
Preconditioning of fully implicit

Runge-Kutta schemes for parabolic PDEs

Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

Simula Research Laboratory

Lysaker, Norway

Abstract

Recently, the authors introduced a preconditioner for the linear sys-
tems that arise from fully implicit Runge-Kutta time stepping schemes
applied to parabolic PDEs [9]. The preconditioner was a block Ja-
cobi preconditioner, where each of the blocks were based on standard
preconditioners for low-order time discretizations like implicit Euler or
Crank-Nicolson. It was proven that the preconditioner is optimal with
respect to the timestep and the discretization parameter in space.
In this paper we will improve the convergence by considering other
preconditioners like the upper and the lower block Gauss-Seidel pre-
conditioners, both in a left and right preconditioning setting. Finally,
we improve the condition number by using a generalized Gauss-Seidel
preconditioner.

1 Introduction

Since theirs introduction in 1895, the Runge-Kutta schemes have proven
to be efficient for a variety of problems. For the solution of parabolic
PDEs however, the fully implicit schemes are not that widespread. The
majority of these problems are computed using either implicit Euler,
Crank-Nicolson or some higher-order Backward Differential Formulas
(BDF) scheme in time. They all result in a Helmholtz type of problem
to be solved for each timestep.

Because of the quadrature of the fully implicit Runge-Kutta schemes,
the system to be solved increases in dimension for increasing number
of quadrature nodes. In general, for a problem where the space is dis-
cretized using m degrees of freedom, an s stage scheme will result in
a system to be solved of dimension sm × sm. In addition, although
the ODE system matrix is symmetric and positive definite, the matrix
when the Runge-Kutta scheme is employed is in general nonsymmetric
and indefinite, and requires different linear solvers.

Diagonal implicit Runge-Kutta schemes (DIRK) have been intro-
duced to solve this problem. They lead to s systems of dimension
m × m to be solved, where the symmetric positive definite property
is preserved. Unfortunately, this type of schemes suffer from a severe

1



kind of order reduction for stiff problems [4, Chapter IV.15], leading
to first order convergence.

Fully implicit Runge-Kutta schemes have several desirable proper-
ties such as high-order of accuracy, strong stability properties, both for
linear and for some schemes also for nonlinear differential equations.
They also lead to a simple implementation of adaptivity, both with
respect to the timestep and the order [5]. It is therefore desirable to
reduce the computational costs of solving the linear systems arising
when using Runge-Kutta methods on PDEs, in order to make them
competitive to multistep methods like BDF. We will do this by reusing
efficient preconditioners for the Helmholtz problem in a block precondi-
tioner for the fully implicit Runge-Kutta scheme. We will discuss both
block Jacobi, and block Gauss-Seidel preconditioners, and we will also
discuss both left and right preconditioning.

To the authors’ knowledge the only former work on preconditioners
for the fully implicit Runge-Kutta schemes applied to parabolic equa-
tions is done in Van lent and Vandewalle [8]. In [8] the time stepping
system (see (7)) is preconditioned with a multigrid approximation of
the fully coupled system, using a block smoother.

The benefit of the preconditioner presented in this paper is the
reuse of standard preconditioner, both when it comes to code and the-
ory. Only an efficient preconditioner for the Helmholtz problem is
needed to implement our block preconditioner. We do however need
a linear solver for a general non-symmetric, indefinite matrix, such as
e.g. GMRES.

The remaining of this paper is organized like this: Section 2 ex-
plains the discretization of the problem, with emphasis on the resulting
block structure from the Runge-Kutta discretization in time. The pre-
conditioner is presented in Section 3, and some important properties
are discussed. Section 4 presents a variety of numerical experiments,
demonstrating the effectiveness of the preconditioner. In Appendix A,
some optimal coefficients for the generalized lower block Gauss-Seidel
preconditioner are presented.

2 Discretization of the problem

Let Ω be a bounded polygonal domain in R
d, with d=1,2 or 3, and

boundary ∂Ω. We will consider a parabolic PDE on the form

∂u

∂t
= ∆u + f, in Ω, t > 0, (1)

u = 0, on ∂Ω, t ≥ 0 (2)

u = u0, in Ω, t = 0, (3)

The equations (1)–(3) are discretized in space by a finite element
method, which gives a R

m×m system of ODEs to be solved,

Ih

duh

dt
= ∆huh + fh, t > 0, (4)

uh = u0
h, t = 0, (5)

2



where Ih is the mass matrix and ∆h is the stiffness matrix.
When the equations (4)–(5) are discretized by single stage dis-

cretization schemes such as implicit Euler, Crank-Nicolson or higher-
order BDF schemes, we arrive at the following sequence of linear sys-
tems to be solved at each time step

(Ih + δtα0∆h)un
h = Ihun−1 + δt(· · · ), (6)

where δt is the time stepping parameter and α0 is a coefficient specific
for the chosen scheme. All higher-order single stage schemes result in
more terms on the right hand side, leaving the left hand side unchanged
(except for the α0 parameter). This means that a Helmholtz solver has
to be used to compute a single timestep.

A Runge-Kutta scheme, applied to our model problem (1)-(2), can
be written on the form

gi = ∆h



un
h + δt

s
∑

j=1

Aijgj



+ fh(tn + ciδt) (7)

un+1 = un + δt

s
∑

i=1

bigi, i = 1, . . . , s (8)

where Aij are the Runge-Kutta coefficients, bi are the quadrature
weights and ci are the quadrature nodes of the Runge-Kutta scheme,
organized in the Butcher tableau

c A

bT .

To better understand the block structure arising from the Runge-Kutta
system, we write the scheme on matrix form

A =







Ih − δtA11∆h · · · −δtA1s∆h

...
. . .

...
−δtAs1∆h · · · Ih − δtAss∆h






.

We then have to solve Ag = b, where b is the right hand side given
by (7). We notice the block system, with Helmholtz problems on the
diagonal, and Poisson problems on the off-diagonals. This motivates
us to reuse the preconditioner for the Helmholtz problem.

We will here give a brief introduction to the different fully implicit
Runge-Kutta schemes. For a more thorough description, the reader
is referred to [4]. The main difference between the families of fully
implicit Runge-Kutta schemes is the choice of quadrature nodes. It
can either be the Gauss, the Radau or the Lobatto quadrature. The
methods based on the Gauss quadrature are stable for both linear and
nonlinear problems, and the order is 2s. In addition the schemes are
symplectic (see [3, Chapter II.16]). These methods will be denoted Gs,
where s is the number of nodes. Note that G1 is the famous implicit
midpoint scheme.

3



When choosing the Radau quadrature, we have to decide if we
want the start or the endpoint to be one of the quadrature nodes. We
choose the endpoint, leading to very attractive schemes for parabolic
PDEs. The schemes are stable for both linear and nonlinear problems,
and the order is 2s − 1. In addition the schemes are stiffly accurate
[4, Chapter IV.15], which is a very attractive property when solving
different PDEs. These methods will be denoted RIIs, where II notes
that the endpoint is one of the quadrature nodes. Note that RII1 is
the famous implicit Euler scheme.

By choosing the Lobatto quadrature nodes, we derive three sub-
families of schemes. Two of the subfamilies have an explicit step, ei-
ther the first or the last quadrature node. We will not discuss these
schemes here. Instead we will focus on the subfamily with only implicit
quadrature points. These schemes are also stable for linear and non-
linear problems, and the order is 2s−2. As for the RII schemes, these
schemes are also stiffly accurate. We will denote them LCs, where C
refers to the subfamily C.

Note that both the Gauss methods, and the RadauII methods are
collocation methods. As a consequence, methods of any given order
are easily constructed.

3 The Preconditioner

A general description of a preconditioned problem is

BLABRx = BLb, x = B−1

R g,

where BL and BR is the left and the right preconditioner, respectively.
It will be made clear from the context whether B is a left, or a right
preconditioner, so we will from now on drop the subscript for left and
right.

For s = 1, we end up with preconditioning and solving a Helmholtz
problem. Order optimal solution algorithms for this system are well
known for most spatial discretization methods. The goal of this paper
is to reuse such preconditioners for fully implicit Runge–Kutta schemes.

We will investigate both a block Jacobi and a block Gauss Seidel
preconditioner on the form

BJ =







Ih − δtÃ11∆h · · · 0
...

. . .
...

0 · · · Ih − δtÃss∆h







−1

(9)

BGSL =







Ih − δtÃ11∆h · · · 0
...

. . .
...

−δtÃs1∆h · · · Ih − δtÃss∆h







−1

, (10)

where Ã = A for now. Ã will be referred to as the preconditioner coeffi-
cients. The upper triangular Gauss-Seidel (GSU) preconditioner BGSU

4



have the structure of the transposed of the lower triangular (GSL) pre-
conditioner BGSL. When we write BGS , it means that it can be either
lower, or upper block Gauss-Seidel preconditioner.

For lower-order discretization methods in space, multigrid and do-
main decomposition methods are often used as preconditioners. Such
methods have been extensively studied both in theory and in practice,
and it has been shown that they are order optimal with respect to the
discretization parameters h and δt. When we write B, it means exact
preconditioning, meaning that each block is inverted exactly. B̃ means
that we compute a cheap approximation of B, e.g. multigrid.

Property 1 By using an order optimal preconditioner for the Helmholtz

problem for each diagonal block, the block Jacobi preconditioner B̃J will

also be order optimal.

This is proven in [9]. It can be proven in a similar way for the block
Gauss-Seidel preconditioner, but we will investigate this numerically.

Property 2 Assume that B̃ is the approximation of the exact precon-

ditioner B, e.g. multigrid, and that B is either a block Jacobi or a

block Gauss-Seidel preconditioner. Then the condition number can be

bounded by

κ(B̃A) ≤ κ(B̃B−1)κ(BA) (11)

Proof: By using a Cauchy-Schwarz like inequality valid for condi-
tion numbers, we find that

κ(B̃A) = κ(B̃B−1BA)

≤ κ(B̃B−1)κ(BA)

¤

It is clear from Property 2 that the condition number using an in-
exact preconditioner can be bounded by the condition number using
exact preconditioning multiplied by an amplification factor. This am-
plification factor is the condition number of the inexact preconditioner
applied to the inverse of the exact preconditioner.

Assuming that we use a block Jacobi preconditioner, and that ∆h

is symmetric positive definite. Then B̃B−1 is also symmetric positive
definite, leading to

κ(B̃B−1) =
maxi(max(eig(B̃iB

−1

i )))

minj(min(eig(B̃jB
−1

j )))

It is well known that B̃ can be approximated using multigrid or domain
decomposition methods.

Assume that we use a lower block Gauss-Seidel preconditioner. The
inverse of a triangular matrix is still a triangular matrix. We now write

B−1 =







B̂11 . . . 0
...

. . .
...

B̂s1 . . . B̂ss






.

5



Then we find that

B̃B−1 =











i
∑

k=j

B̃ikB̂kj i ≥ j, i, j = 1, . . . , s

0 else.

Hence, the analysis is more complicated. The same argument holds for
upper block Gauss-Seidel. Obviously the block Gauss-Seidel precon-
ditioner is less robust to a poor approximation of the preconditioner,
then the block Jacobi preconditioner in the case with a large number
of quadrature points. We are therefore interested in investigating these
amplification factors numerically when using multigrid approximation.

Property 3 Assume that the complexity of the matrix-vector product

∆hx scales as O(m), for ∆h ∈ R
m×m and x ∈ R

m. Then one iteration

of our preconditioned algorithm, both the block Jacobi and the block

Gauss-Seidel, scales as O(s2m), where s is the number of quadrature

nodes in the chosen Runge-Kutta scheme.

This means that the fully implicit scheme scales as the DIRK meth-
ods, but worse then the single stage schemes which scales as O(pm)
where p is the number of steps. However, s is usually small leading to a
relatively small difference. The question is if the increase in computa-
tional cost for one timestep is larger then the decrease in the required
number of timesteps. This will be investigated numerically.

One benefit of the presented preconditioner is that spatial dis-
cretization technique can easily be changed. In practice people would
probably be interested in using higher-order methods in space as well
as in time. As long as there exists a preconditioner for the implicit Eu-
ler method, this can be reused with our methodology. Note however
that the proof of Property 1 is based on a conforming finite element or
spectral element discretization.

4 Results

We will use multigrid to approximate the preconditioner. All compu-
tations will be done on a domain Ω = (0, 1)d, where d is the number
of spatial dimensions. A sequence of meshes is constructed by uni-
form refinement of a 2, 2 × 2 or 2 × 2 × 2 partition of the domain
Ω. The preconditioner B̃ is computed using a standard V-cycle with a
symmetric Gauss-Seidel smoother. Gaussian elimination is used as the
coarse grid solver. Note that we do not reach the asymptotic region
for 1D multigrid preconditioning in our experiments, and the condition
number may be higher in this case.

We want to find the condition number κ(B̃A) for left precondition-
ing, and κ(AB̃) for right preconditioning. For large problems, this can
not be found exactly. It is therefore approximated by solving the lin-
ear system using Conjugate Gradient for the Normal equation (CGN).
More precisely we solve

(B̃A)T B̃Ax = (B̃A)T B̃b

6



and approximate κ(B̃A) =
√

κ((B̃A)T B̃A). A description on how to

approximate the condition number from a Conjugated Gradient method
can be found in [10].

4.1 Verification of the optimality of the precondi-

tioner using multigrid

In this experiment we verify numerically the order optimality of the
block preconditioner with respect to the spatial discretization parame-
ter h and the timestep δt, by using multigrid to approximate the blocks.
This is done for the 2D problem (1)-(3) using bilinear finite elements
in space and the three nodes RadauII scheme in time. First B̃J is a
block Jacobi preconditioner approximated by one multigrid V-cycle.
The results can be found in Table 1. The order optimal behavior is
confirmed with an asymptotic value of roughly 17.

δt/h 2−3 2−4 2−5 2−6 2−7 2−8 2−9

0.1 14.3 15.2 15.7 16.2 16.6 16.8 16.9
0.05 13.4 14.9 15.4 16.0 16.4 16.7 16.9
0.02 11.1 14.1 15.1 15.6 16.1 16.5 16.8
0.01 8.49 13.0 14.7 15.3 15.9 16.3 16.7
0.005 5.71 11.2 14.1 15.1 15.6 16.1 16.5
0.002 3.03 7.84 12.6 14.5 15.3 15.8 16.3
0.001 1.99 5.17 10.6 13.8 15.0 15.5 16.1

Table 1: The condition number κ(B̃JA) for the 2D problem (1)-(3) using
bilinear finite elements in space, and the three nodes RadauII scheme in
time. B̃J is the block Jacobi preconditioner, and is approximated using one
multigrid V-cycle.

In the second experiment, B̃GSL is a lower block Gauss-Seidel pre-
conditioner, again approximated by one multigrid V-cycle. The results
can be found in Table 2. Gauss-Seidel is apparently much better then
Jacobi, and the asymptotic value of the condition number is roughly
3. Again the order optimal behavior is confirmed.

4.2 Numerical investigation of the condition num-

ber when using multigrid

Property 2 states that the condition number using inexact precondi-
tioning will be bounded by the condition number of the exact precon-
ditioner multiplied by the condition number of inexact preconditioner
applied to the inverse of the exact preconditioner. We will investigate
this numerically. This is done by computing the condition number
κ(BA) and κ(B̃A), where B̃ is computed using one multigrid V-cycle.
We do this for d = 1, 2, 3, with h = 2−9, 2−9, 2−6 respectively. The ex-
act preconditioner is only computed in the 1D case. The results using
block Jacobi preconditioning can be found in Table 3, while the lower

7



δt/h 2−3 2−4 2−5 2−6 2−7 2−8 2−9

0.1 2.45 2.59 2.65 2.72 2.77 2.81 2.83
0.05 2.29 2.54 2.63 2.68 2.75 2.79 2.82
0.02 1.96 2.42 2.58 2.65 2.71 2.77 2.80
0.01 1.64 2.25 2.52 2.62 2.67 2.74 2.79
0.005 1.34 1.99 2.42 2.58 2.65 2.71 2.77
0.002 1.15 1.56 2.18 2.50 2.61 2.66 2.73
0.001 1.13 1.29 1.90 2.38 2.56 2.64 2.70

Table 2: The condition number κ(B̃GSLA) for the 2D problem (1)-(3) using
bilinear finite elements in space, and the three nodes RadauII scheme in time.
B̃GSL is the lower block Gauss-Seidel preconditioner, and is approximated
using one multigrid V-cycle.

block Gauss-Seidel preconditioner can be found in Table 4. The one
node Gauss is included for reference.

κ(BA) κ(B̃A)
1D 1D 2D 3D

G1 1.00 1.94 1.10 1.08
G2 4.79 9.08 5.22 4.98
G3 11.8 22.0 12.7 11.9
G4 22.4 41.2 24.1 22.3
G5 37.2 67.8 40.0 36.9
G6 56.6 102 60.4 55.6
RII2 6.75 12.9 7.36 7.04
RII3 15.4 29.0 16.7 15.8
RII4 27.1 50.1 29.3 27.1
RII5 41.2 75.2 44.3 40.8
RII6 57.5 104 61.5 56.4
LC2 1.34 1.96 1.42 1.42
LC3 11.2 21.4 12.2 11.8
LC4 21.6 40.6 23.5 22.2

Table 3: Block Jacobi preconditioner applied to the one, two and three di-
mensional problem (1)-(3) with δt = 0.1 and h = 2−9, 2−9, 2−6 respectively.
B̃ is computed using one multigrid V-cycle.

We notice that the increase in condition number due to the inexact
preconditioning is approximately 2 in 1D, and 1.1 in 2D. For the 3D
case, we are not in the asymptotic region, and the condition number
is therefore some places slightly smaller then the one using exact pre-
conditioning. We notice that the block Gauss Seidel preconditioner is
in general much better then the block Jacobi preconditioner.

8



κ(BA) κ(B̃A)
1D 1D 2D 3D

G1 1.00 1.94 1.10 1.08
G2 1.37 3.53 1.47 1.43
G3 2.09 6.49 2.23 2.11
G4 3.45 11.8 3.62 3.41
G5 6.57 21.9 6.99 6.38
G6 13.5 41.1 14.4 12.9
RII2 1.64 4.46 1.76 1.71
RII3 2.63 7.74 2.80 2.67
RII4 4.05 12.1 4.38 4.09
RII5 6.25 18.4 6.76 6.21
RII6 9.69 27.9 10.3 9.36
LC2 2.64 4.24 2.78 2.75
LC3 5.75 13.7 6.30 5.96
LC4 9.31 23.2 10.4 9.59

Table 4: Lower block Gauss-Seidel preconditioner applied to the one, two
and three dimensional problem (1)-(3) with δt = 0.1 and h = 2−9, 2−9, 2−6

respectively. B̃ is computed using one multigrid V-cycle.

4.3 Comparison of left and right preconditioner for

Jacobi, lower and upper Gauss-Seidel

In our fifth experiment, the difference between left and right precondi-
tioning, for both the block Jacobi, lower block and upper block Gauss-
Seidel is investigated. This is done for a 1D problem on the form
(1)-(3). In space we use linear finite elements with h = 2−8. The
preconditioner is computed exact. This is done for the Radau schemes
with two to six nodes. The results are shown in Table 5. From the

BJ BGSL BGSU

BA AB BA AB BA AB

RII2 6.75 3.12 1.64 1.70 7.72 4.01
RII3 15.4 5.35 2.63 2.47 19.1 7.53
RII4 27.1 7.69 4.05 3.44 35.1 11.6
RII5 41.2 10.3 6.25 4.75 54.9 16.2
RII6 57.5 13.3 9.69 6.59 78.4 21.2

Table 5: The condition number for the left preconditioned system κ(BA),
and the right preconditioned system κ(AB) for the 1D problem (1)-(3) using
linear finite elements in space with h = 2−8. B is the block Jacobi, lower
block and upper block Gauss-Seidel, and is computed exactly.

results, we conclude that right preconditioning is generally better then
left preconditioning. The difference may be more then a factor of
two. We also conclude that lower block Gauss-Seidel gives the lowest
condition number. Upper block Gauss-Seidel gives by far the largest

9



condition number, which is not intuitive. The explanation to this is
postponed to the next section, due to the need for some simplifying
assumptions.

4.4 Finding optimal coefficients for the precondi-

tioner

In the previous experiments we used Ã = R(A), where R represents the
restriction to the diagonal elements, the lower or the upper triangular
part. A relevant question is if it is possible to reduce the condition
number of the preconditioned system by changing Ã. From the previ-
ous example, we noticed that upper block Gauss-Seidel gives a larger
condition number then the block Jacobi preconditioner. By choosing
all the off-diagonal coefficients infinite small, we will be close to a block
Jacobi preconditioner. This clearly indicates that it should be possible
to find a more optimal Ã. In order to find these optimal coefficients,
we need to understand what governs the condition number from the
preconditioned system.

If we instead of solving a PDE, discretize a scalar ODE u′ = λu,
we get

A =











1 − δtA11λ −δtA12λ · · · −δtA1sλ
−δtA21λ 1 − δtA22λ · · · −δtA2sλ

...
...

. . .
...

−δtAs1λ −δtAs2λ · · · 1 − δtAssλ











B is identical, only changing A with Ã and restricting it to diagonal or
lower triangular. If δtλ À 1, it is obvious that

κ(BA) ≈ κ(Ã−1A). (12)

For a PDE, λ will be a n × n matrix, containing n eigenvalues. If we
assume that all the blocks in A is well preconditioned by B, all the
eigenvalues will be clustered and (12) is still a good approximation.
This is tested for the 1D problem (1)-(3), using linear finite elements
with h = 2−8, and the results can be seen in Table 6.

We will now indicate why upper block Gauss-Seidel works so bad
compared to block Jacobi and lower block Gauss-Seidel. Obviously we
have

(

Ã−1

GSLA
)

ij
=

i
∑

k=1

ÂikAkj (13)

(

Ã−1

GSUA
)

ij
=

s
∑

k=i

ÂikAkj (14)

where (Ã−1)ij = Âij . Most fully implicit Runge-Kutta schemes have
large values in the lower triangular part of the coefficient matrix A,
and small values in the upper triangular part.

10



BJ BGSL

BA Ã−1A AB AÃ−1 BA Ã−1A AB AÃ−1

RII2 6.75 6.75 3.12 3.01 1.64 1.64 1.70 1.70
RII3 15.4 15.4 5.35 5.15 2.63 2.63 2.47 2.47
RII4 27.1 27.1 7.69 7.61 4.05 4.05 3.44 3.44
RII5 41.2 41.2 10.3 10.3 6.25 6.26 4.75 4.75
RII6 57.5 57.5 13.3 13.3 9.69 9.70 6.59 6.59

Table 6: Comparison of the condition number of the preconditioned sys-
tem BA and the condition number of the preconditioner coefficient matrix
and Runge-Kutta coefficient matrix ÃA. The numbers are in good agree-
ment, motivating us to use (12) as a cheep cost-function for the optimization
process.

For lower block Gauss-Seidel, Ã−1

GSLA, this leads to a small number
divided by a larger number in the upper right part of the matrix, while
the lower part is well preconditioned. In general this leads to a small
condition number.

For the upper block Gauss-Seidel, Ã−1

GSUA, this do however lead
to a relative large number divided by a smaller number in the lower
left part of the matrix, while the upper part is well preconditioned. In
general this leads to a large condition number.

Because of its bad preconditioning properties, we will discuss upper
block Gauss-Seidel no more. Note that this is not a proof, but only a
plausible explanation.

The same type of arguments can be used to explain why right pre-
conditioning is generally better then left.

We will now see if it is possible to improve the conditioning number
by optimizing the preconditioner coefficient matrix Ã. Obviously (12)
is a good approximation, at least as long as the preconditioner is com-
puted exact. We will therefore optimize the coefficients in Ã, given the
structure from the choice of a block Jacobi scheme, or a lower block
Gauss-Seidel scheme.

min
Ã

κ(Ã−1A), left preconditioning

min
Ã

κ(AÃ−1), right preconditioning
(15)

Note that we now use a generalized block Jacobi, or block Gauss-Seidel,
since B is no longer the block diagonal or block triangular part of A.
We use a Nelder-Mead algorithm [6] and initialize with the values from
A. Note that we might not find the global optimal value by using this
optimization process.

In Table 7 we see the condition numbers based on the optimized
preconditioner coefficient matrix Ã. The difference between the opti-
mization cost function (15) and κ(BA), is minimal. A is constructed
for the 1D heat equation (1)-(3) using linear elements with h = 2−8.

Since the difference between left and right lower block Gauss-Seidel
is relative small, and left preconditioning is the most commonly used

11



BJ BGSL

BA Ã−1A AB AÃ−1 BA Ã−1A AB AÃ−1

RII2 4.01 3.76 2.72 2.27 1.21 1.00 1.24 1.00
RII3 7.74 7.41 4.52 4.27 1.24 1.00 1.33 1.00
RII4 12.9 12.6 6.82 6.77 1.45 1.39 1.49 1.03
RII5 20.0 18.9 9.50 9.50 1.55 1.27 1.65 1.39
RII6 26.2 26.2 12.4 12.4 1.91 1.72 1.76 1.54

Table 7: Comparison of the condition number of the preconditioned sys-
tem BA and the condition number of the preconditioner coefficient matrix
and Runge-Kutta coefficient matrix ÃA where the preconditioner coefficient
matrix is a result from the optimization process (15).

preconditioning technique, we will from now on only discuss left pre-
conditioning.

It is now important to determine how much the condition number
will grow when the exact preconditioner B is changed with the inex-
act preconditioner B̃ based on multigrid. The results can be seen in
Table 8 for the block Jacobi and the lower block Gauss-Seidel precondi-
tioner. For block Jacobi preconditioning, we notice that the reduction
in the condition number is much smaller then expected from the exact
preconditioned problem. For lower block Gauss-Seidel the condition
number is in some cases larger then the non optimized case. For LC3,
we do not even have convergence after 3000 CGN iterations for the
lower block Gauss-Seidel. To understand this we study the blocks in
the preconditioner.

B̃i(a∆h), B̃i = (c∆h)−1 (16)

B̃i(I − a∆h), B̃i = (I − c∆h)−1 (17)

The condition number of (16) will not change when c changes, though
the impact on the condition number of the full block matrix is more
complicated. For (17) however, we can not say that the condition
number will not change when c changes, considering the approximation
of the preconditioner is done by multigrid.

To avoid this, we try another approach by adding the constraint

diag(Ã) = diag(A) (18)

to the minimization problem (15). This results in an optimization only
valid for block Gauss-Seidel preconditioners.

The results can be seen in Table 9. As expected, the condition
number using exact preconditioning is larger for the optimization using
the constraint (18), then without. But the condition number using
inexact preconditioning based on multigrid is in much better agreement
with the optimization results. By choosing a 6 nodes scheme, the lower
block Gauss-Seidel preconditioner using one multigrid V-cycle results
in a condition number of less then 2.5 for two and three dimensional
problems.

12



Jacobi Gauss-Seidel
Optimized Non-opt Optimized Non-opt

κ(BA) κ(B̃A) κ(B̃A) κ(BA) κ(B̃A) κ(B̃A)

G2 3.41 4.91 5.22 1.11 1.45 1.47
G3 6.97 12.0 12.7 1.20 3.46 2.23
G4 12.4 22.9 24.1 1.41 2.95 3.62
G5 19.8 38.1 40.0 1.47 3.69 6.99
G6 29.1 58.2 60.4 1.63 5.60 14.4
RII2 4.01 6.92 7.36 1.21 1.75 1.76
RII3 7.74 15.8 16.7 1.24 4.09 2.80
RII4 12.9 27.8 29.3 1.45 3.69 4.38
RII5 20.0 42.1 44.3 1.55 10.5 6.76
RII6 26.2 59.4 61.5 1.91 2.77 10.3
LC2 1.34 1.42 1.42 1.08 1.56 2.78
LC3 6.83 11.4 12.2 3.64 −− 6.30
LC4 10.2 22.2 23.5 2.50 7.10 10.4

Table 8: Condition number for optimized and non optimized preconditioner
coefficient matrix Ã for both exact preconditioning for the 1D heat problem
(1)-(3), and the 2D heat problem (1)-(3) using a multigrid approximation
of the preconditioner. The optimization is not very effective when the pre-
conditioner is approximated by multigrid. (−−) means that CGN did not
converge after 3000 iterations.

4.5 Iteration count and timing results

Finally, we compare the wall clock time (wct) for a given test problem.
We solve (1)–(3), with a source term f such that the exact solution is

u(x, y, t) = sin (ωxx) sin (ωyy) sin (ωtt)

(ωx, ωy, ωt) = (π, π, 20.5π), t ∈ [0, 1]

The high number of oscillation in time is used to generate a certain
degree of complexity in time. In space we discretize using linear finite
elements. Both the element size h and the time–step δt is chosen such
that the error is of order 10−5, measured in the L2 norm in both space
and time. The preconditioner is a lower block Gauss-Seidel approx-
imated using one multigrid V–cycle, and the linear system is solved
using GMRES with restart and 5 search vectors (for RadauII 1 node
we used conjugated gradients) with a stopping criterion of absolute
residual equal 10−7.

Notice that for GMRES the residual is only evaluated before the
restart. This means that the system is possibly over–iterated, but
the computational time is in general smaller due to the high cost of
evaluating the residual in every iteration. We also solve the linear
system using CGN.

The results are computed on a Linux machine with an Intel P4
2.8GHz processor and 1GB RAM. The result is displayed in Table 10.

The number of iterations for GMRES and CGN is comparable, but

13



κ(BA) κ(B̃A)
1D 1D 2D 3D

G2 1.32 2.42 1.39 1.40
G3 1.51 3.25 1.53 1.55
G4 1.59 4.11 1.65 1.67
G5 1.89 5.04 1.94 1.96
G6 2.10 6.34 2.19 2.22
RII2 1.56 2.97 1.65 1.67
RII3 1.86 3.80 1.92 1.94
RII4 2.10 4.65 2.12 2.17
RII5 2.29 5.00 2.34 2.35
RII6 2.25 5.33 2.30 2.32
LC2 1.34 1.59 1.41 1.41
LC3 3.00 5.46 3.15 3.18
LC4 4.63 8.04 4.78 4.81

Table 9: Condition number of the preconditioned system where Ã is the
optimal coefficients computed from the optimization problem (15), with the
constraint (18).

the difference in the wall clock time is approximately a factor of 2. In
our experiment, the five nodes RadauII scheme is by far the fastest.
This is due to the decrease in number of required steps outweighs the
increase in number of iteration for the linear solver. Implicit Euler
(RII1) is very slow due to the large number of required timesteps.

Note however that no general conclusions can be drawn from this
small experiment. Which scheme is the fastest depends on several
properties like the regularity of the solution, the required accuracy,
the implementation etc.

5 Final remarks

In this paper we have shown that the systems arising from fully im-
plicit Runge–Kutta schemes applied to parabolic equations can be pre-
conditioned with block diagonal and block triangular preconditioners,
where the diagonal blocks are standard preconditioners developed for
the backward Euler scheme. Such preconditioner are well known to be
order optimal when constructed by, e.g., multigrid or domain decom-
position methods.

In several numerical experiments we have demonstrated that the
condition number for the preconditioned systems is bounded. We have
also seen that higher-order methods are beneficial, when using efficient
preconditioners, even for problems with relatively fast dynamics and
modest accuracy requirements. For the six nodes RadauII scheme,
the new preconditioning approach with lower block Gauss-Seidel with

14



GMRES CGN
Method δt wct k wct k

RII 1 1.0e-6 104 3
RII 2 2.0e-3 12.2 10 23.8 9.8
RII 3 1.0e-2 4.2 13 9.1 13.7
RII 4 2.5e-2 3.0 20 6.4 16.6
RII 5 5.0e-2 2.2 21 5.0 19.1

Table 10: The wall clock time (wct) measured in minutes, and the average
number of iterations k for solving the 2D heat equation (1)–(3) for RadauII
schemes with various number of stages. RII 1 is solved using normal CG.
The discretization parameters are chosen such that the errors from the dis-
cretizations are approximately 10−5. The preconditioner is approximated
using one multigrid V–cycle. The higher order schemes outperforms the
lower-order schemes.

optimal coefficients results in a 30 times reduction in the condition
number compared to the block Jacobi preconditioner presented in the
previous paper [9].

References

[1] Lawrence C. Evans. Partial Differential Equations. Number 19.
American Mathematical Society, 1998.

[2] Wolfgang Hackbusch. Iterative Solution of Large Sparse Systems

of Equations. Number 95. Springer Verlag, 1994.

[3] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Dif-

ferential Equations I - Nonstiff Problems. Springer Verlag, 2nd
edition, 1992.

[4] E. Hairer and G. Wanner. Solving Ordinary Differential Equations

II - Stiff and Differential-Algebraic Problems. Springer Verlag,
2nd edition, 1996.

[5] Ernst Hairer and Gerhard Wanner. Stiff differential equations
solved by Radau methods. Journal of Computational and Applied

Mathematics, 111:93–111, 1999.

[6] J.E. Dennis Jr. and R.B. Schnabel. A View of Unconstrained
Optimization. In G.L. Nemhauser, A.H.G. Rinnooy Kan, and
H.J. Todd, editors, Optimization, pages 1–72. Elsevier, 1989.

[7] J.C. Lagarias, J.A. Reeds, M.H. Wright, and P.E. Wright. Con-
vergence properties of the Nelder-Meas Simplex method in lower
dimensions. SIAM Journal of Optimization, 9:112–147, 1998.

[8] J. Van lent and S. Vandewalle. Multigrid methods for im-
plicit Runge-Kutta and boundary value method discretizations
of PDEs. to appear in SIAM J. Sci. Comput, 2004.

15



[9] K.A. Mardal, T.K. Nilssen, and G.A. Staff. Order optimal precon-
ditioners for implicit Runge-Kutta schemes applied to parabolic
PDE’s. Simula Research Laboratory, Research Report 08–2005.
URL:.

[10] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM,
2nd edition, 2003.

[11] V. Thomée. Galerkin Finite Element Methods for Parabolic Prob-

lems, volume 2nd. Springer-Verlag, 1997.

A Optimal coefficients

Here we present the optimal coefficients for the preconditioner matrix
Ã. The coefficients are found by solving the optimization problem
(15) with the constraint (18). Due to a space limitation, only 6 deci-
mals are presented. Only the values for left preconditioned lower block
Gauss-Seidel are presented, since this has been the most effective pre-
conditioner in our experiments.

16



0.25 0
0.488313 0.25

Table 11: Optimal coefficients Ã for the two nodes Gauss scheme

0.138888 0 0
0.224907 0.222222 0
0.143025 0.387432 0.138888

Table 12: Optimal coefficients Ã for the three nodes Gauss scheme

0.086963 0 0 0
0.171390 0.163036 0 0
0.192773 0.273261 0.163036 0
0.245927 0.232027 0.273809 0.086963

Table 13: Optimal coefficients Ã for the four nodes Gauss scheme

0.059231 0 0 0 0
0.094654 0.119657 0 0 0
0.118474 0.226545 0.142222 0 0
0.156695 0.244621 0.242734 0.119657 0
0.108481 0.287240 0.227631 0.206980 0.059231

Table 14: Optimal coefficients Ã for the five nodes Gauss scheme

0.042831 0 0 0 0 0
0.087051 0.090190 0 0 0 0
0.112166 0.152098 0.116978 0 0 0
0.115420 0.142112 0.224669 0.116978 0 0
0.076975 0.168167 0.271509 0.217320 0.090190 0
0.081495 0.169801 0.311476 0.215085 0.145205 0.042831

Table 15: Optimal coefficients Ã for the six nodes Gauss scheme

0.416666 0
0.673076 0.25

Table 16: Optimal coefficients Ã for the two nodes RadauII scheme

0.196815 0 0
0.259583 0.292073 0
0.194743 0.4.1444 0.111111

Table 17: Optimal coefficients Ã for the three nodes RadauII scheme

0.112999 0 0 0
0.207430 0.206892 0 0
0.280581 0.238590 0.189036 0
0.321615 0.194202 0.255668 0.0625

Table 18: Optimal coefficients Ã for the four nodes RadauII scheme

17



0.072998 0 0 0 0
0.134217 0.146214 0 0 0
0.166967 0.191017 0.167585 0 0
0.181347 0.188433 0.174109 0.128756 0
0.168265 0.212583 0.132551 0.176719 0.04

Table 19: Optimal coefficients Ã for the five nodes RadauII scheme

0.050950 0 0 0 0 0
0.090379 0.106975 0 0 0 0
0.113069 0.173695 0.136314 0 0 0
0.117967 0.202003 0.245356 0.131006 0 0
0.100245 0.235893 0.304197 0.210749 0.092430 0
0.098567 0.240736 0.329458 0.213036 0.124316 0.027777

Table 20: Optimal coefficients Ã for the six nodes RadauII scheme

0.5 0
0 0.5

Table 21: Optimal coefficients Ã for the two nodes LobattoC scheme

0.166666 0 0
-0.125000 0.416666 0
-0.166666 0.606060 0.166666

Table 22: Optimal coefficients Ã for the three nodes LobattoC scheme

0.083333 0 0 0
-0.031715 0.25 0 0
0.070601 0.508398 0.25 0
0.132073 0.522927 0.483915 0.083333

Table 23: Optimal coefficients Ã for the four nodes LobattoC scheme

18


