
Preconditioning of fully implicit Runge-Kutta schemes

for parabolic PDEs

Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

Simula Research Laboratory

Lysaker, Norway

Abstract

Recently, the authors introduced a preconditioner
for the linear systems that arise from fully im-
plicit Runge-Kutta time stepping schemes applied
to parabolic PDEs [9]. The preconditioner was
a block Jacobi preconditioner, where each of the
blocks were based on standard preconditioners for
low-order time discretizations like implicit Euler
or Crank-Nicolson. It was proven that the pre-
conditioner is optimal with respect to the timestep
and the discretization parameter in space.

In this paper we will improve the convergence by
considering other preconditioners like the upper
and the lower block Gauss-Seidel preconditioners,
both in a left and right preconditioning setting.
Finally, we improve the condition number by using
a generalized Gauss-Seidel preconditioner.

1 Introduction

Since its introduction in 1895, the Runge-Kutta
schemes have proven to be efficient for a vari-
ety of problems. For the solution of parabolic
PDEs however, the fully implicit schemes are not
that widespread. The majority of these problems
are computed using either implicit Euler, Crank-
Nicolson or some higher-order Backward Differ-
ential Formulas (BDF) scheme in time. They all
result in a Helmholtz type of problem to be solved
for each timestep.

Because of the quadrature of the fully implicit
Runge-Kutta schemes, the system to be solved
increases in dimension for increasing number of
quadrature nodes. In general, for a problem where
the space is discretized using m degrees of free-
dom, an s stage scheme will result in a system
to be solved of dimension sm × sm. In addition,
although the ODE system matrix is symmetric
and positive definite, the matrix when the Runge-

Kutta scheme is employed is in general nonsym-
metric and indefinite, and requires different linear
solvers.

Diagonal implicit Runge-Kutta schemes (DIRK)
have been introduced to solve this problem. They
lead to s systems of dimension m×m to be solved,
where the symmetric positive definite property is
preserved. Unfortunately, this type of schemes
suffer from a severe kind of order reduction for
stiff problems [4, Chapter IV.15], leading to first
order convergence.

Fully implicit Runge-Kutta schemes have several
desirable properties such as high-order of accu-
racy, strong stability properties, both for linear
and for some schemes also for nonlinear differen-
tial equations. They also lead to a simple imple-
mentation of adaptivity, both with respect to the
timestep and the order [5]. It is therefore desirable
to reduce the computational costs of solving the
linear systems arising when using Runge-Kutta
methods on PDEs, in order to make them com-
petitive to multistep methods like BDF. We will
do this by reusing efficient preconditioners for the
Helmholtz problem in a block preconditioner for
the fully implicit Runge-Kutta scheme. We will
discuss both block Jacobi, and block Gauss-Seidel
preconditioners, and we will also discuss both left
and right preconditioning.

To the authors’ knowledge the only former work
on preconditioners for the fully implicit Runge-
Kutta schemes applied to parabolic equations is
done in Van lent and Vandewalle [8]. In [8] the
time stepping system (see (7)) is preconditioned
with a multigrid approximation of the fully cou-
pled system, using a block smoother.

The benefit of the preconditioner presented in this
paper is the reuse of standard preconditioner, both
when it comes to code and theory. Only an ef-
ficient preconditioner for the Helmholtz problem
is needed to implement our block preconditioner.



We do however need a linear solver for a gen-
eral non-symmetric, indefinite matrix, such as e.g.
GMRES.

The remaining of this paper is organized like this:
Section 2 explains the discretization of the prob-
lem, with emphasis on the resulting block struc-
ture from the Runge-Kutta discretization in time.
The preconditioner is presented in Section 3, and
some important properties are discussed. Sec-
tion 4 presents a variety of numerical experiments,
demonstrating the effectiveness of the precondi-
tioner. In Appendix A, some optimal coefficients
for the generalized lower block Gauss-Seidel pre-
conditioner are presented.

2 Discretization of the problem

Let Ω be a bounded polygonal domain in R
d, with

d=1,2 or 3, and boundary ∂Ω. We will consider a
parabolic PDE on the form

∂u

∂t
= ∆u + f, in Ω, t > 0, (1)

u = 0, on ∂Ω, t ≥ 0 (2)

u = u0, in Ω, t = 0, (3)

The equations (1)–(3) are discretized in space by a
finite element method, which gives a R

m×m system
of ODEs to be solved,

Ih

duh

dt
= ∆huh + fh, t > 0, (4)

uh = u0

h, t = 0, (5)

where Ih is the mass matrix and ∆h is the stiffness
matrix.

When the equations (4)–(5) are discretized by
single stage discretization schemes such as im-
plicit Euler, Crank-Nicolson or higher-order BDF
schemes, we arrive at the following sequence of
linear systems to be solved at each time step

(Ih + δtα0∆h)un
h = Ihun−1 + δt(· · · ), (6)

where δt is the time stepping parameter and α0

is a coefficient specific for the chosen scheme. All
higher-order single stage schemes result in more
terms on the right hand side, leaving the left hand
side unchanged (except for the α0 parameter).
This means that a Helmholtz solver has to be used
to compute a single timestep.

A Runge-Kutta scheme, applied to our model
problem (1)-(2), can be written on the form

gi = ∆h



un
h + δt

s
∑

j=1

Aijgj



 + fh(tn + ciδt) (7)

un+1 = un + δt

s
∑

i=1

bigi, i = 1, . . . , s (8)

where Aij are the Runge-Kutta coefficients, bi are
the quadrature weights and ci are the quadrature
nodes of the Runge-Kutta scheme, organized in
the Butcher tableau

c A

bT
.

To better understand the block structure aris-
ing from the Runge-Kutta system, we write the
scheme on matrix form

A =





Ih − δtA11∆h · · · −δtA1s∆h

...
. . .

...
−δtAs1∆h · · · Ih − δtAss∆h



.

We then have to solve Ag = b, where b is the
right hand side given by (7). We notice the block
system, with Helmholtz problems on the diagonal,
and Poisson problems on the off-diagonals. This
motivates us to reuse the preconditioner for the
Helmholtz problem.

We will here give a brief introduction to the dif-
ferent fully implicit Runge-Kutta schemes. For a
more thorough description, the reader is referred
to [4]. The main difference between the families of
fully implicit Runge-Kutta schemes is the choice
of quadrature nodes. It can either be the Gauss,
the Radau or the Lobatto quadrature. The meth-
ods based on the Gauss quadrature are stable for
both linear and nonlinear problems, and the or-
der is 2s. In addition the schemes are symplectic
(see [3, Chapter II.16]). These methods will be de-
noted Gs, where s is the number of nodes. Note
that G1 is the famous implicit midpoint scheme.

When choosing the Radau quadrature, we have
to decide if we want the start or the endpoint to
be one of the quadrature nodes. We choose the
endpoint, leading to very attractive schemes for
parabolic PDEs. The schemes are stable for both
linear and nonlinear problems, and the order is
2s−1. In addition the schemes are stiffly accurate
[4, Chapter IV.15], which is a very attractive prop-
erty when solving different PDEs. These methods



will be denoted RIIs, where II notes that the end-
point is one of the quadrature nodes. Note that
RII1 is the famous implicit Euler scheme.

By choosing the Lobatto quadrature nodes, we
derive three subfamilies of schemes. Two of the
subfamilies have an explicit step, either the first
or the last quadrature node. We will not discuss
these schemes here. Instead we will focus on the
subfamily with only implicit quadrature points.
These schemes are also stable for linear and non-
linear problems, and the order is 2s − 2. As for
the RII schemes, these schemes are also stiffly ac-
curate. We will denote them LCs, where C refers
to the subfamily C.

Note that both the Gauss methods, and the
RadauII methods are collocation methods. As a
consequence, methods of any given order are easily
constructed.

3 The Preconditioner

A general description of a preconditioned problem
is

BLABRx = BLb, x = B−1

R g,

where BL and BR is the left and the right precon-
ditioner, respectively. It will be made clear from
the context whether B is a left, or a right precon-
ditioner, so we will from now on drop the subscript
for left and right.

For s = 1, we end up with preconditioning and
solving a Helmholtz problem. Order optimal so-
lution algorithms for this system are well known
for most spatial discretization methods. The goal
of this paper is to reuse such preconditioners for
fully implicit Runge–Kutta schemes.

We will investigate both a block Jacobi and a block
Gauss Seidel preconditioner on the form

BJ =







Ih − δtÃ11∆h · · · 0
...

. . .
...

0 · · · Ih − δtÃss∆h







−1

(9)

BGSL =







Ih − δtÃ11∆h · · · 0
...

. . .
...

−δtÃs1∆h · · · Ih − δtÃss∆h







−1

,

(10)
where Ã = A for now. Ã will be referred to as the
preconditioner coefficients. The upper triangular
Gauss-Seidel (GSU) preconditioner BGSU have the
structure of the transposed of the lower triangular

(GSL) preconditioner BGSL. When we write BGS ,
it means that it can be either lower, or upper block
Gauss-Seidel preconditioner.

For lower-order discretization methods in space,
multigrid and domain decomposition methods are
often used as preconditioners. Such methods have
been extensively studied both in theory and in
practice, and it has been shown that they are order
optimal with respect to the discretization param-
eters h and δt. When we write B, it means exact
preconditioning, meaning that each block is in-
verted exactly. B̃ means that we compute a cheap
approximation of B, e.g. multigrid.

Property 1 By using an order optimal precondi-

tioner for the Helmholtz problem for each diagonal

block, the block Jacobi preconditioner B̃J will also

be order optimal.

This is proven in [9]. It can been proven in a simi-
lar way for the block Gauss-Seidel preconditioner,
but we will investigate this numerically.

Property 2 Assume that B̃ is the approximation

of the exact preconditioner B, e.g. multigrid, and

that B is either a block Jacobi or a block Gauss-

Seidel preconditioner. Then the condition number

can be bounded by

κ(B̃A) ≤ κ(B̃B−1)κ(BA) (11)

Proof: By using a Cauchy-Schwarz like inequality
valid for condition numbers, we find that

κ(B̃A) = κ(B̃B−1BA)

≤ κ(B̃B−1)κ(BA)

¤

It is clear from Property 2 that the condition
number using an inexact preconditioner can be
bounded by the condition number using exact pre-
conditioning multiplied by an amplification factor.
This amplification factor is the condition number
of the inexact preconditioner applied to the inverse
of the exact preconditioner.

Assuming that we use a block Jacobi precondi-
tioner, and that ∆h is symmetric positive defi-
nite. Then B̃B−1 is also symmetric positive defi-
nite, leading to

κ(B̃B−1) =
maxi(max(eig(B̃iB

−1

i )))

minj(min(eig(B̃jB
−1

j )))



It can be proven that this is close to the condition
number of the preconditioned Helmholtz problem.

Assume that we use a lower block Gauss-Seidel
preconditioner. The inverse of a triangular matrix
is still a triangular matrix. We now write

B−1 =







B̂11 . . . 0
...

. . .
...

B̂s1 . . . B̂ss






.

Then we find that

B̃B−1 =











i
∑

k=j

B̃ikB̂kj i ≥ j, i, j = 1, . . . , s

0 else.

Hence, the analysis is more complicated. The
same argument holds for upper block Gauss-
Seidel. Obviously the block Gauss-Seidel precon-
ditioner is less robust to a poor approximation of
the preconditioner, then the block Jacobi precon-
ditioner in the case with a large number of quadra-
ture points. We are therefore interested in in-
vestigating these amplification factors numerically
when using multigrid approximation.

Property 3 Assume that the complexity of the

matrix-vector product ∆hx scales as O(m), for

∆h ∈ R
m×m and x ∈ R

m. Then one iteration

of our preconditioned algorithm, both the block Ja-

cobi and the block Gauss-Seidel, scales as O(s2m),
where s is the number of quadrature nodes in the

chosen Runge-Kutta scheme.

This means that the fully implicit scheme scales
as the DIRK methods, but worse then the single
stage schemes which scales as O(pm) where p is
the number of steps. However, s is usually small
leading to a relatively small difference. The ques-
tion is if the increase in computational cost for one
timestep is larger then the decrease in the required
number of timesteps. This will be investigated nu-
merically.

One benefit of the presented preconditioner is
that spatial discretization technique can easily be
changed. In practice people would probably be in-
terested in using higher-order methods in space as
well as in time. As long as there exists a precon-
ditioner for the implicit Euler method, this can be
reused with our methodology. Note however that
the proof of Property 1 is based on a conforming
finite element or spectral element discretization.

4 Results

We will use multigrid to approximate the precon-
ditioner. All computations will be done on a do-
main Ω = (0, 1)d, where d is the number of spatial
dimensions. A sequence of meshes is constructed
by uniform refinement of a 2, 2 × 2 or 2 × 2 × 2
partition of the domain Ω. The preconditioner B̃

is computed using a standard V-cycle with a sym-
metric Gauss-Seidel smoother. Gaussian elimina-
tion is used as the coarse grid solver. Note that we
do not reach the asymptotic region for 1D multi-
grid preconditioning in our experiments, and the
condition number may be higher in this case.

We want to find the condition number κ(B̃A) for
left preconditioning, and κ(AB̃) for right precondi-
tioning. For large problems, this can not be found
exactly. It is therefore approximated by solving
the linear system using Conjugate Gradient for
the Normal equation (CGN). More precisely we
solve

(B̃A)T B̃Ax = (B̃A)T B̃b

and approximate κ(B̃A) =
√

κ((B̃A)T B̃A). A de-
scription on how to approximate the condition
number from a Conjugated Gradient method can
be found in [10].

4.1 Verification of the optimality of the

preconditioner using multigrid

In this experiment we verify numerically the order
optimality of the block preconditioner with respect
to the spatial discretization parameter h and the
timestep δt, by using multigrid to approximate the
blocks. This is done for the 2D problem (1)-(3) us-
ing bilinear finite elements in space and the three
nodes RadauII scheme in time. First B̃J is a block
Jacobi preconditioner approximated by one multi-
grid V-cycle. The results can be found in Table 1.
The order optimal behavior is confirmed with an
asymptotic value of roughly 17.

In the second experiment, B̃GSL is a lower block
Gauss-Seidel preconditioner, again approximated
by one multigrid V-cycle. The results can be found
in Table 2. Gauss-Seidel is apparently much bet-
ter then Jacobi, and the asymptotic value of the
condition number is roughly 3. Again the order
optimal behavior is confirmed.



δt/h 2−3 2−4 2−5 2−6 2−7 2−8 2−9

0.1 14.3 15.2 15.7 16.2 16.6 16.8 16.9
0.05 13.4 14.9 15.4 16.0 16.4 16.7 16.9
0.02 11.1 14.1 15.1 15.6 16.1 16.5 16.8
0.01 8.49 13.0 14.7 15.3 15.9 16.3 16.7
0.005 5.71 11.2 14.1 15.1 15.6 16.1 16.5
0.002 3.03 7.84 12.6 14.5 15.3 15.8 16.3
0.001 1.99 5.17 10.6 13.8 15.0 15.5 16.1

Table 1: The condition number κ(B̃JA) for the
2D problem (1)-(3) using bilinear finite elements
in space, and the three nodes RadauII scheme in
time. B̃J is the block Jacobi preconditioner, and
is approximated using one multigrid V-cycle.

δt/h 2−3 2−4 2−5 2−6 2−7 2−8 2−9

0.1 2.45 2.59 2.65 2.72 2.77 2.81 2.83
0.05 2.29 2.54 2.63 2.68 2.75 2.79 2.82
0.02 1.96 2.42 2.58 2.65 2.71 2.77 2.80
0.01 1.64 2.25 2.52 2.62 2.67 2.74 2.79
0.005 1.34 1.99 2.42 2.58 2.65 2.71 2.77
0.002 1.15 1.56 2.18 2.50 2.61 2.66 2.73
0.001 1.13 1.29 1.90 2.38 2.56 2.64 2.70

Table 2: The condition number κ(B̃GSLA) for the
2D problem (1)-(3) using bilinear finite elements
in space, and the three nodes RadauII scheme in
time. B̃GSL is the lower block Gauss-Seidel pre-
conditioner, and is approximated using one multi-
grid V-cycle.

4.2 Numerical investigation of the con-

dition number when using multi-

grid

Property 2 states that the condition number us-
ing inexact preconditioning will be bounded by the
condition number of the exact preconditioner mul-
tiplied by the condition number of inexact precon-
ditioner applied to the inverse of the exact pre-
conditioner. We will investigate this numerically.
This is done by computing the condition number
κ(BA) and κ(B̃A), where B̃ is computed using one
multigrid V-cycle. We do this for d = 1, 2, 3, with
h = 2−9, 2−9, 2−6 respectively. The exact precon-
ditioner is only computed in the 1D case. The
results using block Jacobi preconditioning can be
found in Table 3, while the lower block Gauss-
Seidel preconditioner can be found in Table 4. The
one node Gauss is included for reference.

We notice that the increase in condition num-
ber due to the inexact preconditioning is approxi-

κ(BA) κ(B̃A)
1D 1D 2D 3D

G1 1.00 1.94 1.10 1.08
G2 4.79 9.08 5.22 4.98
G3 11.8 22.0 12.7 11.9
G4 22.4 41.2 24.1 22.3
G5 37.2 67.8 40.0 36.9
G6 56.6 102 60.4 55.6
RII2 6.75 12.9 7.36 7.04
RII3 15.4 29.0 16.7 15.8
RII4 27.1 50.1 29.3 27.1
RII5 41.2 75.2 44.3 40.8
RII6 57.5 104 61.5 56.4
LC2 1.34 1.96 1.42 1.42
LC3 11.2 21.4 12.2 11.8
LC4 21.6 40.6 23.5 22.2

Table 3: Block Jacobi preconditioner applied to
the one, two and three dimensional problem (1)-
(3) with δt = 0.1 and h = 2−9, 2−9, 2−6 respec-
tively. B̃ is computed using one multigrid V-cycle.

mately 2 in 1D, and 1.1 in 2D. For the 3D case, we
are not in the asymptotic region, and the condition
number is therefore some places slightly smaller
then the one using exact preconditioning. We no-
tice that the block Gauss Seidel preconditioner is
in general much better then the block Jacobi pre-
conditioner.

4.3 Comparison of left and right pre-

conditioner for Jacobi, lower and

upper Gauss-Seidel

In our fifth experiment, the difference between left
and right preconditioning, for both the block Ja-
cobi, lower block and upper block Gauss-Seidel is
investigated. This is done for a 1D problem on
the form (1)-(3). In space we use linear finite el-
ements with h = 2−8. The preconditioner is com-
puted exact. This is done for the Radau schemes
with two to six nodes. The results are shown in
Table 5. From the results, we conclude that right
preconditioning is generally better then left pre-
conditioning. The difference may be more then a
factor of two. We also conclude that lower block
Gauss-Seidel gives the lowest condition number.
Upper block Gauss-Seidel gives by far the largest
condition number, which is not intuitive. The ex-
planation to this is postponed to the next section,
due to the need for some simplifying assumptions.



κ(BA) κ(B̃A)
1D 1D 2D 3D

G1 1.00 1.94 1.10 1.08
G2 1.37 3.53 1.47 1.43
G3 2.09 6.49 2.23 2.11
G4 3.45 11.8 3.62 3.41
G5 6.57 21.9 6.99 6.38
G6 13.5 41.1 14.4 12.9
RII2 1.64 4.46 1.76 1.71
RII3 2.63 7.74 2.80 2.67
RII4 4.05 12.1 4.38 4.09
RII5 6.25 18.4 6.76 6.21
RII6 9.69 27.9 10.3 9.36
LC2 2.64 4.24 2.78 2.75
LC3 5.75 13.7 6.30 5.96
LC4 9.31 23.2 10.4 9.59

Table 4: Lower block Gauss-Seidel precondi-
tioner applied to the one, two and three di-
mensional problem (1)-(3) with δt = 0.1 and
h = 2−9, 2−9, 2−6 respectively. B̃ is computed us-
ing one multigrid V-cycle.

BJ BGSL BGSU

BA AB BA AB BA AB

RII2 6.75 3.12 1.64 1.70 7.72 4.01
RII3 15.4 5.35 2.63 2.47 19.1 7.53
RII4 27.1 7.69 4.05 3.44 35.1 11.6
RII5 41.2 10.3 6.25 4.75 54.9 16.2
RII6 57.5 13.3 9.69 6.59 78.4 21.2

Table 5: The condition number for the left pre-
conditioned system κ(BA), and the right precon-
ditioned system κ(AB) for the 1D problem (1)-(3)
using linear finite elements in space with h = 2−8.
B is the block Jacobi, lower block and upper block
Gauss-Seidel, and is computed exactly.

4.4 Finding optimal coefficients for the

preconditioner

In the previous experiments we used Ã = R(A),
where R represents the restriction to the diagonal
elements, the lower or the upper triangular part.
A relevant question is if it is possible to reduce the
condition number of the preconditioned system by
changing Ã. From the previous example, we no-
ticed that upper block Gauss-Seidel gives a larger
condition number then the block Jacobi precon-
ditioner. By choosing all the off-diagonal coeffi-
cients infinite small, we will be close to a block
Jacobi preconditioner. This clearly indicates that
it should be possible to find a more optimal Ã. In
order to find these optimal coefficients, we need

to understand what governs the condition number
from the preconditioned system.
If we instead of solving a PDE, discretize a scalar
ODE u′ = λu, we get

A =









1 − δtA11λ −δtA12λ · · · −δtA1sλ
−δtA21λ 1 − δtA22λ · · · −δtA2sλ

...
...

. . .
...

−δtAs1λ −δtAs2λ · · · 1 − δtAssλ









B is identical, only changing A with Ã and restrict-
ing it to diagonal or lower triangular. If δtλ À 1,
it is obvious that

κ(BA) ≈ κ(Ã−1A). (12)

For a PDE, λ will be a n×n matrix, containing n
eigenvalues. If we assume that all the blocks in A

is well preconditioned by B, all the eigenvalues will
be clustered and (12) is still a good approximation.
This is tested for the 1D problem (1)-(3), using
linear finite elements with h = 2−8, and the results
can be seen in Table 6.

BJ BGSL

BA Ã−1A AB AÃ−1 BA Ã−1A AB AÃ−1

RII2 6.75 6.75 3.12 3.01 1.64 1.64 1.70 1.70
RII3 15.4 15.4 5.35 5.15 2.63 2.63 2.47 2.47
RII4 27.1 27.1 7.69 7.61 4.05 4.05 3.44 3.44
RII5 41.2 41.2 10.3 10.3 6.25 6.26 4.75 4.75
RII6 57.5 57.5 13.3 13.3 9.69 9.70 6.59 6.59

Table 6: Comparison of the condition number
of the preconditioned system BA and the condi-
tion number of the preconditioner coefficient ma-
trix and Runge-Kutta coefficient matrix ÃA. The
numbers are in good agreement, motivating us to
use (12) as a cheep cost-function for the optimiza-
tion process.

We will now indicate why upper block Gauss-
Seidel works so bad compared to block Jacobi and
lower block Gauss-Seidel. Obviously we have

(

Ã−1

GSLA
)

ij
=

i
∑

k=1

ÂikAkj (13)

(

Ã−1

GSUA
)

ij
=

s
∑

k=i

ÂikAkj (14)

where (Ã−1)ij = Âij . Most fully implicit Runge-
Kutta schemes have large values in the lower tri-
angular part of the coefficient matrix A, and small
values in the upper triangular part.



For lower block Gauss-Seidel, Ã−1

GSLA, this leads
to a small number divided by a larger number in
the upper right part of the matrix, while the lower
part is well preconditioned. In general this leads
to a small condition number.

For the upper block Gauss-Seidel, Ã−1

GSUA, this do
however lead to a relative large number divided by
a smaller number in the lower left part of the ma-
trix, while the upper part is well preconditioned.
In general this leads to a large condition number.

Because of its bad preconditioning properties, we
will discuss upper block Gauss-Seidel no more.
Note that this is not a proof, but only a plausi-
ble explanation.

The same type of arguments can be used to ex-
plain why right preconditioning is generally better
then left.

We will now see if it is possible to improve the
conditioning number by optimizing the precondi-
tioner coefficient matrix Ã. Obviously (12) is a
good approximation, at least as long as the pre-
conditioner is computed exact. We will therefore
optimize the coefficients in Ã, given the structure
from the choice of a block Jacobi scheme, or a
lower block Gauss-Seidel scheme.

min
Ã

κ(Ã−1A), left preconditioning

min
Ã

κ(AÃ−1), right preconditioning
(15)

Note that we now use a generalized block Jacobi,
or block Gauss-Seidel, since B is no longer the
block diagonal or block triangular part of A. We
use a Nelder-Mead algorithm [6] and initialize with
the values from A. Note that we might not find
the global optimal value by using this optimization
process.

In Table 7 we see the condition numbers based on
the optimized preconditioner coefficient matrix Ã.
The difference between the optimization cost func-
tion (15) and κ(BA), is minimal. A is constructed
for the 1D heat equation (1)-(3) using linear ele-
ments with h = 2−8.

Since the difference between left and right lower
block Gauss-Seidel is relative small, and left pre-
conditioning is the most commonly used precon-
ditioning technique, we will from now on only dis-
cuss left preconditioning.

It is now important to determine how much the
condition number will grow when the exact pre-
conditioner B is changed with the inexact pre-
conditioner B̃ based on multigrid. The results

BJ BGSL

BA Ã−1A AB AÃ−1 BA Ã−1A AB AÃ−1

RII2 4.01 3.76 2.72 2.27 1.21 1.00 1.24 1.00
RII3 7.74 7.41 4.52 4.27 1.24 1.00 1.33 1.00
RII4 12.9 12.6 6.82 6.77 1.45 1.39 1.49 1.03
RII5 20.0 18.9 9.50 9.50 1.55 1.27 1.65 1.39
RII6 26.2 26.2 12.4 12.4 1.91 1.72 1.76 1.54

Table 7: Comparison of the condition number of
the preconditioned system BA and the condition
number of the preconditioner coefficient matrix
and Runge-Kutta coefficient matrix ÃA where the
preconditioner coefficient matrix is a result from
the optimization process (15).

can be seen in Table 8 for the block Jacobi and
the lower block Gauss-Seidel preconditioner. For
block Jacobi preconditioning, we notice that the
reduction in the condition number is much smaller
then expected from the exact preconditioned prob-
lem. For lower block Gauss-Seidel the condition
number is in some cases larger then the non op-
timized case. For LC3, we do not even have con-
vergence after 3000 CGN iterations for the lower
block Gauss-Seidel. To understand this we study
the blocks in the preconditioner.

B̃i(a∆h), B̃i = (c∆h)−1 (16)

B̃i(I − a∆h), B̃i = (I − c∆h)−1 (17)

The condition number of (16) will not change
when c changes, though the impact on the con-
dition number of the full block matrix is more
complicated. For (17) however, we can not say
that the condition number will not change when
c changes, considering the approximation of the
preconditioner is done by multigrid.
To avoid this, we try another approach by adding
the constraint

diag(Ã) = diag(A) (18)

to the minimization problem (15). This results in
an optimization only valid for block Gauss-Seidel
preconditioners.
The results can be seen in Table 9. As expected,
the condition number using exact preconditioning
is larger for the optimization using the constraint
(18), then without. But the condition number us-
ing inexact preconditioning based on multigrid is
in much better agreement with the optimization
results. By choosing a 6 nodes scheme, the lower



Jacobi Gauss-Seidel
Optimized Non-opt Optimized Non-opt

κ(BA) κ(B̃A) κ(B̃A) κ(BA) κ(B̃A) κ(B̃A)

G2 3.41 4.91 5.22 1.11 1.45 1.47
G3 6.97 12.0 12.7 1.20 3.46 2.23
G4 12.4 22.9 24.1 1.41 2.95 3.62
G5 19.8 38.1 40.0 1.47 3.69 6.99
G6 29.1 58.2 60.4 1.63 5.60 14.4
RII2 4.01 6.92 7.36 1.21 1.75 1.76
RII3 7.74 15.8 16.7 1.24 4.09 2.80
RII4 12.9 27.8 29.3 1.45 3.69 4.38
RII5 20.0 42.1 44.3 1.55 10.5 6.76
RII6 26.2 59.4 61.5 1.91 2.77 10.3
LC2 1.34 1.42 1.42 1.08 1.56 2.78
LC3 6.83 11.4 12.2 3.64 −− 6.30
LC4 10.2 22.2 23.5 2.50 7.10 10.4

Table 8: Condition number for optimized and non
optimized preconditioner coefficient matrix Ã for
both exact preconditioning for the 1D heat prob-
lem (1)-(3), and the 2D heat problem (1)-(3) us-
ing a multigrid approximation of the precondi-
tioner. The optimization is not very effective when
the preconditioner is approximated by multigrid.
(−−) means that CGN did not converge after 3000
iterations.

block Gauss-Seidel preconditioner using one multi-
grid V-cycle results in a condition number of less
then 2.5 for two and three dimensional problems.

4.5 Iteration count and timing results

Finally, we compare the wall clock time (wct) for
a given test problem. We solve (1)–(3), with a
source term f such that the exact solution is

u(x, y, t) = sin (ωxx) sin (ωyy) sin (ωtt)

(ωx, ωy, ωt) = (π, π, 20.5π), t ∈ [0, 1]

The high number of oscillation in time is used to
generate a certain degree of complexity in time.
In space we discretize using linear finite elements.
Both the element size h and the time–step δt is
chosen such that the error is of order 10−5, mea-
sured in the L2 norm in both space and time. The
preconditioner is a lower block Gauss-Seidel ap-
proximated using one multigrid V–cycle, and the
linear system is solved using GMRES with restart
and 5 search vectors (for RadauII 1 node we used
conjugated gradients) with a stopping criterion of
absolute residual equal 10−7.

κ(BA) κ(B̃A)
1D 1D 2D 3D

G2 1.32 2.42 1.39 1.40
G3 1.51 3.25 1.53 1.55
G4 1.59 4.11 1.65 1.67
G5 1.89 5.04 1.94 1.96
G6 2.10 6.34 2.19 2.22
RII2 1.56 2.97 1.65 1.67
RII3 1.86 3.80 1.92 1.94
RII4 2.10 4.65 2.12 2.17
RII5 2.29 5.00 2.34 2.35
RII6 2.25 5.33 2.30 2.32
LC2 1.34 1.59 1.41 1.41
LC3 3.00 5.46 3.15 3.18
LC4 4.63 8.04 4.78 4.81

Table 9: Condition number of the preconditioned
system where Ã is the optimal coefficients com-
puted from the optimization problem (15), with
the constraint (18).

Notice that for GMRES the residual is only eval-
uated before the restart. This means that the sys-
tem is possibly over–iterated, but the computa-
tional time is in general smaller due to the high
cost of evaluating the residual in every iteration.
We also solve the linear system using CGN.

The results are computed on a Linux machine with
an Intel P4 2.8GHz processor and 1GB RAM. The
result is displayed in Table 10.

The number of iterations for GMRES and CGN
is comparable, but the difference in the wall clock
time is approximately a factor of 2. In our experi-
ment, the five nodes RadauII scheme is by far the
fastest. This is due to the decrease in number of
required steps outweighs the increase in number
of iteration for the linear solver. Implicit Euler
(RII1) is very slow due to the large number of re-
quired timesteps.

Note however that no general conclusions can be
drawn from this small experiment. Which scheme
is the fastest depends on several properties like the
regularity of the solution, the required accuracy,
the implementation etc.

5 Final remarks

In this paper we have shown that the systems aris-
ing from fully implicit Runge–Kutta schemes ap-
plied to parabolic equations can be preconditioned



GMRES CGN
Method δt wct k wct k

RII 1 1.0e-6 104 3
RII 2 2.0e-3 12.2 10 23.8 9.8
RII 3 1.0e-2 4.2 13 9.1 13.7
RII 4 2.5e-2 3.0 20 6.4 16.6
RII 5 5.0e-2 2.2 21 5.0 19.1

Table 10: The wall clock time (wct) measured
in minutes, and the average number of itera-
tions k for solving the 2D heat equation (1)–
(3) for RadauII schemes with various number of
stages. RII 1 is solved using normal CG. The dis-
cretization parameters are chosen such that the
errors from the discretizations are approximately
10−5. The preconditioner is approximated using
one multigrid V–cycle. The higher order schemes
outperforms the lower-order schemes.

with block diagonal and block triangular precon-
ditioners, where the diagonal blocks are standard
preconditioners developed for the backward Euler
scheme. Such preconditioner are well known to be
order optimal when constructed by, e.g., multigrid
or domain decomposition methods.

In several numerical experiments we have demon-
strated that the condition number for the precon-
ditioned systems is bounded. We have also seen
that higher-order methods are beneficial, when
using efficient preconditioners, even for problems
with relatively fast dynamics and modest accu-
racy requirements. For the six nodes RadauII
scheme, the new preconditioning approach with
lower block Gauss-Seidel with optimal coefficients
results in a 30 times reduction in the condition
number compared to the block Jacobi precondi-
tioner presented in the previous paper [9].

References

[1] Lawrence C. Evans. Partial Differential

Equations. Number 19. American Mathemat-
ical Society, 1998.

[2] Wolfgang Hackbusch. Iterative Solution of

Large Sparse Systems of Equations. Num-
ber 95. Springer Verlag, 1994.

[3] E. Hairer, S.P. Nørsett, and G. Wanner. Solv-

ing Ordinary Differential Equations I - Non-

stiff Problems. Springer Verlag, 2nd edition,
1992.

[4] E. Hairer and G. Wanner. Solving Ordi-

nary Differential Equations II - Stiff and

Differential-Algebraic Problems. Springer
Verlag, 2nd edition, 1996.

[5] Ernst Hairer and Gerhard Wanner. Stiff dif-
ferential equations solved by Radau methods.
Journal of Computational and Applied Math-

ematics, 111:93–111, 1999.

[6] J.E. Dennis Jr. and R.B. Schnabel. A View
of Unconstrained Optimization. In G.L.
Nemhauser, A.H.G. Rinnooy Kan, and H.J.
Todd, editors, Optimization, pages 1–72. El-
sevier, 1989.

[7] J.C. Lagarias, J.A. Reeds, M.H. Wright, and
P.E. Wright. Convergence properties of the
Nelder-Meas Simplex method in lower dimen-
sions. SIAM Journal of Optimization, 9:112–
147, 1998.

[8] J. Van lent and S. Vandewalle. Multi-
grid methods for implicit Runge-Kutta and
boundary value method discretizations of
PDEs. to appear in SIAM J. Sci. Comput,
2004.

[9] K.A. Mardal, T.K. Nilssen, and G.A. Staff.
Order optimal preconditioners for implicit
Runge-Kutta schemes applied to parabolic
PDE’s. Simula Research Laboratory, Re-
search Report 08–2005. URL:.

[10] Yousef Saad. Iterative Methods for Sparse

Linear Systems. SIAM, 2nd edition, 2003.

[11] V. Thomée. Galerkin Finite Element Meth-

ods for Parabolic Problems, volume 2nd.
Springer-Verlag, 1997.

A Optimal coefficients

Here we present the optimal coefficients for the
preconditioner matrix Ã. The coefficients are
found by solving the optimization problem (15)
with the constraint (18). Due to a space limi-
tation, only 6 decimals are presented. Only the
values for left preconditioned lower block Gauss-
Seidel are presented, since this has been the most
effective preconditioner in our experiments.



0.25 0
0.488313 0.25

Table 11: Optimal coefficients Ã for the two nodes
Gauss scheme

0.138888 0 0
0.224907 0.222222 0
0.143025 0.387432 0.138888

Table 12: Optimal coefficients Ã for the three
nodes Gauss scheme

0.086963 0 0 0
0.171390 0.163036 0 0
0.192773 0.273261 0.163036 0
0.245927 0.232027 0.273809 0.086963

Table 13: Optimal coefficients Ã for the four nodes
Gauss scheme

0.059231 0 0 0 0
0.094654 0.119657 0 0 0
0.118474 0.226545 0.142222 0 0
0.156695 0.244621 0.242734 0.119657 0
0.108481 0.287240 0.227631 0.206980 0.059231

Table 14: Optimal coefficients Ã for the five nodes
Gauss scheme

0.042831 0 0 0 0 0
0.087051 0.090190 0 0 0 0
0.112166 0.152098 0.116978 0 0 0
0.115420 0.142112 0.224669 0.116978 0 0
0.076975 0.168167 0.271509 0.217320 0.090190 0
0.081495 0.169801 0.311476 0.215085 0.145205 0.042831

Table 15: Optimal coefficients Ã for the six nodes
Gauss scheme

0.416666 0
0.673076 0.25

Table 16: Optimal coefficients Ã for the two nodes
RadauII scheme

0.196815 0 0
0.259583 0.292073 0
0.194743 0.4.1444 0.111111

Table 17: Optimal coefficients Ã for the three
nodes RadauII scheme

0.112999 0 0 0
0.207430 0.206892 0 0
0.280581 0.238590 0.189036 0
0.321615 0.194202 0.255668 0.0625

Table 18: Optimal coefficients Ã for the four nodes
RadauII scheme

0.072998 0 0 0 0
0.134217 0.146214 0 0 0
0.166967 0.191017 0.167585 0 0
0.181347 0.188433 0.174109 0.128756 0
0.168265 0.212583 0.132551 0.176719 0.04

Table 19: Optimal coefficients Ã for the five nodes
RadauII scheme

0.050950 0 0 0 0 0
0.090379 0.106975 0 0 0 0
0.113069 0.173695 0.136314 0 0 0
0.117967 0.202003 0.245356 0.131006 0 0
0.100245 0.235893 0.304197 0.210749 0.092430 0
0.098567 0.240736 0.329458 0.213036 0.124316 0.027777

Table 20: Optimal coefficients Ã for the six nodes
RadauII scheme

0.5 0
0 0.5

Table 21: Optimal coefficients Ã for the two nodes
LobattoC scheme

0.166666 0 0
-0.125000 0.416666 0
-0.166666 0.606060 0.166666

Table 22: Optimal coefficients Ã for the three
nodes LobattoC scheme

0.083333 0 0 0
-0.031715 0.25 0 0
0.070601 0.508398 0.25 0
0.132073 0.522927 0.483915 0.083333

Table 23: Optimal coefficients Ã for the four nodes
LobattoC scheme


