

A few words about the study

- · Probability ignorance of min-max intervals
- · Assimilation effects
- Sequence effects
- · Relative estimation
- Relevance to real-world project estimation?

Wishful thinking

- Mix of "I hope this does not take more than ..."
- "To be a good programmer I should not use more than ..."
- Optimism and overconfidence can lead to increased performance, BUT
 - Only for a short period of time.
 - The effect is over-rated.

11

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Bidding round format frequently leads to over-optimism

- · The winner's curse
 - You only win bidding round when being overoptimistic.

- · Bidding anchors
 - Budget
 - Early price indications
 - Expectations

An empirical study

- We divided 65 software professionals randomly into three groups: Low (22 participants), Control (23 participants), and High (20 participants).
- We gave all participants the same programming task specification but varied the words describing some of the requirements slightly.
- · The most notable difference in wording is that we asked the:
 - Low group to complete a "minor extension"
 - Control group to complete an "extension"
 - High group to develop "new functionality."
- We told all the estimators:
 - "You shouldn' t assess how much the client will spend on this project, but what's required by development work with normal delivery quality."

Two views on assessing uncertainty: Inside view

- Inside view, i.e., break-down of uncertainty:
 - min-max per activity
 - analysis of known risk (High/medium/low)
- **Strength**: Identification of risk elements and the need for risk management
- Weakness: Under-estimation of uncertainty through poor methods of combining individual risk elements and lack of focus on "unknown risk".

27

28

Two views on the development effort uncertainty: Outside view

- Outside view, i.e., look at the project and it's uncertainty as a whole
 - Compare with uncertainty of previously completed, similar projects.
- Strength: Increased realism in uncertainty assessment.
- Weakness: Does not contribute much to how to reduce the risk. Dependent on that similar projects are available and that learning effects are properly adjusted for.

Teams (Group B only)										
Estimation Error Category	11	12	13	14	15	16	17	18	19	Mean value
>100% overrun	45	18	10	10	10	5	10	0	18	14
50-100% overrun	20	40	35	20	10	5	20	5	25	20
25-49% overrun	15	22	25	30	30	35	40	20	30	27
10-24% overrun	10	15	25	20	30	45	20	40	15	24
+/- 10% of error	7	4	0	5	10	10	10	20	12	10
10-25% too high estimates	3	1	0	10	5	0	0	10	0	3
24-50% too high estimates	0	0	0	0	5	0	0	5	0	1
>50% too high estimates	0	0	0	0	0	0	0	0	0	0

