congestion management,” in Proc. ICPP, 2007.

[29] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Wal-
rand, “Achieving 100% throughput in an input-queued
switch,” in IEEE TRANSACTIONS ON COMMUNICATIONS,
1996, pp. 296–302.

[30] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable
memory (CAM) circuits and architectures: A tutorial and
survey,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3,
pp. 712–727, March 2006.

[31] N. McKeown, “The iSLIP scheduling algorithm for input-
queued switches,” IEEE/ACM Transactions on Networking,
vol. 7, no. 2, pp. 188–201, Apr. 1999.

[32] J. Escudero-Sahuquillo, P. J. Garcı́a, F. J. Quiles, J. Flich,
and J. Duato, “Cost-effective congestion management for
interconnection networks using distributed deterministic rout-
ing,” in Proceedings of the 16th International Conference on
Parallel and Distributed Systems (ICPADS 2010), Shanghai,
China, december 2010.

[33] C. Gomez, F. Gilabert, M. Gomez, P. Lopez, and J. Duato,
“Deterministic versus adaptive routing in fat-trees,” in Work-
shop on Communication Architecture on Clusters, as a part
of IPDPS’07, March 2007, p. 235.

672


