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Abstract
We consider the accuracy of the velocity approximation withrespect to the pressure approxima-
tion using various standard finite element methods for incompressible fluid flow. Of particular
interest is the case where the hydrostatic part of the pressure is dominating, which implies that
the pressure may be large relative to the velocity. Some standard mixed elements like the Mini
element and the Taylor-Hood element handle this case well, while others like theP2 − P0 el-
ement and the Crouzeix-Raviart element do not. This seems tobe related to the fact that the
Taylor-Hood and the Mini elements yield a stable approximation of the mixed Poisson problem.

Key words: Navier-Stokes, mixed finite elements, characteristic scales, mass conservation, inf-
sup condition

INTRODUCTION

In this paper we consider the motion of an incompressible fluid in the case where the pres-
sure is dominated by a hydrostatic part. This means that there are two natural characteristic
scales present in the physical problem; the scale induced bythe (hydrostatic) pressure and the
scale naturally induced by the velocity. These scales may differ by several orders of magnitude.
Earlier we have encountered this problem in simulation of the movements of the continental
plates where the characteristic scales of the velocity and the pressure differ with at least four
orders of magnitude. We will study how various finite elements handle this situation, both by a
theoretical and a numerical approach.

To analyze the situation we introduce a Stokes problem on thefollowing form,

−∆u + ∇p = ∇g + εf , in Ω, (1)

∇ · u = 0, in Ω, (2)

u = 0, on∂Ω, (3)

whereε is a small number,u and p are the velocity and pressure of the fluid, respectively,
∇g + εf is the body force, and∆ = ∇2 is the Laplacian operator. As we will describe later,
∇g typically represents the gravity, whileεf represents other forces. The solutionsu andp of
the above equations may be very differently scaled ifε is small. Asε → 0, p → g andu → 0.
In the limit case whereε = 0 we obtain the equation for the hydrostatic pressure. We remark
that neitherg nor∇g need to be explicitly constructed,∇g + εf is only a representation useful
for the theoretical purposes, i.e., it is not necessary to compute the hydrostatic pressure, which
as we will see later would involve the solution of a Poisson problem. Later we generalize our
observations to the stationary Navier-Stokes equations with more general boundary conditions.

As a tool to discretize in space, we choose the finite element method. This is due to the
strong theoretical foundation of the method, which will be used to derive improved theoretical
error estimates for problems on the form (1)-(2). However, it is also due to the fact that finite
element methods are a mature method, with an increasing popularity in real applications. Stan-
dard error estimates state that the errors of the pressure and the velocity influence each other.
In particular this means that a small relative error in the pressure may contribute significantly



to the velocity error when the characteristic scales are very different. We will describe this in
more detail later.

Several methods conserve the mass exactly, and give an errorestimate for the velocity which
is independent of the error in the pressure approximation (Girault and Raviar, 1986; Gunzburger,
1989; Turek, 1999). However, these methods are impracticaland much less used than standard
finite elements. It seems natural to assume that the next bestthing after exact mass conserva-
tion is element-wise mass conservation. Many elements havethis property, e.g theP2 − P0

(continuous quadratic polynomials for the velocity and piecewise constant functions for the
pressure), the non-conforming Crouzeix-Raviart element (Crouzeix and Raviart, 1973) and the
corresponding Rannacher-Turek elements (Rannacher and Turek, 1992). However, it is not clear
that element-wise mass conservation actually improves thevelocity approximation. In fact, in
this work we show that elements with continuous pressure, and only global mass conservation,
such as the Mini element (Arnold et al., 1984) and the Taylor-Hood element are superior to the
elements with element-wise mass conservation, in the case with two different scales.

An outline of the paper is as follows. In the next section, a small example is presented to
illustrate the different behavior of two standard elementslike the Taylor-Hood, and theP2 − P0

element. The following section motivates our work by reviewing why the gravity is a gradient
and presenting a method for removing the hydrostatic pressure from the Stokes equation. The
next section presents some difficulties when the model problem is discretized. It also moti-
vates that the ability to solve the mixed Poisson problem is an important property in this two
scale problem. The two last sections present numerical experiments. First we solve the Stokes
problem by using the Mini element, the Crouzeix-Raviart element and a stabilized linear ele-
ment. Then we solve the stationary Navier-Stokes with general boundary conditions using the
Taylor-Hood element and theP2 − P0 element.

AN ILLUSTRATIVE EXAMPLE WITH VARIABLE DENSITY

A simple problem with variable density is depictured in Figure 1. The problem is modelled
as,

−µ∆u + ∇p = ρG0, in Ω = (0, 1) × (0, 1), (4)

∇ · u = 0, in Ω, (5)

u = 0, on∂Ω (6)

whereG0 =

[

0
G0

]

, G0 is the acceleration of the gravity, and theρ is the density.

The interface between the two fluids with different densities is given with an angleθ with
respect to thex-axis as illustrated in Figure 1. If the fluid with the largestdensity is on top,
the problem is unstable. This is the case for tectonic plates, which are slightly denser than the
mantel. For simplicity, and with no loss in generality, we assume that the viscosity is constant.
Physical reasoning says that for small values ofθ, the velocity is small. This means that for
increasing density, the pressure has to be equal to the greater part of the increasing body force.

Since we argue that this problem suffers from very differentcharacteristic scales for the
pressure and the velocity, which again leads to a numerical breakdown for some standard mixed
elements, we need to show that scaling does not elimiate the difference in the characteristic
scales.

The following scales are chosen:

ū =
u

U
, x̄i =

xi

L
, ρ̄ =

ρ

ρ0
, µ̄ =

µ

µ0
= 1, p̄ =

p

P
.

By inserting this into (4) and dividing the constants in front of the pressure, we get

−
µ0U

PL
∆ū + ∇p̄ =

ρ0L

P
ρ̄G0.
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Fig. 1: A simple box problem with variable density. The gravity force is directed downwards
parallel to thez-axis. The interface between the two fluids is rotated with anangleθ with respect
to thex-axis. The relative difference between the densities is always one, and the fluid with the
highest density is always on the top.

We will now present two possible scalings, and show that bothof them end up with a problem
where the characteristic scales of the velocity and pressure are very different.

First we assume that we can findU , and choose the standard pressure scaling for viscous
flow, i.e. P = µ0U

L
. The scaled equation is then

−∆ū + ∇p̄ =
ρ0L

2

µ0U
ρ̄G0. (7)

Lets assume that the realtive difference between the densities is fixed,ρ1 − ρ2 = 1, while
the absolute values vary,ρ2 = 1, 100, 10000. For small values ofθ, it is physically reasonable
to assume that the velocity is small. Ifρ0 À µ0, then ρ0L2

µ0U
À 1. This gets worse for larger

values ofρ0. By assuming thatρ0 = ρ1 from our example,

ρ̄ =

{

1, in part 1
1 − ε, in part 2,

whereε = 1
ρ1

. The variation in̄ρ decreases asρ increases. Assumingρ is large, we clearly have
two different scales in the problem since the velocity stayssmall, while the pressure has to be
equal to the greater part of the body force.

One could think of removing the large right-hand side by a rescaling according to

P = ρ0G0L, U =
PL

µ0
=

ρ0G0L
2

µ0
,

where the equation now is seemingly well scaled:

−∆ū + ∇p̄ = ρ̄ = 1 − ε, ε =
1

ρ0
.

However, by looking at the scale factor for the velocity,U = ρ0G0L2

µ0
, we notice that it is

increasing linearly withρ0. We know from physical reasoning that the velocity is relatively
small, and thus the velocity scaling is bad for large values of ρ.

We now present results based on simulation of (7), but simulations of the second scaling
approach gives the same conclusion. The angleθ is set to five degrees. The simulations are done
with the same number of elements for the different values ofρ, but the discretization using the
P2 − P0 element uses about 5 times as many elements as the Taylor-Hooddiscretization. This
is to magnify the different approximation properties of these two elements for this particular
problem. Figure 2 and 3 show the pressure and velocity fields computed with the Taylor-Hood
element. As expected this scaling gives a constant velocityfor increasingρ while the pressure
is increasing.



On the other hand, the velocity field computed by theP2 − P0 element, shown in Figure 4,
does not look physical for high values ofρ. This is even though this simulation uses about five
times as many elements as the the simulation using the Taylor-Hood element. The velocity field
appears to be oscillating badly. Furthermore, the velocityis totally out of scale. In the leftmost
picture‖u‖∞ ≈ 1.3 · 10−3, which is roughly correct, in the middle picture‖u‖∞ ≈ 2.9 · 10−3

and in rightmost picture‖u‖∞ ≈ 1.8 · 10−1. Notice further that similar experiments with
the Mini element give results that are similar to the case with the Taylor–Hood element, while
similar experiments with the Crouzeix-Raviart element give results that are similar to the case
with theP2 − P0 element. Hence, it seems that elements with continuous pressure handle the
situation well, in contrast to those with discontinuous pressure which suffer from a severe break-
down. Why this is the case, and what kind of error estimates wecan expect from the elements
that work, is what we intend to investigate in the following sections.

Fig. 2: Plot of the pressure field using the Taylor-Hood element. From left to right we have
ρ2 = {1, 100, 10000}. The results are correct in the eye-norm for all the configurations ofρ.
This is as expected.

Fig. 3: Plot of the velocity field in thex-direction using the Taylor-Hood element. From
left to right we haveρ2 = {1, 100, 10000}. The results are correct in the eye-norm for all the
configurations ofρ. This is as expected.

Finally, we remark that it is possible to remove the hydrostatic pressure. We write (4)-(6) as

−µ∆u + ∇p1 = ρG0 −∇p2 in Ω = (0, 1) × (0, 1)

∇ · u = 0 in Ω

u = 0 on∂Ω,

and letp2 be the solution in the fluid at rest withρ = ρ2. Thenp2 = ρ2G0z. The right hand
side will then be

ρG0 −∇p2 = ρ

[

0
G0

]

− ρ2

[

0
G0

]

=

{

G0, if ρ = ρ1

0, if ρ = ρ2
.



Fig. 4: Plot of the velocity field in thex-direction using theP2 − P0 element. From left to
right we haveρ1 = {1, 100, 10000}. In the left picture (ρ1 = 2, ρ2 = 1), the result are correct
in the eye-norm. In the middle plot (ρ1 = 101, ρ2 = 100), the result is polluted by oscillations.
The rightmost plot is even worse.

Hence, by removing the hydrostatic part of the pressure, themodel problem is nicely scaled.
This is the idea we explore in this paper, and in fact it seems that some methods, like the
Taylor-Hood and the Mini element automatically remove thispart. Hence, it is not necessary
to compute the hydrostatic pressure, which in general involves the solution of another PDE
problem.

STABILITY IN THE CONTINUOUS CASE FOR THE STOKES PROBLEM

We will now describe the gravity force, the hydrostatic pressure approximation, and the
reason for analyzing the problem on the form (1)-(3). In cases with variable density, the gravi-
tational force is not a constant. However, from potential theory (Lin and Segel, 1974), we know
that the gravitational force can be computed by solving the following Poisson equation for the
gravitational potentialg,

−∆g = 4πρ, in Ω

whereρ is the density, and suitable boundary conditions are

∂g

∂n
= G0 · n, on∂Ω

whereG0 is the gravitational force on∂Ω. The corresponding gravitational forceG is

G = ∇g, in Ω

Hence, gravity is always a gradient (Lin and Segel, 1974). Incontrast the Dirichlet boundary
conditions have to obey the divergence constraint and is therefore a curl. Hence, one can think
of ∇g as representing the gravity force, whileεf is the boundary conditions (at least if one
use the standard trick to reduce inhomogeneous Dirichlet boundary conditions to homogeneous
boundary conditions by modifying the right hand side). In the case of Neumann boundary
conditions, both scales will be represented.

We may utilize the fact that the gravity is a gradient by rewriting the Stokes problem. Letting
p = p1 + p2 we may rewrite (1)-(3) as

−∆u + ∇p1 = εf + ∇g −∇p2, in Ω, (8)

∇ · u = 0, in Ω, (9)

u = 0, on∂Ω. (10)

It remains to constructp2 such that∇g − ∇p2 is small, assuming thatε is small. This can be
achieved by solving the following Poisson problem, wherep2 balance the right hand side from



(1) (remember that we assumeεf to be small):

∆p2 = ∇ · (εf + ∇g),

∂p2

∂n
= (εf + ∇g) · n

(11)

This Poisson problem can also be written on mixed form (whichis the form we will use later):

w + ∇p2 = εf + ∇g, in Ω, (12)

∇ · w = 0, in Ω, (13)

w · n = 0, on∂Ω, (14)

Hence,p2 may be thought of as a generalization of the hydrostatic pressure becauseε → 0 ⇒
w → 0. Since,w = εf + ∇g −∇p2 we end up with,

−∆u + ∇p1 = w, in Ω, (15)

∇ · u = 0, in Ω, (16)

u = 0, on∂Ω. (17)

One computational approach would be to solve (11) using standard methods, and finding
w using numerical derivation, or (12)-(14) forw andp2, using a suitable method for a mixed
Poisson problem (e.g. using the Raviart Thomas element). Then we solve (15)-(17) foru and
p1, using a suitable method for the Stokes problem (e.g. using the Crouzeix-Raviart element).
The disadvantage is that we have to solve two PDE problems instead of one.

We would like to remark that the splitting is only an analytically tool to predict how stan-
dard elements will approximate (1)-(3). Furthermore, it should be mentioned that in the above
analysis we have assumed that∇g and/or the hydrostatic pressure are not known. If these are
known it is natural to remove the hydrostatic part of the pressure before scaling. However, as
we will show in the next sections, some standard mixed elements remove this automatically.

STABILITY IN THE DISCRETE CASE FOR THE STOKES PROBLEM

As previously mentioned, we will use standard mixed finite elements to approximate the
Stokes problem (1)-(3). Assume now that we want to find the solution (uh, ph) ∈ Vh × Qh ⊂
H

1
0×L2

0 whereHn denotes the scalar Sobolev space withn derivatives inL2, with the associated
norm‖ · ‖n. Hn

0 denotes the closure ofC∞

0 in Hn. L2
0 denotes the set ofL2 functions with the

mean value equal to zero. Bold face symbols means the same spaces applied to vectors.
It is well known that a solution method for the Stokes problemmust satisfy the inf-sup

condition

inf
qh∈Qh

sup
uh∈Vh

(∇ · uh, qh)

‖uh‖1
≥ β‖qh‖0, (18)

also known as the Babuska-Brezzi condition. There exist a variety of different mixed elements
that satisfy (18). We mention the mixed elements named Mini,Crouzeix-Raviart,P2 − P0 and
Taylor Hood. There also exist stabilization methods that satisfy a modified version of (18).
For a thorough introduction to this these elements and otherstabilization methods, the reader is
referred to (Braess, 2001; Brenner and Scott, 1994; Brezzi and Fortin, 1991; Girault and Raviar,
1986).

By looking at the standard spatial error estimates which aretypically on the form

‖u − uh‖1 + ‖p − ph‖0 ≤ Chs(‖u‖s+1 + ‖p‖s) ≤ Ĉhs‖εf + ∇g‖s−1, (19)

wheres is the minimum of the order of the element, and the regularityof the solution, we
notice that a largep typically results in bad approximation ofu when the characteristic scale



of p is much larger than the characteristic scale ofu. Note that this estimate is only true if we
have sufficient regularity on the domain and on the right handside (Bacuta and Bramble, 2003).
From our specific right hand side we notice that whenε is small, the errors of both the velocity
and the pressure are dominated by∇g.

There exist elements that satisfy the incompressibility constraint exactly, as mentioned in
(Girault and Raviar, 1986; Gunzburger, 1989; Turek, 1999) and the references therein. This
property ensures that the velocity approximation decouples from the pressure approximation,
i.e.,

‖u − uh‖1 ≤ Chs‖u‖s+1

Another way of ensuring that the velocity and pressure errorestimates are decoupled, for
conforming methods, is to construct the pressure space suchthat it is equal to the divergence of
the velocity space. Notice however that nonconforming methods additionally need a consistency
error independent ofp. To the authors knowledge the only finite element having these properties
is the element introduced in (Mardal et al., 2002), which is stable for both the Stokes and the
mixed Poisson equation.

We will now argue that for some mixed finite elements, the standard error estimate (19) is
to pessimistic for (1)-(3). In the previous section we argued that (1)-(3) could be splitted into a
coupled mixed Poisson problem (12)-(14) and a Stokes problem (15)-(17). By solving (1)-(3),
we in some sense implicitly solve (12)-(14) and (15)-(17). When the hydrostatic part of the
pressure is dominating, the error from the mixed Poisson problem will be dominating the error
in the velocity. This motivates us to choose elements that also approximate the mixed Poisson
problem well.

It is a common misunderstanding that all the standard mixed Stokes elements are not suitable
for the mixed Poisson problem. The reason for this misunderstanding is probably the fact that
there exist two different formulations of the mixed Poissonproblem, and therefore also two so
called inf-sup conditions

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)

‖vh‖H(div)
≥ β‖qh‖0, for (wh, ph) ∈ Vh × Qh ⊂ H(div) × L2,(20)

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)

‖vh‖0
≥ β‖qh‖1, for (wh, ph) ∈ Vh × Qh ⊂ L

2 × H1. (21)

We remark that the only differences between inf-sup condition of the Stokes problem (18) and
the two alternative inf-sup conditions for the mixed Poisson problem (20) and (21) are the norms
on vh andqh. The first (and usual) inf-sup condition (20) is the conditionthe method should
satisfy if the solution is to be found in theH(div)×L2 space. By approximating the solution in
H(div) × L2, all the derivatives have to be moved to the velocity and the test function from the
velocity approximation space (in the weak form). This is themost commonly used formulation
of the mixed Poisson problem, since it gives the highest accuracy on the variable at interest,wh.
None of the standard mixed elements like Mini, Crouzeix-Raviart, Taylor-Hood orP2 − P0 are
stable for the mixed Poisson problem in this approximation space.

On the other hand, the second formulation of the weak inf-supcondition (21) is the stability
requirement for a method approximating the mixed Poisson problem in theL2 × H1 space. By
approximating the solution inL2 ×H1, all the derivatives have to be moved to the pressure and
the test function from the pressure approximation space (inthe weak form). This weak inf-sup
condition is valid for the Taylor-Hood element as shown in (Bercovier and Pironneau, 1979)
and the Mini element as shown in (Mardal and Winther, 2004). The terms velocity and pressure
in the mixed Poisson problem reflects the terms used for the Stokes problem.

The Crouzeix-Raviart and theP2 − P0 elements are not stable for the mixed Poisson prob-
lem. From this we would expect that the Mini and the Taylor-Hood element will approximate
(1)-(3) much better than the Crouzeix-Raviart and theP2 −P0 element. In the next sections we



present two conjectures that state these improved error estimates, and we will support them by
numerical examples.

NUMERICAL EXPERIMENTS ON A STEADY STOKES PROBLEM
In order to validate the new error estimates, we need to compute an example where we have a
good measure of the error. This is done by choosing a simple example with a known analytical
solution. The problem is given on the domainΩ = (0, 1) × (0, 1), with the exact solution

φ = ε cos (πx) cos (πy),

u = ∇× φ,

p = cos (πxy)e−xy.

(22)

The right hand side is then

εf + ∇g = −∆u + ∇p.

By using the standard error estimate (19) we predict that forsmall values ofε the error from
the approximation of the pressure may influence the error of the approximation of the velocity,
dependent of the choice of element.

We will compare Mini, Crouzeix-Raviart, and stabilized linear elements, which all are a
second order approximation of the velocity, when the error is measured in theL2-norm. The
stabilization scheme chosen is

∇ · u = βh2∆p (23)

for the continuity equation, whereβ = 1
80 corresponds to the Mini element (Section 3.13.3 in

(Gresho and Sani, 1998)).
If the analysis from the section discussing the stability ofthe continuous case is extended

into the discrete case, it seems possible to derive an error estimate for the Mini element that
takes into account the body forces of our Stokes problem (1)-(3). This is work in progress.
Since we will not present the derivation here, the results are presented as a Conjecture based on
the numerical experiments.

Conjecture 1 Assume that we want to solve(1)-(2) using the Mini element. Then the error
estimates for the velocity can be expressed as

‖u − uh‖1 ≤ C(hε‖f‖0 + h3‖εf + ∇g‖0) (24)

‖u − uh‖0 ≤ C(h2ε‖f‖0 + h4‖εf + ∇g‖0)) (25)

In contradiction to the standard error estimate, which bounds the sum of the velocity error,
and the pressure error, we have presented them separately. This is to make the etismates easier
to read. We will first comment theH1 error of the velocity. Ifε is large, the termhε‖f‖0 is
dominating. Notice that contrary to the standard error estimate (19), the error is now bounded by
only ε‖f‖0, instead of‖εf +∇g‖0. Whenε decreases (the element sizeh is kept constant), this
will lead to a significantly improved error estimate. The error estimate for the velocity is actually
converging linearly withε. Whenε reaches a given level,h3‖εf + ∇g‖0 will be dominating.
We will now loose our linear convergence with respect toε. But now the convergence is of
order three with respect to the element sizeh, instead of the expected first order. This is also a
significant improvement to the standard error estimate (19). TheL

2 error estimate is one order
higher with respect to the element sizeh, as expected.

The errors are plotted as a function ofε, to illustrate the linear convergence with respect
to ε for ε in a given interval. The different curves in each plot represents different spatial
discretization (the number of elements is doubled for each curve).
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Fig. 5: The Mini element applied to out test problem (1)-(3). Convergence results are listed
in Table 1. Note the linear convergence with respect toε. This convergence stops whenhε‖f‖0

is of the the same order ofh3‖εf + ∇g‖0 (for theH
1 error of the velocity), but then we get an

increase in the order of convergence with respect to the element sizeh.



ε = 1 ε = 2 · 10−6

‖u‖1 1.00 3.25
‖u‖0 2.01 3.92
‖p‖0 1.65 2.14

Table 1: Convergence rate of the element-sizeh for the Mini element. Note that for smallε we
get two orders faster convergence than the standard error estimates.

Figure 5 and Table 1 present the results for the Mini element applied to our Stokes problem
(1)-(3). Forε = 1, Table 1 confirms the standard error estimates for the velocity. For smallε we
get two orders of convergence higher than predicted by the standard error estimates.

From Figure 5, we notice that for not too small values ofε, the error of the velocity converges
linearly with respect toε. For a given value ofε (dependent of the element sizeh), this linear
dependency stops, due to the domination of the error termh3‖εf + ∇g‖0. But we notice the
increased order of convergence with respect to the element sizeh, as also stated in Table 1. The
pressure shows no clear signs of improved convergence, as wewill expect. We do get a region
where the error of the pressure converges linearly with respect toε. However, this is up to the
point whereεf ≈ ∇g.

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

ε

H
1  e

rr
or

 o
f v

el
oc

ity

25h
24h
23h
22h
2h
h

(a)H1 error of the velocity

10
−4

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

ε

L2  e
rr

or
 o

f p
re

ss
ur

e

25h
24h
23h
22h
2h
h

(b) L
2 error of the pressure

Fig. 6: The Crouzeix-Raviart element applied to (1)-(3). Convergence results are listed in
Table 2. The convergence with respect toε is only true untilεf is of the order of∇g. This
region of convergence is therefore not dependent of the element sizeh. We do not experience
an increase in the order of convergence with respect toh for small values ofε. Obviously the
Mini element is superior to the Crouzeix-Raviart element for this type of problems.

ε = 1 ε = 2 · 10−4

‖u‖1 0.99 0.86
‖u‖0 1.94 1.74
‖p‖0 1.07 1.03

Table 2: Convergence rate of the element-sizeh for the Crouzeix-Raviart element.

The Crouzeix-Raviart element, as shown in Figure 6 and Table2, shows no sign of increased
approximation properties compared to the standard error estimates. This is probably due to the
fact that Crouzeix-Raviart does not satisfy the weak inf-sup condition. We do have a small



region where the velocity error converges linearly withε. But this region is small (approximately
one decade instead of more than three decades for the Mini element), and it is not increasing
when the element size is decreased. This small region of convergence is due to the fact that a
reduction inεf will decrease the error until it is of the order of∇g. Notice the difference; for the
Crouzeix-Raviart element we have linear convergence with respect toε until εf ≈ ∇g, while
for the Mini element we have the same convergence untilhε‖f‖0 ≈ h3‖εf + ∇g‖0. Obviously
the Mini element is vastly superior to the Crouzeix-Raviartfor this test-problem.
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(c) L
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Fig. 7: Stabilized linear elements applied to (22).β = 1
80 . Convergence results are listed in

Table 3. For theH1 error norm of the velocity, we note an increase in the region of convergence
with respect toε. This is even though the stabilization technique used is notstable for the
mixed Poisson problem, and we would not expect to get an improved convergence for small
ε. However, theL2 error norm of the velocity shows no sign of improved convergence. The
reason for this different behavior is unknown to the authors. Still the stabilized linear element
is considered better than the Crouzeix-Raviart element forthese kind of problems.

The stabilized linear element in Figure 7 and Table 3 is presented for completeness, since
different stabilization techniques are frequently used for the Stokes problem. This stabilization
technique (withβ = 1

80 ) is considered to have equal properties as the Mini element for the
Stokes problem. However, this is not so clear for the mixed Poisson problem. Therefore we
cannot expect stabilized linear elements to have the same behavior as the Mini element. An
interesting thing is the different behavior of the error of the velocity measured in theH1 norm
compared to theL2 norm in Figure 7. TheH1 error plot shows the typical behavior of an



ε = 1 ε = 2 · 10−4

‖u‖1 1 1.77
‖u‖0 2 2
‖p‖0 1.69 1.98

Table 3: Convergence rate of the element-sizeh for the stabilized linear element, withβ = 1
80 .

element that satisfies the “weak” inf-sup condition. Note that the range of the linear convergence
of ε is extended for smaller elements. We also have one order higher convergence with respect
to the element sizeh for small values ofε. These signs are not present in theL

2 error plots.
Why this is the case is unknown to the authors.

NUMERICAL EXPERIMENTS ON THE STATIONARY INCOMPRESSIBLE NA VIER-
STOKES EQUATIONS
We now consider a stationary Navier-Stokes problem

u · ∇u − ν∆u + ∇p = ∇g + εf , in Ω, (26)

∇ · u = 0, in Ω, (27)

u = uE , on∂ΩE , (28)

ν
∂u

∂n
− p · n = g · n + εk on∂ΩN , (29)

wherek is a given function,∂ΩE is the part of the boundary with essential boundary conditions,
and∂ΩN is the part with the natural boundary conditions. The constant 1

ρ
is absorbed into the

pressure variablep. It is easy to extend the splitting of the Stokes problem (1)-(3), done in a
previous section, to the Navier-Stokes equations (26)-(29). The importance of the weak inf-sup
condition is still true, meaning that Conjecture 1 is also true for the stationary Navier-Stokes
equations. We will now test this using the Taylor-Hood element, which satisfy the weak inf-sup
condition, and theP2 − P0 which does not.

Again we choose a simple example with the known analytical solution (22) which satisfies
the model problem (26)-(29). Compared to (26) the right handside will be

εf + ∇g = −∆u + ∇p + u · ∇u

One side of the domain has a natural boundary condition, while the others have essential bound-
ary conditions. Again, by using (19), we predict that for small values ofε, the error from the
approximation of the pressure may influence the error of the approximation of the velocity,
depending of the choice of element.

As for the Mini element, we also work on extend the analysis ofthe error estimates for the
Taylor-Hood element. Since this is not presented here, the results are presented as a Conjecture
based on the numerical experiments.

Conjecture 2 Assume that we want to solve(1)-(2) using the Taylor-Hood element. Then the
error estimates can be expressed as

‖u − uh‖1 ≤ C(h2ε‖f‖0 + h3‖εf + ∇g‖0) (30)

‖u − uh‖0 ≤ C(h3ε‖f‖0 + h4‖εf + ∇g‖0) (31)

The Taylor-Hood element shows very similar behavior as the Mini element, and the general
comments on Conjecture 1 do also apply here. For small valuesof ε, the Taylor-Hood element
only gain one order of convergence with respect to the element sizeh, as for the Mini element
the increase is two orders of convergence. This means that for small values ofε, the Mini



element and the Taylor-Hood element has the same order of convergence for the velocity with
respect to the element sizeh.

Figure 8 and Table 4 the numerical experiments for the Taylor-Hood element on the sta-
tionary Navier-Stokes problem. We notice the improved convergence for small values ofε. For
more specific comments, the reader should refer to the previous section where the Mini element
is commented.

ε = 1 ε = 2 · 10−6

‖u‖1 1.98 2.74
‖u‖0 2.98 3.86
‖p‖0 3.00 2.00

Table 4: Convergence rate of the element-sizeh for the Taylor-Hood element. Note that for
small values ofε we get one order higher convergence than the standard error estimate.
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Fig. 8: The Taylor-Hood element, applied to (26)-(29). Convergence results are listed in
Table 4. We notice the increase in the region of convergence with respect toε, and the increased
order of convergence for small values ofε.

ε = 1 ε = 2 · 10−4

‖u‖1 1.87 0.91
‖u‖0 2.64 1.83
‖p‖0 1.02 0.969

Table 5: Convergence rate of the element-sizeh for theP2 − P0 element. We notice that for
small values ofε, we do not even get the expected convergence from the standard error estimate.
This is because we have under-resolved the problem, and are therefore outside the asymptotic
regime.

For theP2 −P0 element, Figure 9 and Table 5 indicate that we do not even get the standard
error estimates for small values ofε. This is due to the poor approximation properties for these
kind of problems. For the used number of elements, we are outside the region where we can
expect the asymptotic convergence of the standard error estimates.

CONCLUSIONS
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Fig. 9: TheP2−P0 element, applied to (26)-(29). Convergence results in the element-sizeh
are listed in Table 4. There are no signs of improved convergence for small values ofε. This is
as expected since theP2 − P0 does not satisfy the weak inf-sup condition.

In this paper we have focused on the use of some standard mixedelements applied to in-
compressible fluid flow. In particular we have focused on the case where the hydrostatic part
of the pressure is dominating, and the pressure is large relative to the velocity. We have shown
that elements like the Taylor-Hood and the Mini element handle this situation well, in contrast
to the Crouzeix-Raviart and theP2 − P0 element. This seems to be related to the fact that
the Taylor-Hood and the Mini element give stable approximations of the mixed Poisson prob-
lem. Finally, we have seen that these ideas apply to the stationary Navier-Stokes equations with
general boundary conditions.
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