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Abstract

We consider the accuracy of the velocity approximation wépect to the pressure approxima-
tion using various standard finite element methods for inm@ssible fluid flow. Of particular
interest is the case where the hydrostatic part of the presswlominating, which implies that
the pressure may be large relative to the velocity. Somealatdrmixed elements like the Mini
element and the Taylor-Hood element handle this case wkllewthers like theP, — P, el-
ement and the Crouzeix-Raviart element do not. This seerhs telated to the fact that the
Taylor-Hood and the Mini elements yield a stable approxiomadf the mixed Poisson problem.

Key words: Navier-Stokes, mixed finite elements, charitterscales, mass conservation, inf-
sup condition

INTRODUCTION

In this paper we consider the motion of an incompressible fluthe case where the pres-
sure is dominated by a hydrostatic part. This means that they two natural characteristic
scales present in the physical problem; the scale induceldebghydrostatic) pressure and the
scale naturally induced by the velocity. These scales niésrdiy several orders of magnitude.
Earlier we have encountered this problem in simulation efriovements of the continental
plates where the characteristic scales of the velocity badgtessure differ with at least four
orders of magnitude. We will study how various finite elensdmndle this situation, both by a
theoretical and a numerical approach.

To analyze the situation we introduce a Stokes problem ofotteaving form,

—Au+Vp = Vg+ef, inQ QD
V-u = 0, inQ, (2
u = 0, ondN, (3

wheree is a small numbern andp are the velocity and pressure of the fluid, respectively,
Vg + €f is the body force, andh = V? is the Laplacian operator. As we will describe later,
Vg typically represents the gravity, whild represents other forces. The solutianandp of
the above equations may be very differently scaledsfsmall. Ase — 0, p — g andu — 0.
In the limit case where = 0 we obtain the equation for the hydrostatic pressure. We nlema
that neithery nor Vg need to be explicitly constructe®,g + f is only a representation useful
for the theoretical purposes, i.e., it is not necessary to coenghe hydrostatic pressure, which
as we will see later would involve the solution of a Poissoobem. Later we generalize our
observations to the stationary Navier-Stokes equatiotismwbre general boundary conditions.
As a tool to discretize in space, we choose the finite elemethad. This is due to the
strong theoretical foundation of the method, which will lsed to derive improved theoretical
error estimates for problems on the form (1)-(2). Howeues also due to the fact that finite
element methods are a mature method, with an increasindgrapun real applications. Stan-
dard error estimates state that the errors of the pressdréhanvelocity influence each other.
In particular this means that a small relative error in thespure may contribute significantly



to the velocity error when the characteristic scales arg gigferent. We will describe this in
more detail later.

Several methods conserve the mass exactly, and give arestimate for the velocity which
is independent of the error in the pressure approximatiaa(® and Raviar, 1986; Gunzburger,
1989; Turek, 1999). However, these methods are impraaiwéimuch less used than standard
finite elements. It seems natural to assume that the nexttbegtafter exact mass conserva-
tion is element-wise mass conservation. Many elements tmaseroperty, e.g thé% — Py
(continuous quadratic polynomials for the velocity andcpigise constant functions for the
pressure), the non-conforming Crouzeix-Raviart elemé€nbiizeix and Raviart, 1973) and the
corresponding Rannacher-Turek elements (Rannacher aall, i992). However, itis not clear
that element-wise mass conservation actually improvesdlaeity approximation. In fact, in
this work we show that elements with continuous pressurm oaty global mass conservation,
such as the Mini element (Arnold et al., 1984) and the TayloodHelement are superior to the
elements with element-wise mass conservation, in the cabewo different scales.

An outline of the paper is as follows. In the next section, alsexample is presented to
illustrate the different behavior of two standard elemdikesthe Taylor-Hood, and thé, — P,
element. The following section motivates our work by revieywhy the gravity is a gradient
and presenting a method for removing the hydrostatic predsom the Stokes equation. The
next section presents some difficulties when the model prob discretized. It also moti-
vates that the ability to solve the mixed Poisson problemigvgortant property in this two
scale problem. The two last sections present numericalrigngets. First we solve the Stokes
problem by using the Mini element, the Crouzeix-Raviarteaat and a stabilized linear ele-
ment. Then we solve the stationary Navier-Stokes with gérmyundary conditions using the
Taylor-Hood element and the, — P, element.

AN ILLUSTRATIVE EXAMPLE WITH VARIABLE DENSITY

A simple problem with variable density is depictured in Figd. The problem is modelled
as,

—pAu+Vp = pGy, in Q= (0,1) x (0,1), 4
V.ou = 0,inQ, (5)
u = 0, ondN (6)

whereGg = [ (é; } , Gy is the acceleration of the gravity, and thés the density.
0

The interface between the two fluids with different densiteegiven with an anglé with
respect to ther-axis as illustrated in Figure 1. If the fluid with the largelsmnsity is on top,
the problem is unstable. This is the case for tectonic plathich are slightly denser than the
mantel. For simplicity, and with no loss in generality, we@se that the viscosity is constant.
Physical reasoning says that for small value® othe velocity is small. This means that for
increasing density, the pressure has to be equal to theeggat of the increasing body force.

Since we argue that this problem suffers from very differamracteristic scales for the
pressure and the velocity, which again leads to a numenieakolown for some standard mixed
elements, we need to show that scaling does not elimiateitfezethce in the characteristic
scales.

The following scales are chosen:

u=—,0i=—,p=—, g=—=1p==.

By inserting this into (4) and dividing the constants in frofithe pressure, we get
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At p= — .
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Fig. 1. A simple box problem with variable density. The gravityderis directed downwards
parallel to thez-axis. The interface between the two fluids is rotated withrgied with respect
to thez-axis. The relative difference between the densities isgdone, and the fluid with the
highest density is always on the top.

We will now present two possible scalings, and show that béthem end up with a problem
where the characteristic scales of the velocity and pressar very different.

First we assume that we can fibd and choose the standard pressure scaling for viscous
flow, i.e. P = £ The scaled equation is then

Pl G, (7)

_A Vo =
u+ Vp = U

Lets assume that the realtive difference between the dengtfixed,p; — po = 1, while
the absolute values vary, = 1,100, 10000. For small values of, it is physically reasonable
to assume that the velocity is small. df > 1, then ZOOL; > 1. This gets worse for larger
values ofpy. By assuming thgby = p; from our example,

|1, inpart 1
p= 1—¢, inpart2

wheres = -=. The variation irp decreases asincreases. Assumingis large, we clearly have
two dn‘ferent scales in the problem since the velocity staysll, while the pressure has to be
equal to the greater part of the body force.

One could think of removing the large right-hand side by aatisg according to

PL GoL?
P=poGol, U=+ ="
Ho Ho

where the equation now is seemingly well scaled:

1
—Au+Vp=p=1—¢, e=—.
Po

However, by looking at the scale factor for the velocity, = M, we notice that it is

increasing linearly withpy. We know from physical reasoning that the velocity is reklt
small, and thus the velocity scaling is bad for large valudes o

We now present results based on simulation of (7), but sitionis of the second scaling
approach gives the same conclusion. The afiggeset to five degrees. The simulations are done
with the same number of elements for the different values ofit the discretization using the
P, — Py element uses about 5 times as many elements as the Taylordikmdtization. This
is to magnify the different approximation properties ofgbawo elements for this particular
problem. Figure 2 and 3 show the pressure and velocity fieldgpated with the Taylor-Hood
element. As expected this scaling gives a constant vel@mitincreasingpy while the pressure
is increasing.



On the other hand, the velocity field computed by ihe- P, element, shown in Figure 4,
does not look physical for high values f This is even though this simulation uses about five
times as many elements as the the simulation using the Teiglod element. The velocity field
appears to be oscillating badly. Furthermore, the velasitgtally out of scale. In the leftmost
picture|lul|« ~ 1.3 - 1073, which is roughly correct, in the middle pictufi@||., ~ 2.9 - 103
and in rightmost picturéu||,, ~ 1.8 - 10~1. Notice further that similar experiments with
the Mini element give results that are similar to the casé wie Taylor-Hood element, while
similar experiments with the Crouzeix-Raviart elementgigsults that are similar to the case
with the P, — Py element. Hence, it seems that elements with continuousymesandle the
situation well, in contrast to those with discontinuoussstee which suffer from a severe break-
down. Why this is the case, and what kind of error estimatesameexpect from the elements
that work, is what we intend to investigate in the followireggons.

1

Fig. 2 Plot of the pressure field using the Taylor-Hood elementntleft to right we have
p2 = {1,100,10000}. The results are correct in the eye-norm for all the configoma of p.
This is as expected.
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Fig. 3: Plot of the velocity field in thec-direction using the Taylor-Hood element. From
left to right we haveps = {1,100, 10000}. The results are correct in the eye-norm for all the
configurations op. This is as expected.

Finally, we remark that it is possible to remove the hydristaressure. We write (4)-(6) as

—puAu+ Vp = pGy—Vpy inQ=(0,1) x (0,1)
V-u=0 inQ
u=0 onof,

and letpy be the solution in the fluid at rest with = ps. Thenp, = p2Gyz. The right hand
side will then be
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Fig. 4. Plot of the velocity field in thes-direction using theP, — Py element. From left to

right we havep; = {1,100, 10000}. In the left picture p; = 2, po = 1), the result are correct
in the eye-norm. In the middle plop{ = 101, p2 = 100), the result is polluted by oscillations.
The rightmost plot is even worse.

Hence, by removing the hydrostatic part of the pressurepntbéel problem is nicely scaled.
This is the idea we explore in this paper, and in fact it seemas $ome methods, like the
Taylor-Hood and the Mini element automatically remove thést. Hence, it is not necessary
to compute the hydrostatic pressure, which in general wagthe solution of another PDE
problem.

STABILITY IN THE CONTINUOUS CASE FOR THE STOKES PROBLEM

We will now describe the gravity force, the hydrostatic gree approximation, and the
reason for analyzing the problem on the form (1)-(3). In sasith variable density, the gravi-
tational force is not a constant. However, from potentiabtly (Lin and Segel, 1974), we know
that the gravitational force can be computed by solving tilewing Poisson equation for the
gravitational potentiad,

—Ag=4mp, IinQ

wherep is the density, and suitable boundary conditions are

@ =Gg-n, 0noQ
on

whereGy is the gravitational force of(). The corresponding gravitational for€is
G=Vg, inQ

Hence, gravity is always a gradient (Lin and Segel, 1974 )cdmtrast the Dirichlet boundary
conditions have to obey the divergence constraint and refii® a curl. Hence, one can think
of Vg as representing the gravity force, whi is the boundary conditions (at least if one
use the standard trick to reduce inhomogeneous Dirichlend@ry conditions to homogeneous
boundary conditions by modifying the right hand side). le ttase of Neumann boundary
conditions, both scales will be represented.

We may utilize the fact that the gravity is a gradient by réwg the Stokes problem. Letting
p = p1 + p2 we may rewrite (1)-(3) as

—Au+Vp, = e +Vg—Vpy, inQ, (8)
V-u = 0, inQ, 9
u = 0, onodf. (10)

It remains to construgt, such thatVg — Vps is small, assuming thatis small. This can be
achieved by solving the following Poisson problem, wherdalance the right hand side from



(1) (remember that we assura&to be small):

Aps =V - (ef + Vyg),
apz (11)

This Poisson problem can also be written on mixed form (whédhe form we will use later):

w+Vps = ef+Vg, inQ, (12)
V.w = 0, inQ, (13)
w-n = 0, ond, (14)

Hence,p> may be thought of as a generalization of the hydrostaticspresbecause — 0 =
w — 0. Since,w = ef + Vg — Vps we end up with,

—Au+Vp, =w, in{, (15)
V-u =0, inQ, (16)
u =0, ono. a7

One computational approach would be to solve (11) usingdarahmethods, and finding
w using numerical derivation, or (12)-(14) fer andp,, using a suitable method for a mixed
Poisson problem (e.g. using the Raviart Thomas element)a Weesolve (15)-(17) fon and
p1, Using a suitable method for the Stokes problem (e.g. us@tbuzeix-Raviart element).
The disadvantage is that we have to solve two PDE problensad®f one.

We would like to remark that the splitting is only an analgtlg tool to predict how stan-
dard elements will approximate (1)-(3). Furthermore, @l be mentioned that in the above
analysis we have assumed thag and/or the hydrostatic pressure are not known. If these are
known it is natural to remove the hydrostatic part of the pues before scaling. However, as
we will show in the next sections, some standard mixed elésremove this automatically.

STABILITY IN THE DISCRETE CASE FOR THE STOKES PROBLEM

As previously mentioned, we will use standard mixed finieengtnts to approximate the
Stokes problem (1)-(3). Assume now that we want to find thetswi (uy, p,) € Vj, x Qp, C
H} x L% whereH" denotes the scalar Sobolev space witerivatives inZ?, with the associated
norm|| - ||,,. H} denotes the closure 6f5° in H™. L2 denotes the set df? functions with the
mean value equal to zero. Bold face symbols means the sarnesspaplied to vectors.

It is well known that a solution method for the Stokes problemst satisfy the inf-sup
condition

inf  sup 7(V'uh,qh)

> Bllanllo (18)
a4 €Qn u,eV), [unllx

also known as the Babuska-Brezzi condition. There existiatyeof different mixed elements
that satisfy (18). We mention the mixed elements named Mirouzeix-RaviartP, — P, and
Taylor Hood. There also exist stabilization methods thésfsaa modified version of (18).
For a thorough introduction to this these elements and atiadilization methods, the reader is
referred to (Braess, 2001; Brenner and Scott, 1994; BreaFartin, 1991; Girault and Raviar,
1986).

By looking at the standard spatial error estimates whichygieally on the form

la —wplls + Il = pallo < CR(|[ullssr + llplls) < Cho|lef + Vglls-1, (19)

where s is the minimum of the order of the element, and the regulasftyhe solution, we
notice that a large typically results in bad approximation of when the characteristic scale



of p is much larger than the characteristic scaleoNote that this estimate is only true if we
have sufficient regularity on the domain and on the right teided (Bacuta and Bramble, 2003).
From our specific right hand side we notice that whaénsmall, the errors of both the velocity
and the pressure are dominated\y.

There exist elements that satisfy the incompressibilityst@int exactly, as mentioned in
(Girault and Raviar, 1986; Gunzburger, 1989; Turek, 199®) the references therein. This
property ensures that the velocity approximation decaufslem the pressure approximation,
ie.,

[u =y < CP°|Jufls41

Another way of ensuring that the velocity and pressure ezstimates are decoupled, for
conforming methods, is to construct the pressure spacetlath is equal to the divergence of
the velocity space. Notice however that nonconforming iwastadditionally need a consistency
error independent gf. To the authors knowledge the only finite element havingelpesperties
is the element introduced in (Mardal et al., 2002), which &bk for both the Stokes and the
mixed Poisson equation.

We will now argue that for some mixed finite elements, the ddad error estimate (19) is
to pessimistic for (1)-(3). In the previous section we adytiat (1)-(3) could be splitted into a
coupled mixed Poisson problem (12)-(14) and a Stokes pmofil&)-(17). By solving (1)-(3),
we in some sense implicitly solve (12)-(14) and (15)-(17)héf the hydrostatic part of the
pressure is dominating, the error from the mixed Poissohlpno will be dominating the error
in the velocity. This motivates us to choose elements thsat approximate the mixed Poisson
problem well.

Itis a common misunderstanding that all the standard mixekkES elements are not suitable
for the mixed Poisson problem. The reason for this misundeding is probably the fact that
there exist two different formulations of the mixed Poisgpoablem, and therefore also two so
called inf-sup conditions

V- .
inf sup L VAGh) o gy for (wh, pn) € Vi x Qn C H(div) x L2,(20)
3E€Qn v evy, |IVhllH(div)
V-
inf  sup Vi, an) > Bllgnll1, for (wh,pn) € Vi x Q, CL* x H'.  (21)
h€QnL v, eV, Ivillo

We remark that the only differences between inf-sup coowlitif the Stokes problem (18) and
the two alternative inf-sup conditions for the mixed Poispmoblem (20) and (21) are the norms
onvy andgy,. The first (and usual) inf-sup condition (20) is the conditibe method should
satisfy if the solution is to be found in tH&(div) x L? space. By approximating the solution in
H(div) x L?, all the derivatives have to be moved to the velocity andésefunction from the
velocity approximation space (in the weak form). This isti@st commonly used formulation
of the mixed Poisson problem, since it gives the highestraogwon the variable at interest,,.
None of the standard mixed elements like Mini, CrouzeixiRayTaylor-Hood orP, — P, are
stable for the mixed Poisson problem in this approximatjuecs.

On the other hand, the second formulation of the weak infesungition (21) is the stability
requirement for a method approximating the mixed Poissohlpm in thel.? x H' space. By
approximating the solution ih? x H'!, all the derivatives have to be moved to the pressure and
the test function from the pressure approximation spacth@mweak form). This weak inf-sup
condition is valid for the Taylor-Hood element as shown irei@vier and Pironneau, 1979)
and the Mini element as shown in (Mardal and Winther, 200fg fErms velocity and pressure
in the mixed Poisson problem reflects the terms used for thieeStproblem.

The Crouzeix-Raviart and the, — P, elements are not stable for the mixed Poisson prob-
lem. From this we would expect that the Mini and the TaylomH@lement will approximate
(2)-(3) much better than the Crouzeix-Raviart and#he- P, element. In the next sections we



present two conjectures that state these improved eriionasts, and we will support them by
numerical examples.

NUMERICAL EXPERIMENTS ON A STEADY STOKES PROBLEM

In order to validate the new error estimates, we need to ctergruexample where we have a
good measure of the error. This is done by choosing a simplmpbe with a known analytical
solution. The problem is given on the domé&in= (0,1) x (0, 1), with the exact solution

¢ = ecos (mz) cos (1Y),
u=V X ¢, (22)

xT

p = cos (mxy)e “y.

The right hand side is then
ef + Vg=—Au+ Vp.

By using the standard error estimate (19) we predict thasieall values ok the error from
the approximation of the pressure may influence the errdi@fpproximation of the velocity,
dependent of the choice of element.

We will compare Mini, Crouzeix-Raviart, and stabilizeddar elements, which all are a
second order approximation of the velocity, when the esaneasured in th&2-norm. The
stabilization scheme chosen is

V-u=ph*Ap (23)

for the continuity equation, wherg = % corresponds to the Mini element (Section 3.13.3 in
(Gresho and Sani, 1998)).

If the analysis from the section discussing the stabilityhaf continuous case is extended
into the discrete case, it seems possible to derive an estionage for the Mini element that
takes into account the body forces of our Stokes problen{3il)-This is work in progress.
Since we will not present the derivation here, the resutgpaesented as a Conjecture based on
the numerical experiments.

Conjecture 1 Assume that we want to sol{&)-(2) using the Mini element. Then the error
estimates for the velocity can be expressed as

[u—wsli < C(hellf||o + 1| ef + Vglo) (24)
lu—wllo < C(he|f]lo + h*||ef + Vgllo)) (25)

In contradiction to the standard error estimate, which listthe sum of the velocity error,
and the pressure error, we have presented them separdiedyis To make the etismates easier
to read. We will first comment thEI! error of the velocity. Ife is large, the ternhe||f||o is
dominating. Notice that contrary to the standard erronesti (19), the error is now bounded by
only €||/f||o, instead of|ef + Vg||o. Whene decreases (the element sizés kept constant), this
will lead to a significantly improved error estimate. Theoeestimate for the velocity is actually
converging linearly withe. Whene reaches a given leveh?||f + Vgl|o will be dominating.
We will now loose our linear convergence with respect.toBut now the convergence is of
order three with respect to the element sizénstead of the expected first order. This is also a
significant improvement to the standard error estimate. (IB¢L? error estimate is one order
higher with respect to the element sizeas expected.

The errors are plotted as a function ©fto illustrate the linear convergence with respect
to € for € in a given interval. The different curves in each plot repres different spatial
discretization (the number of elements is doubled for eaiche).



H error of velocity
5
L2 error of velocity

(a) H* error of the velocity (b) L? error of the velocity

L2 error of pressure

(c) L? error of the pressure

Fig. 5. The Mini element applied to out test problem (1)-(3). Cagesmce results are listed
in Table 1. Note the linear convergence with respeet fbhis convergence stops wheéa||f||o

is of the the same order &f ||ef + Vg||o (for the H' error of the velocity), but then we get an
increase in the order of convergence with respect to theeglegizeh.



e=1 €=2-10"°
[ul]; [ 1.00 3.2
[ullo | 201  3.92
lpllo | 1.65  2.14

Table 1. Convergence rate of the element-siztor the Mini element. Note that for smaliwe
get two orders faster convergence than the standard etioragss.

Figure 5 and Table 1 present the results for the Mini elemgeplied to our Stokes problem
(1)-(3). Fore = 1, Table 1 confirms the standard error estimates for the \gldedr smalle we
get two orders of convergence higher than predicted by #redard error estimates.

From Figure 5, we notice that for not too small values,dhe error of the velocity converges
linearly with respect te. For a given value of (dependent of the element sizg this linear
dependency stops, due to the domination of the error feXihaf + Vg|o. But we notice the
increased order of convergence with respect to the elerzi sas also stated in Table 1. The
pressure shows no clear signs of improved convergence, aslvexpect. We do get a region
where the error of the pressure converges linearly witheetsfpe. However, this is up to the
point whereef =~ Vg.
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(a) H! error of the velocity (b) L? error of the pressure

Fig. 6. The Crouzeix-Raviart element applied to (1)-(3). Coneeice results are listed in
Table 2. The convergence with respecttis only true untilef is of the order ofVg. This
region of convergence is therefore not dependent of theeriesizeh. We do not experience
an increase in the order of convergence with respeatftor small values ot. Obviously the
Mini element is superior to the Crouzeix-Raviart elemenmtlfids type of problems.

e=1 e=2-10"1
lull; | 0.99 0.86
|ullo | 1.94 1.74
lpllo | 1.07  1.03

Table 2. Convergence rate of the element-stztor the Crouzeix-Raviart element.

The Crouzeix-Raviart element, as shown in Figure 6 and Tgldbows no sign of increased
approximation properties compared to the standard ertiona®s. This is probably due to the
fact that Crouzeix-Raviart does not satisfy the weak irg-sandition. We do have a small



region where the velocity error converges linearly witBut this region is small (approximately
one decade instead of more than three decades for the Mimealg, and it is not increasing
when the element size is decreased. This small region ofecgence is due to the fact that a
reduction inef will decrease the error until it is of the orderfy. Notice the difference; for the
Crouzeix-Raviart element we have linear convergence veigipect toe until ef ~ Vg, while
for the Mini element we have the same convergence bafif||o ~ h3||ef + Vg]|o. Obviously
the Mini element is vastly superior to the Crouzeix-Raviartthis test-problem.

(a) H! error of the velocity (b) L? error of the velocity

(c) L? error of the pressure

Fig. 7. Stabilized linear elements applied to (22).= % Convergence results are listed in
Table 3. For théI! error norm of the velocity, we note an increase in the regfamoavergence
with respect toe. This is even though the stabilization technique used isstettle for the
mixed Poisson problem, and we would not expect to get an imggreconvergence for small
e. However, thel.? error norm of the velocity shows no sign of improved convamge The
reason for this different behavior is unknown to the auth&till the stabilized linear element
is considered better than the Crouzeix-Raviart elemerthse kind of problems.

The stabilized linear element in Figure 7 and Table 3 is preskfor completeness, since
different stabilization techniques are frequently usedtie Stokes problem. This stabilization
technique (withg = 81—0) is considered to have equal properties as the Mini elenwnthe
Stokes problem. However, this is not so clear for the mixeidgdm problem. Therefore we
cannot expect stabilized linear elements to have the salmavize as the Mini element. An
interesting thing is the different behavior of the errorué telocity measured in tHd! norm
compared to thd.? norm in Figure 7. Thad! error plot shows the typical behavior of an



€= e=2-10"1
ul[; |1 1.77

lafo |2 2

Ipllo | 1.69  1.98

Table 3: Convergence rate of the element-sizfor the stabilized linear element, with= %

element that satisfies the “weak” inf-sup condition. Not# the range of the linear convergence
of e is extended for smaller elements. We also have one ordeehagimvergence with respect
to the element sizé for small values ok. These signs are not present in e error plots.
Why this is the case is unknown to the authors.

NUMERICAL EXPERIMENTS ON THE STATIONARY INCOMPRESSIBLE NA VIER-
STOKES EQUATIONS
We now consider a stationary Navier-Stokes problem

u-Vu—vAu+Vp = Vg+ef, inQ, (26)
V-u = 0, inQ, (27)
u = ug, 0ndQg, (28)
Va—u—pon = ¢g-n+ek ondQy, (29)
on

wherek is a given function9€) g is the part of the boundary with essential boundary conattio
andofQy is the part with the natural boundary conditions. The ccms}ais absorbed into the
pressure variablg. It is easy to extend the splitting of the Stokes problem(8))-done in a
previous section, to the Navier-Stokes equations (26)-(Pe importance of the weak inf-sup
condition is still true, meaning that Conjecture 1 is alsgetfor the stationary Navier-Stokes
equations. We will now test this using the Taylor-Hood elamehich satisfy the weak inf-sup
condition, and thé, — P, which does not.

Again we choose a simple example with the known analyticlitem (22) which satisfies
the model problem (26)-(29). Compared to (26) the right heidd will be

ef + Vg=—-Au+ Vp+u-Vu

One side of the domain has a natural boundary conditiongvihdé others have essential bound-
ary conditions. Again, by using (19), we predict that for #maalues ofe¢, the error from the
approximation of the pressure may influence the error of gpraximation of the velocity,
depending of the choice of element.

As for the Mini element, we also work on extend the analysigheferror estimates for the
Taylor-Hood element. Since this is not presented here ghdts are presented as a Conjecture
based on the numerical experiments.

Conjecture 2 Assume that we want to sol¢®)-(2) using the Taylor-Hood element. Then the
error estimates can be expressed as

C(h%€|fllo + B*|lef + Vgllo) (30)
C(hPe||f||o + h*||ef + Vgllo) (31)

[u—wl <
[u—uplo <

The Taylor-Hood element shows very similar behavior as tliei Klement, and the general
comments on Conjecture 1 do also apply here. For small valueghe Taylor-Hood element
only gain one order of convergence with respect to the elésiezah, as for the Mini element
the increase is two orders of convergence. This means thaniall values ofe, the Mini



element and the Taylor-Hood element has the same order gégence for the velocity with
respect to the element size

Figure 8 and Table 4 the numerical experiments for the Tayitmod element on the sta-
tionary Navier-Stokes problem. We notice the improved eogence for small values ef For
more specific comments, the reader should refer to the pregection where the Mini element
is commented.

e=1 €=2-10"F
Tall; [ .98 2.74
lullo | 2.98  3.86
lpllo | 3.00  2.00

Table 4. Convergence rate of the element-sizéor the Taylor-Hood element. Note that for
small values of we get one order higher convergence than the standard stiorage.
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Fig. 8. The Taylor-Hood element, applied to (26)-(29). Convergeresults are listed in
Table 4. We notice the increase in the region of convergeiitteraspect ta, and the increased
order of convergence for small valueseof

e=1 e=2-10"1
[afl; | 1.87 0.91

|ullo | 2.64 1.83

Ipllo | 1.02  0.969

Table 5. Convergence rate of the element-sizéor the P, — P, element. We notice that for
small values o, we do not even get the expected convergence from the sthedar estimate.
This is because we have under-resolved the problem, antemefdre outside the asymptotic
regime.

For theP, — P, element, Figure 9 and Table 5 indicate that we do not everhgettandard
error estimates for small values ©f This is due to the poor approximation properties for these
kind of problems. For the used number of elements, we aredeutise region where we can
expect the asymptotic convergence of the standard eriiarass.

CONCLUSIONS
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Fig. 9: The P2 — P0 element, applied to (26)-(29). Convergence results in mment-sizer
are listed in Table 4. There are no signs of improved convegéor small values of. This is
as expected since th& — P, does not satisfy the weak inf-sup condition.

In this paper we have focused on the use of some standard mliestents applied to in-
compressible fluid flow. In particular we have focused on theecwhere the hydrostatic part
of the pressure is dominating, and the pressure is largéveeta the velocity. We have shown
that elements like the Taylor-Hood and the Mini element hattis situation well, in contrast
to the Crouzeix-Raviart and thB, — P, element. This seems to be related to the fact that
the Taylor-Hood and the Mini element give stable approxiomet of the mixed Poisson prob-
lem. Finally, we have seen that these ideas apply to th@stail Navier-Stokes equations with
general boundary conditions.
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