
1

 
How we know what isn't so 

 
Common myths in  

daily life and software
development 

 
Why do we believe in

myths?"

Magne Jørgensen
Simula Research Laboratory

The paper clip was invented by a Norwegian"

2

Most communication is non-verbal"

Most of the heat is lost through the head"

3

Children get more hyper-active with sugar"

We use only 10% of our brain"

4

 
Short men are more aggressive  

(The Napoleon Complex)"

There is a software crisis  
(Chaos Report: 189% average cost overrun) "

5

•  Most other studies show cost overruns of about 30-40%.
Nobody I know work in organizations where a project on
average costs 2,9 times more than estimated"

•  The selection process is not documented (probably they were
asking for ”problem projects”)"

•  They confuse 89% overrun with 189% of original estimate"
•  Possible reasons for the acceptance of the results of this

very low quality study"
–  We do not check the study quality, especially not the selection

process"
–  It fits our purpose, e.g., to sell consultancy services or to defend that

there are people even worse than me/us to estimate cost"
–  Fits the feeling that estimation is difficult"
–  We know of examples with that larger cost overrun (confirmation

bias)"

Why did we believe in this study?"

Jim Johnson
Standish Group

•  45% of the features are never used"
–  Much used in the agile community to argue against the waterfall model

and in favor of agile or incremental methods"
–  Original study not available. Reference to a stsudy presented by Jim

Johnson on XP 2002"
–  According to www.agilemodeling.com/essays/examiningBRUF.htm the

study was as follows:"
•  The Standish Group looked at a subset of traditional teams  

which eventually delivered into production and asked the  
question, “Of the functionality which was delivered, how
much of it was actually used?”"

–  How would you interpret the question? Is it about features 
never used by anybody, not even once?"

–  Who did they ask? The developers? How good will their 
knowledge be about the users? Is it based on measurement?"

–  Does the results sound reasonable? Is this what typically  
happens?"

 Standish Group - again"

6

•  The optimum number of elements (e.g., in user
interfaces of routine calls) is 7 plus/minus two)."

–  “One guideline that needs closer attention is the "Magic Seven,
Plus or Minus Two" (7±2) rule of thumb. This principle has often
been applied to determine the number of items in a navigation
menu on a web page. It arose to satisfy a tactical need to make
quick design choices and to objectively justify navigation to site
stakeholders.”"

–  Based on studies by Miller on cognitive capacity, i.e., the
maximum we are able to recognise visually without dividing
into groups or store an recall in certaint contexts)"

–  Has hardly anything to do with the optimum number."
–  The results are clearly misused. Probably due to a wish for

simple rules in complex isssues."

”Magic Seven, Plus or Minus Two”"

Exercises"
How do you think the following myths were created and spread? (some of them

are more in the category ”meaningless claims” or ”outrageous simplifications”"

•  “Adding manpower to a late software project makes it later" The Mythical Man-Month
(Brooks’s lov)"

–  Described even by Brooks himself as an "outrageous oversimplification“. This myth has been used to
give support for useless estimation models."

•  The difference between the best and the worst programmer is 10:1"
–  Based on a study from 1968 with experienced developers and one task"
–  Clearly, the ratio is as large as you want it to be, just add incompetent, inexperienced programmers"

7

Exercises …"
•  “Happy teams are productive teams”"

–  Very useful in order to convince an employee to invest more mony in happy developers"
–  Very little documentation on ”happy-productive”, e.g., because it is difficult to measure."
–  Results are more in favor of satisfaction with task, co-workers and management."
–  ”Happy teams” seem to have both the highest and the lowest productivity."

•  Brainstorming should be done in groups"
–  Evidence in favor of the opposite (see especially the classic studies by Zajonk)"
–  BUT, information/ideas should be shared and discussed in groups"

•  The largest part of software development is mainteance (or testing or ….)"
–  Lack of precision means that there is not much information is such statements"

Exercise"
•  The cost of changes (or correction of errors) increases with a factor of

10 with each phase"
–  Many varints of this claim. The mildest is that it always costs more to correct an

error in later phases."

•  Alistair Coburn writes at www.xprogramming.com/xpmag/
cost_of_change.htm"
–  The first thing is to establish that it really does cost x10 or similar to detect and

handle mistakes as we proceed across r, p, t, f, (i.e. exponential) and that XP
really is well suited to handle that exponential growth in cost. It is not the case
that the x10 doesn't exist, or that XP nullifies it. XP deals with its existence, is
"well aware of it" to use my preferred anthropomorphizing locution.!

–  r=requirements; p=programming, t=test, f=field (10*10*10=1000 ganger høyere i
produksjon enn i krav!)!

•  Where is evidence in support of ten times as much? If this is true, it would
beneficial to find all errors early, regardless of how much it costs to find the
last error."

8

Why and how are myths created?"
•  Meeting a need or desire. We want them to be true and don’t

look for disconfirming evidence."
•  Lack of precision/misunderstood research."
•  We are more conserned about whether something sounds

correct, than about asking what this really means."
•  Self-fulfilling claims (we see it because we believe it)."
•  It is easier to find confirming and than to find representative

evidence."
•  Political and business-related reasons. Deliberate creation of

myths."
–  Repetition."
–  Presented by authorities."

•  To understand is to accept. De-accepting is more difficult  
(see next study)"

Creation of a myth: 
Risk willing programmers are better"

1.  Based on your experience, do you think that risk willing
programmers are better than risk averse programmers? 1
(strongly agree) – 10 (strongly disagree)"

2.  Evaluation 1: Group A received information about a confirming
study and presented one own argument in support of risk
willingness. Group B, the opposite. "
è Group A: 3,3 - Group B: 5,4"

3.  Evaluation 2: Both groups received the information that the study
was there to mislead them and were asked to update their
judgment."
è Group A: 3,5 - Group B: 5,0"

4.  Evaluation 3: Two weeks later."
è  Group A: 3,5 - Group B: 4,9"

9

Things will never go “back to normal” when we
make a decision (e.g. started believe something)"

http://www.ted.com/talks/lang/eng/dan_gilbert_asks_why_are_we_happy.html

1.  Ask what the claim really means. "
•  E.g., What is the meaning of “Most communication is non-verbal?”"

2.  Decide on what you would expect of supporting evidence to support
the claim. "
•  E.g., Meaningful measures of amount of communication, representative

situations."

3.  Search for confirming AND DISCONFIRMING evidence, if possible
by identifying and reading the source or reviews of the evidence. "
•  Search on internet (e.g., Wikipedia) gives loads of critical comments

and references to the above claim."

4.  Summarize the evidence."

How to become a myth buster  
(Evidence-Based Software Engineering)"

