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Abstract—In a lossless interconnection network, network
congestion needs to be detected and resolved to ensure high
performance and good utilization of network resources at
high network load. If no countermeasure is taken, congestion
at a node in the network will stimulate the growth of a
congestion tree that not only affects contributors to congestion,
but also other traffic flows in the network. Left untouched, the
congestion tree will block traffic flows, lead to underutilization
of network resources and result in a severe drop in network
performance.

The InfiniBand standard specifies a congestion control (CC)
mechanism to detect and resolve congestion before a congestion
tree is able to grow and, by that, hamper the network
performance. The InfiniBand CC mechanism includes a rich
set of parameters that can be tuned in order to achieve effective
CC. Even though it has been shown that the CC mechanism,
properly tuned, is able to improve both throughput and fairness
in an interconnection network, it has been questioned whether
the mechanism is fast enough to keep up with dynamic network
traffic, and if a given set of parameter values for a topology
is robust when it comes to different traffic patterns, or if the
parameters need to be tuned depending on the applications
in use. In this paper we address both these questions. Using
the three-stage fat-tree topology from the Sun Datacenter
InfiniBand Switch 648 as a basis, and a simulator tuned against
CC capable InfiniBand hardware, we conduct a systematic
study of the efficiency of the InfiniBand CC mechanism as
the network traffic becomes increasingly more dynamic.

Our studies show that the InfiniBand CC, even when using a
single set of parameter values, performs very well as the traffic
patterns becomes increasingly more dynamic, outperforming a
network without CC in all cases. Our results show throughput
increases varying from a few percent, to a seventeen-fold
increase.

I. INTRODUCTION

Traffic congestion in interconnection networks may de-

grade the network and the compute system performance

severely if no countermeasures are taken [1], [2], [3]. Con-

gestion is simply a result of high load of traffic fed into a

network link, exceeding the link capacity at that point. Hot

spot traffic patterns, network burstiness, re-routing around

faulty regions, and conducting link frequency/voltage scaling

(lowering the link speed in order to save power), can all lead

to congestion. If all these factors are known in advance, the

network administrator may alleviate the consequences by

effective load balancing of the traffic, but typically this is

not the case. Furthermore, in cases where multiple nodes

send more data to a single destination than the node can

handle, no dynamic re-routing can be done to avoid network

congestion. It becomes even more severe when a parallel

computer is running multiple different jobs as an on-demand

service (e.g. cloud computing), where the resulting traffic

pattern becomes unpredictable.

Congestion control (CC) as a countermeasure for relieving

the consequences of congestion has been widely studied in

the literature. In particular, this problem is well understood

and solved by dropping network packets in traditional lossy

networks such as local area networks (LANs) and wide

area networks (WANs). In these environments packet loss

and increased latency are indications of network conges-

tion. Herein it is mainly TCP that implements end-to-end

congestion control, either by a traditional window control

mechanism [4] for detecting dropped packets or through

changes in latency [5], [6]. Very often those networks are

also over-provisioned in order to avoid congestion.

In high performance computing (HPC) data centers low

latency is crucial, and packet dropping and retransmission

are not allowed under regular circumstances, contrary to

LANs and WANs, due to the loss of performance that is

associated with packet drops. Lossless behavior is achieved

with credit based link-level flow control, which prevents a

node or a switch from transmitting packets if the downstream

node or switch lacks buffer space to receive them.

Typically, when congestion occurs in a switch in a net-

work with link-level flow control, a congestion tree starts to

build up due to the backpressure effect of the flow control

mechanism. The switch where the congestion starts will be

the root of a congestion tree that grows towards the source

nodes contributing to the congestion. This effect is known as

congestion spreading. The tree grows because buffers fill up

through the switches as the switches run out of flow control

credits (not necessarily in the root). As the congestion tree

grows, it introduces head-of-line (HOL) blocking [7] and

slows down packet forwarding that also affects flows which

are not contributing to the congestion, severely degrading

the entire network performance. The HOL blocked flows

become victims of congestion [7].

Congestion control for link-level flow controlled networks
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cannot be based on a traditional window control mechanism

as deployed by TCP, even though it effectively limits the

amount of buffer space that a flow can occupy in the

network [8]. The reason for this is the relatively small

bandwidth-delay product in this environment, where even

a small window size may saturate the network [7]. A

rate control based CC mechanism is more appropriate for

link-level flow controlled networks, since it increases the

range of control compared to a window based system.

The mechanism relies on the switches to detect congestion,

and inform the sources that contribute to the congestion

that they must reduce their corresponding injection rates.

There are basically two ways to inform the source nodes in

such an explicit congestion notification scheme. Either the

switches can mark the packets contributing to congestion in

order to notify the destinations about the situation which

subsequently notifies the sources (the forward explicit noti-

fication approach), or the switches can themselves generate

notification packets that are sent directly to the source

nodes (the backward explicit notification approach). The

InfiniBand [9] architecture applies the former approach1,

while the emerging Data Center Bridging standard [10] is

implementing the latter.

There is a body of work that propose different strategies

for congestion notification and marking, e.g. a congested

packet can be marked both in the input and output buffer

as well as being tagged with information about the severity

of the congestion. Furthermore, there are several different

approaches to the design of the source response function, i.e.

the actions taken to reduce the injection rate, later followed

by an increase in the rate when congestion is resolved [8],

[11], [12], [13].

There are also congestion control mechanisms targeting

link-level flow controlled networks that take a completely

different approach. Instead of removing the congestion tree

itself, these approaches strive to relieve the unfortunate side

effects the congestion tree has on flows not contributing

to the congestion. That is, they try to remove the HOL

blocking by using special set aside queues for contributors

to congestion, effectively making it possible for victim flows

to bypass the contributors to congestion without actually

removing the congestion tree [14], [15]. Such an approach

has the advantage of being able to react immediately and

locally at each switch, at the cost of the extra buffers needed

for the set aside queues and the added complexity in the

switch to manage them. The real cause of the problem,

sources injecting too much traffic into the network, is left

untouched.

Adaptive routing (AR) could be used as a mechanism

to alleviate congestion by spreading the traffic in the net-

work onto otherwise idle resources when congestion occurs.

1Congestion control was added in release 1.2 of the InfiniBand specifi-
cation and is to some extent based on the work done by Santos et. al. [8].

Notice, though, that AR as a sole solution to congestion

might not be effective. When there is no possible route

around an area of congestion (e.g. end node congestion),

trying to reroute around the problem will only make the

branches of the congestion tree spread out and cause more

HOL blocking than when using deterministic routing. To be

effective AR needs to work in conjunction with another CC

mechanism. Furthermore, the InfiniBand specification does

not yet support AR.

InfiniBand (IB) was standardized in October 2000 and

over the years it has increased its market share, when

referring to the Top500 list [16], to 42% of the HPC market.

If we only look at the top 100 supercomputers in the world,

the number increases to 62%, while 5 out of 10 Petaflop

systems in the world are using IB as the system interconnect.

The vast majority of the IB installations are fat-trees with

the most notable exceptions being Pleiades (11D hypercube)

and RedSky (3D torus).

In 2010 Gran et. al. presented the first experiences with

CC in IB hardware, where they showed that the IB CC mech-

anism effectively resolves congestion and improves fairness

by solving the parking lot problem, if the CC parameters

are appropriately set [7] and the switch arbitration properly

designed [17]. Another significant contribution is the work

done by Pfister et. al. [18], where they studied (through

simulations) how well IB CC can solve certain hot spot

traffic scenarios in fat-tree networks.

The IB standard provides a large degree of freedom,

but little guidance, when it comes to configuring the CC

mechanism. Care must be taken when configuring the CC

parameters because a bad configuration can result in low

performance and instability in the network [7].

In this paper we explore the scope of the IB CC mech-

anism with regards to the robustness and performance of

a given parameter set when the communication pattern

gradually changes from a static to a dynamic scenario.

We describe a set of communication patterns designed to

stress the IB CC mechanism and we present a large set of

simulation results showing that the IB CC mechanism is

both robust and increases performance in all the scenarios

studied independent of the communication pattern.

The reminder of the paper is organized as follows: Sec-

tion II gives an overview of the CC mechanism supported by

IB. In section III we describe different types of congestion

trees and the communication patterns used in our simula-

tions.Then the simulation model is described in section IV,

before we in section V discuss the simulation results. Finally,

we conclude in section VI.

II. CONGESTION CONTROL IN INFINIBAND

The IB CC mechanism, specified in the InfiniBand Archi-

tecture Specification release 1.2.1 [9], is based on a closed

loop feedback control systems where a switch detecting

congestion marks packets contributing to the congestion by
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Figure 1. Congestion control in InfiniBand.

setting a specific bit in the packet headers, the Forward

Explicit Congestion Notification (FECN) bit (fig. 1 (1)). The

congestion notification is carried through to the destination

by this bit. The destination registers the FECN bit, and

returns a packet with the Backward Explicit Congestion

Notification (BECN) bit set to the source (fig. 1 (2)). The

source then temporarily reduces the injection rate to resolve

congestion (fig. 1 (3)).

The exact behaviour of the IB CC mechanism depends

upon the values of a set of CC parameters governed by a

Congestion Control Manager. These parameters determine

characteristics like when switches detect congestion, at what

rate the switches will notify destination nodes using the

FECN bit, and how much and for how long a source

node contributing to congestion will reduce its injection

rate. Appropriately set, these parameters should enable the

network to resolve congestion, avoiding HOL blocking,

while still utilizing the network resources efficiently.

1) Switch Features: The switches are responsible for

detecting congestion and notifying the destination nodes

using the FECN bit. A switch detects congestion on a given

port and a given Virtual Lane (Port VL) depending on a

threshold parameter. If the threshold is crossed, a port may

enter the Port VL congestion state, which again may lead to

FECN marking of packets.

The threshold, represented by a weight ranging from 0

to 15 in value, is the same for all VLs on a given port, but

could be set to a different level for each port. A weight of 0

indicates that no packets should be marked, while the values

1 through 15 represent a uniformly decreasing value of the

threshold. That is, a value of 1 indicates a high threshold

with high possibility of congestion spreading, caused by

Port VLs moving into the congestion state too late. A value

of 15 on the other hand indicates a low threshold with

a corresponding low possibility of congestion spreading,

but at the cost of a higher probability for a Port VL to

move into the congestion state even when the switch is not

really congested. The exact implementation of the threshold

depends on the switch architecture and is left to the designer

of the switch.

A Port VL may enter the congestion state if the threshold

is crossed and it is the root of congestion, i.e. the Port

VL has available credits to output data. If the Port VL

has no available credits, it is considered to be a victim of

congestion and shall not enter the congestion state2. When

a Port VL is in the congestion state its packets are eligible

for FECN marking. A packet will then get the FECN bit

set depending on two CC parameters at the switch, the

Packet Size and the Marking Rate. Packets with a size

smaller than the Packet Size will not get the FECN bit

set. The Marking Rate sets the mean number of eligible

packets sent between packets actually being marked. With

both the Packet Size and the Marking Rate set to 0, all

packets should get the FECN bit set while a Port VL is in

the congestion state.

2) Channel Adapter Features: When a destination CA

receives a packet with a FECN bit set, the CA should as

quickly as possible notify the source of the packet about

the congestion. This is done by returning a packet with the

BECN bit set back to the source. The packet with the BECN

bit could either be an acknowledgement packet (ACK) for

a reliable connection or an explicit congestion notification

packet (CNP). In either case it is important that the ACK or

the CNP is sent to the source as soon as possible to ensure

a fast response to the congestion.

When a source CA receives a packet with the BECN bit

set, the CA lowers the injection rate of the corresponding

traffic flow. To determine how much and for how long the

injection rate should be reduced, the CA uses a Congestion

Control Table (CCT ) and a set of CC parameters. The

CCT holds injection rate delay (IRD) values that define

the delay between consecutive packets sent by a particular

flow (the IRD calculation being relative to the packet length).

Each flow with CC activated holds an index into the CCT,

the CCTI . When a new BECN arrives, the CCTI of the

flow is increased by CCTI Increase. The CCT is usually

populated in such a way that a larger index yields a larger

IRD. Then consecutive BECNs increase the IRD which

again decreases the injection rate. The upper bound of the

CCTI is given by CCTI Limit.

To increase the injection rate again, the CA relies on a

CCTI T imer, maintained separately for each SL of a port.

Each time the timer expires, the CCTI is decremented by

one for all associated flows. When the CCTI of a flow

reaches zero, the flow no longer experience any IRD.

The IB CC can operate either at the Service Level (SL)

or at the Queue Pair (QP) level at an HCA. Any lowering of

the injection rate as a result of BECN reception, then affects

the whole SL or the single QP depending on the level of

CC operation. Choosing the SL level will have a negative

impact on both fairness and performance. The reason is that

a single traffic flow contributing to congestion will lower

the injection rate of all traffic flows within the same SL at

the HCA. This could include traffic flows not contributing

2If the V ictim Mask is set for the port, then the switch will move the
Port VL into the congestion state independently of the number of available
credits. The V ictim Mask is typically set for switch ports connection
HCAs to the switch as an HCA will never detect congestion itself.

11331133



to the congestion at all as they are not going through the

root of the congestion tree, but headed for other parts of the

network. In this paper we only consider CC operating at the

QP level.

III. CONGESTION TREES

When contention leads to congestion in a lossless in-

terconnection network, a congestion tree will form, as ex-

plained in section I. Branches of the tree will grow from

the root of the tree, backwards towards the sources con-

tributing to congestion, as traffic competing for the contested

resources at the root starts to pile up. Buffers and links will

be occupied along each branch by traffic headed for the

root of the tree. Eventually, a branch might grow all the

way back into a source node. The HOL blocking caused by

the branches not only results in underutilization of network

resources, but will also stimulate further growth of the tree

towards nodes initially being victims of congestion. The role

of a throttling based congestion control mechanism like IB

CC, is to prune the branches of the congestion tree just

enough to remove any HOL blocking, while still utilizing

the bottleneck resources at the root of the tree.

Exactly how all the branches of a congestion tree grow

and get pruned, and by that how the congestion tree itself

develops and how much HOL blocking it causes, depends

not only on the actions taken by the congestion control

mechanism, but obviously also to a great extend on the traffic

patterns in the network. A highly dynamic traffic pattern

with lively contributors to congestion could lead to a vastly

dynamic congestion tree, which again could pose a great

challenge to the congestion control mechanism, compared

to a more stable tree having a permanent set of contributors.

At the same time, a dynamic traffic pattern could by its

own dynamic nature, relieve the effects of congestion as

the traffic pattern itself will hinder the formation of large

congestion trees and any extensive HOL blocking. To be

able to conduct a systematic study of the effectiveness of

the IB CC mechanism under different traffic scenarios, we

start by dividing congestion trees into three nonexclusive

categories, based on the nature of their (main) contributors

and how dynamic they are. Starting with the least dynamic

category, the congestion trees can be silent, windy, or even

moving while wind is blowing through their crowns.

A. The Silent Forest of Congestion Trees

The most basic congestion tree forms when a subset, C,

of the nodes, N , in the network constantly injects traffic to

a permanent hotspot, while the rest of the nodes, V , injects

traffic to other destinations3. Then we have N = C ∪ V ,

where C are the contributors to congestion, while V are the

potential victims suffering from HOL blocking. In such a

3Notice that in general, a node can be a contributor to one congestion
tree and a victim of another - at the same time - depending on the
communication patterns in the network.

Hotspot

C nodes

Source Nodes

Destination Nodes

Root

Contributor

Branch

Figure 2. A silent congestion tree.

situation, a stable congestion tree will grow branches from

the root of the congestion, ultimately the last link towards

the hotspot, along the backward paths towards each of the

nodes in C. In an IB network with CC enabled, the branches

in such a congestion tree will grow and get pruned as the

throttling mechanism constantly tries to adjust the injection

rates of the nodes in C to their fair share of the resources at

the root of the tree. Notice, however, that the branches will

not move. The growing and shortening of a branch always

happens along the same path. We refer to a congestion tree

with such branches as a silent tree, as the tree’s branches are

not blowing in the wind. Figure 2 shows an artificial network

topology where a silent congestion tree, represented by the

red lines, has grown all the way from the root of the tree to

the five source nodes contributing to congestion. We have

somewhat artificially gathered all the source nodes in the

network at the top, and the destination nodes at the bottom,

to make the congestion tree visually more appealing and the

characteristics of the tree easier to comprehend.

If C is divided into subsets C1, C2, ..., Cn where each sub-

set sends to a different hotspot, the corresponding network

will grow a forest of silent congestion trees. Such a forest

may resemble a set of nodes sending large virtual image

files back to file servers in a network, or a set of sensor

nodes continuously transferring large amounts of data back

to a set of collector nodes.

The task of the IB CC mechanism will, as always, be to

prune the branches of the trees all the way down to their

roots, without causing under utilisation of the bottleneck

resources. As the number of contributors is constant and

the hotspots are stable, the IB CC should have a relatively

easy task, given enough time, to adjust the injection rate of

each contributor to its fair share of the bottleneck resources.

The throttling mechanism at a source node does not need

to keep track of different injection rates related to different

destinations or traffic flows, and the recovery process after

a period of congestion has ended is not really challenged as

the hotspots are always present.
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Hotspot

Source Nodes

Destination Nodes

Root

Contributor, t1 and t2

Branch, t1

Contributor, t2

Contributor, t1

Branch, t2

Active B nodes at time t1 and t2

Figure 3. A windy congestion tree.

B. The Windy Forest of Congestion Trees

Now consider a network where the nodes are not divided

into pure contributors to and possible victims of congestion,

like in the previous section, but instead consists of a different

type of nodes, B, that sends a certain percentage p of its

traffic to a hotspot, and then the rest 1 − p percent to

other nodes in the network. A B node can then be both

a contributor to and a victim of congestion, depending on

the time period we are looking at. In a network of B nodes,

the traffic creates a congestion tree, given that p is not too

low, but it will be different from a silent one. The root of

the congestion tree will as before be permanently related to

the hotspot, but the branches will now be more dynamic.

No longer will the branches only grow and shrink along

a specific set of paths, but the paths themselves change

as the nodes actually sending to the hotspot at any given

time changes. The branches of the congestion tree will be

moving like the branches of a tree blowing in the wind.

We have created a windy congestion tree. Figure 3 shows a

network topology where seven B nodes create such a tree.

First, at time t1, four nodes create a set of branches for

the congestion tree, the red lines, while later, at time t2,

a different set of nodes create a different set of branches,

the blue lines. The branches have moved, while the root

is the same. Notice that even though we in figure 3 show

the branches as having grown all the way back to the source

nodes, this will most likely not be the case in most situations.

The branches will usually have different lengths, depending

on the traffic pattern and the value of p.

Again, if B is divided into subsets B1, B2, ..., Bn where

each subset sends pi percent to its own hotspot, the corre-

sponding network will grow a forest of windy congestion

trees. Such a traffic scenario could bear a resemblance to a

set of compute nodes that communicate and exchange data

with their peers, while at the same time store data at a set of

storage nodes, i.e. the hotspots. The ratio between the peer

communication and the storage usage is then given by the

Root, t1

Root, t2

Hotspot, t1

Hotspot, t2

B or C nodes

Source Nodes

Destination Nodes

Contributor, t1 and t2

Congestion tree, t1

Contributor, t2

Contributor, t1

Congestion tree, t2

Figure 4. A moving congestion tree.

value of p.

The windy forest of congestion trees poses a new chal-

lenge for the IB CC mechanism. The branches of the

congestion trees need to be pruned as before, but now the

number of contributors are varying depending on p and what

nodes that happen to send to the hotspot at a given time. In

addition, it becomes important for the IB CC mechanism to

separate the injection rate of different flows, to make sure

that traffic not headed for the hotspot is not held back by the

throttling mechanism. It becomes important that the IB CC

operates at the QP level (or at least at the source-destination-

pair level), and not the SL/VL level. The recovery process

after a period of congestion has ended is, however, still not

really challenged as the hotspots are always the same.

C. The Forest of Moving Congestion Trees

Both the silent and the windy congestion trees have a

root related to a permanent hotspot. Now let us assume that

the contributors to congestion sending to the hotspot Hi, no

matter if they are contributing to a silent or windy congestion

tree, change their target destination to a new hotspot, hotspot

Hj . Independent of the congestion control mechanism, the

congestion tree caused by the traffic headed for Hi will now

have its root moved towards a new root location related to

the new hotspot Hj , where new branches will grow. The

congestion tree has moved4. Figure 4 illustrates a moving

congestion tree before and after a set of contributors have

changed focus from one hotspot at time t1, to another at t2.

The red lines correspond to the congestion tree at t1, while

the blue lines correspond to the congestion tree at t2. Again,

the branches are for clarity shown as having grown all the

way back to the source nodes.

A forest of moving congestion trees has a more dynamic

nature than a forest of silent or windy congestion trees, no

4Strictly speaking, what is happening is that one tree disappears as a new
one is created. The original congestion tree is not actually moving as such,
but as both events happen at the same time, with contributors changing
focus from one hotspot to another, we will think of it as a congestion tree
moving from one part of the network to another.
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matter if the contributors of the moving trees are C or B

nodes, or both. As we shorten the lifetime of each hotspot,

the forest of moving congestion trees becomes increasingly

more dynamic. Different trees will grow and shrink around

the network in a continuously more nonsystematic way, and

the traffic pattern as a whole is moving closer to a chaotic

scenario where knowledge about the traffic is limited. Such

a traffic scenario could resemble a cluster running a set of

virtual machines or virtual jobs, where the communication

pattern is unknown, depending on the jobs currently running.

Short (and long) lived congestion can appear anywhere in

the network at any given time, depending on the lifetime of

the hotspots, the number of contributors and their nature.

In a forest of moving congestion trees, the IB CC

mechanism faces new challenges as the dynamics increases.

Not only is it still important to detect congestion fast,

decrease the injection rates accordingly, and separate flows

contributing to congestion from other flows at a source

node, but it also becomes important to recover fast from

congestion. That is, the injection rate of a flow contributing

to congestion should at a source node be increased again

fast enough to ensure good utilization of network resources

as soon as the congestion disappears. It is an indisputable

fact that a feedback control loop like the one the IB

CC mechanism relies upon, can lead to a CC mechanism

constantly operating (too far) behind schedule as it takes

time to bring information about the congestion from the root

of the congestion tree back to the contributors. The shorter

the lifetime of the hotspots, the more challenging it will be

for the CC mechanism to react fast enough to keep up with

the actual situation in the network, both when decreasing the

injection rate as congestion is detected, as well as increasing

it again when congestion is resolved. An interesting question

is then if this really poses a problem, as the shorter lifetime

of the hotspots, and the correspondingly more dynamic

traffic pattern, by itself implies that the occurrences of

congestion will be less severe, and the negative effects of

congestion less dramatic. The dynamic traffic pattern will

by its own nature reduce the severity of the HOL blocking

in the network.

The Diverse and Stormy Forest of Moving Congestion Trees

It can be argued that the classification of congestion trees

given above is somewhat artificial. In a network, even if the

main contributors to congestion create a silent congestion

tree, other small and short lived congestion trees will be

created by other traffic flows present in the network. In

addition, HOL blocking will make congestion trees grow

towards victims of congestion, and not only towards the

initial contributors like shown in figure 2. Furthermore, a

silent congestion tree can be seen as a windy congestion

tree with p = 1, and a moving congestion tree can be seen

as two separate events where one congestion tree disappears

while another one is created. Typically, in a network, we

will find a multitude of different congestion trees that all

have their own twists. The congestion trees truly come in

all kinds of flavors.

Still, even if a network in general can grow a diverse and

stormy forest of moving congestion trees, the classification

of congestion trees into silent, windy, and moving trees has

proved to be very useful when conducting a systematic study

of the IB CC mechanism’s performance as the degree of

dynamic behaviour in the network increases. By controlling

the type of main contributors to congestion, being C or B

nodes, and the duration of each hotspot, we control the main

types of congestion trees that will form in the network. The

main congestion trees are the ones causing the most HOL

blocking, and by that the main reasons for the performance

degradation observed in the network. Then, by starting with

contributors that create silent trees, and later moving on to

nodes creating windy and moving congestion trees, we can

study how well the IB CC mechanism is able to cope with

an increasingly more dynamic traffic pattern in the network.

In addition, notice that even though we focus on the three

different types of congestion trees, in our simulations (as in a

real network) any background traffic and the corresponding

HOL blocking introduced, will obviously both create a

multitude of small congestion trees, as well as make the

main trees grow towards victim nodes. This behavior will

be captured and included in the overall network performance

measurements presented in section V.

IV. THE SIMULATOR

Our network simulator and switch model is built on the

OMNet++ platform [19] and has been previously described

in [20]. Below we give a brief overview of the model and the

simulation parameters used in all the simulations presented

in section V. The IB model consists of a set of simple and

compound modules to simulate an IB network with support

for the IB flow control scheme, arbitration over multiple

virtual lanes, congestion control, and routing using linear

forwarding tables.

The two building blocks for creating networks using the

IB model are the Host Channel Adapter (HCA) compound

module and the Switch compound module. The Switch

consists of a set of SwitchPorts, which are by themselves

compound modules. During a simulation, an HCA represents

both a traffic injector and a traffic sink in the network, while

a Switch acts as a forwarding node. The HCAs and switches

are connected using gates, corresponding to links in the

network.

The HCAs and the SwitchPorts consist of the a set of

common simple modules ibuf, obuf, vlarb, and ccmgr, while

the simple modules gen and sink are exclusive to the HCAs.

The ibuf represents an input buffer with support for virtual

lanes, virtual output queuing (VoQ) and virtual cut through

switching. The obuf represents a simple output buffer,

while the vlarb implements round robin arbitration over the
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different VLs and multiple input ports (if the module is part

of a SwitchPort). The gen implements traffic generation in a

HCA, while the sink is the part of the HCA responsible for

removing traffic from the network. The gen module supports

several traffic generation schemes, e.g. varying the injection

rate, the packet size and the destination node distribution.

In general, the gen module at an HCA generates traffic

that is forwarded through the vlarb to the obuf of the HCA.

From there it is sent out into the network. There is no

internal HoL blocking in the gen module or in the HCA

so the only place where the traffic can experience blocking

is in the switches. At a Switch(Port) the ibuf receives the

traffic, does the routing decision and moves the traffic into

the corresponding VoQ. Here the traffic waits until the vlarb

of the given output port grants access to the corresponding

obuf. At an HCA the ibuf receives traffic and forwards it to

the sink. The IB flow control is managed by the ibuf s and

the obuf s, exchanging flow control messages.

The InfiniBand Congestion Control mechanism is imple-

mented by the simple module ccmgr. The ccmgr is included

in the compound modules for the HCA and the SwitchPort,

and manages everything related to congestion control in

these modules, with the help of the other simple modules

therein. In particular, all CC parameters specified in the

InfiniBand Architecture Specification release 1.2.1 [9] are

supported by the ccmgr module. The throttling mechanism

operates at the packet level. That is, all the flits belonging to

the same packet are always injected back-to-back, if allowed

by the link-level flow control mechanism, even when the

throttling mechanism is active. The IRD calculations follow

the IB specification. The simulation model, including the

CC behaviour, has been carefully tuned against Mellanox

MTS3600 InfiniBand switches as described in [20].

As our simulation scenario we have selected a three stage

fat-tree network, which is a topology common in large scale

InfiniBand switches [21], [22]. This topology supports non-

blocking communication of up to 648 compute nodes and is

built from 54 36-port crossbars. In our simulations we used a

link speed of 20 Gbit/s (4x DDR) and an MTU size of 2048

bytes. Each message sent by a node consists of two packets,

giving a total size of 4096 bytes per message. A node

injects packets at full link speed whenever possible. The

traffic patterns used correspond to the scenarios described in

section III, while the specific destination distributions used

are given during the discussion of the results in section V.

Frame I gives a detailed example of how traffic is generated

at a node during a simulation, here using a B node with

p = 50.

The congestion control parameter values used during all

the simulations discussed in this paper are listed in table I.

These values were found during our initial study of CC

capable IB hardware, a work presented in [7]. While it

proved to be a nontrivial task to identify the parameter

values, even in a small cluster with a simple and static

Frame I - packet generation at a B node with p=50:

A B node with p = 50 sends 50% of its generated traffic
to its designated hotspot, hs, while the rest is sent using a
uniform destination distribution including all nodes in the network
(expect the node itself). Using a message size of two packets,
corresponding to a total of 4096 bytes per message, the sequence
of packets generated and sent could then look like this:

• 2 x Msg sent with random destination addresses (most likely
two different destinations)

• 1 x Msg sent to hotspot hs (=4KB)
• 1 x Msg sent with random destination address
• 3 x Msg sent to hotspot hs (=12KB)
• 2 x Msg sent with random destination addresses (most likely

two different destinations)
• 1 x Msg sent to hotspot hs (=4KB)
• ... and so on.

In a scenario of moving congestion trees, the B node changes the
address of the hotspot at each new timeslot (e.g. each 1msec); the
hsi address changes into hsj , and by that the hotspot is moved,
while the value of p remains the same.

The packets are sent back-to-back when not held back by the CC
mechanism or the link-level flow control. Note though, that the p%
and (1−p)% fractions of a B node are related to the (simulation)
time, and not each other. That is, after a given time, t, a maximum
of p% of the traffic has been sent to the hotspot, while a maximum
of (1−p)% has been sent to the non-hotspots. The link will remain
idle when non-hotspot traffic has fulfilled its (1−p)% of the total
possible traffic sent (t times link capacity) and the hotspot traffic
is held back by the CC mechanism. It is important to keep the two
types of traffic (hotspot and non-hotspot) independent of each other,
i.e. it is important that non-hotspots traffic is not HOL blocked
internally in the generator when the hotspot traffic is held back by
the CC mechanism, while at the same time it is just as important
that the non-hotspot traffic does not exceed the (1 − p)% during
a simulation as this is the amount of traffic supposedly requested
by non-hotspot traffic during a simulation time.

Note that by changing the value of p, the fraction of traffic
going to the hotspot changes, and by that, the likely (and average)
lengths of the trains of packets going to the hotspot changes as
well. When using a B node with a p value of 50%, most trains
going to the hotspot will have sizes in the range of [4KB, a few
KB> while most trains going to non-hotspots will have the size of
a single message, 4KB, due to the uniform destination distribution.

Table I
CC PARAMETER VALUES.

Parameter Value Parameter Value

CCTI Increase 1 Threshold 15
CCTI Limit 127 Marking Rate 0
CCTI Min 0 Packet Size 0
CCTI T imer 150

traffic pattern, the values found in [7] have proved to be

quite robust, as we will see in section V. Note that the CCT

values have been increased to reflect the larger number of

possible contributors to congestion in our fat-tree topology,

compared to our earlier hardware experiments.

V. SIMULATION RESULTS

We have divided the presentation and the analysis of our

simulation results into three sections, corresponding to the
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Table II
PERFORMANCE NUMBERS (GBPS), SILENT CONGESTION TREES.

No hotspots, no CC

Avg. receive rate 2.699

No hotspots, CC on

Avg. receive rate 2.701

Hotspots, no CC

Hotspots avg. rcv. 13.602
Non-hotspots avg. rcv 0.168

Hotspots, CC on

Hotspots avg. rcv. 13.279
Non-hotspots avg. rcv 2.246

Totale Network Throughput, Hotspots

Without CC 216.073
With CC 1543.793

three categories of congestion trees introduced in section III.

In the first section, section V-A, we start by looking at

the performance of the IB CC mechanism in a network

growing a quiet forest of eight silent congestion trees.

Then, in section V-B, we continue our study by gradually

exchanging the nodes in the network with B nodes, making

the congestion trees increasingly more windy, and by that,

the traffic pattern in the network more dynamic. Finally, in

section V-C, we end our study by looking at the performance

of IB CC as the hotspots move. By increasing the number of

times the hotspots move during a given timeslot, we decrease

the hotspot lifetimes accordingly, and by that, the dynamics

of the traffic pattern in the network increases even further.

A. The Silent Forest of Congestion Trees

In this scenario, the end nodes in the network are divided

into 80% C nodes and 20% V nodes. Recall that this means

that 80% of the 648 nodes in the network send traffic

solely to the hotspots. The rest of the nodes, the V nodes,

send traffic with a uniform destination distribution. The V

nodes are randomly distributed in the topology. All nodes

constantly try to inject traffic into the network at maximum

capacity; 13.5Gbps5.

Before enabling the C nodes, we simulate a scenario

where only the V nodes are active and the CC mechanism

disabled. Doing this, we get the throughput of the nodes in

the network that potentially will be victims of congestion

when the hotspots are introduced. As shown in the first

part of table II, the average receive rate of the nodes in

the network is approximately 2.7Gbps. This is as expected,

as each V node injects traffic at 13.5Gbps into the non-

blocking topology. The soon-to-be hotspots and the non-

hotspots receive the same amount of traffic. These perfor-

mance numbers remain the same if we enable CC, still

without activating the C nodes (the second part of table II).

5This corresponds to the injection rate of the end nodes the simulator is
tuned against, an injection rate limited by the PCIe v1.1 protocol overhead
and other system components in the hardware.

Enabling CC causes no harm to the network performance in

this lightly loaded network.

Now let us disable the CC again, and enable the C

nodes. The C nodes are evenly divided into eight sub-

sets, each subset sending to one of eight hotspots. The

third part of table II shows the average receive rates of

both the newly created hotspots and the non-hotspots. The

hotspots, randomly distributed in the network, each receives

13.6Gpbs6, while the non-hotspots have their average receive

rate lowered from 2.7Gpbs down to 0.168Gbps. The growth

of the eight silent congestion trees results in a huge amount

of HOL blocking in the network, and by that a severe

performance degradation for the V nodes. The V nodes have

become victims of congestion. To remove the congestion

trees and the HOL blocking, we turn the CC back on. The

fourth part of table II shows the resulting improvement in

performance. At the cost of a small drop in the receive

rate for the hotspots, down 2.5%, we improve the receive

rate of the non-hotspots by more than 1200%. Enabling the

CC mechanism of IB, the non-hotspots now experience a

receive rate only 17% below the receive rate they achieved

before the hotspots were introduced. The last part of table II

shows the total network throughput of the network running

with and without CC enabled. Even when accounting for the

drop in the receive rate of the hotspots when CC is enabled,

enabling CC leads to a performance improvement by more

than 610%. The CC mechanism, using the CC parameters

from Table I, is clearly able to improve the performance in

our network when silent congestion trees are present.

B. The Windy Forest of Congestion Trees

Let us now increase the dynamics of the traffic pattern

used in the previous section by gradually exchanging x%

of the nodes in the network with B nodes, increasing x

in steps of 25%. The eight permanent hotspots are still

present, but as x increases so does the amount of wind in

our congestion trees. The B nodes are evenly divided into

eight subsets, just like the C nodes, each subset sending to

one of the eight hotspots. The nodes not being B nodes, i.e.

(100 − x)% of the nodes, are divided into 80% C nodes

and 20% V nodes – as before. Note that until x reaches

100%, this implies that there are always some permanent

contributors to congestion present in the network (and some

permanent potential victims). The figures 5, 6, 7, and 8

show performance plots from simulations ran with x = 25%,

x = 50%, x = 75%, and x = 100%, respectively. These four

scenarios and their corresponding figures will be discussed

in the following subsections.

1) 25% B Nodes: The figures 5(a) and 5(b) show the

average receive rates of non-hotspots and hotspots, respec-

tively, in a network running with and without CC, as p

6This matches the receive rate of the end nodes the simulator is tuned
against. The hardware has a receive rate approximately 0.1Gbps higher than
the injection rate.
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Figure 5. Measurements for a windy forest with 25% B nodes as p increases.

increases from 0 to 100. Recall that a B node sends p% of

its traffic to a given hotspot. The remaining (1− p)% of the

traffic is sent using a uniform destination distribution. Note

that this implies that as p increases, a decreasing amount of

traffic in the network is destined for the non-hotspots. That

is, as p increases, the theoretical maximum amount of traffic

that the non-hotspots can receive decreases. This theoretical

maximum is plotted as tmax in figure 5(a), and represents

the maximum average receive rate the non-hotspots could

possibly achieve if the hotspots were not present.

Looking at figure 5(a), it is evident that enabling CC in the

network results in an immense improvement in the average

receive rates for the non-hotspots, independent of the value

of p. At p = 0 the average receive rate of a non-hotspot

is 4.75Gbps when CC is enabled, compared to 0,55Gbps

when CC is disabled and the tmax value of 5.4Gbps. In

this case, enabling CC leads to an 8.6 times improvement

in performance; a 760% increase. As p increases from 0 to

10, the performance when CC is enabled drops from 88%

to 60% of tmax, while the relative performance actually

increases to a factor of 9.1 compared to the scenario with

CC disabled. As the B nodes start to send traffic to the

hotspots, but still generate 90% uniformly distributed traffic,

the CC mechanism is not fully able to cope with all the

HOL blocking in the network. As p increases from 10 to

60, however, the relative performance of CC compared to

tmax increases to 80% again, where it stays as p reaches

the value of 100. The performance increase by enabling CC

in the network, as the p values increases from 30 to 100,

equals to a factor ranging from 12.9 to 16.3, with the peak

at p = 60; a 1530% performance boost in the receive rate

of the non-hotspots at this point.

Turning our attention towards the hotspots, figure 5(b)

shows that the average receive rates of these nodes are

independent of the values of p. When CC is disabled, each

hotspot receives a steady 13.6Gbps, which equals to the

maximum receive rate of an end node. The average receive

rate then drops by 2.2%, down to 13.3Gbps, when the CC is

enabled. While this indicates a tiny underutilization of the

scarce resources at the roots of the congestion trees, bearing

the results from figure 5(a) in mind, the price we have to

pay when enabling CC is negligible. Figure 5(c) plots the

improvement in the total network throughput when CC is

enabled as a function of p. By enabling CC, we improve

the total network throughput by a factor ranging from 6.0

(p = 100) to 8.7 (p = 60). That is, a minimum improvement

in performance by at least 500%.

2) 50% and 75% B Nodes: Figures 6 and 7 show

performance plots from simulations where the fraction of

B nodes in our network is 50% and 75%, respectively.

Comparing these results with the ones presented in figure

5, we observe that the performance trends are the same.

Enabling CC leads to a vast improvement in the average

receive rates of the non-hotspots, without penalizing the

average receive rates of the hotspots. Notice that as the

fraction of B nodes increases and the fraction of C and

V nodes decreases, the impact the value of p has on the

overall traffic pattern in the network increases accordingly.

This influences the tmax values of the average receive rates

of the non-hotspots. At p = 0, the tmax value increases

as the fraction of B increases, because the traffic pattern

in the network as a whole then moves towards a uniform

destination distribution. On the other hand, at p = 100, the

tmax value decreases as the fraction of B nodes increases.

At this p value, a B node sends all its traffic to a hotspot,

and then as the fraction of B nodes increases, the fraction of

the traffic in the network headed for the hotspots increases

accordingly. To sum up, the graph of decreasing tmax values

as a function of p, becomes steeper as the fraction of B

nodes in the network increases. This influences the possible

11391139



Value of p

A
vg

. n
on

−
ho

ts
po

t r
ec

ei
ve

d 
(M

b/
s)

0

2000

4000

6000

8000

0 20 40 60 80 100

CC

off

on

tmax

(a) Average receive rate, non-hotspots.

Value of p

A
vg

. h
ot

sp
ot

 r
ec

ei
ve

d 
(M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

CC

off

on

(b) Average receive rate, hotspots.

Value of p

Y
 t

im
e

s 
im

p
ro

ve
m

e
n

t 
in

 t
o

ta
l n

e
tw

o
rk

 t
h

ro
u

g
h

p
u

t 
b
y 

e
n

a
b
lin

g
 C

C

0

2

4

6

8

10

12

0 20 40 60 80 100

(c) Total network throughput improvement.

Figure 6. Measurements for a windy forest with 50% B nodes as p increases.

Value of p

A
vg

. n
on

−
ho

ts
po

t r
ec

ei
ve

d 
(M

b/
s)

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100

CC

off

on

tmax

(a) Average receive rate, non-hotspots.

Value of p

A
vg

. h
ot

sp
ot

 r
ec

ei
ve

d 
(M

b/
s)

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

CC

off

on

(b) Average receive rate, hotspots.

Value of p

Y
 t

im
e

s 
im

p
ro

ve
m

e
n

t 
in

 t
o

ta
l n

e
tw

o
rk

 t
h

ro
u

g
h

p
u

t 
b
y 

e
n

a
b
lin

g
 C

C

0

2

4

6

8

10

12

14

0 20 40 60 80 100

(c) Total network throughput improvement.

Figure 7. Measurements for a windy forest with 75% B nodes as p increases.

benefit we can achieve by enabling CC in our network, an

effect clearly present in the graphs showing the total network

throughput improvement (figure 6(c) and 7(c)). The graphs

become increasingly more ∩ shaped as the fraction of B

nodes increases. At low and high p values the total network

throughput improvement decreases, while the peak at p = 60
increases. This effect becomes even clearer as we increase

the fraction of B nodes to 100%.

3) 100% B Nodes: Figure 8 shows the performance plots

as the fraction of B nodes has increased to 100%. We

are creating purely windy congestion trees with no traffic

generated by V and C nodes. Now, for the first time, we

observe a small penalty of 3% in the receive rate of the

non-hotspots at p = 0 as CC is enabled (figure 8(a)). Note

though that at this p value, the B nodes have no preference

for the hotspots. The traffic is uniformly distributed in the

network, and there is no real congestion for the CC to

resolve. As soon as the B nodes start to send traffic to

the hotspots (at p > 0), the improvement by enabling CC

is again evident. At p = 10, enabling CC leads to a 4.1

times improvement in the receive rate of the non-hotspots,

an improvement increasing to 64.1 times as p approves 90. In

this scenario, the non-hotspots experience a total collapse in

performance in a network without CC, while when enabling

CC, the same nodes experience a receive rate very close to

the theoretical maximum when p > 60. Figure 8(b) shows

that enabling CC has no negative effect on the receive rate of

the hotspots. Finally, looking at the total network throughput

improvement in figure 8(c), the IB CC mechanism’s ability

to improve network performance when congestion is present

in the network is clear. At p = 0 and p = 100, enabling CC

has virtually no effect, as the CC mechanism is left with

no room for improvement - as explained in the previous

section. Note though, that the CC mechanism does not
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Figure 8. Measurements for a windy forest with 100% B nodes as p increases.

cause any harm at these extreme p values. With p values

in the interval < 0, 100 >, the CC mechanism shows a

performance improvement, with a peak at p=60, leading to

a seventeen-fold increase in total network performance.

Summing up, a network with CC enabled outperforms a

network running without CC as long as congestion is present

in the network, no matter how windy the congestion trees

are, showing a peak in performance when approximately

60% of the traffic is headed towards the hotspots. Further-

more, the CC mechanism causes no harm to the network

performance when all traffic is headed for the hotspots, and

the reduced performance caused by CC in a network with

purely uniformly distributed traffic is negligible.

C. The Stormy Forest of Moving Congestion Trees

This far, all our hotspots were locked to a permanent

position in the network during a simulation. To continue

our study of the performance of the IB CC mechanism

as the dynamics in the network increases, we now start to

move the hotspots. During a simulated timeslot of 0.1s, the

hotspots are moved n times, n ranging from 10 to 100. This

corresponds to a shortening of the hotspot lifetimes from

10ms to 1ms. By measuring the performance of the IB CC

for different values of n, we can to study the performance

of the CC mechanism in a systematic way as the dynamics

in the network increases. The CC now needs to deal with

contributors that themselves, dynamically, tear down and

recreate congestion trees in the network. In addition, the

moving process itself may create temporarily congestion

trees at unforeseeable places in the network. By moving

the hotspots, we turn our network into a stormy forest of

moving congestion trees.

We start our study by moving silent congestion trees,

before we move on to a scenario where we move windy

congestion trees. The contributors are as before divided

into eight subsets, each subset sending to one of the eight

hotspots.

Figure 9(a) shows the average receive rate of all nodes in a

network consisting of 20% V nodes and 80% C as a function

of the decreasing hotspot lifetime. When the hotspots are

moved each 10th ms, the nodes receive 723Mbps when

CC is enabled, compared to 467Mbps in a network without

CC. The performance increases by 55% when enabling CC.

Then, as the lifetime of the hotspots are shortened, the

improvement in performance by enabling CC is reduced.

When the hotspots move every second millisecond, the

performance increase is down to 10%, and as the hotspot

lifetime reaches 1ms, the performance increase is only 4%.

The performance increase is less impressive than the ones

achieved when the hotspots are not moving, but the benefit

from enabling the IB CC mechanism is still clear even as

the hotspot lifetime approaches 1ms.

Note that as the lifetime of the hotspots decreases, the

receive rate increases in general, while the advantage from

enabling CC decreases. When the hotspot lifetime decreases,

the contributors change focus more often and by that they

actually distribute the traffic more evenly in the network. The

result is that the network throughput as a whole increases,

as it is less dependent on the limited number of hotspots’

ability to receive traffic. At the same time, the change in

focus of the contributors will help to resolve congestion in

the network. This also implies that the CC mechanism is

left with less room for improvement. In addition, when the

lifetime of the hotspots decreases, it becomes increasingly

hard for IB CC mechanism to keep up with the situation in

the network (due to the feedback loop).

A network with 20% V nodes and 80% C nodes has

relatively few possible victims of congestion; only 20% of

the nodes. Figure 9(b) shows the performance numbers we

get if we increased the number of V nodes to 60%. Now,
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Figure 9. Average receive rates in a network with silent congestion trees and moving hotspots, shown as a function of decreasing hotspot lifetimes.

the advantage of enabling CC has increased again when the

hotspot lifetime is 10ms. At this point, enabling CC results

in an increase in the average receive rate by a factor 2.6.

The advantage by enabling CC decreases faster, however,

than when having 20% V nodes. At a hotspot lifetime of

1ms, the improvement is down to 10% again.

Finally, figure 10 shows the average receive rate of the

nodes in a network consisting of only B nodes, using p

values of 30, 60, and 90. As we move the hotspots and

their corresponding windy congestion trees, we observe

the same performance trends as we did when moving the

silent congestion trees. The enabling of CC leads to an

improvement in performance in all cases, even though the

improvement decreases as the hotspot life time decreases

and the traffic pattern itself alleviate the side effects of

congestion in the network.

VI. CONCLUSIONS

A central question in the understanding of congestion

control in interconnection networks is whether throttling of

contributors to congestion may have adverse effects. Setting

parameters related to the feedback-loop of such mechanisms

have previously been shown to require deep understanding

of the problem, even for simple traffic. Therefore uncertainty

has lingered as to whether congestion control may actually

be harmful in some scenarios.

In this paper we have shown that for fat-trees, there exist

parameter settings that makes the throttle-based Congestion

Control of InfiniBand robust. Through carefully designed ex-

periments we have stressed the mechanism with congestion

scenarios varying from the completely static ones, to cases

where congestion is highly dynamic both with respect to

contributors, intensity, duration and placement of congestion

points. Our identified parameter settings showed increased

throughput varying from a few percent, to a seventeen-

fold increase. The only adverse effect we registered was

a negligible decrease in throughput for the contributors to

congestion.

Our most important result is that InfiniBand congestion

control can be tuned to be stable for a given installation

based on fat-trees. The tuning itself remains a highly spe-

cialized task [7], but the gains in performance is huge

when it is done correctly. Regarding other topologies, the

question is still open. There is reason to believe that other

multistage-topologies that have a similar pattern of inter-

relations between streams, will expose the same behavior.

Regarding Tori or Meshes, the picture is more unclear, thus

this question should form the basis for further research.
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