
Quality-Adaptive Scheduling for Live Streaming over
Multiple Access Networks

Kristian Evensen1, Tomas Kupka2, Dominik Kaspar1,
Pål Halvorsen1,2, Carsten Griwodz1,2

1Simula Research Laboratory, Norway 2Department of Informatics, University of Oslo, Norway
{kristrev, tomasku, kaspar, paalh, griff}@simula.no

ABSTRACT

Video streaming ranks among the most popular services of-
fered through the Internet today. At the same time, access-
ing the Internet over public WiFi and 3G networks has be-
come part of our everyday lives. However, streaming video
in wireless environments is often subject to frequent periods
of rebuffering and characterized by low picture quality. In
particular, achieving smooth and quality-adaptive streaming
of live video poses a big challenge in mobile scenarios.

Building on the observation that the subjective video ex-
perience on mobile devices decreases when quality changes
are more frequent than every 1 to 2 seconds, we present a
client-side scheduler that retrieves segments of several video
encodings over heterogeneous network interfaces simultane-
ously. By extending the DAVVI streaming platform with
support for multihoming, the proposed scheduler’s perfor-
mance is experimentally evaluated. The results show that
our scheduler reduces the video interruptions and achieves a
higher and more stable average quality over multiple, truly
heterogeneous wireless interfaces.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems - Client/Server

General Terms

Performance

1. INTRODUCTION
Video streaming is rapidly increasing in popularity and

has become one of the dominant services on the Internet
today. For example, the video aggregation site YouTube
streams millions of videos per day, and over 20 hours of
content is uploaded every hour1. In addition, several live
streaming services exist. Microsoft’s SmoothStreaming [13]

1http://www.youtube.com/t/fact sheet

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’10, June 2–4, 2010, Amsterdam, The Netherlands.
Copyright 2010 ACM 978-1-4503-0043-8/10/06 ...$10.00.

is for example used to deliver the 2010 Olympic games quasi-
live to millions of people, with only a small time gap between
the actual event and video display.

Streaming high-quality video requires a lot of bandwidth.
For example, the bit rate of H264-compressed 1080p video
is usually around 6 - 8Mbit/s. If a user is connected to the
Internet using a fixed connection, this may not be a prob-
lem, but if the connection is established using a wireless link,
the available bandwidth often becomes a bottleneck. Even
though the maximum bandwidth of most IEEE802.11 stan-
dards (WLAN) exceeds the requirements for 1080p video,
the experienced throughput is often insufficient. Link con-
tention, interference or weak signal reception are some phe-
nomena that cause a significant throughput reduction.

A possible way to alleviate the bandwidth problem caused
by most wireless technologies is to increase the performance
by combining the throughput of multiple network interfaces.
Today, many client terminals are equipped with multiple
interfaces and are often within coverage range of overlapping
access networks. For example, laptops and smart phones can
often connect to both WLAN and 3G networks. Delivering
a video as a sequence of small, independent movie segments
coded in several qualities, as done by Microsoft’s torrent-
like, HTTP-based SmoothStreaming, enables a stream to
adapt to current network fluctuations and potentially allows
a single video segment to be distributed over various paths
for bandwidth aggregation.

Here, application protocol features, such as HTTP’s range
retrieval requests, allow a file to be logically segmented and
to be downloaded over various access networks [5] or from
redundant sources [10]. If a client’s interfaces are connected
to independent networks, the simultaneous use of multiple
wireless links can achieve a total transfer bit rate close to
the sum of all the individual interfaces’ throughput. In ad-
dition, taking advantage of request pipelining [6, 9, 10], the
aggregated throughput can be further optimized for small
segments. However, obtaining a minimal time gap between
the live event and the video display – in other words, in-
creasing the liveness of a video stream – is a challenge that
increases in complexity when scheduling video segments over
network interfaces with heterogeneous characteristics.

This paper introduces an adaptive, pull-based scheduler
that achieves smooth playback by scheduling requests for
video segments of different quality levels over multiple in-
terfaces simultaneously. The application-layer scheduler is
implemented in our experimental testbed as an extension to
the DAVVI [4] video streaming platform, which allows live
multimedia streaming from commodity web servers.

Our results show that the combined operation of multi-
ple interfaces significantly enhances the quality of live video
streaming. Even in a truly heterogeneous environment with
WLAN and HSDPA links, the presented scheduler achieves
an increased video quality and reduces playback interrupts.

The rest of this paper is organized as follows. Section 2
continues with a brief presentation of related work, before
the architecture and testbed setup of our multilink-enabled
live streaming platform are introduced in Sections 3 and 4.
The results of our experiments are discussed in Section 5.
Finally, our findings are summarized in Section 6.

2. RELATEDWORK
File segmentation is a commonly used technique for im-

proving the performance of multimedia streaming and con-
tent distribution systems. The allocation of video segments
on multiple replica servers or proxies can significantly reduce
response times and allows for scalable and dynamic adap-
tion of video quality to changes in throughput. Commercial
examples that employ a pull-based distribution of video seg-
ments include the solutions by Move Networks [7], Apple’s
QuickTime Streaming Server [1] and Microsoft’s Smooth-
Streaming (Internet Information Services) [13]. A compre-
hensive introduction to decentralized distribution infrastruc-
tures is provided in [3].

Choosing the server that provides the best user expe-
rience is a non-trivial problem that has been studied ex-
tensively. Parallel access schemes, such as those described
in [10] and [12], attempt to automatically shift the load
from congested servers to less utilized ones. These paral-
lel download techniques are motivated by the fact that the
throughput bottleneck is often caused by unequally popu-
lar servers or by overloaded routers. Analogously, in mobile
scenarios, the bottleneck is usually at the wireless access
link, which creates a similar scheduling problem. However,
the parallel access schemes are not suitable for achieving
quasi-live streaming (sometimes referred to as “progressive
download”), because they lack a notion of deadlines when
a data segment is required for playout. Additionally, an
automatic adaptation of video quality to the currently ex-
perienced throughput – by choosing from a set of quality
layers – introduces additional scheduling complexity that is
not solved by these parallel access schemes.

Although our solution is readily extensible to support mul-
tiple servers, our current research targets client-based per-
formance improvements of concurrently utilizing multiple
network interfaces. A similar goal is pursued in [11], where
a server is enabled to send live video streams over multi-
ple TCP connections to a client. However, such push-based
solutions cannot easily be extended to multiple servers. In
addition, push-based solutions (e.g., [2]) have limited knowl-
edge about the client-side connectivity and hardly adapt to
situations of network interfaces going down or user devices
moving out of the coverage area of an access network.

3. ARCHITECTURE
The user-experienced quality of live video streaming is

highly dependent on the available bandwidth. To show how
effective multiple independent links can be used in a live
video streaming environment, we have enhanced the DAVVI
streaming system [4] to support more than a single network
interface. The functionality of DAVVI is therefore described

in more detail in the following subsections, followed by an
explanation of how the data delivery functionality was ex-
tended with multilink support and a request scheduler.

3.1 Video streaming and adaptation
DAVVI is an adaptive, segmented, torrent-like HTTP-

based streaming system, where users can, in addition to
traditional video playout, search for particular events and
use the search results to compose a personalized, on-the-
fly, content-based video summary. The basic idea of the
streaming solution is to divide video objects into indepen-
dent (closed-GOP), 2-second video segments. Furthermore,
the video segments are then downloaded from traditional,
potentially different, web servers. In order to adapt to avail-
able bandwidth, each video segment is stored in multiple
quality levels, producing different, independent files with dif-
ferent bitrates. This differs from SVC, which has one base
layer and multiple enhancement layers. The segment down-
load component can therefore, based on download speed and
buffer occupancy, change the video quality at the 2-second
boundaries in the streaming session as the resource avail-
ability oscillates.

When a user watches a video, data is requested from a
server using plain HTTP GET requests. The client that dis-
plays the video is responsible for requesting data, buffering
video segments and adjusting the quality according to expe-
rienced throughput. Based on the number of buffered video
segments, the requested quality is increased or decreased.

3.2 Multilink support
In order to allow the utilization of multiple access net-

works for streaming video to the client, we made several
modifications to the original DAVVI platform [4], enhanc-
ing the system with an extended version of our multilink
HTTP download and pipelining mechanisms [5,6]. Support
for using multiple interfaces was implemented to allow the
client to initiate and utilize multiple access networks simul-
taneously. Establishing connections over specific interfaces
is achieved by binding the communication socket to the de-
sired interface, which is supported by most major operating
systems. The only requirement is that the routing table of
the client machine is configured properly. Packets must be
routed through the correct interfaces, and the machine must
be aware of the default interface and how to reach other ma-
chines in the connected networks.

3.2.1 Partial segments

As illustrated in Figure 1, video segments of a given qual-
ity are logically divided into partial segments. This is nec-
essary in case a low latency is desired, to increase the gran-
ularity of the scheduler, and to allow the download of video
segments over multiple interfaces concurrently. HTTP/1.1
supports range retrieval requests that enable the client to re-
quest a specific part of a file. Such techniques are frequently
used in parallel access schemes, such as the one we proposed
in [5]. For example, if the first 50 kB of a 100 kB large file
are requested, only bytes 0 − 49 999 are sent by the server.

3.2.2 Request pipelining

Dividing a complete segment into partial segments intro-
duces two challenges. First, smaller segments imply that
more requests are made to the server. Provided that the
server is fast enough to handle all the requests, this intro-

Figure 1: In this example, two interfaces I0 and I1

have finished downloading segment s0 of quality Q2.
As the throughput has dropped, they currently col-
laborate on downloading a lower-quality segment.

duces additional delays caused by the client waiting for re-
sponses. This challenge is alleviated by using HTTP pipelin-
ing [6]. The scheduler tries to ensure that no interface be-
comes idle by initially requesting two partial segments. At
runtime, the scheduler then always requests a new partial
segment for each one received, ensuring that the server al-
ways has a request to process.

The second challenge relates to the size of the partial seg-
ments. If they are chosen too small, an entire segment might
be sent from the server before the next data request is re-
ceived, causing a drop in performance due to idle network
interfaces. Based on earlier work [6], the partial segment size
was kept constant at 100 kB throughout this paper. This
size allows sufficient flexibility for the scheduler, and is large
enough to take advantage of HTTP pipelining.

3.3 Request scheduler
In order to effectively utilize the available client interfaces,

to avoid video deadline misses (a video segment is received
after its desired playout time) and to provide the best possi-
ble user experience, a request scheduler was developed. The
functionality of the scheduler is to estimate the aggregated
throughput for choosing the desired video quality level, re-
questing segments over the available interfaces, and to man-
age the arrival and playback of video data. HTTP requests
are treated in order by the server, so by registering which
video segment is requested over which interface, the player
is able to play back the video in order. The request sched-
uler is the most important part of our approach. Without a
good scheduler, adding multiple interfaces can reduce perfor-
mance and the quality of the user experience. For example,
the quality adjustments might be too optimistic, causing a
high number of deadline misses and playback interrupts.

We implemented and tested the request scheduler using
the DAVVI player, based on the FIFO-like request approach
presented in [5] and inspired by the“replica servers” scenario
analyzed in [10]. Both these approaches perform well with
stable and dynamic links for transferring bulk data. Our
scheduler, outlined in Algorithm 1, is designed for adapting
video quality according to bandwidth and conforming to the
constraints imposed by live video streaming in DAVVI.

The first constraint imposed by live streaming is the num-
ber of complete video segments the server has made avail-
able. This decides how ”live” the video stream will be. In
DAVVI, each video segment contains two seconds of con-
tent, meaning that every segment adds two seconds of delay

Algorithm 1 Request Scheduler [simplified]

quality level = “low”
request(initial partial segment over each interface)
request(“pipelined” partial segment over each interface)
while (more data available from server) do

data = receive()
I = interface that received data

estimate aggregated throughput

if (data == complete partial segment) then
if (data == complete segment) then

queue for playback(segment)
adjust quality level to throughput

end if
request(next partial segment, I, quality level);

end if
end while

compared to the live event. The number of segments the
scheduler must wait for before starting to request data, is
currently specified using a command line parameter.

The second constraint is imposed by the deadlines, which
influence the quality adjustments. To achieve smooth play-
back, the next complete video segment has to be received
before the current one is played, i.e., within two seconds.
The scheduler tries to ensure this by adjusting the requested
video quality according to the average throughput. Before a
new segment is requested, the scheduler fetches the file size
of the different quality levels using the HTTP HEAD com-
mand. The quality level of the requested segment is decided
based on the number of bytes the client can receive in two
seconds (calculated using the average throughput).

4. EXPERIMENTAL SETUP
For performing the experiments presented in this paper,

a testbed was configured consisting of a client and a video
server. Both machines run Linux 2.6.31. To control the
bandwidth and latency heterogeneity over the two links, the
network emulator netem was used with a hierarchical token
bucket queuing discipline. In addition, for performance mea-
surements of the scheduler in a real-world environment, the
client was connected to public WLAN (IEEE802.11b) and
HSDPA networks. The characteristics of these two networks
are summarized in Table 1.

Table 1: Observed Characteristics of used Links
WLAN HSDPA

Maximum achievable throughput 640KB/s 320KB/s
Average experienced throughput 600KB/s 250KB/s
Average RTT for header-only IP packets 20ms 100ms
Average RTT for full-size IP packets 30ms 220ms

Although the DAVVI video platform is designed to stream
a large number of files, for the purpose of this work we focus
on a single movie with the content of a soccer match. The
movie has a total play length of about 100minutes (3127
segments) and is available on the server in 4 different quality
levels (see Table 2).

Table 2: Quality levels of the soccer movie
Quality level Low Medium High Super
Minimum bitrate per segment (Kbit/s) 212 431 941 1580
Average bitrate per segment (Kbit/s) 600 1150 2000 3000
Maximum bitrate per segment (Kbit/s) 1186 2458 4112 5949

5. RESULTS AND DISCUSSION
Both the quality of a video and the user experience are ex-

pected to increase when requests are scheduled over multiple
interfaces. In this section, we analyze how bandwidth and
delay heterogeneity affect performance, both in a completely
controlled and a real-world wireless scenario.

5.1 Static links
The emulation testbed introduced in Section 4 provides

a static, fully controllable network environment, where it
is possible to isolate and adjust different parameters, such
as the effect of various degrees of bandwidth and latency
heterogeneity on the video quality. In addition, we measure
the deadline misses, which are of highest importance from
a user perspective, as shown in [8]. In general, users are
willing to trade quality for smooth playback.

5.1.1 Bandwidth heterogeneity

Figure 2 shows the effect of bandwidth heterogeneity on
average video quality. 2 links whose combined bandwidth
was kept at 3Mbit/s were used in this experiment. A buffer
size of 2 segments was used, meaning that the client lagged
4 s behind the live stream when the video started playing.

 0

 25

 50

 75

 100

50:0 50:50 66:0 66:34 80:0 80:20 100:0

Q
u

al
it

y
 d

is
tr

ib
u

ti
o

n
 (

in
 %

)

Bandwidth ratio (in Mbit/s). :0 means that a single link was used

Super
High

Medium
Low

Figure 2: Video quality distribution when the sched-
uler was faced with bandwidth heterogeneity in a
fully controlled environment (0.1ms RTT on both
links).

Using only one link shows an expected increase in quality
that can be achieved when link bandwidth is increased from
1.5Mbit/s (50:0) to 3Mbit/s (100:0). It is less expected that
the performance of a pair of links whose combined capacity is
100% of the total decreases quickly with growing bandwidth
heterogeneity. At an 80:20 ratio, the achieved quality is even
lower than in the 80:0 case.

This is caused by the last segment problem [6] that comes
into effect when trying to stay too close to the live stream.
Since no new segments are available on the server, the fast
interface is idle once for every segment, while it waits for the
download of the last partial segment by the slow interface.

The last segment problem can be mitigated by increasing
the number of buffered segments and thus, startup delay,
i.e., by trading liveness against video quality. The gain of
increasing the number of buffered segments is shown in Fig-
ure 3. This figure shows how a longer startup delay increases
the efficiency of throughput aggregation in the case of a high
bandwidth ratio (80:20). For example, with a startup delay
of 5 video segments, which equals 10 s, the average quality

when using two links exceeds that achieved over a single
link. This is expected, because the fast interface can receive
four segments for every one received by the slow interface.

 0

 25

 50

 75

 100

2(s) 2(m) 3(s) 3(m) 4(s) 4(m) 5(s) 5(m) 6(s) 6(m) 7(s) 7(m)

Q
u
al

it
y
 d

is
tr

ib
u
ti

o
n
 (

in
 %

)

Buffer size (in segments). (s) is single link, (m) is multilink

Super
High

Medium
Low

Figure 3: The number of buffered segments plotted
against video quality distribution (bandwidth ratio
80:20).

Another interesting observation made in Figure 3 is that
limiting the buffer size also affects the performance when
a single link is used. Even though the connections to the
server were kept alive during the whole stream, the cost of
having to wait and then request a new segment is high.

Figure 4 shows the deadline misses for the different band-
width ratios. The RTT was kept constant at 0.1 ms, and
the deadline misses occur when the scheduler has to cope
with bandwidth heterogeneity. This is another consequence
of the last segment problem. The slow interface causes a
delay of the complete video segment.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

50:0 66:0 80:0 100:0 50:50 66:34 80:20

A
v

g
.
d

ea
d

li
n

e
m

is
s

(s
ec

o
n

d
s)

Bandwidth ratio. :0 means that a single link was used

Figure 4: Deadline misses for 2-segment buffers and
various levels of bandwidth heterogeneity.

5.1.2 Latency heterogeneity

For the results presented in Figure 5, we varied the RTT
heterogeneity. One link was kept constant at 10 ms, while
the other link was assigned an RTT of r ms, with r ∈ {10,
20, . . . , 100}. The bandwidth of each link was limited to
1.5 Mbit/s, and the buffer size 2 segments.

As depicted in Figure 5, video quality is not significantly
affected by RTT heterogeneity. Earlier experiments [6] have
already shown that latency heterogeneity can be compen-
sated by pipelining adequately small segments and intro-
ducing a startup latency.

 0

 25

 50

 75

 100

10:0 10:10 10:20 10:40 10:60 10:80 10:100

Q
u
al

it
y
 d

is
tr

ib
u
ti

o
n
 (

in
 %

)

RTT of each link (in ms). :0 means that a single link was used

Super
High

Medium
Low

Figure 5: Video quality distribution when the sched-
uler was faced with RTT heterogeneity in a fully
controlled environment.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

10:0 10:10 10:20 10:40 10:60 10:80 10:100

A
v

g
.
d

ea
d

li
n

e
m

is
s

(s
ec

o
n

d
s)

RTT of each link (in ms). :0 means that a single link was used

Figure 6: Deadline misses when the scheduler is
faced with RTT heterogeneity in an emulated en-
vironment.

However, not taking the RTT into account can have an
effect on deadline misses, as seen in Figure 6. The buffer size
limits the frequency of segment requests, and because a com-
plete segment is not requested before the previous is finished,
it takes one RTT before the first bytes are received. Packet
losses or an overestimation of bandwidth by the scheduler
can lead to deadline misses. However, the observed lateness
is not significant compared to the complete segment length.
The average lateness for all bandwidth ratios is close to 0 s,
and the maximum observed lateness is less than 0.3 s.

Buffering is one way of avoiding deadline misses. By
adding more buffers and sacrificing the liveness, the client
has enough stored data to compensate for deadline misses
(similar tests performed with a buffer size of one and three
segments confirm this). A buffer size of one caused a sig-
nificant increase in the number of deadline misses, and they
were more severe. When the buffer was increased to three
segments, all deadline misses were eliminated.

5.2 Dynamic links
Dynamic links impose different challenges than static links.

Their behaviour requires that the scheduler adapts to changes
in the network, often rapidly. We test our scheduler in two
different scenarios. In the first, we emulate dynamic be-
haviour to control all parameters and analyze how the sched-
uler performs. In the second, we test our scheduler using

public WLAN and HSDPA networks to get an impression of
its performance in the real world.

5.2.1 Emulated dynamics

To emulate dynamics, we created a script that emulates
network behaviour observed in real world networks. The
sum of the bandwidths is constant at 3Mbit/s, but at a
random interval of t seconds, t ∈[2, 10], the bandwidth bw

Mbit/s, bw ∈[0.5, 2.5], is updated. The RTT of link 1 is nor-
mally distributed between 0ms and 20ms, the RTT of link 2
is uniformly distribution between 20ms and 80ms. The
worst case heterogeneity is 5:1 (2.5Mbit/s and 0.5Mbit/s),
meaning that a buffer size of six segments was used, accord-
ing to the discussion in 5.1.1.

Figure 7 shows the average achieved throughput for ev-
ery requested segment (over 40 runs) when single links were
used, and when they were combined. When both links were
used at the same time, the throughput exceeded the aver-
age bitrate-requirement for ”High” quality most of the time.
When single links were used, the achieved throughput stayed
between ”Medium” and ”High”. With single links, 35 % of
the segments had ”Medium” and 20 % ”High” quality, 26 %
”Super” and 18 % ”Low”. In combination, 95 % of the seg-
ments were in ”Super” quality.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100

A
v

er
ag

e
ac

h
ie

v
ed

 t
h

ro
u

g
h

p
u

t
(k

b
it

/s
)

Segment number

Link 1
Link 2

Multilink

Figure 7: Average achieved throughput of the sched-
uler with emulated dynamic network behaviour.

Figure 8 shows that deadline misses occur although the
buffer size is big enough to support the maximum hetero-
geneity. This is caused by the implementation of the player.
Even though it waits for a given number of ready video seg-
ments, it starts playing video as soon as the first segment is
completely received to maximize liveness. When the band-
width fluctuates, the following segments may arrive too late,
causing deadline misses.

One way to solve this would be to wait until the buffer
is completely filled before the player starts playing back the
video, reducing liveness even further. Another way is to cre-
ate a more adaptive scheduler. The scheduler could monitor
the links and adjust the quality accordingly and on-the-fly.
In addition, provided that enough bandwidth is available,
the scheduler could adjust the quality accordingly and en-
sure that there is always buffered data ready.

5.2.2 Real-world networks

To get an impression of the scheduler’s performance over
real wireless networks, we experimented with the DAVVI
player using WLAN and HSDPA interfaces with character-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Link1 Link2 Multilink

A
v
g
.
d
ea

d
li

n
e

m
is

s
(s

ec
o
n
d
s)

Figure 8: Deadline misses of the scheduler with em-
ulated dynamics.

istics as summarized in Table 1. The observed worst case
heterogeneity was around 5:1, so a buffer size of six was used.

Figure 9 shows the average achieved throughput (also over
40 runs) for every requested segment. The scheduler im-
proves the performance and thereby the video quality sig-
nificantly. With the fastest of the two interfaces, WLAN,
45 % of the segments were in ”Super” quality, compared to
91 % when both links were used. The worst observed dead-
line miss over both links was only 0.3 s.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100

A
v

er
ag

e
ac

h
ie

v
ed

 t
h

ro
u

g
h

p
u

t
(k

b
it

/s
)

Segment number

WLAN
HSDPA
Multilink

Figure 9: Average achieved throughput of the sched-
uler in real-world wireless networks.

6. CONCLUSION
In this paper, we introduced and analyzed a pull-based

scheduler for streaming real-time video over an aggregate
of heterogeneous network interfaces. Using the file segmen-
tation approach in DAVVI, which is also used in popular
commercial systems [1,7,13], the proposed scheduler adapts
the video quality according to the combined throughput of
all the available interfaces at the client.

Experiments conducted in a controlled emulation testbed
showed that the scheduler achieves close to perfect through-
put aggregation for high degrees of latency heterogeneity.
For links with heterogeneous bandwidths, there exists a com-
plex tradeoff between their bandwidth disparity, the achiev-
able video liveness, and the efficiency of throughput aggre-
gation. For two stable interfaces of equal bandwidth, the
scheduler achieves close to perfect bandwidth aggregation,
while maintaining a quasi-live video stream, i.e., never more

than 4 seconds late (after a segment is available at the web
server, thus excluding coding and server uploading delay).
If the bandwidth heterogeneity is higher, which is the case
for a combination of WLAN and HSDPA, about 10 seconds
of delay have to be accepted to obtain the full potential of
aggregated throughput and best possible video quality.

In its current form, the request scheduler requires all net-
work interfaces to be properly configured before the video
player can utilize them simultaneously. In a future version,
we will implement a more dynamic and robust scheme that
automatically updates the routing table when the connec-
tivity of the interfaces changes.

7. REFERENCES
[1] Apple Inc. Mac OS X Server – QuickTime Streaming

and Broadcasting Administration, 2007.

[2] Biersack, E., and Geyer, W. Synchronized delivery
and playout of distributed stored multimedia streams.
Multimedia Syst. J. 7, 1 (1999), 70–90.

[3] Griwodz, C. Wide-area True Video-on-Demand by a
Decentralized Cache-based Distribution Infrastructure.
PhD thesis, Darmstadt University of Technology, 2000.

[4] Johansen, D., Johansen, H., Aarflot, T.,

Hurley, J., Kvalnes, A., Gurrin, C., Zav, S.,

Olstad, B., Aaberg, E., Endestad, T., Riiser,

H., Griwodz, C., and Halvorsen, P. DAVVI: A
prototype for the next generation multimedia
entertainment platform. In Proc. ACM MM (2009),
pp. 989–990.

[5] Kaspar, D., Evensen, K., Engelstad, P., Hansen,

A., Halvorsen, P., and Griwodz, C. Enhancing
video-on-demand playout over multiple heterogeneous
access networks. In Proc. IEEE CCNC (2010).

[6] Kaspar, D., Evensen, K., Engelstad, P., and

Hansen, A. F. Using HTTP pipelining to improve
progressive download over multiple heterogeneous
interfaces. In Proc. IEEE ICC (2010).

[7] Move Networks. Internet television: Challenges and
opportunities. Tech. rep., Move Networks, Inc.,
November 2008.

[8] Ni, P., Eichhorn, A., Griwodz, C., and

Halvorsen, P. Fine-grained scalable streaming from
coarse-grained videos. In Proc. ACM NOSSDAV
(2009), pp. 103–108.

[9] Nielsen, H. F., Gettys, J., Baird-Smith, A.,

Prud’hommeaux, E., Lie, H. W., and Lilley, C.

Network performance effects of HTTP/1.1, CSS1, and
PNG. In Proc. ACM SIGCOMM (1997), pp. 155–166.

[10] Rodriguez, P., and Biersack, E. W. Dynamic
parallel access to replicated content in the internet.
IEEE/ACM Trans. Netw. 10, 4 (2002), 455–465.

[11] Wang, B., Wei, W., Guo, Z., and Towsley, D.

Multipath live streaming via TCP: Scheme,
performance and benefits. ACM Trans. Multimedia
Comput. Commun. Appl. 5, 3 (2009), 1–23.

[12] Wu, F., Gao, G., and Liu, Y. Glitch-Free Media
Streaming. Patent Application (US2008/0022005),
January 24 2008.

[13] Zambelli, A. IIS Smooth Streaming technical
overview. Tech. rep., Microsoft Corporation, 2009.

