
1

 
 

From fashion and opinion-based to:  
 

Evidence-Based
Software and Knowledge

Engineering 
 
"ICKE-2011

Magne Jørgensen
Simula Research Laboratory

Empirical evidence"

2

Evidence-Based Software Engineering"
1.  Convert a relevant problem or need for information into an

answerable question. #

2.  Search the literature or relevant experience for the best
available evidence to answer the question.#

3.  Critically appraise the evidence for its validity, impact, and
applicability. #

4.  Integrate the appraised evidence with practical experience and
the client's values and circumstances to make decisions about
practice. #

5.  Evaluate performance in comparison with previous
performance and seek ways to improve it.#

We Need EBSE to ..."
•  Replace biased believes and opinions with evidence in the

software industry#

•  Replace non-representative experience with evidence
representing a well-defined population#

•  Replace our tendency of seeing patterns where there are none
with knowledge based on proper analysis methods#

•  Challenge existing practices #

•  Generate knowledge that cannot be derived from experience
alone#

... and many, many more good reasons.#
#

3

Why evidence-based practice?"

•  Research Question: Do children get more hyperactive when given sugar? #

•  Common belief: Yes.#

•  Evidence-based answer: No! At least 12 double blind, randomized
controlled trials find no effect (see Vreeman & Carrol, Festive medical
myths, British Medical Journal, 337:1288-1289, 2008) .#

•  Why most believe it: “When parents think their children have been given a
drink containing sugar (even if it is really sugar-free), they rate their
children’s behaviour as more hyperactive. The differences in the children’s
behaviour were all in the parents’ minds.”#

Agile Methods in Software Development"

•  Participants: Professional software developers.#
•  Strong belief in agile: Before the study I collected their believes about

agile methods. #
–  84% believed agile methods led to higher productivity (only 6% believed same

or lower productivity), and 66% believed it led to more user satisfaction (only
8% same or lower). 
#

•  Design of study:#
–  Generation of 10 project data sets (see example next page) with the triples:

Development method (agile or traditional), Productivity (FP per work-day), and,
User satisfaction (dissatisfied, satisfied, very satisfied). #

–  All values were RANDOMLY generated.#
–  Each developer was randomly allocated to one of the data sets and asked  

to interpret it – based on the measured data alone.#

4

Agile Methods in Software Development"

!
“Assume that this [the data set] is the

only you know about the use of agile
and traditional development
methods in this company and that
you are asked to interpret the data.
The organization would like to know
what the data shows related to
whether they have benefited from
use of agile methods or not.”!

Very satisfiedSatisfiedDissatisfied

9

8

7

6

5

4

3

2

1

0

Very satisfiedSatisfiedDissatisfied

Agile

User Satisfaction

P
ro

d
u

ct
iv

it
y

 (
Fu

n
ct

io
n

 P
o

in
ts

/
W

o
rk

-d
a

y
)

Traditional

Individual Value Plot of Productivity

Panel variable: Development Method

“I see it when I believe it” vs “I believe it when I see it”"
•  Question: How much do you agree in: “Use of agile methods has caused a better

performance when looking at the combination of productivity and user satisfaction.”!

•  Result: Strong bias in favor of agile methods.#
–  The agreement in the claim depended on their previous belief in agile methods.#
–  Previous belief: Agile methods are better (wrt productivity and user satisfaction)  

è 20 of 32 agreed#
–  Previous belief: Agile methods are not better (on at least one aspect) è 1 of 7

agreed#
–  Previous belief: Neutral è neutral answers#

•  The real-life bias is probably much stronger:#
–  Lack of objective measurement. More bias in favor of the preferred method.#
–  More variables of importance, i.e., more complex interpretation and more space  

for wishful interpretation.#

5

Challenge “Obvious” Relationships: 
More Risk Analysis Make You More Realistic"

•  Participants: Professional software developers randomly divided into two
groups.#

•  Group LESS: Identify the most important risk, then estimate the effort.#

•  Group MORE: Think back on problems you have had in similar projects,
identify the most important risk factors of the current project, analyze each
risk factor with respect to probability and severity, then estimate effort.#

•  Actual effort: median of ca. 700 work-hours#

•  Those in Group MORE had:#
–  Lower median effort estimates  

(200 vs 316 work-hours)#
–  Higher mean confidence in low  

(<25%) estimation error (80% vs 
70%).#

•  Results replicated in three other exp.#

MORELESS

1200

1000

800

600

400

200

0

Ef
fo

rt
 e

st
im

at
e

(w
or

k-
ho

ur
s)

Is EBSE Valid and Useful,  
but not Sufficiently Convincing? 

 
An Empirical Study at JavaZone 2006 (and 2007)"

Context: Assume that a test course provider claims: ”The course will lead to
substantial increase in test efficiency and quality for most participants.”#

#

How likely do you think this claim is true, given [reduced explanation]: 
A: No other information  
B: Supporting claims from reference clients 
C: Supporting study conducted by the course provider 
D: Convincing explanation (but no empirical evidence) 
E: Supporting experience from a colleague (It helped him) 
F: Supporting scientific study completed at a renowned university 
G: Own experience (It helped me)#

6

Is EBSE Valid and Useful,  
but not Sufficiently Convincing? 

An Empirical Study at JavaZone 2006"

A: No other information
B: Support from reference clients
C: Supporting study conducted by the
course provider
D: Convincing explanation (but no
empirical evidence)
E: Supporting experience from a colleague
(It helped him)
F: Supporting scientific study completed at
a renowned university
G: Own experience (It helped me) GFEDCBA

100

80

60

40

20

0

Pr
ob

ab
ili

ty

Boxplot JavaZone 2006

Most of these methods have been
”fashion”"

Waterfall model, sashimi model, agile development, rapid application
development (RAD), unified process (UP), lean development,
modified waterfall model, spiral model development, iterative and
incremental development, evolutionary development (EVO), feature
driven development (FDD), design to cost, 4 cycle of control (4CC)
framework, design to tools, re-used based development, rapid
prototyping, timebox development, joint application development
(JAD), adaptive software development, dynamic systems
development method (DSDM), extreme programming (XP),
pragmatic programming, scrum, test driven development (TDD),
model-driven development, agile unified process, behavior driven
development, code and fix, design driven development, V-model-
based development, solution delivery, cleanroom development , …. 
+ 1000s of company specific methods.#

7

Current fashion: Agile development 
The Agile Manifesto"

“We are uncovering better ways of developing software by doing it and helping others
do it. Through this work we have come to value: #

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan
That is, while there is value in the items on  
the right, we value the items on the left more.”#

(agilemanifesto.org)#

"

How Did Agile Methods Become the most
Fashionable Development Method?"

It is easy to document several, from an academic point of view, limitations of
elements of Agile methods:#

•  It is based on vague descriptions and poorly defined processes.#
–  What is for example the meaning of the Manifesto’s “individuals and interactions

over processes and tools”?#

•  It contains nothing fundamentally new and most of its elements are common
sense (and included in several existing methods).#
–  Iterative and incremental development principles have been around since the

1950s. People describing iterative and incremental methods before 1990 include:
Tom Gilb, Barry Boehm and Vic Basili.#

•  It attacks a straw man (naïve waterfall) that hardly exists and nobody would
defend.#
–  Who would claim that comprehensive documentation is more important than

working software?#

8

How to create a new fashion"

•  Present one key principle that, according to the gurus, has been neglected
in previous methods, e.g., the lack of frequent feedback in the naïve
waterfall model.#

•  Describe how the old methods are bound to fail if not following the new
method, e.g., how the old methods leads to systems that does not have the
functionality that the clients need.#

•  Link the new method with highly treasured values, such as communication,
individuals, flexibility and user value.#

How to create a new fashion"

•  Present stories about great successes when using the method. Go to
practitioners’ conferences and present these success stories.#

•  Avoid by all means the impression that the method has been created at a
university or is based on academic research. Emphasize that the method is
based on experienced professionals knowledge.#

•  Present the pioneers as exceptional professionals with long experience.
Give them guru status.#

9

How to create a new fashion"

•  Base the messages on a mixture of simplicity and ambiguity. Use this to
demonstrate the superiority of the new principles, e.g., “collaboration is
better than contract negotiation”, and to demonstrate that the principles are
strongly linked to common sense.#

•  Point out that the method may be hard to implement. Failures are thus
explainable by poor implementation.#

•  Provide easy readable books with no academic jargon and direct speech.#

How to create a new fashion"

•  Time the introduction of the new method well. #
–  Every new generation of software professionals need their “own” methods to

separate themselves from the others and be the most knowledgeable. #
–  The timing of and need for new development methods follows many of the same

principles as those for cloth fashion.#
–  This means that the success of a method (many followers) is also its path to

destruction when it follows fashion-principles.#

•  Now and then, couple principles to science. #
–  Low quality studies and strongly biased interpretations are no problem, since

nobody will check the sources.#

10

How to transfer from fashion and
opinion to evidence-based software

and knowledge engineering?"

Acceptance "

•  Improve the acceptance of the importance of evidence#
–  Teach software professionals and university students#
–  Promote evidence-based principles at conferences#
–  Train software professionals in completion of empirical studies (This is perhaps

where EBSE-elements has had most impact on practice, e.g. processes of
measurement-based software improvement.)#

–  Write SE books that are evidence-based#
–  Demonstrate why we need EBSE#

•  Like medicine, we should try to get to a stage where  
the professionals only accept evidence-based  
principles and methods.#
–  It’s a looooong way to go, and there may be inherent  

problems that stop us from reaching the stage where  
medicine currently is.#

11

Relevance"

•  Select research topics where impact is
more likely (relevance)#
–  Increase the emphasis on relevance.

Robert Glass in IEEE Software March/
April, 2009 recommends that all studies
should go through an “applicability
check”.#

–  Do not conduct research where there are
no opportunity to impact. Timing may be
important.#

•  Include more research with high
potential of impact. (Think bigger!)#

•  Emphasis money saving potential. A
rough guideline by innovation advisors is
that an idea should be able to save at
least 10 times its implementation cost to
be convincing for investors.#

There is far too much
research of low industry
relevance! The research is
sometimes similar to doing
research on typewriter
improvement.

Quality"

•  Improve the quality of the evidence#
–  Higher quality studies. #

•  I think I have reviewed more than 50 studies that show that their own
estimation model is better than the other models. Most of these empirical
evaluations have in my opinion been poorly designed.#

–  More convincing studies. #
•  Inclusion of real-life success stories, less use of students and small scale

systems.#
•  Forthcoming study (IEEE TSE, Jørgensen & Grimstad) compares estimation

biases in laboratory settings and real-life settings. The main finding is that
the biases are typically much larger in laboratory settings. We need real-life
settings to evaluate effect sizes!#

12

Success stories"

•  Conduct EBSE in collaboration with the software industry.#
–  Let them tell convincing success stories. Nothing beats success stories.#
–  Mean values and statistical significance may convince scientists, seldom

software professionals.#
–  Make win-win situations out 

of research results (see picture)#

#

Transfer"

•  Better transfer of research (evidence-based) results#
–  Publish in practitioners’ magazines#
–  Write books without academic jargon#
–  Be were practitioners meet#
–  Package the EBSE results as “experience” and “success stories”#
–  Educate journalists to write about EBSE (accept that good SE researchers

are not necessarily good communicators)#
–  Talk the “impact language” of successful gurus?#

•  Software practitioners are typically not even aware of our studies. If they
find them, the studies are in a language they do not understand. This
slows (or even inhibit) the impact.#

13

Timing"
•  Better timing of research studies (presentation of evidence)#

–  We are typically lagging behind.#
–  When a method already is established, it is difficult to

have an impact.#
–  Being able to impact sometimes means that the

empirically based knowledge has to be there (and be
known) when (or before) new technology emerges.#

–  Agile will probably be replaced (as the leading method)
with a new methods in 3-4 years. How will (and can)
research impact the new method to be more evidence-
based – and more efficient?#

•  Providing input to the method gurus?#
•  Examining emerging methods based on empirical

knowledge?#
•  Example: If I had collaborated with the Planning

Poker guru (Mike Cohn) when he invented this
estimation method, we could share with him
relevant results on the Delphi-method and on group
dynamics.#

Development of principles"

•  Focus on creation of evidence-based principles. Avoid “Is Method A better
than Method B”-studies, where the methods consist of many (ill-defined)
elements.#
–  This “reductionism” may sound like a paradox, since the software industry wants

exactly that kind of studies. #
–  However, such studies do in my experience seldom produce results that are

convincing (study the effect of own methods), seldom produce insight in cause-
effects, seldom have the timing to enable impact (studies of already established
practices).#

–  We are different from medicine, where such studies are more meaningful.#

14

Example:  
Principles has Impacted Forecasting Practice"

Examples of an evidence-based principle:"
7.1 Keep forecasting methods simple."

Description: Complex methods may include errors that propagate
through the system or mistakes that are difficult to detect. Select
simple methods initially (Principle 6.6). Then use Occam’s Razor;
that is, use simple procedures unless you can clearly demonstrate
that you must add complexity.#

Purpose: To improve the accuracy and use of forecasts.#
Conditions: Simple methods are important when many people

participate in the forecasting process and when the users want to
know how the forecasts are made. They are also important when
uncertainty is high and few data are available.#

Strength of evidence: Strong empirical evidence. Many analysts find
this principle to be counterintuitive.#

Source of evidence: This principle is based on evidence reviewed by
Allen and Fildes (2001), Armstrong (1985), Duncan, Gorr and
Szczypula (2001), and Wittink and Bergestuen (2001).#

#

There have been
1,069,597 visits to this
website
www.forecasting.com
since February 14, 1998.

 
 
 

Teaching Evidence-Based
Software Enginering to
University Students and

Software Engineers

#

15

29#

Learning goal:"
•  "... to learn to practice evidence-based software engineering. This means

the ability to identify, evaluate and apply valid and relevant research results
and practice-related experience as the basis for judgments and decisions in
software development.”#

30#

Repitition: Main Steps of Evidence-
Based Software Engineering (EBSE)"

1.  Convert a relevant problem or need for information into an answerable
question.#

2.  Search the literature (and practice) for the best available evidence to
answer the question.#

3.  Critically appraise the evidence for its validity, impact, and applicability.#

4.  Integrate the appraised evidence with practical experience and the client's
values and circumstances to make decisions about practice.#

5.  Evaluate performance in comparison with previous performance and seek
ways to improve it.#

16

31#

Students"
•  University students:#

–  MSc students at University of Oslo (Norway), Hedmark University College
(Norway), Kathmandu University (Nepal)#

•  Software engineers:#
–  Software professionals in Norway, Australia, Costa Rica and Vietnam#

32#

Exam (project delivery)"
In order to pass, a university student must produce a project report, which

includes:#

•  An answerable software engineering question/problem. #

•  An extensive search for relevant research results and practice-related
experience.#

•  Evaluation of the relevance and validity of the results, opinions, and
argumentation found in the information sources.#

•  A synthesis of the available evidence to support a conclusion related to the
initial question. #
–  The conclusion may be that it is not possible to form a definitive opinion, or that

the evidence in favor of a particular decision or answer is weak.#

•  Design of an empirical study that would extent the evidence on the chosen
topic#

17

33#

Lectures are exercise-based"
•  Exercises in problem formulation, systematic collection of evidence, critical

evaluation of evidence, synthesis of evidence, design of empirical studies.#

•  Typical exercise in critical evaluation#
–  Example: Evaluation of ”Aim, fire”-paper by Kent Beck#

34#

Toulmin’s Model of Argumentation"

Data Claim

Backing

Warrant

Qualifier Reservation

Data Claim

Backing

Warrant

Qualifier Reservation

18

35#

Lessons learned (1)"
•  Most students and software engineering like using the EBSE

and find it useful.#

•  Most students produce good work.#

•  The students had never before had any teaching in how to
examine scientific studies critically or how to systematically
evaluate the arguments presented in course textbooks and
computer magazines. #
–  There were used to reproduce, not to critizise.#

•  The lack of previous skill meant that they easily#
–  Reproduced instead of evaluated knowledge#
–  Evaluated how much they agreed with the conclusion instead of the

validity of the argumentation.#

36#

Lessons learned (2)"
•  The students were much more critical towards what they read (and

heard from gurus) towards the end of the course.#
•  The students now had the means to decompose and evaluate

argumentations!#
•  Students must be urged to use sources other than the web.#

–  Initially, all studets relied too much on an unsystematic search of the
internet.#

•  Less scientific evidence in EBSE, compared to Evidence-Based
Medicine (EBM).#
–  This leads to more emphasis on collection and evaluation of practice-

based experience, less on evaluation of scientific studies compared to
EBM.#

19

37#

Lessons learned (3)"
•  The ability to evaluate studies improves a lot with teaching about:#

–  The importance of random treatment#
–  The importance of representative samples#
–  Valid and invalid generalization#

•  How to collect experience based evidence is not part of evidence-based
medicine, but the principles are very much the same.#

•  Toulmin’s model of argumentation is a useful means to teach the students to
evaluate argumentations.#

38#

Teaching EBSE: 
Lessons learned summarized"

•  Universities should have a stronger focus on how to acquire
new knowledge and evaluate argumentations.#

•  Teaching EBSE to university students (and software
professionals) may be an important means for software
engineering to become a more mature discipline with more
resistance towards "hype".#

•  There are, however, not much relevant evidence available and
the teaching should emphasize how to collect practice-based
evidence, as well.#

20

What I Wanted To Tell You"
•  Evidence-based software engineering is clearly needed in the software industry. We

should stop relying so much on fashion and opinions in software and knowledge
engineering.#

•  We, as researchers, have a role to play in making the software industry more
evidence-based, e.g., in producing and spreading useful evidence. Currently we are
not taking this responsibility very seriously.#

•  There should be university and industry courses on evidence-based software
engineering, including proper collection and evaluation of practice-based evidence.#

–  Teaching people how to formulate problems, collect evidence, evaluate evidence and
summarize evidence is a very robust and useful knowledge and skill.#

•  Much of the evidence may benefit from being presented as context-
dependent principles. Hopefully, the first evidence-based text-book on
software engineering (and knowledge engineering?) will be written.#

It’s up to us!  
Industry impact seldom happens  

by publishing in academic journals alone."

