
European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2006

P. Wesseling, E. Oñate and J. Périaux (Eds)
c© TU Delft, The Netherlands, 2006

BLOCK PRECONDITIONERS FOR FULLY IMPLICIT
RUNGE-KUTTA SCHEMES APPLIED TO THE BIDOMAIN

EQUATIONS

Gunnar A. Staff∗ and Kent-Andre Mardal† and Trygve K. Nilssen††

∗ Simula Research Laboratory
1325 Lysaker, Norway

e-mail: gunnaran@simula.no
web page:http://www.simula.no/portal memberdata/gunnaran

† Simula Research Laboratory
1325 Lysaker, Norway

e-mail:kent-and@simula.no
web page:http://www.simula.no/portal memberdata/kent-and

†† Scandpower Petrolium Technology AS
N-2027 Kjeller, Norway

e-mail:trygve.nilssen@scandpowerpt.com

Key words: Block preconditioners Runge-Kutta methods, order-optimal methods

Abstract. Recently, the authors presented different block preconditioners for implicit

Runge-Kutta discretization of the heat equation. The preconditioners were block Jacobi

and block Gauss-Seidel preconditoners where the blocks reused existing preconditioners for

the implicit Euler discretization of the same equation. In this paper we will introduce

similar block preconditioners for the implicit Runge-Kutta discretization of the Bidomain

equation. We will, by numerical experiments, show the properties of the preconditon-

ers, and that higher-order Runge-Kutta discretization of the Bidomain equation may be

superior to lower-order in some cases.

1 Introduction

Since Runge published his paper in 189515, the Runge-Kutta methods have proven
to be effective solvers of different ODEs. However, when the system of ODEs originates
from a parabolic PDE, these methods are not that common. The majority of these
problems are computed using single step methods like Implicit Euler, Crank-Nicolson or
some higher-order Backward Differential Formulas (BDF) in time.

When a system of ODEs with dimension m is discretized using an s stage Runge-Kutta
method, the system to be solved is of dimension sm × sm. In addition, even though the
system of ODEs is symmetric positive definite, the resulting Runge-Kutta discretization
is in general nonsymmetric and non-positive definite. This calls for different linear solvers
and often prevents the use of well known preconditioners.

1



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

In14,17, we addressed this problem for the heat equation by introducing a block pre-
conditioner that reuses standard preconditioners. It was proven that the block Jacobi
preconditioner is order optimal with respect to the timestep and the spatial discretization
parameters, assuming that the preconditioner for the implicit Euler discretization is.

In this paper we will present block preconditioners for the Runge-Kutta discretization
of the Bidomain equations which is a mathematical model of the electrical activity in the
heart. The Bidomain equations are an index 1 problem, in contrast to the heat equation
from14,17 which is index 0.

The remaining of this paper is organized like this: Section 2 explains the Bidomain
equation, and emphasises the block structure of the resulting discretized system. The
preconditioners are presented in Section 3. In Section 4 we present a variety of numerical
experiments, demonstrating the effectiveness of the preconditioner, while in Section 5 we
summarize the results.

2 Discretization of the Problem

Computer based simulations of the electrical activity in the heart is an active research
field of applied mathematics. The electrical activity of the heart can be modelled using
the Bidomain equations19, where relevant application of the model are e.g. studies of
arrhytmia and defibrillation.

To discretized and solve with high accuracy in space is a simple task. To do the same for
the time variable is more challenging since it prevents the use of standard preconditioners.
This is the problem we will address by introducing block preconditioners for the Runge-
Kutta discretization.

The mathematical model can be written as:

∂s

∂t
= F (t, s, v) x ∈ Ω, (1)

∂v

∂t
= ∇ · (σin∇v) + ∇ · (σin∇u) − I(v, s) x ∈ Ω, (2)

0 = ∇ · (σin∇v) + ∇ · ((σin + σex)∇u) x ∈ Ω, (3)

where the unknowns are the trans-membrane potential v, the extra cellular potential u

and the state variables s, which varies from 1 and up to 40 in the most realistic models 19.
The intra– and extra cellular conductivity tensors are denoted σin and σex, respectively.
For notational convenience, the tensors are scaled by the membrane capacitance and the
membrane surface area, see18 for details. Depending on the membrane model, the rate
function F might describe ionic fluxes, enzyme kinetics and possibly other entities. The
function I is current flux across the cell membrane. The computational domain is denoted
Ω.

A common way to solve these systems of equations is to use an operator splitting
technique to split (1) from (2)-(3)18. We will not focus on this splitting in this paper.
We will assume that this splitting can be done, and instead study how we can solve

2



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

(2)-(3) using implicit Runge-Kutta methods in time, and how we can reuse well known
preconditioners to create efficient preconditioners for this reduced system.

We start by discretize (2)-(3) in space using e.g. a finite element method. The resulting
system can be written as

Ih

dv

dt
= −Minv − Minu + fv, (4)

0 = −Minv − Mtotu + fu, (5)

where Ih ∈ R
n×n is a mass matrix, Min ∈ R

n×n is the spatial discretization matrix of
∇ · (σin∇) (a stiffness matrix) and Mtot ∈ R

n×n is the discretization of ∇ · ((σin + σex)∇)
(also a stiffness matrix) . The resulting system is a differential-algebraic equation (DAE)
of index 1, which requires solution methods in time which are stiffly accurate. Suitable
methods are the Backward Differentiation Formulae (BDF), and Runge-Kutta methods
with RadauIIA collocation methods4,9.

When the equations (4)-(5) are discretized using single stage discretization schemes
such as implicit Euler or higher-order BDF schemes, we arrive at the following linear
system to be solved at each time step:

[

Ih + δtMin δtMin

δtMin δtMtot

] [

v

u

]n+1

=

[

v

0

]n

+ δt

[

fv

fu

]n+1

.

All higher-order single stage methods result in more terms on the right hand side, leav-
ing the left hand side unchanged (except that δt on the left hand side will be substituted
with δtα0).

For a Runge-Kutta discretization of our problem, the stage variables can be computed
as

Vi = vn−1 + δt

s
∑

j=1

aij(−MinVj − MinUj + fv(tj)), i = 1, . . . , s (6)

0 = −MinVi − MtotUi + fu(ti), i = 1, . . . , s, (7)

where the s is the number of quadrature points and aij are the Runge-Kutta coefficients,
bi are the quadrature weights and ci are the quadrature nodes organized in the Butcher
tableau

c A

bT
.

Note that the reduction from the standard formulation

0 = δt

s
∑

j=1

aij (−MinVj − MtotUj + fu(tj)) , i = 1, . . . , s, (8)

3



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

to (7) assumes that the Runge-Kutta coefficient matrix is invertible 9. Then the next
timestep is found by

vn+1 = Vs,

un+1 = Us,

assuming that the chosen Runge-Kutta scheme is stiffly accurate (asi = bi, i = 1, . . . , s).
The implicit Runge-Kutta methods with RadauIIA quadrature have both an invertible A

and are stiffly accurate scheme. By using these methods the global error for vn and un is
O(δts2−1)9. The implicit Runge-Kutta methods with LobattoIIIC quadrature have also
an invertible A, and are stiffly accurate. These methods have an global error for vn and
un of O(δts2−2)9.

To better understand the block structure arising from the Runge-Kutta discretization,
we write the scheme on block matrix form for s = 2:









Ih + δta11Min δta11Min

δta11Min δta11Mtot

δta12Min δta12Min

0 0
δta21Min δta21Min

0 0
Ih + δta22Min δta22Min

δta22Min δta22Mtot

















V1

U1

V2

U2









=









un−1 + δt(a11fu,1 + a12fu,2)
δta11fv,1

un−1 + δt(a21fu,1 + a22fu,2)
δta22fv,2









.

For reasons that will be explained later, we have multiplied (7) with δtaii.
This can be written on the compact tensor-product form

A = Is×s ⊗

[

Ih 0
0 0

]

+ δt

(

diag(A) ⊗

[

0 0
Min Mtot

]

+ A ⊗

[

Min Min

0 0

])

, (9)

where Is×s is the identity matrix in s dimensions. This will be denote the standard

formulation.
Since Gauss-Seidel depends on the numbering of the unknowns, we may arrange the

system with the quadrature nodes in increasing order and sort the system for U and then
V . This results in an alternative formulation:









δta11Mtot 0 δta11Min 0
0 δta22Mtot 0 δta22Min

δta11Min δta12Min Ih + δta11Min δta12Min

δta21Min δta22Min δta21Min Ih + δta22Min

















U1

U2

V1

V2









=









δta11fv,1

δta22fv,2

un−1 + δt(a11fu,1 + a12fu,2)
un−1 + δt(a21fu,1 + a22fu,2)









.

4



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

In tensor-product notation this simply means that we have changed the order of the
factors in the tensor-product, and then changed the position of v and u.

A =

[

0 0
0 Ih

]

⊗ Is×s + δt

([

Mtot Min

0 0

]

⊗ diag(A) +

[

0 0
Min Min

]

⊗ A

)

. (10)

We will denote this the UV formulation.

3 The Preconditioner

A general description of the preconditioned problem is:

BLABRx = BLb,

where BL and BR are the left and right preconditioners, respectively. It will be made clear
from the context whether B is a left or a right preconditioner, so we will from now on
drop the subscript for left and right.

When we write B, it means exact preconditioning, meaning that the inversion is done
exactly. B̃ means that we compute a cheap approximation of B using in our case multi-
grid, but it may equally well be a domain decomposition method or other well known
preconditioning techniques.

3.1 Block preconditioners for the Bidomain model

We will start by presenting a block preconditioner for the Bidomain equation, first
presented by Sundnes et al.20 and then proven by Mardal et al.13. They present a block
Jacobi and a symmetric block Gauss-Seidel preconditioner, and prove that it is order
optimal assuming that the preconditioner for each block is order optimal.

Assume that we can write our problem (2)-(3) on a general block matrix form

A =

[

A B

C D

]

. (11)

(12)

where A in this case is a general matrix, and not the Runge-Kutta coefficient matrix.
Then the block Jacobi and block symmetric-Gauss-Seidel can be written as

B−1
J =

[

A 0
0 D

]

, (13)

B−1
SGS = B−1

GSLBJB
−1
GSU , B−1

GSL =

[

A 0
C D

]

, B−1
GSU =

[

A B

0 D

]

. (14)

By using a Runge-Kutta discretization, A will in general be nonsymmetric, meaning
that we do not necessarily need symmetric preconditioners. Therefore we will also use

5



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

the block Gauss-Seidel preconditioner BGSL which from now on will be denoted BGS. The
nonsymmetric Gauss-Seidel preconditioners are not discussed in the paper by Mardal et
al.13, and we will therefore indicate an order-optimal behaviour by presenting numerical
results.

3.2 Block preconditioners for the Runge-Kutta discretization

We will investigate both a block Jacobi and a block Gauss-Seidel preconditioner for
the standard formulation (9) and the UV formulation (10). These two formulations gives
two different approaches for the construction of the preconditioners. We start with the
UV-formulation (10).

B−1
J =

[

δtdiag(A) ⊗ Mtot 0
0 Is×s ⊗ Ih + δtdiag(A) ⊗ Min

]

,

B−1
GS =

[

δtdiag(A) ⊗ Mtot 0
δtA ⊗ Min Is×s ⊗ Ih + δtltri(A) ⊗ Min

]

,

where diag(·) means the diagonal of a matrix, while ltri(·) means the lower triangular part
of a matrix. Both BJ and BGS are a straightforward formulation of a block Jacobi or a
block Gauss-Seidel preconditioner based on A.

It is now time to explain why we multiplied (7) with δtaii. Assume that we didn’t, and
that we applied the block Jacobi preconditioner BJ . Then we would have 2s blocks which
looked like

(Ih + δtaiiMin)
−1Min ≈ (δtaiiMin)

−1Min = (δtaii)
−1I,

where the first step assumes that the eigenvalues in δtaiiMin dominates the ones in Ih. We
would then have 2s off-diagonal block with eigenvalues scaling as (δtaii)

−1. This would
be disastrous for the condition number, and is obviously something we want to prevent.
We therefore multiply (7) with δtaii.

If we instead consider the standard-formulation (9), we are in the position to formulate
a block-block preconditioner. Let us denote

ABD,i =

[

Ih + δtaiiMin δtaiiMin

δtaiiMin δtaiiMtot

]

,

ABD,ij =

[

δtaijMin δtaijMin

0 0

]

,

where ABD,i is the diagonal blocks in the Runge-Kutta formulation, while ABD,ij is the
off-diagonal blocks. If we assume that we have a preconditioner for ABD,i, then the
construction of the preconditioner is similar to the one presented in 14,17.

6



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

We therefore introduce the block preconditioning elements

B−1
BD,i,J =

[

Ih + δtaiiMin 0
0 δtaiiMtot

]

,

B−1
BD,i,GS =

[

Ih + δtaiiMin 0
δtaiiMin δtaiiMtot

]

,

where BBD,i,J is the block Jacobi preconditioner presented by Mardal et al. 13, and BBD,i,GS

is the lower block Gauss-Seidel preconditioner. For the off-diagonal block elements we also
have two options, namely

B−1
BD,ij,J =

[

δtaijMin 0
0 0

]

,

B−1
BD,ij,F =

[

δtaijMin δtaijMin

0 0

]

,

where BBD,ij,J is the off-diagonal block in Jacobi style, while BBD,ij,F is the full block. In
this setting BBD,ij,J ≡ BBD,ij,GS . The Runge-Kutta Jacobi preconditioners can then be
written as

B−1
J,X =











B−1
BD,1,X

B−1
BD,2,X

. . .

B−1
BD,s,X











,

where X is the chosen Bidomain block preconditioner (Jacobi or Gauss-Seidel). The
Runge-Kutta Gauss-Seidel preconditioner can be written as

B−1
GS,X,Y =







B−1
BD,1,X . . . 0

...
. . .

...
B−1

BD,s1,Y . . . B−1
BD,s,X






, (15)

where X as above is the chosen Bidomain block preconditioner, and Y is the chosen block
element for the off-diagonal elements (Jacobi or full). Since X and Y may be unlike, this
introduces an extra degree of freedom in the choice of preconditioner. For instance is
BGS,GS,F the standard block Gauss-Seidel preconditioner of (10), while BGS,GS,GS is the
one where the block Gauss-Seidel formulation is reused on the off-diagonals.

Conjecture 1 By using an order optimal preconditioner for each of the diagonal blocks,

the block preconditioner B̃J and B̃GS will also be order optimal.

The proof of this is work in progress.
Another interesting property is how well the approximated preconditioners actually

work. An indication is given by the Property 1, also stated in 17.

7



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

Property 1 Assuming that B̃ is the approximation of the exact preconditioner B, us-

ing e.g. multigrid or domain decomposition, and that B is one of the presented block

preconditioners. Then the condition number can be bounded by

κ(B̃A) ≤ κ(B̃B−1)κ(BA).

The proof is given in17, and is a simple Cauchy-Schwarz like argument.
We will now try to estimate the sensitivity of the factor κ(B̃B−1) which measures the

effect of the inexact inversion of the preconditioner. Assume that we use a pure block
Jacobi preconditioner (BJ or BJ,J), and that Min and Mtot are symmetric positive definite,
then

κ(B̃B) =
maxi(max(eig(B̃iB

−1
i )))

mini(min(eig(B̃iB
−1
i )))

.

For the different variety of block Gauss-Seidel preconditioners, the estimate is somehow
more complicated. The inverse of a lower triangular matrix is still lower triangular.
Assume that the block Gauss-Seidel preconditioner can be written on the general form

B−1
GS =







B̂11 . . . 0
...

. . .
...

B̂s1 . . . B̂ss






.

Then we find
(

B̃B−1
)

ij
=

{
∑i

k=j B̃ikB̂kj, i ≥ j

0 else.

Obviously the block Gauss-Seidel preconditioner is less robust to a poor approximation
of the preconditioner then the block Jacobi preconditioner. This is something we will
investigate numerically.

4 Results

All implementation is done in the framework of PyCC2, which is a Python library
interfacing compiled packages for matrix-storage, preconditioners etc. It supports higher-
order Lagrange elements5, generated using SyFi3. As preconditioner we use the algebraic
multigrid preconditioner ML1 with one V-cycle and symmetric Gauss-Seidel as point
smoother. All computations will be done on the unit square Ω = (−1, 1)2.

4.1 ML preconditioner on a Poisson problem

Initially, we will demonstrate the behaviour of the ML preconditioner for a Poisson
problem, for the Lagrange elements of order 2,3 and 4. The results can be found in
Figure 1.

We notice that the number of required iterations is oscillating for increasing spatial
discretization. We can not expect the heuristic algorithms finding the coarser grids to

8



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

work equally well for all possible grids, and this is therefore not surprising. For the
Lagrange elements of order 3 and 4, we notice a small increase in the condition number
since we have not reached the asymptotic region yet. This can be reduced by tuning
the aggregation parameters of ML. This has not been done, since the condition number
already is very small. It is never larger then 1.4, 2.5 and 4.1 for the 2nd 3rd and 4th order
element respectively.

4.2 Order optimality of the Bidomain block Gauss-Seidel preconditioner

Since the Runge-Kutta discretization of our problem (4)-(5) is in general nonsymmetric,
we do not have a particular need for symmetric preconditioners. We will therefore use the
lower block triangular Gauss-Seidel preconditioner for the Bidomain equation. Since it is
not discussed in the paper by Mardal et al.13, we first check the order-optimal behaviour
with respect to the spatial discretization parameter h, and the timestep δt by numerical
experiments. The result can be seen in Figure 2.

Again we notice that we have not reached the asymptotic limit yet, but BiCGStab
never requires more then 15 iterations to reach convergence for our testproblem.

4.3 Order optimality of the Runge-Kutta block preconditioner

In this next experiment we show numerically that the Runge-Kutta block precondi-
tioner is order optimal. We test for both the block Jacobian preconditioner BJ,J and for the
block Gauss-Seidel preconditioner BGS,GS,GS for the three stage Runge-Kutta RadauIIA
scheme. The result can be seen in Figure 3

The results are similar for the other preconditioners, and for different numbers of
Runge-Kutta quadrature nodes s.

2
01

3
01

401
501

��� ��� �

��� �

��� �

� � �

� � �

	�� �

	�� �


�� �


�� �

� � �

)
A

B(�


��

 �

 �

Figure 1: The condition number κ(BA) for a Poisson problem −∆u = f . The example illustrates the
behaviour of the ML preconditioner for an elliptic problem.

9



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

4.4 Numerical comparison of the different preconditioners

We will now compare the different preconditioners for different number of Runge-Kutta
stages for both the RadauIIA and the LobattoIIIC family of schemes. This is done by

201 301
4

01��� ��� �
�

�

�

	




� �

� �

���


 �
����

 �
��

��� ����� ���� ����� ���� ����� ���

Figure 2: The number of iterations used by BiCGStab for the 2D problem (2)–(3) using linear finite
elements in space, and implicit Euler in time. The preconditioner is the lower block diagonal Gauss-Seidel
preconditioner. The figure indicate an order optimal behaviour with respect to the spatial discretization
parameter h and the timestep δt.

201 301
401���  �� !

"

#$"

%&"

'&"

(�"

)&"

*&"

+ , -./
,+ 0
12

3 4 5�6�7 83 4 5&8�7 63 4 5&8�7 896

(a) BJ,J

201 301
401:�; <�; =

>

?

@$>

@$?

A&>

A&?

B&>

C D EFG
DC H
IJ

K�L M�N�O PK�L M�P�O NK�L M�P�O P�N

(b) BGS,GS,GS

Figure 3: The number of iterations used by BiCGStab for the 2D problem (2)–(3) using linear finite
elements in space, and three nodes RadauIIA method in time

10



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

solving (4)-(5) using linear finite elements in space, and the specified Runge-Kutta scheme
in time. The grid is a triangulation of 201 × 201 nodes on the unit square. We choose
a large timestep, δt = 5.0, to be close to the asymptotic limit. We count the number of
iterations required for the right preconditioned BiCGStab to reach absolute error of 10−8.
The result can be seen in Table 1. As a point of reference, we compare with the number

UV standard

Method B̃J B̃GS B̃J,J B̃J,GS B̃GS,J,J B̃GS,J,F B̃GS,GS,GS B̃GS,GS,F

RII 2 42 26 43 40 32 35 25 26
RII 3 75 45 74 87 49 58 42 44
RII 4 119 66 116 183 69 84 65 67
LC 2 55 31 54 49 38 42 31 31
LC 3 118 59 115 167 60 72 56 54
LC 4 253 94 256 566 99 125 98 96

Table 1: Number of iterations required for BiCGStab to reach absolute tolerance of 10−8. As a point
of reference, we compare with the solution of the implicit Euler discretization which requires 23, 16 and
18 iterations for block Jacobi, block Gauss-Seidel and symmetric block Gauss-Seidel respectively. RII s

is the RadauIIA scheme with s stages, while LC s is the LobattoIIIC scheme, also with s stages. The
BGS,GS,GS seems to be the most efficient preconditioner for the RadauIIA schemes, while BGS,GS,F seems
to be slightly better for the LobattoIIIC schemes.

of iterations required for solving the same problem discretized with implicit Euler in time.
By using a block Jacobi Bidomain preconditioner, BiCGStab uses 23 iterations. By using
a lower block Gauss-Seidel Bidomain preconditioner, BiCGStab uses 16 iterations. Note
that by using the symmetric Gauss-Seidel Bidomain preconditioner, BiCGStab uses 18
iterations, which is two iterations more then the lower block Gauss-Seidel preconditioner.

First we notice that the block Jacobi preconditioner for the UV formulation B̃J performs
comparable with the block Jacobi preconditioner for the standard formulation B̃J,J . This
is no surprise since they are only permutations of each other. The difference between
them is probably due to round-off errors.

The block Gauss Seidel preconditioners B̃GS and B̃GS,GS,F are also comparable in perfor-
mance. B̃GS,GS,GS reuses the Bidomain block structure for the off-diagonal Runge-Kutta
blocks, and it is slightly better then B̃GS,GS,F in the case of the RadauIIA method. This
is probably because the increase in κ(B̃B−1) due to more non-zeros blocks in (15) out-
weighs the decrease in κ(BA). The same behaviour is even more obvious for B̃GS,J,J versus
B̃GS,J,F . For the LobattoIIIC method, the B̃GS,GS,F preconditioner is best.

An interesting observation is the deterioration of BJ,GS for increasing number of Runge-
Kutta stages. The same behaviour is even more present for the B̃J,SGS , and the numbers
are therefore not presented. This behaviour is not fully understood, but again we believe
that this is because of the increase in the factor κ(B̃B−1).

11



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

4.5 Timing results

Obviously our preconditioner is not order optimal with respect to the number of Runge-
Kutta stages s. The question is whether the decrease in the number of required timesteps
compensate for the increase in the number of iterations. We will try to answer this by
comparing the wall clock time (wct) for a given test problem. We solve (2)-(3) with a
source terms f such that the exact solution is

v(x, y, t) = sin (ωxx) sin (ωyy) sin (ωtt)

u(x, y, t) = − sin (ωxx) sin (ωyy) sin (ωtt)

(ωx, ωy, ωt) = (π, π, 20.5π), Ω = (−1, 1)2, t ∈ [0, 1]

The high number of oscillation in time is used to create a certain degree of complexity
in time. We also vary both of the discretization parameters h and p in space. The
discretization parameters are chosen such that the L2 error in time and space is less then
10−5. We use right preconditioned BiCGStab with an absolute tolerance of 10−7, and
BGS,GS,GS is used as preconditioner. The computation is done on a Intel Xeon 2.0GHz
with 4GB RAM. The results can be seen in Table 2

3rd order (5625) 4th order (3721)
Method δt wct k wct k

RII 1 5 · 10−7 105 1.0 105 1.0
RII 2 2 · 10−3 230 3.8 224 4.4
RII 3 1 · 10−2 151 7.5 141 8.3
RII 4 2.5 · 10−2 160 13.6 144 14.3

Table 2: The wall clock time (wct) measured in seconds, and the average number of iterations k for
solving the 2D Bidomain equation (4)–(5) for RadauIIA schemes with various number of stages. The
discretization parameters are chosen such that the errors from the discretizations are approximately 10−5.
We compute for both the 3rd and the 4rt order Lagrangian element. The number of required degrees of
freedom in space is written in parenthesis. The preconditioner BGS,GS,GS is approximated by using one
algebraic multigrid V–cycle. The higher-order schemes outperforms the lower-order schemes.

For this small testproblem, the higher-order schemes outperforms the lower-order. Note
that these results depend on the chosen problem, the order of accuracy required, the im-
plementation etc., and is therefore not necessarily true in all cases. But it is an indication
that the saving in the number of required timesteps outweighs the increase in the num-
ber of iterations. We have only used the previous timestep as initial guess for the linear
solver. Additional saving can be made for higher-order schemes by using a better guess.
By choosing a more strict error tolerance, the higher-order schemes would have been even
more favourable.

12



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

5 Final Remarks

In this paper we have shown that the systems arising from fully implicit Runge-Kutta
schemes applied to Bidomain equations (2)-(3) can be efficiently preconditioned using well
known preconditioners for parabolic and elliptic problems. The preconditioning block el-
ements are arranged in a block Jacobi or a block Gauss-Seidel fashion. Suitable block
preconditioning elements may be multigrid, domain decomposition or other standard pre-
conditioners.

In several numerical experiments we have indicated that the block preconditioner for
the Runge-Kutta discretization is order optimal, assuming that the preconditioner for the
blocks is so. We have also shown that the increase in the number of required iterations
for higher-order schemes is inferior to the decrease in number of required timesteps. This
shows that higher-order Runge-Kutta schemes are beneficial in computing the Bidomain
equation (4)-(5).

In17, we introduced a generalized block Gauss-Seidel preconditioner where the Runge-
Kutta coefficient matrix A is changed with Ã in the preconditioner. Ã was found by
minimizing the criterion

κ(Ã−1A)

where Ã was a lower triangular matrix. This resulted in a reduction of the condition
number of a factor up to 5 (for the six stage RadauIIA scheme). We tried this optimization
principle for the Bidomain equation as well, but it only made the condition number larger.
We also tried to optimize for the full problem κ(BA) instead for the simplified optimization
principle κ(Ã−1A), but the reduction in the number of BiCGStab iterations was never
more then two. The reason for this is not fully understood, but is probably due to the
conductivities’ influence on the condition number.

We have only shown numerical results for the RadauIIA and the LobattoIIIC family
of the Runge-Kutta schemes. But the only assumptions we have made are that the
scheme have to be stiffly accurate, and that the Runge-Kutta coefficient matrix should
be invertible. This means that the presented preconditioners also works for other Runge-
Kutta schemes satisfying these two properties.

The presented preconditioners will not work on the LobattoIIIA family 9, since the the
Runge-Kutta coefficient matrix A is not invertible in this case. The equation for the
algebraic constraint is then (8) instead of (7) leading to a A being a dense block matrix.
The preconditioners can be modified thereafter, but the condition number will in general
be larger.

References

[1] Ml – Multilevel Preconditioning Package.
http://software.sandia.gov/trilinos/packages/ml/index.html.

13



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

[2] PyCC – Python Cardiac Computation.
http://heim.ifi.uio.no/∼skavhaug/heart simulations.html.

[3] SyFi – Symbolic Finite Elements. http://syfi.sf.net.

[4] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations. SIAM, 1998.

[5] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods.
Number 15 in Texts in Applied Mathematics. Springer, 2nd edition, 2002.

[6] Lawrence C. Evans. Partial Differential Equations. Number 19. American Mathe-
matical Society, 1998.

[7] Wolfgang Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Num-
ber 95. Springer Verlag, 1994.

[8] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I -

Nonstiff Problems. Springer Verlag, 2nd edition, 1992.

[9] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II - Stiff and

Differential-Algebraic Problems. Springer Verlag, 2nd edition, 1996.

[10] Ernst Hairer and Gerhard Wanner. Stiff differential equations solved by Radau
methods. Journal of Computational and Applied Mathematics, 111:93–111, 1999.

[11] J.E. Dennis Jr. and R.B. Schnabel. A View of Unconstrained Optimization. In G.L.
Nemhauser, A.H.G. Rinnooy Kan, and H.J. Todd, editors, Optimization, pages 1–72.
Elsevier, 1989.

[12] J. Van lent and S. Vandewalle. Multigrid methods for implicit Runge-Kutta and
boundary value method discretizations of PDEs. to appear in SIAM J. Sci. Comput,
2004.

[13] K.A. Mardal, B. F. Nielsen, X. Cai, and A. Tveito. An order optimal solver for the dis-
cretized Bidomain equations. Simula Research Laboratory, Research Report 04–2005.
URL:http://www.simula.no/departments/scientific/publications/Mardal.2005.2,
2005.

[14] K.A. Mardal, T.K. Nilssen, and G.A. Staff. Order optimal preconditioners for implicit
Runge-Kutta schemes applied to parabolic PDE’s. Simula Research Laboratory,
Research Report 08–2005. Submitted to SIAM J. Sci. Computing.

[15] C. Runge. Über die numerische Auflösung von Differentialgleichungen. Math, Ann,,
46:167–178, 1895.

14



Gunnar A. Staff and Kent-Andre Mardal and Trygve K. Nilssen

[16] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2003.

[17] Gunnar A. Staff, Kent-Andre Mardal, and Trygve K. Nilssen. Preconditioning of
fully implicit Runge-Kutta schemes for parabolic PDEs. Modeling, Identification

and Control, 27(2):109–123, 2006.

[18] J. Sundnes, G. T. Lines, and A. Tveito. An operator splitting method for solving the
Bidomain equations coupled to a volume conductor model for the torso. Mathematical

biosciences, 194(2):233–248, 2005.

[19] J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, and A. Tveito. Com-

puting the Electrical Activity in the Heart. Springer, 2006.

[20] J. Sundnes, G.T. Lines, K-.A. Mardal, and A. Tveito. Multigrid block preconditioning
for the coupled Bidomain and forward problem. Computer Methods in Biomechanics

and Biomedical Engineering, 5(6):397–409, 2003.

[21] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems, volume 2nd.
Springer-Verlag, 1997.

15


