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Devices capable of connecting to multiple, overlapping networks simultaneously is

becoming increasingly common. For example, most laptops are equipped with LAN- and

WLAN-interface, and smart phones can typically connect to both WLANs and 3G mobile

networks. At the same time, streaming high-quality video is becoming increasingly

popular. However, due to bandwidth limitations or the unreliable and unpredictable

nature of some types of networks, streaming video can be subject to frequent periods of

rebuffering and characterized by a low picture quality.

In this paper, we present a multilink extension to the data retrieval part of the

DAVVI adaptive, segmented video streaming system. DAVVI implements the same core

functionality as the MPEG DASH standard. It uses HTTP to retrieve data, segments video,

provides clients with a description of the content, and allows clients to switch quality

during playback. Any DAVVI-data retrieval extensions can also be implemented in a

DASH-solution.

The multilink-enabled DAVVI client divides video segments into smaller subseg-

ments, which are requested over multiple interfaces simultaneously. The size of each

subsegment is dynamic and calculated on the fly, based on the throughput of the

different links. This is an improvement over our earlier subsegment approach, which

divided segments into fixed size subsegments. The quality of the video is adapted based

on the measured, aggregated throughput. Both the static and the dynamic subsegment

approaches were evaluated with on-demand streaming and quasi-live streaming. The

new subsegment approach reduces the number of playback interruptions and improves

video quality significantly for all cases where the earlier approach struggled. Otherwise,

they show similar performance.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Streaming high-quality video is rapidly increasing in
popularity. Video aggregation sites, like YouTube and
Vimeo, serve millions of videos every day, various events
are broadcasted live over the Internet and large investments
ll rights reserved.

n, et al., Using ban
ssing-Image Commun
are made in video-on-demand services. One example is
Hulu,1 which is backed by over 225 content companies and
allow users to legally stream popular TV-shows like Lost,
Glee, and America’s Got Talent. This paper is an extended
version of our MMSYS 2011-paper ‘‘Improving the Perfor-
mance of Quality-Adaptive Video Streaming over Multiple
Heterogeneous Access Networks’’.
1 http://www.hulu.com/about
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However, high-quality video has a high bandwidth
requirement. For example, the bitrate of HD-video when
streaming is several MB/s. This might not be a problem in
areas with a highly developed broadband infrastructure,
but a single average home connection to the Internet
might not be able to support this quality. For example,
the average broadband connection in the United States is
about 4 MB/s [1]. Due to bandwidth limitations or the
unreliable and unpredictable nature of some types of
networks, for example WLAN and 3G (HSDPA), streaming
video can be subject to frequent periods of rebuffering,
characterized by a low picture quality and playback
interruptions.

Today, devices capable of connecting to multiple, over-
lapping networks simultaneously are common. For exam-
ple, most laptops are equipped with LAN- and WLAN-
interface, and smart phones can often connect to both
WLANs and 3G-networks. One way to alleviate the band-
width problem is to increase the available bandwidth by
aggregating multiple physical links into one logical link.
Adaptive, segmented streaming solutions, like DASH,
divide videos into segments, and these can be requested
and sent over independent links simultaneously, achiev-
ing bandwidth aggregation. Also, the same segment is
encoded at multiple quality levels (bitrates). This allows
clients to adapt the requested video quality according to
the available resources, for example to ensure a smooth
playback.

We have previously developed and presented a client-
side request scheduler that retrieves video segments in
several encodings over multiple heterogeneous network
interfaces simultaneously [2]. To improve performance
even further, the segments are divided into smaller logical
subsegments, and the request scheduler performed well
in our experiments. It reduced the number of playback
interruptions and increased the average video quality
significantly. However, this subsegment approach has a
weakness—segments are divided into fixed-sized subseg-
ments which, in combination with limited receive buffers,
have a significant effect on multilink-performance. Unless
the buffer is large enough to compensate for the link
heterogeneity, this static approach is unable to reach
maximum performance. Increasing the size of the receive
buffer alleviates the problem. However, it might not be
acceptable, desirable or even possible with a larger buffer,
as it adds delay and requires more memory.

In this paper, we present an improved subsegment
approach. Subsegment sizes are dynamic and calculated
on the fly, based on the links’ performance. By doing this,
the request scheduler avoids idle periods by allocating
the ideal amount of data (at that time) to each link. The
request scheduler and both subsegment approaches were
implemented as extensions to the DAVVI [3] streaming
platform, which offers the same core functionality as
DASH [4,5]. Both DAVVI and DASH-based solutions
encode the same segments at multiple bitrates, provide
the client with a description of the content and allow
clients to switch quality during playback. Even though
DAVVI’s equivalent of DASH’s Media Presentation
Description (MPD) is structured differently, they both
contain enough information to support the same quality
Please cite this article as: K. Evensen, et al., Using ban
quality-adaptive streaming, Signal Processing-Image Commun
adaptation and data retrieval techniques. A client will first
select the appropriate quality, based on for example the
measured throughput and the amount of buffered data,
and then request the selected segment using HTTP. In
other words, any modifications to the data retrieval part
of DAVVI can also be applied to DASH.

The two subsegment approaches were evaluated with
on-demand streaming and live streaming with and with-
out buffering, in a controlled network environment and
with real world wireless links. In the context of this paper,
live/liveness is defined as how much the stream lags
behind the no-delay broadcast. The dynamic subsegment
approach significantly reduces the number of playback
interruptions, and improves the video quality when
multiple links are used. When the buffer is large enough
to compensate for the link heterogeneity, both the old and
the new subsegment approaches show similar perfor-
mance. When buffers are small, our new solution achieves
a higher video quality.

The rest of the paper is organized as follows. Section 2
contains a presentation of related work, while Section 3
describes DAVVI, more on how it compares to DASH and
our multilink modifications. Our testbed setup is intro-
duced in Section 4, and the results from our experiments
are discussed in Section 5. Finally, we give the conclusion
and prospects for future work in Section 6.

2. Related work

HTTP is currently one of the, if not the, most common
protocol used to stream video through the Internet, and
multi-quality encoding and file segmentation is a popular
way to allow quality adaptation and increase perfor-
mance. By picking the quality most suited to the current
link performance, a smoother playback can be achieved.
Also, file segmentation allows content providers to build
more scalable services that offer a better user experience
due to increased capacity. Commercial examples of HTTP-
based streaming solutions built upon segmentation of the
original content, include Move Networks [6], Apple’s
QuickTime Streaming Server [7] and Microsoft’s Smooth
Streaming [8]. The goal of MPEG DASH is to provide a
standardized alternative to these proprietary solutions.

Picking the most appropriate server is a non-trivial
problem that has been studied extensively. Parallel access
schemes, like those presented in [9] and [10], try to
reduce the load on congested servers by automatically
switching to other servers for further segment requests.
These parallel access schemes assume that excessive
server load or network congestion create the throughput
bottleneck. We assume that the bottleneck lies some-
where in the access network. However, the scheduling
problem is similar—either the client or server has more
available bandwidth than the other party can utilize.

Parallel access schemes are not suitable for achieving
live or quasi-live streaming (sometimes referred to as
‘‘progressive download’’), as they have no notion of dead-
lines. Also, the additional complexity introduced by auto-
matically adapting the video quality is not solved by these
parallel access schemes. Still, with some modifications,
the techniques developed within the field of parallel
dwidth aggregation to improve the performance of
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access can be applied to multilink streaming. Our earlier
subsegment approach was inspired by the work done in
[11], where the authors divide a complete file into
smaller, fixed-size subsegments. The new, dynamic sub-
segment approach uses some of the ideas found in [12],
most notably using the current throughput to calculate
the size of the subsegments.

Although our solution can be extended to support
multiple servers, our current research focuses on client-
based performance improvements of using multiple net-
work interfaces simultaneously. Wang et al. pursued a
similar goal in [13], where the server streams video over
multiple TCP connections to a client. However, such push-
based solutions have limited knowledge about the client-
side connectivity, and introduce a significant delay before
detecting if a client’s interface has gone down or a device
has lost the connection with its current network. Also,
push-based solutions, such as [14], cannot easily be
extended to support multiple servers. Since we assume
that the bottleneck is in the access network, we favor a
pull-based scheme, allowing the client to adjust the
quality and subsegment-request schedule.

3. System components

In many cases, for example with wireless networks, a
single link is often insufficient due to the bandwidth
requirements of streaming high quality video. To show
how multiple independent links can be used to achieve a
higher video quality, we extended the DAVVI streaming
system [3] with support for more than a single network
interface. This section describes DAVVI, the improve-
ments we made to the data delivery subsystem and
explains how these improvements would fit and could
be implemented in a DASH access client.

3.1. Video streaming

DAVVI is an HTTP-based streaming system where each
video is divided into fixed length, independent (closed-
GOP) segments2 with constant duration (2 s). A video is
encoded in multiple qualities (bitrates), and the constant
duration of the segments limits the liveness of a
stream—at least one segment must be ready and received
by the client before playback can start.

DAVVI stores video segments on regular web servers.
A dedicated streaming server is not needed, the video
segments are retrieved using normal HTTP GET-requests.
Because no additional feedback is provided by the server
and because it is the client that monitors the available
resources, the client is responsible for prefetching, buffer-
ing, and adapting video quality. The quality can be
changed whenever a new segment is requested, but the
user can not see the change immediately. In our case, each
segment contains 2 s of video, which has been shown to
be a good segment length. According to the work done in
[15], changing video quality more frequently than every
2 DAVVI divides videos into closed-GOP segments in order to allow

for searching and creating arbitrary playlists on the fly.

Please cite this article as: K. Evensen, et al., Using ban
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1–2 s annoys the user. However, the 2 s segment length is
a limit imposed by DAVVI, in our future work, we plan to
look at how the duration of a segment affects the
subsegment approaches and thereby performance. For
example, one possibility would be to use H.264 SVC-
encoding and allow changing quality immediately, but
then forbid a new change within 1 s.

For this paper, we look at three types of streaming, on-
demand streaming, live streaming with buffering and live
streaming without buffering. On-demand streaming is the
most common type of streaming and is used as our base
case. It assumes ‘‘infinite’’ receive buffers and is only
limited by network bandwidth. Because the entire video
is available in advance, segments are requested as soon as
there is room in the receive buffer. We use an alternative
encoding and linear download, so we do not have the
common concept of a base layer that could be down-
loaded first with quality improvements as time permits.
On-demand streaming is used together with full-length
movies and similar content, meaning that video quality
and continuous playback are the most important metrics.

Live streaming with buffering is very similar to on-
demand streaming, except that the whole video is not
available when the streaming starts. As defined in the
introduction, live in the context of this paper is liveness,
and by delaying playback by a given number of segments
(the startup delay), a trade off between liveness and
smoothness is made. Provided that all requested seg-
ments are received before their playout deadline, the
total delay compared to the no-delay broadcast is
startup_delay þ initial_segments_transfer_time. Any errors
occurring during transfer cause a further reduction in
liveness.

Live streaming without buffering has liveness as the
most important metric and is the opposite of on-demand
streaming. Segments (requests) are skipped if the stream
lags too far behind the broadcast, and a requirement for
being as live as possible is that the startup delay is the
lowest that is allowed by the streaming system. In our
case, this limit is 2 s (one segment), so the client lags 2 sþ

initial_segment_transfer_time behind the no-delay broad-
cast when playback starts, and skips segments if the lag
exceeds the length of one segment.

3.2. Multilink support

Several changes were made to the DAVVI streaming
system client (equivalent to the DASH Access Client) to
support multiple links. We implemented our multilink
HTTP download and pipelining mechanisms [16], as well
as the request scheduler and subsegment approaches
described in Section 3.3. The scheduler is responsible for
distributing segment requests among the links efficiently,
while the subsegment approaches try to make sure that
each link is used to its full capacity.

The routing table on the client must be configured
properly to allow DAVVI, or any other application, to use
multiple links simultaneously. The network subsystem
must be aware of the default interface and know how to
reach other machines in the connected networks, and
packets must be sent through the correct interfaces.
dwidth aggregation to improve the performance of
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Fig. 1. In this example, the transfer of segment s0 in quality Q2 has finished via interfaces I0 and I1. As the throughput dropped, the interfaces currently

collaborate on downloading the third subsegment of a lower quality segment.

Fig. 2. From a client-side perspective, HTTP pipelining eliminates the time overhead incurred by a sequential processing of requests and replies.
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Once the routing table is configured, multilink-support in
the application can be enabled by binding network sock-
ets to the desired interfaces. This is supported by all major
operating systems.

3.2.1. Subsegments of varying size

Even though DAVVI divides the video into segments,
the segments can still be large. Therefore, they are divided
into smaller logical subsegments to reduce latency,
increase the granularity of the request scheduler and
allow the transfer of video over multiple interfaces
simultaneously. Using the range retrieval request-feature
of HTTP/1.1, it is possible to request a specific part of a file
(a subsegment). For example, if the first 50 kB of a 100 kB
large file are requested, bytes 0–49 999 are sent from the
server.

The subsegment approach decides how complete seg-
ments are divided into subsegments, and how the links
are allocated their share of the data. For example, Fig. 1
shows how a 200 kB subsegment would be divided
between two links with a bandwidth ratio of 3:2, accord-
ing to the dynamic subsegment approach presented in
Section 3.3. Interface zero requests 120 kB and interface
one 80 kB.

3.2.2. Request pipelining

Dividing segments into subsegments introduces two
challenges. First, subsegments cause an increase in the
number of HTTP GET-requests. This reduces performance,
as the client spends more time idle waiting for responses.
HTTP pipelining, illustrated in Fig. 2, is used to reduce
Please cite this article as: K. Evensen, et al., Using ban
quality-adaptive streaming, Signal Processing-Image Commun
both the number and the duration of these idle periods.
Initially, two subsegments are requested on every inter-
face, and then, a new subsegment is requested for each
one received. This ensures that the server always has a
request to process, and that there is always incoming
data.

The second challenge is related to the size of the
subsegments, and only applies when fixed size subseg-
ments are used. If they are too small, an entire subseg-
ment might have been sent from the server before the
next is requested, causing interfaces to become idle. This
can be alleviated by having a fixed subsegment size. For
example, our earlier work [16] has shown that 100 kB is
well suited, as it allows sufficient flexibility for the
request scheduler, and is large enough to take advantage
of HTTP pipelining.

The reason the subsegment size challenge does not
apply to subsegment approaches that calculate the size
dynamically is that the size of the subsegments matches
the links’ performance. Thus, the size of the subsegment is
equal to what the link can transfer.

3.3. Quality adaptation and request schedulers

To use multiple links efficiently, segments must be
requested according to the available resources. If a slow
interface is allocated a too large share of a segment, the
performance of the whole application might suffer. For
example, the segment may not be ready when it is
supposed to be played out, causing a deadline miss and
an interruption in playback.
dwidth aggregation to improve the performance of
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The request scheduler is responsible for distributing
requests and adjusting the desired video quality. In
combination with the subsegment approaches, it is the
most important part of our multilink streaming approach.
Without a good scheduler and subsegment approach,
adding multiple interfaces can cause a drop in perfor-
mance and have a significant effect on the user experi-
ence. For example, the quality adaptation might be too
optimistic and select a higher quality than the links can
support, or links are not utilized to their full capacity.

In this paper, we compare the performance of two
subsegment size approaches. The underlying request
scheduler is identical for both approaches, i.e., the same
technique is used to measure the link characteristics
(throughput and RTT) and adjust the video quality. The
video quality adaptation is outlined in Algorithm 1. First,
the client calculates how much content it has already
received and is ready for playout (transfer_deadline), and
estimates how long it takes to receive already requested
data (pipeline_delay). The pipeline_delay is subtracted from
the transfer_deadline to get an estimate of how much time
the client can spend receiving new data without causing a
deadline miss. This estimate is then compared against
estimates of the time it takes to receive the desired
segment in the different qualities, and the most suited
quality is selected.

Algorithm 1 (Quality adaptation mechanism).

transfer_deadline¼time_left_playout þ (segment_length n

num_completed_segments)

pipeline_delay¼requested_bytes_left/aggregated_throughput

for quality_level¼ ‘‘super’’ to ‘‘low’’ do
transfer_time¼segment_size[quality_level]/aggregated_throughput

if transfer_timeoðtransfer_deadline�pipeline_delayÞ then
return quality_level

end if
reduce quality_level

end for

The two approaches differ in how they divide seg-
ments. The static subsegment approach, which is the one
that was used in [2], divides each segment into fixed-
sized 100 kB subsegments. Requests for subsegments are
distributed among the links, and provided that there are
more subsegments available, new requests are pipelined
as soon as possible.

However, our earlier work did not sufficiently consider
the challenges introduced by limited receive buffers and
timeliness. In addition to the last segment problem [16],
caused by clients having to wait for the slowest interface
to receive the last subsegment of a segment, the static
subsegment approach is unable to reach maximum per-
formance unless the receive buffer is large enough to
compensate for the link heterogeneity. This problem is
discussed in more detail in Section 3.4.

Increasing the buffer size is in many cases not accep-
table, desirable or even possible. We, therefore, decided to
improve on our old subsegment approach by allocating
data to the links in a more dynamic fashion. The segments
are now divided into blocks of number_of_interfaces n

100 kB (limited by the total segment size), where 100 kB
Please cite this article as: K. Evensen, et al., Using ban
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is a well suited share of data to request over one link, as
discussed earlier and presented in [16]. These blocks are
then divided into subsegments, and the size of each
subsegment is calculated based on the measured through-
put of the interface it will be requested through. Pipelin-
ing is still done as soon as possible, and the algorithm is
outlined in Algorithm 2.

Algorithm 2 (Dynamic subsegment approach [simplified]).
share_interface¼throughput_link/aggregated_throughput

size_allocated_data¼share_interface n subsegment_length

if size_allocated_data4 left_subsegment then
size_allocated_data¼ left_subsegment

end if
update left_subsegment

request new Subsegment(size_allocated_data)
By allocating the data dynamically based on perfor-
mance, the need for a big buffer is removed, and the effect
of the last segment problem is reduced. The problem can
still occur, but because the performance of the links is
used when allocating data, it has a smaller effect. When
dividing segments dynamically, the performance for a
given buffer size should ideally be the same for all link
heterogeneities. This approach is hereby referred to as the
dynamic subsegment approach.

3.4. Considerations: static vs. dynamic

The switch from a static to a dynamic subsegment
approach was motivated by the buffer requirement
imposed by the static subsegment approach. Unless the
buffer is large enough to compensate for the link hetero-
geneity, the client is unable to reach maximum
performance.

With a short startup delay and small buffer, the
request scheduler is only allowed a little slack when
requesting the first segment after the playout has started.
Assuming that the links are heterogeneous and none
exceed the bandwidth requirement for the stream by a
wide margin, this forces the scheduler to pick a segment
of lower quality. Smaller segments consist of fewer sub-
segments, so the slowest link is allocated to a larger share
of the data, and has a more significant effect on through-
put. This continues until the throughput and quality
stabilizes at a lower level than the links might support.
In other words, the request scheduler is caught in a
vicious circle.

Furthermore, increasing the receive buffer size and
startup delay improves the situation. A larger receive
buffer allows the scheduler more slack, so the first
segment after the startup delay is requested in a higher
quality than with a small buffer. Larger segments consist
of more subsegments than smaller ones, so the slowest
interface is made responsible for less data. Provided that
the buffer is large enough, the links are allocated their
correct share of subsegments (or at least close to). Thus,
throughput measurements are higher and a better video
quality distribution is achieved.

On the other hand, when dividing the segments into
subsegments dynamically, the buffer size/startup delay
dwidth aggregation to improve the performance of
ication (2011), doi:10.1016/j.image.2011.10.007
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Fig. 3. Our controlled environment-testbed.

Table 1
Observed characteristics of used links.

Characteristic WLAN HSDPA

Average experienced throughput (kB/s) 287 167

Average RTT for header-only IP packets (ms) 20 100

Average RTT for full-size IP packets (ms) 30 220
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problem is avoided. Each link is allocated their correct
share of a segment (at that time), so the slower links are
made responsible for less data. However, there are chal-
lenges when dividing segments dynamically as well. In
the first version of the dynamic subsegment approach, we
used the size of the segment to determine a link’s share.
As it turned out, the performance of this approach suffers
when faced with dynamic network environments. Links
are often allocated too much data, making the approach
vulnerable to throughput and delay variance. Therefore,
we limited the amount of data used for calculating a
link’s share to number_of_interfaces n 100 kB, as presented
earlier.

3.5. DAVVI and DASH

The DAVVI streaming system does not follow the
DASH standard, however, it follows the same design
principles. Also, the information required to adapt the
quality according to Algorithm 1 is present in both DAVVI
and DASH-based solutions. Finally, because both make
use of HTTP, the dynamic subsegment approach can be
ported directly to DASH.

The DASH-standard defines the structure (an XML-
schema) of the MPD, and a video is represented by five
levels. The top level, the actual MPD, contains attributes
that are valid for the entire stream, for example if it is
on-demand or live video (@type) and the startup delay
(@minBufferTime). The second level is called period, and an
MPD consists of one or more periods. A period is used to
describe the entire video clip, and can be used when for
example an MPD contains information about several
episodes of a series. There is no equivalent to the
period-element in DAVVI.

Each period can contain one or more groups, which
again consists of one or more representations. A represen-
tation describes one or more video segments, and a group
describes the range of attribute values that are valid for
each representation it contains. Examples of group attributes
include the bandwidth requirement (@minBandWidth and
@maxBandwidth) and minimum resolution (@minWidth and
@minHeight). The representations then specifies which values
are valid. If groups are not needed, representations can be
added directly to the period. Finally, each representation
contains one or more segment elements. The segment
element provides information about the segment that will
be downloaded, for example the URL. Subsegments can be
used when data is requested from a specific index in a
segment, and the DASH segment and subsegment maps
directly to the DAAVI terms.

DAVVI’s equivalent to the MPD is a text file, where
each segment is represented by one line. This line con-
tains the filename of the segment and the bandwidth
requirement for each of the four quality levels. If we
assume that the video segments described by the MPD are
independent (i.e., there is no decoding dependencies), a
comparable MPD file would consist of one period for each
video, and the representations would be added directly
to the period. One representation would be needed for
each quality layer, and the bandwidth parameter used to
describe the minimum bandwidth requirement for that
Please cite this article as: K. Evensen, et al., Using ban
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level (according to the standard). Every segment would be
contained in a SegmentInfo-element, and a representation
would contain all segments belonging to that quality
level.

In order to implement the quality adaption mechanism
(Algorithm 1) in DASH, first, each representation’s band-

width attribute, together with the constant length (in
time) of each segment, will be used to estimate the
transfer_time. After the highest possible quality has been
found, the segment will be divided into subsegments by
our multilink component. An initial estimation of the size
of each video segment (in bytes) can also be derived from
the representation’s bandwidth attribute. As HTTP always
includes the complete segment length in replies to range-
requests, the correct value can be used for calculating the
size of the following subsegments. Since all the required
information is present or can easily be retrieved (the
aggregated throughput is calculated by the client and the
segment size is known), no modifications have to be made
to the subsegment approaches.
4. Experimental setup

To evaluate the performance of the two subsegment
approaches, two testbeds were created. We wanted to
measure the performance in the real world and in a
controlled environment, to fully control all parameters.

The controlled environment-testbed, shown in Fig. 3,
consists of a client and a server (Apache 2) connected
using two independent 100 MB/s Ethernet links. Both
client and server run Linux 2.6.31, and to control the
different link characteristics, the network emulator netem

is used with a hierarchical token bucket queueing disci-
pline. For measuring the real world performance, we
made experiments in a wireless scenario where the client
was connected to one public WLAN (IEEE 802.11b) and an
HSDPA network. The characteristics of these networks are
summarized in Table 1, and the reason we choose wire-
less networks is that they present a more challenging
environment than fixed links.

To get comparable results, the same VBR-encoded
video clip was used in all the experiments. The clip shows
a football match has a total playout duration of 100 min
dwidth aggregation to improve the performance of
ication (2011), doi:10.1016/j.image.2011.10.007
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Table 2
Quality levels and bitrates of the soccer movie.

Quality level Low Medium High Super

Minimum bitrate (kB/s) 524 866 1491 2212

Average bitrate (kB/s) 746 1300 2142 3010

Maximum bitrate (kB/s) 1057 1923 3293 4884
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(3127 segments of 2 s) and was available in four qualities.
We chose a subset of 100 segments, and the bandwidth
requirements are shown in Table 2.

If the experiments had been performed with a DASH
streaming solution, @duration would be equal to 2 s, each
period would contain four representations (groups) and
@minBufferTime is specified using a command line para-
meter. Also, we have not focused on how the MPD (or MPD-
equivalent) is retrieved. We assume that the MPD stored at
the client always contains the required information.

5. Results and discussion

When evaluating the performance of the two subseg-
ment approaches, we measure the video quality and
deadline misses. The video quality (the number of seg-
ments downloaded in each quality) depends on the
bandwidth aggregation. That is, an efficient aggregation
results in a higher throughput. Thus, the quality increases.
Deadline misses are of highest importance from a user’s
perspective, with respect to perceived video quality. The
number of deadline misses depends on the subsegment
approach. A poor approach allocates too much data to
slower interfaces, causing data to arrive late and seg-
ments to miss their deadlines.

In our earlier work [2], we compared the single-link
and multilink performance of the static subsegment
approach, as well as the performance of the request
scheduler. In this paper, the focus is on the differences
between the two subsegment approaches in a multilink
scenario. With multiple links, bandwidth and latency
heterogeneity are the two most significant challenges, so
we decided to look at their effect on performance, both in
a completely controlled environment, with emulated net-
work dynamics and in a real-world wireless environment.
Multilink request schedulers and subsegment approaches
have to take heterogeneity into account, otherwise the
performance is less than ideal, and sometimes worse than
the performance when using only one of the links [2].

The combined bandwidth of the emulated links was
always 3 MB/s, which is equal to the average bandwidth
requirement for the highest quality of the video clip used
in our experiments. The startup delay was equal to the
buffer size in all the experiments, forcing the application
to fill the buffer completely before starting playback.

5.1. Bandwidth heterogeneity

To measure how bandwidth heterogeneity affects the
performance of the two subsegment approaches, the
controlled testbed was used and configured to provide
different levels of bandwidth heterogeneity. The goal with
Please cite this article as: K. Evensen, et al., Using ban
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using multiple links simultaneously was that the perfor-
mance should match that of a single 3 MB/s link, in other
words, the aggregated logical link should perform just as
well as an actual 3 MB/s link.

5.1.1. On-demand streaming

For an on-demand scenario, Fig. 4 shows the video
quality distribution for a buffer size of two segments (4 s
delay). The bandwidth ratio is shown along the x-axis, and
the X:Y notation means that one link was allocated X% of
the bandwidth, while the other link was allocated Y%. The
bars represents the four video qualities, and the y-value of
each bar is its share of the received segments. The reason
we did not divide the y-axis into the four quality-levels
and plot the average quality is that the y-value of a bar
would end up between qualities. As the quality level
‘‘Medium.5’’ (or similar) does not exist, we decided to
plot the quality distributions instead.

When a single link was used, the expected behavior
can be observed. As the available bandwidth increased,
so too did the video quality. Also, the static and dynamic
subsegment approaches achieved more or less the same
video quality.

However, the situation was different with multiple links.
The dynamic subsegment approach adapted to the hetero-
geneity, the performance was close to constant irrespective
of link heterogeneity, and significantly better than when a
single link was used. However, the performance never
reached the level of a single 3 MB/s link (even though the
difference was small), due to the additional overhead
introduced when using multiple links.

The static subsegment approach, on the other hand,
suffered from the problem discussed in Section 3.4, when
the heterogeneity increased, the achieved video quality
decreased. When the bandwidth ratio was 80:20, the
single link performance exceeded multilink.

As discussed in [2], the static subsegment approach
requires the buffer to be large enough to compensate for
the bandwidth heterogeneity. A rule of thumb is that the
buffer size shall be equal to the ratio between the links.
For example, with a bandwidth ratio of 80:20, the ideal
buffer size is five segments, because the fast interface
can receive four segments for every one segment over the
slow interface. However, this is only correct with a CBR-
encoded video. With a VBR-encoded video, the segments
are of different sizes and have different bandwidth
requirements. The latter explains why a buffer size of
four segments was sufficient for the multilink perfor-
mance to exceed that of a single link with a bandwidth
ratio of 80:20, as seen in Fig. 5. This figure shows how
increasing the startup delay and buffer size improved the
video quality when the bandwidth ratio was 80:20.

Fig. 6 shows the average number of deadline misses
for the bandwidth ratios. As expected when faced with
static links, both subsegment approaches performed well.
The bandwidth measurements and quality adaption were
accurate, there were close to no deadline misses, except
for when the buffer was unable to compensate for
heterogeneity. The deadline misses when the bandwidth
ratio was 80:20 were caused by the slow interface delay-
ing the reception and thereby playback of some segments.
dwidth aggregation to improve the performance of
ication (2011), doi:10.1016/j.image.2011.10.007
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However, all deadline misses were significantly lower
than the segment length, the worst observed miss was
only �0.3 s.

5.1.2. Live streaming with buffering

When live streaming with buffering was used, the
experimental results were similar to those of the on-
demand streaming tests. The single link performance of
Please cite this article as: K. Evensen, et al., Using ban
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the two subsegment approaches was more or less the
same, and when multiple links were used, the dynamic
subsegment approach showed similar performance irre-
spective of bandwidth heterogeneity, while the perfor-
mance of the static subsegment approach suffered from
the buffer being too small to compensate for the link
heterogeneity. The number of deadline misses was also
the same as with on-demand streaming. The reason for
dwidth aggregation to improve the performance of
ication (2011), doi:10.1016/j.image.2011.10.007
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these similar results is that segments were always ready
also when live streaming with buffering was used. The
client was never able to fully catch up with the no-delay
broadcast.

With on-demand streaming, it makes no sense to talk
about liveness. However, in live streaming with buffering,
liveness is one of the most important criteria. With a
startup-delay/buffer size of two segments, the static
subsegment approach added an additional worst-case
delay of 4 s compared to the no-delay broadcast. The
dynamic subsegment approach caused an additional
worst-case delay of 2.5 s.
Please cite this article as: K. Evensen, et al., Using ban
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Fig. 7 shows the effect of increasing the liveness to the
maximum allowed by DAVVI. Both the startup delay and
the buffer size were set to one segment (2 s delay).
The dynamic subsegment approach was able to cope well
with the increased liveness requirement, and showed a
significant increase in performance compared to using a
single link. Also, the performance was independent of
the bandwidth heterogeneity. The static subsegment
approach, on the other hand, struggled because of the
small buffer. In addition to pipelining losing almost all
effect, it only worked within a segment, the problem
discussed in Section 3.4 came into play. The performance
dwidth aggregation to improve the performance of
ication (2011), doi:10.1016/j.image.2011.10.007
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hit was reflected in the deadline misses shown in Fig. 8.
While the dynamic subsegment approach was able to
avoid almost all deadline misses, the static subsegment
approach caused several misses. When the dynamic sub-
segment approach was used, a worst-case additional
delay of 2.3 s was observed, compared to 6 s with the
static subsegment approach.

5.1.3. Live streaming without buffering

The goal with skipping segments is that the stream
shall be as live as possible, the client chooses not to
request old segments. Skipping leads to interruptions in
playback, but did not affect the video quality, as shown in
Please cite this article as: K. Evensen, et al., Using ban
quality-adaptive streaming, Signal Processing-Image Commun
Fig. 9. The results were the same as for live streaming
with buffering and a buffer size/startup delay of one
segment—the dynamic subsegment approach improved
the performance significantly, while the static subseg-
ment approach suffered from the problem discussed in
Section 3.4. The deadline misses were similar to Fig. 8, in
other words, the dynamic subsegment approach was able
to avoid most deadline misses, unlike the static subseg-
ment approach.

However, the number of skipped segments was the
same for both subsegment approaches, with a worst case
of two segments. This was because of the first segment,
which is requested in the highest quality to get the most
dwidth aggregation to improve the performance of
ication (2011), doi:10.1016/j.image.2011.10.007
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accurate measurements, at the expense of a longer startup
latency. The highest quality level consists of the largest
files, i.e., the files that will be divided into the most
subsegment (‘‘samples’’). Also, the first segment is the
only segment that cannot cause a deadline miss, so it is
safe to request in any quality. However, for live streaming
without buffering, a more conservative approach should
be considered.

The subsegment approaches assume that all links are
equal and initially allocate the same amount of data. If the
links are not homogeneous, which was the case in almost all
of our experiments, or able to support the quality, the
segment takes longer than 2 s to receive and one or more
segments are skipped. The deadline misses and initial seg-
ment transfer time with the static subsegment approach
caused a worst case additional total delay of 1.86 s, which is
less than the length of a single segment, and explains why
the static subsegment approach did not skip more segments
than the dynamic subsegment approach.

5.2. Latency heterogeneity

When measuring the effect of latency heterogeneity on
video quality and deadline misses, we used one link that
had a constant RTT of 10 ms. The other link was assigned
an RTT of r ms, with r 2 f10;20, . . . ,100g. The bandwidth
of each link was limited to 1.5 MB/s, and a buffer size of
two segments was used (according to the rule of thumb
presented earlier and [2]).

5.2.1. On-demand streaming

Fig. 10 depicts the video quality distribution for
different levels of latency heterogeneity. As shown, RTT
heterogeneity did not have a significant effect on video
quality, independent of subsegment approach. The band-
width ratio was 50:50, and both subsegment approaches
achieved close to the same quality distribution as in the
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on-demand bandwidth heterogeneity experiments (for a
50:50 bandwidth ratio), shown in Fig. 4, for all latency
heterogeneities. The reason for the performance differ-
ence between the two approaches is that the dynamic
subsegment approach is able to use the links more
efficiently.

For both subsegment approaches, a slight decrease in
quality as the heterogeneity increased can be observed,
indicating that the RTT heterogeneity at some point will
have an effect. The reason for the quality decrease, is that it
takes longer to request, and thereby receive each segment.
The approaches measure a lower throughput, and poten-
tially reduces the quality of the requested segments.

HTTP pipelining is used to compensate for high RTT
and RTT heterogeneities. However, pipelining is not pos-
sible when the buffer is full and the next segment cannot
be requested immediately. Also, TCP throughput is lower
for short transfers and high delay.

The deadline misses were also similar to the 50:50-
case in the bandwidth heterogeneity experiments shown
in Fig. 6. As expected in a static environment, both
subsegment approaches made accurate decisions and no
deadline misses were observed.

5.2.2. Live streaming with buffering

As with bandwidth heterogeneity, the results when
measuring the effect of latency heterogeneity on live
streaming with buffering were very similar to those with
on-demand streaming. The quality distribution and dead-
line misses were not affected for the levels of hetero-
geneity we have used. However, a slight decrease in video
quality as the RTT heterogeneity increases can be seen
also here. The worst case additional delay compared to
the no-delay broadcast was 2 s for both subsegment
approaches.

Reducing the buffer size/startup delay to one, caused a
similar reduction in performance as the ones seen in
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Table 3
Quality distribution, emulated dynamics and on-demand streaming.

Subsegment approach Low (%) Medium (%) High (%) Super (%)

Static, single-link 31 27 28 15

Static, multilink 4 4 11 81

Dynamic, single-link 30 26 29 15

Dynamic, multilink 3 3 10 83
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Figs. 7 and 8 (for a 50:50 bandwidth ratio). However, as
for a buffer size of two segments, the latency heteroge-
neity did not affect the quality distribution or deadline
misses. Both subsegment approaches caused a worst
additional case additional delay of 2.5 s.

5.2.3. Live streaming without buffering

The observed video quality and deadline misses using
live streaming without buffering were similar to the
earlier latency heterogeneity experiments. RTT heteroge-
neity did not have a significant impact on video quality,
however, a slight decrease can be observed, indicating
that the RTT heterogeneity will affect the performance of
the approaches at some point. As in the bandwidth
heterogeneity experiments for live streaming without
buffering, the number of skipped segments and the total
delay compared to the no-delay broadcast were the same
for both approaches. When multiple links were used, zero
segments were skipped, and a worst case additional delay
of 1.86 s was observed for both subsegment approaches,
caused by the first segment. Even though the initial
assumptions that both links are homogeneous were
correct, the links were unable to support the bandwidth
requirement for this segment.

5.3. Emulated dynamics

Dynamic links impose different challenges than static
links, the scheduler has to adapt to often rapid changes in
the network. To expose the two subsegment approaches
to dynamic links while still having some control over the
parameters, we created a script which emulates our
observed real-world network behavior. The sum of the
bandwidth of the two links was always 3 MB/s, but at
random intervals of t seconds, t 2 f2, . . . ,10g, the band-
width bw MB/s, bw 2 f0:5, . . . ,2:5g of each link was
updated. The RTT of link 1 was normally distributed
between 0 ms and 20 ms, while the RTT of link 2 was
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uniformly distributed between 20 ms and 80 ms. A buffer
size of six segments was used to compensate for the worst
case bandwidth heterogeneity, according to the rule of
thumb presented earlier and in [2], except for in the live
streaming without buffering experiments. Each subseg-
ment approach was tested 30 times for each type of
streaming, and the results shown are the averages of all
measurements.

5.3.1. On-demand streaming

The aggregated throughput when combining emulated
link dynamics with on-demand streaming is shown in
Fig. 11. With both subsegment approaches, adding a
second link gave a significant increase in throughput,
and thereby achieved video quality. Also, as in the other
experiments where the buffer size was large enough to
compensate for link heterogeneity, both approaches gave
close to the same video quality distribution, with a slight
advantage to the dynamic subsegment approach. The
average aggregated throughput oscillated between the
average bandwidth requirement for ‘‘High’’ and ‘‘Super’’
quality, the quality distribution is presented in Table 3.

In terms of deadline misses, shown in Fig. 12, both
approaches were as accurate. When a single link was
used, misses occurred, however, none were severe. The
worst case observed miss for both approaches was less
than 0.5 s. With multiple links, both approaches avoided
all deadline misses.
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Table 4
Quality distribution, emulated dynamics and live streaming with

buffering.

Subsegment approach Low (%) Medium (%) High (%) Super (%)

Static, single-link 30 26 28 16

Static, multilink 4 4 11 81

Dynamic, single-link 29 26 29 15

Dynamic, multilink 3 3 11 82

Table 5
Quality distribution, emulated dynamics and live streaming without

buffering.

Subsegment approach Low (%) Medium (%) High (%) Super (%)

Static, single-link 41 44 14 1

Static, multilink 15 45 35 5

Dynamic, single-link 44 41 14 1

Dynamic, multilink 2 28 55 15
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5.3.2. Live streaming with buffering

As with both bandwidth and latency heterogeneity,
the performance of live streaming with buffering was
similar to the on-demand streaming experiments, seen in
Fig. 11. A significant increase in performance was seen
when a second link was added, and the quality distribu-
tions are found in Table 4. The deadline misses were also
the same as in the on-demand experiments (Fig. 12),
when multiple links were used no misses occurred. The
worst-case additional delay compared to the no-delay
broadcast was 2.3 s, caused exclusively by the initial
segment transfer time.

5.3.3. Live streaming without buffering

The live streaming without buffering experiments
were performed with the same settings as the other
emulated dynamics experiments, except that a buffer size
and startup delay of one segment was used. This was, as
discussed earlier, done to increase the liveness to the
maximum that DAVVI allows (one segment).
Please cite this article as: K. Evensen, et al., Using ban
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As in the earlier live streaming without buffering
experiments, the two subsegment approaches performed
differently, the static approach was outperformed by the
dynamic approach. This was because the dynamic sub-
segment approach adapts better to smaller buffers, and
the performance difference is reflected in the quality
distribution, presented in Table 5, and seen in Fig. 13.
While the static subsegment approach most of the
time achieved a throughput that exceeded the average
requirement for ‘‘Medium’’ quality, the dynamic subseg-
ment approach exceeded the requirement for ‘‘High’’
quality.

However, both subsegment approaches experienced
deadline misses, as shown in Fig. 14. None were severe, as
earlier, the worst case observed miss was around 0.5 s.
However, if continuous playback had been important, a
bigger buffer and startup delay should have been used. This,
of course, would involve making a trade-off between
liveness and quality of the user experience. The deadline
misses are also reflected in the number of skipped
dwidth aggregation to improve the performance of
ication (2011), doi:10.1016/j.image.2011.10.007
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segments, on average both subsegment approaches skipped
five segments.

5.4. Real world networks

Our real world experiments were conducted with the
networks described in Table 1, and a buffer size of three
was used to compensate for the worst-case measured
bandwidth heterogeneity (except when measuring the
Please cite this article as: K. Evensen, et al., Using ban
quality-adaptive streaming, Signal Processing-Image Commun
performance for live streaming without buffering). The tests
were run interleaved to get comparable results, and the
experiments were performed during peak hours (08–16) to
get the most realistic network conditions. That is, we did not
want to have the full capacity of the networks to ourself.

5.4.1. On-demand streaming

The average aggregated throughput for on-demand
streaming and real world networks can be found in
dwidth aggregation to improve the performance of
ication (2011), doi:10.1016/j.image.2011.10.007
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Table 6
Quality distribution, real world networks and on-demand streaming.

Subsegment approach Low (%) Medium (%) High (%) Super (%)

Static, single-link 1 8 51 40

Static, multilink 5 6 10 79

Dynamic, single-link 3 11 46 41

Dynamic, multilink 3 2 9 86

Table 7
Quality distribution, real world networks and live streaming with

buffering.

Subsegment approach Low (%) Medium (%) High (%) Super (%)

Static, single-link 1 10 49 40

Static, multilink 5 4 7 84

Dynamic, single-link 1 9 49 41

Dynamic, multilink 3 2 5 91

Table 8
Quality distribution, real world networks and live streaming without

buffering.

Subsegment approach Low (%) Medium (%) High (%) Super (%)

Static, single-link 0 27 68 5

Static, multilink 10 12 45 32

Dynamic, single-link 0 27 68 5

Dynamic, multilink 1 10 35 55
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Fig. 15. There was a significant difference in performance
between the two subsegment approaches. While the
dynamic subsegment approach showed an increase in
performance when a second link was added, the static
subsegment approach did not benefit that much. In fact,
sometimes the aggregated throughput was less than
when a single link was used. The reason for the perfor-
mance difference was, as earlier, that the dynamic sub-
segment approach is able to utilize the links more
efficiently, it adapts better to the buffer size. When the
static approach was used, the HSDPA link was allocated
too much data. The performance difference is also
reflected in the quality distribution shown in Table 6.

In terms of deadline misses, both subsegment
approaches performed equally. Except for some outliers
caused by significant and rapid changes in the network
conditions, like congestion and interference, both
approaches were able to avoid all misses when multiple
links were used.

5.4.2. Live streaming with buffering

The performance with live streaming with buffering
was, as in the other live streaming with buffering experi-
ments, similar to the on-demand performance. The qual-
ity distribution is shown in Table 7, and both approaches
avoided almost all deadline misses when multiple links
were used. A worst-case additional delay compared to the
no-delay broadcast of 4 s was observed for both subseg-
ment approaches.

5.4.3. Live streaming without buffering

When live streaming without buffering was combined
with our real world networks, the performance was
similar to that presented in Section 5.3.3. The static
subsegment approach struggled with the small buffer,
while the dynamic approach adapts better, which resulted
in a significantly improved performance. The only sig-
nificant difference compared to the results in Section 5.3.3
is that the quality distribution for both approaches were
Please cite this article as: K. Evensen, et al., Using ban
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better due to more available bandwidth and more stable
links, as can be seen in Table 8. This was also reflected in
the deadline misses and a lower number of skipped
segments.

One common technique for streaming clients to reduce
the number of deadline misses is to downshift the quality
more aggressively. That is, segments are requested in a
lower than possible quality to achieve a smooth playback.
As can be seen in Fig. 16, our solution does not do this.
dwidth aggregation to improve the performance of
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Fig. 16. Comparison of the actual and possible video quality for one live streaming without buffering experiment, real-world networks.
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This figure compares the requested quality with the
maximum possible quality, based on the measured
throughput. With a few exceptions caused by the
dynamic link behavior, the requested quality matched
what the link could support. Similar observations were
made for the other types of streaming as well.

In the future, we plan to look at shifting quality more
intelligently, for example based on a history of the
observed throughput. Even if adding a second link
reduced the number of deadline misses in all the experi-
ments performed for this paper, deadline misses still
occurred (especially with live streaming without buffer-
ing). By adjusting quality less aggressively and thereby
trading quality for smoothness, the number of misses
should be even further reduced.

6. Conclusion

In this paper, we have presented and evaluated two
different subsegment approaches for DASH-like video
streaming. The approaches were implemented in the
DAVVI streaming system, which offers the same core
functionality as DASH, together with a request scheduler
which retrieves video segments in several different
bitrates for quality adaption over multiple heterogeneous
network interfaces simultaneously. The static subsegment
approach was based on our earlier work, presented in [2],
and divides the segments into smaller fixed-sized sub-
segments to achieve efficient bandwidth aggregation. This
increases performance compared to a single link and
cause a significant increase in video quality. However,
for the client to reach maximum performance with this
approach, the buffer size has to be large enough to
compensate for link heterogeneity.

To avoid the buffer requirement and allow quasi-live
streaming at high quality, we developed a subsegment
approach which calculates the sizes of the subsegments
dynamically, based on the current interfaces’ throughput.
Please cite this article as: K. Evensen, et al., Using ban
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The two approaches were evaluated in the context of on-
demand and live streaming with and without buffering
(startup delay) over emulated and real networks. Only
when the buffers were large enough to compensate for
link heterogeneity, the static and dynamic subsegment
approaches performed the same. In all the other scenar-
ios, the dynamic subsegment approach was able to
alleviate the buffer problem and showed similar perfor-
mance independent of link heterogeneity for a given
buffer size. Even though DAVVI [3] and DASH differ in
how the represent a video, they offer the same function-
ality. Also, all the information needed to do DAVVI-like
quality adaption and subsegmenting is present in DASH,
and the actual data retrieval is identical. In other words,
similar video quality gains would be seen with a multi-
link-extended DASH access client.

In our future work, we plan to analyze how increasing
or decreasing the duration of a segment affects quality
decisions and the performance of the subsegment
approaches. In addition, we want to look into tweaking
the dynamic subsegment approach, e.g., by adding
weights to different measurements and calculations,
adapting quality more intelligently (for example based
on a history of the observed throughput), experimenting
with AVC-encoding and live streaming without buffering,
and, as many multihomed devices are designed to run on
battery, evaluate the effect bandwidth aggregation has on
battery consumption.
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