
An Investigation into Keystroke Latency Metrics as an Indicator of
Programming Performance

Richard C. Thomas
School of Computer Science &
Software Engineering, M002

The University of Western Australia
35 Stirling Hwy, Crawley 6009,

Western Australia
richard@csse.uwa.edu.au

Amela Karahasanovic
Simula Research Laboratory

PO Box 134,
1325 Lysaker, Norway
amela@simula.no

Gregor E. Kennedy
Biomedical Multimedia Unit
The University of Melbourne
Parkville 3010, Vic, Australia

gek@unimelb.edu.au

Abstract
Typing has long been studied in psychology and HCI, and
strong cognitive models for transcription typing exist. The
goal of the present research was to test if there is any
correlation between students’ keystroking speed and
performance while they are programming. We present the
results from two studies with computer science students
conducted in different contexts. Keystroke timings were
recorded while they worked on Java and Ada source code.
Quality of their programming work was measured mainly
in terms of completeness. In the controlled experiment
that lasted six hours, 39 students undertook three change
tasks on a 6000 LOC Java application. In the field study,
data was collected over 6 weeks from 141 students while
they worked unsupervised on Ada programming in first
year laboratories. In both cases there were highly
significant (P=0.001), moderately strong, negative
correlations between speed and coding performance. With
additional development, these techniques may have
promise for user modelling and assessment as well as in
educational diagnostics..

Keywords: Digraph latencies, empirical methods,
programming performance, keystroke model, chunking.

1 Introduction
One of the greatest challenges facing teachers of
introductory computer science units is the high rate of
attrition. Sometimes 25% or even 40% of enrolled
students do not succeed. Associated with this is a desire
to be able to spot the potential problem students as early
as possible.

Timely warning can aid the teacher to provide
remediation, at least in a well-resourced world. The
student too would be able to make more informed choices
when presented with evidence that progress is not

Copyright (c) 2005, Australian Computer Society, Inc. This
paper appeared at the Australasian Computing Education
Conference 2005, Newcastle, Australia. Conferences in
Research and Practice in Information Technology, Vol. 42.
Alison Young and Denise Tolhurst, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

encouraging, perhaps prompting a change of study
methods or to review wider choices before it is too late.

In this paper we present work in progress on the use of
low level, continuous keystroke monitoring as a means to
identify potential problems early on. In particular we
investigate whether the latency, or delay, between certain
keystrokes correlates with objective measures of
programming performance. We have checked this for
students in two countries: one in a controlled experiment
developing Java code for a few hours; the other using first
year laboratories over a few weeks, where Ada was the
programming language.

Keystrokes are well understood. There is a strong
cognitive theory of typing, reviewed below. Furthermore
keystroke latencies can be applied to user modelling. For
instance their potential as a means for user authentication
has been investigated (Joyce and Gupta, 1990; Monrose
and Rubin 2000).

Latencies have shown promise elsewhere. In the LISTEN
project to teach children to read aloud, Beck et al (2003)
found that latency before saying a word had promise as a
feature for assessment of reading achievement.

2 Models of Typing
Typing has been studied in psychology, cognitive science
and human-computer interaction. Although not
mainstream, there is a solid body of knowledge on which
to base the present investigation.

Newell (1990) gives a very clear account of the process
of transcription, or copy, typing. Typing is a pipeline
process, basically: perceive a chunk, determine the
spelling, obtain a letter, and execute a keystroke. The
pipelining effect allows, for example, reading a word to
happen in parallel with pressing the key for some
previously identified letter, and one hand can operate in
parallel with the other. It has been shown that SOAR
cognitive models accurately reflect some observed typing
phenomena. John and Newell (1989) give some detail of
the perception of a chunk in these models. It could be a
word or syllable or a single character depending upon
circumstances, such as whether it contains random letters
or is partially covered up.

From psychology there are several phenomena (Salthouse
1986) that inform the present investigations. Foremost for

us is the word initiation effect: the first keystroke of each
word is typed about 20% slower than the others. This is
probably a manifestation of the parsing and chunking
process. Furthermore word order does not affect typing,
so nonsense sentences are as fast as semantically
meaningful ones. In contrast non-words, e.g. HDRN
rather than HARD, are typed up to 40% slower.
Meaningless material is typed more slowly than normal
text. Conversely comprehension is not a factor in typing
performance: one does not copy type faster for
understanding the content, nor do those who have high
understanding of the material type faster.

The keystroke-level model in human-computer
interaction (Card, Moran and Newell 1983) presents a set
of guidelines to determine how long a task will take.
Times are given for mouse clicks, keystrokes, moving the
hand from mouse to keyboard, and the important Mental
Operator. The Mental Operator can be thought of as a
mental chunking function. To estimate task execution
time the procedure is: first determine the number of
operators, insert Mental Operators at likely chunk
boundaries and then compute task time from the standard
values. Heuristics are provided as to where to insert
Mental Operators, such as at the start of typing a word.
So chunking is recognised as contributing to overall
speed.

A very common effect from psychology is the Power
Law of Practice – the speed up that occurs when
repeating a task. It has been shown that computer science
students increase their overall typing rate during their first
two years of university (Thomas 1998).

These results provide the theoretical basis to develop a set
of metrics to investigate typing speeds of programmers.
An important caveat must be given, though. The above
work mainly relates to expert behaviour in copy typing
tasks. When editing program source texts, a problem-
solving mode is likely to be more dominant. This will
affect thinking times and chunking. However one would
expect that at the word level, such as typing the word
print, students would revert to skilled behaviour.

3 Goals of the Research
The goal of this research was to test if there is any
correlation between students’ typing speed and
performance while they are programming. Based on the
anecdotal evidence from observation in the laboratory
classes we expect that more senior or domain competent
students tap and click faster. However, the previous
empirical studies do not address this directly.
Accordingly we build on them and present in Section 3.1
simple metrics for measuring subjects’ typing
characteristics followed by our hypotheses in Section 3.2.

3.1 Digraph Latency Metrics
The raw data has each keystroke listed, together with a
timestamp in milliseconds when the key is pressed. In
principle the latency of a keystroke can simply be the
difference in the timestamps between successive
keystrokes, the key down to key down time.

We allocate each keystroke into one of the following
types

• A : alphabetic characters, e.g. a, L

• N : numerics, 0..9

• C : control keys, e.g. CONTROL and then a C

• O : other keys, e.g. ()[]/*=;. and CR, SHIFT,
SPACE, DELETE

• B : all the browsing (positioning) keys, such as
HOME, left

A digraph is a pair of sequential keys, such as th and he
when typing the word the. We choose to give each
digraph a type, according to its two keys:

• A, N, C, O or B if both are that type

• H when exactly one is type B

• E when they are different but neither is B

The rationale is that the typing of a series of A, N or C
digraphs is more likely to occur in a single chunk,
whereas the E digraphs are likely to be on the boundary
of a chunk and therefore longer. This is illustrated in
Figure 1.

Figure 1: The top row shows what is keyed on a US
keyboard, and below is the corresponding digraph type.
The E digraphs occur at or near likely chunk boundaries

O digraphs are also relatively likely to be on a chunk
boundary. H digraphs are expected to be slow because the
arrow keys are often some distance away from the main
alphanumeric keypad. So the hand takes time to transfer
to or from a B key, rather like the keystroke model (Card
et al 1983), regardless of any additional thinking time.

The metrics themselves are the median latency value for
each digraph type for each user while typing in files of
program source text. Latencies in highly automated tasks,
such as copy typing, are often not normally distributed:
Joyce and Gupta (1990) observed log normal, for
instance. Our observed data is even more right skewed
due to the addition of thinking time and other delays,
even lunch breaks. Accordingly we use the median, as
have others (Genter, 1983; Salthouse 1986). For brevity,
latency will henceforth be used to indicate median key
down to key down time of a given digraph type,
measured in milliseconds.

3.2 Hypotheses
We would expect that people who can program well
would have more fluency than those who cannot. Such
fluency would at least partially derive from thinking in
terms of high level abstractions. The poor programmer
would, at an extreme, perceive some code as almost

TEXT: typing words or 23476 [-]

Digraph: AAAAAEEAAAAEEAEENNNNEOOO

meaningless, for example the := in assignment or the
semicolon statement terminator. From typing theory the
poor programmer would be expected to have smaller
chunks and slower typing of the perceived non words.
However there would be parts of source code that would
be perceived as normal, such as print.

Given this background and the digraph types, our
hypotheses were as follows:

1. High chunking times indicate low programming
performance

2. Browsing/positioning (B digraphs) latency is
independent of programming performance

3. Alpha or numeric string typing is also
independent of programming performance

4. Alpha or numeric string typing (A or N
digraphs) is faster than programming special
syntax (O digraphs)

5. Chunking times (E, O, H digraphs) are slower
than other digraphs

4 Study One
The results reported below were gained from the
secondary analysis of data that had been collected for a
controlled experiment into Think Aloud and related
protocols (Karahasanovic et al 2004).

4.1 Participants and Setting
The participants had completed second or third year
computer science at either The University of Oslo or Oslo
College, Norway. They were experienced in Java. They
were asked to volunteer for a day during a vacation and
were paid. The mean age was 24, range 20-38, one
female. One person dropped out towards the end of
testing, yielding 38 participants for the main Think Aloud
experiment, but he was included below as his typing and
quality scores exist.

These students attended an experimental session at
Simula Research Laboratory, away from their institutes,
starting either morning or afternoon and staying about 6
hours. They were given a meal at an appropriate hour,
e.g. lunch for 30 minutes. There were 4-10 students per
day.

4.2 Materials and Procedure
Each participant used a PC, with a standard Scandinavian
keyboard, running Windows. A remote connection was
established using Terminal Services Client to a Windows
Server. Thus each person saw a normal desktop, and
could access Borland JBuilder for Java development.
Tasks were downloaded and uploaded to the server via a
web based application called Simula Experiment Support
Environment (SESE) (Arisholm et al 2002).

Keystroke and other data, such as mouse clicks and
window focus events, were captured by the User Action
Recorder (UAR), part of GRUMPS (GRUMPS 2004).
Settings were such that a complete record of the keys
actually pressed was obtained for each participant,

together with millisecond timing. Keystrokes could
usually be attributed back to an application or even Java
class, but this was not always practical.

On arrival at the Lab there was a short welcome and
introduction period. Subjects were informed about
experiments goals, procedure and asked to sign a consent
form. After doing that, each person was given a unique
username and password to be used during the day. Then
everyone undertook a training task, involving a small
change to about 400 lines of Java code. This was to
familiarise themselves with the compiler, systems and
experimental procedures in SESE. The next stage was to
undertake a standard calibration task for up to an hour.
All participants in experiments at this laboratory take this.

A training session followed, depending upon the
treatment of each person. Thus Think Aloud persons
practiced that; people using retrospective think aloud
were so trained and students using the Feedback
Collection Method (Karahasanovic et al to appear) used
that. The control group had no training. The first two
groups worked in individual rooms accompanied by an
observer, while the others were accommodated in a lab of
up to 8 people plus an observer.

After training the main tasks began. There were three
change tasks on an application of about 6000 lines of
Java, each intended to be harder that its predecessor. The
last task was given to ensure that none of the subjects
finished before the end of the time allocated for the
experiment and was not intended to be used in any
analysis. We did not want subjects who worked faster to
disturb other participants. The main session lasted about 3
to 4 hours. After this all participants answered a
questionnaire and attended an interview.

During the experiment each student uploaded amended
source code after they were satisfied with each task. Two
independent, experienced programmers then assessed the
submitted work. Marking was on the basis of
completeness, scoring 4 for a perfect solution, down to
zero for a non-attempt. Total scores for each person were
the sum of the individual task scores. For the analysis
below, only the calibration and first two main tasks were
considered as the third had an uneven completion rate.

4.3 Results
An example of the raw keystroke data is shown in Figure
2. In post experiment data cleaning and transformation
most keystrokes were recovered into digraphs
corresponding to the types in Section 3.1. Repeating keys
were excluded. Keystrokes attributed to the JBuilder
application were analysed, as this was where program
source was edited. Calculation of latencies for digraph
type was then fairly straightforward.

Programming quality marks were summed over the three
tasks, giving a maximum of 12. This is not an ordinal
score, because it consists of three components.
Accordingly a Spearman Rank Correlation Test was
performed for each digraph type against programming
score. The latency data are tabulated in Table 1: the mean
count is digraphs per user; the mean value is for the set of

latencies derived from the participants. Table 2 gives the
results of the correlations of latency with programming
scores, and a scatter diagram for the E digraph is in
Figure 3. We chose a significance factor of p=0.001
because we intended to perform many tests and wished to
reduce the chance of a false positive. ‘**’ indicates
significant results in the tables below.

ActionID Time XML

1251079 1045143002268

<k>VK_T</k>
<ch>t</ch>
<v>Y</v>
<s>N</s>
<c>N</c>
<a>N
<p>N</p>
<r>1</r>

Figure 2: Example of full keystroke data. The actual key
pressed and displayed is determined from the XML.

Shown is the letter ‘t’, not a repeating key.

Digraph type Mean
count

Mean
Latency

(millisecond)

Standard
deviation

B (browse) 3921 109.36 57.47

N (numeric) 144 170.74 41.57

A (alphabetic) 1225 174.23 44.68

O (other) 943 195.92 36.44

C (control) 127 317.10 109.60

E (edge not B) 1084 473.90 179.10

H (to/from B) 655 662.10 250.50

Table 1: Latency statistics by digraph type, Java students

4.4 Discussion
The mean (of median) latencies for each digraph type
support hypotheses 4 and 5. It was surprising how fast the
browsing, B, digraphs were; given that repeating keys
were excluded, it shows how rapid the motor response
can be.

The mean number of digraph occurrences for each type
are plausible in that fewer numeric, N, and control, C,
keystrokes would be expected. For the other types, it
appears that a reasonably large sample has been obtained.

Turning to the correlations in Table 2, hypothesis 2 is
supported by the result for browsing, B, digraphs. There
is no case to reject the null hypothesis that they are
independent.

Hypothesis 3 holds for numeric, N, digraphs but we have
to reject it for alpha, A, digraphs even at the p=0.001
level. This is a surprise. It is possible there is some factor

related to the auto-completion of identifiers in JBuilder,
but this is still under investigation.

Digraph type Spearman
Rank

Correlation

P-value

B (browse) 0.196 0.244

N (numeric) -0.248 0.139

A (alphabetic) -0.519 0.001 **

O (other) -0.485 0.006

C (control) -0.485 0.003

E (edge not B) -0.516 0.001 **

H (to/from B) -0.385 0.018

Table 2: Programming score correlations with digraph
type, Java students

Figure 3: Scatter diagram of programming score against

latency of type E digraphs, Java students

Hypothesis 1 is strongly supported by the very significant
correlation of the E digraph with programming score.
This digraph was always expected to occur on chunk
boundaries. To a lesser extent so were O and H types, and
these correlations stand out from B and N.

No predictions were made about C digraphs as their use is
often a feature of keyboard type or interface preferences,
for example control S and a menu command have
identical effects.

The correlations are of medium strength, around –0.5,
and there is substantial scatter as seen in Figure 3. These
metrics are not sufficient to measure programming
performance under experimental conditions, of course.
The negative value supports hypothesis 1.

5 Study Two
The previous experiment took place in a controlled
situation. In contrast we wanted to discover whether the
correlations hold for students working in a natural setting,
over a longer period. We used data that was collected a
year earlier as part of the development of GRUMPS. We
had specified that reliable collection over several weeks

was required and had some control over the actual items
monitored. It was intended to use the data for more than
one investigation. A fuller description of this background
is available in Thomas et al (2003).

5.1 Participants and Setting
The participants were students at Glasgow University
taking the compulsory CS1P unit in first year computing
science. This was available to freshers as well as
repeating students. The Ada programming language was
taught, which was unfamiliar to most new students.
Monitoring data was recorded on 141 people, with full
details, especially marks, available on the 125 in the
present analysis.

All students had a weekly scheduled laboratory session of
two hours where Ada was the topic once per fortnight, the
other week being used for database work. Students were
free to come and go and use the computers as they
pleased outside allocated laboratory sessions. During
laboratory sessions, they were encouraged to work on
study packs, but how strictly this was enforced depended
on their individual tutors.

5.2 Materials and Procedure
The labs were equipped with PCs running Windows XP
and had standard UK keyboards. At the end of January
2003 one lecture was partly devoted to telling the
students about GRUMPS and its monitoring of activity on
these machines. After an explanation of ethical issues
everyone was invited to sign a consent form. About three
quarters of those present did so. The final count of 141
unpaid volunteers covered about a third of the enrolled
class. One person subsequently asked for his consent to
be stopped as he felt his task bar was cluttered.

The same UAR as in Study 1 was automatically invoked
at Windows login but only for people who had previously
given consent. All of their sessions were monitored
during a six-week period from 10 February.

Digraph
type

Mean
count

Mean
Latency

(millisecond)

Standard
deviation

B (browse) 984 211.52 45.82

N (numeric) 67 181.90 51.53

A
(alphabetic)

2574 184.86 40.08

O (other) 2087 253.93 49.80

C (control) 77 282.10 142.00

E (edge not
B)

1902 398.20 132.0

H (to/from B) 501 651.70 257.6

Table 3: Latency statistics by digraph type, Ada students

At any time the user could switch off the UAR. For this
study it collected Hidden Window Focus events, mouse

clicks and keystrokes. Full keystroke data, as in Figure 2,
were only gathered when the current process was
Adagide.exe, the Ada programming environment. Further
no window titles were stored, just process names, unlike
in Study 1. These settings made it far easier than in
Study 1 to identify programming keystrokes. Usernames
were coded before transmission into the secure data
repository. Hence the privacy of participants was
respected.

There were two forms of assessment of programming
ability. Both were closed book and were conducted
shortly before the UAR started recording keystrokes. The
scores contributed to the final grade of the unit, being
marked as usual by a team of academics and
demonstrator markers. None were involved in this
research except for one person.

The first assessment was an exam in the lab. Students
were given the question two weeks in advance. The actual
exam was closed book except for a reminder sheet on
Ada syntax. Marking rewarded completed functionality.
The second assessment was a written test on Ada
programming, taken during a lecture.

Written Test Lab Exam Digraph type

Corrl. P Corrl. P

B (browse) -0.093 0.314 -0.119 0.196

N (numeric) -0.333 0.000
**

-0.220 0.016

A (alphabetic) -0.183 0.042 -0.177 0.050

O (other) -0.218 0.015 -0.283 0.002

C (control) -0.083 0.404 -0.266 0.007

E (edge not B) -0.276 0.002 -0.299 0.001
**

H (to/from B) -0.312 0.000
**

-0.401 0.000
**

Table 4: Correlation of lab exam and written test scores
with digraph type, Ada students

5.3 Results
2655 UAR sessions were recorded, comprising 4.7M
actions over 1767 hours of interaction. This averages a
total of about 19 hours per user, but much of this was not
in Adagide.

Analysis was almost the same as for Study 1. However
the UK and Scandinavian keyboards are not identical. To
input some of the type O characters, such as square and
curly brackets, the Alternate Graphics key must be
depressed in the Scandinavian version. Slightly different
tables were required to decode the keystroke XML data
for the two studies, and the same program text does not
generate exactly the same digraphs because of the keys
pressed.

Another difference was that the Ada scores were on
ordinal scales. Accordingly Pearson correlations were
computed. Corresponding results for Experiment 2 are
shown in Tables 3 and 4 and Figure 4.

Figure 4: Scatter diagram of lab exam score against
latency of type E digraphs, Ada students

5.4 Discussion

The digraphs counts are broadly in line with those in
Study 1, with relatively few numeric and control types.
Although the grand totals are strikingly similar at 8099
and 8192 for Studies 1 and 2 respectively, the big
difference is that the Java students did far more browsing
or positioning with the keyboard. Indeed all Java students
used it, whereas 9 in Ada had less than 10 browsing
digraphs, 4 having zero. So the Ada students used the
browse keys less, but as beginners they had small
program texts.

The Ada latencies also lend support to hypotheses 4 and
5. The alpha and numeric digraphs are faster than the E,
H or O. Comparing with Sudy 1, the Ada students are
marginally slower on A and N, substantially so on B. This
is consistent with the notion that the first year Ada
students were generally less practiced at keyboard skills
than the second and third year Java students. Other
explanations such as prior typing training could be a
factor but are unknown.

The correlations support hypotheses 1 and 2. Chunking
digraph times are important, E and H for the lab exam
and H also for the written test. B, browsing, digraph
times are not significant.

The surprise here is that N is highly significant for the
written test. Outrageously, could the N digraph result
suggest memory is also involved in the written test?
People who remember well will be able to type long
numbers more fluently.

The fact that both the written test and lab exam show a
relation with digraph latency suggests that knowledge and
performance in Ada are involved.

The general level of the probabilities for all the lab exam
correlations does suggest there might be another factor
for the Ada students. Perhaps they enter university with

low typing skill and when they practice programming
their tapping speed increases due to power law speed-ups.
Perhaps the metrics merely reflect this rather than
programming performance. If so, the A and B latencies
would be faster when total digraph count is higher. In fact
this can be rejected, r=-0.129, p=0.163 and r=-0.093,
p=0.351 respectively. This could be investigated more
deeply for individual typing speeds following Genter
(1983).

An alternative possibility could be that these metrics are a
proxy for learning in the lab: if they practice their Ada
they will learn the concepts, not so much learn to type.
Indeed written test score does increase with total digraph
count, r=0.229, p=0.020. For the lab exam the hypothesis
is rejected, r=0.174, p=0.081. A weakness in this
argument is that the written test was taken before the
digraphs were collected, though.

Thus this Study has provided support for the main
hypotheses and also produced evidence that the metrics
are related to a learning effect.

6 Summary of the Results
As these two studies were conducted in different contexts
(different countries, different background of students) and
under different conditions (controlled experiment, field
study) it is more likely that our results would yield
inconsistent results. On the contrary the two sets of
results support each other.

The correlations are generally of a lower strength in
Study 2. This is reasonable because the typing metrics
have been computed for all Ada programming activity
over a six week period, not the typing to complete the
tasks in the assessed work. One would expect a controlled
experiment to yield a stronger result than an extended
field study.

We are still investigating why this result has occurred.
We have background cognitive and other data on the Ada
students for this. More detailed comparison of the
weakest and strongest students may give insight on an
explanation and also on how to refine the metrics.

Our hypotheses and indeed results are consistent with
some aspects of cognitive load theory (Sweller 1999). For
instance we expect those with good conceptual schema of
programming to have some faster digraphs. It is possible
that digraph metrics might reveal something of learning
and problem solving preferences, such as adoption of
means-ends search.

6.1 Validity
The results show one possible factor in a predictive
model of programming performance. It is not sufficient in
itself to be a substitute for other forms of assessment.

Our sample sizes are not small, but we cannot be sure that
they are representative of their cohorts or the wider
student population. In both countries the participants were
volunteers. For Java one can imagine that the more
confident students volunteered. For Ada it may be that

those attending the recruitment lecture were keener than
their peers; it was the last before a break.

Although we have confidence in the UAR there could be
some features in the timing of events that are unknown.
Certainly UAR interval times are not normally
distributed, showing a periodicity that may derive from
process scheduler characteristics. There is also a small
amount of evidence that the Java timestamps may have
been distorted on occasions because of server congestion.

The measures of programming performance were not
exhaustive. It is possible there is bias as an important
factor was completeness, which might favour faster
students.

6.2 Lessons Learned
The collection of keystroke data is controversial. There is
always the danger of privacy violations. Although
extensive efforts were made in this regard, both studies
highlighted unexpected difficulties. In the Ada data,
program source sometimes has author names typed in.
String searches have revealed a list of them. For Java it
was expected that special usernames for the study would
protect identities. Indeed this was the case except when
someone used the web browser to read their email on
some third party provider.

An advantage of the metrics is that individual keystrokes
need not be stored. These problems would then largely
disappear.

The cost of cleaning and transforming the UAR data was
rather high. Generic data has been commented upon as
problematic in this regard (Reeves and Hedberg, 2003). It
is expected that in due course our data will be amenable
to more generic support functions.

7 Conclusions and Future Work
We have presented two studies in widely varied situations
that present essentially the same result. Namely that
digraphs associated with chunking boundaries appear to
be a promising feature in the assessment of programming
performance. We have shown this for two programming
languages involving 39 and 125 participants taught in two
countries.

There is also evidence from the first year students that
performance in programming really was a factor rather
than merely learning to type. First, the written test on Ada
was just that, hand written. Second better programming
scores were associated with higher practice in Ada as
measured by total digraphs.

Work is required to enhance the metrics, both to focus on
important features like chunking and also to take account
of future understanding of the basis of these results.

There are many potential applications for our techniques.
One is to be able to do rapid assignment of people to
groups based on an approximation of programming
performance. Our measure, taken with other data, may be
quite effective.

Another application is in plagiarism detection. If a
student claims to be the author of a program, they could
do the work again and latencies might detect the unwary.
This would require extensive development.

There are strong grounds to investigate these ideas
further. In one initial step, we are instrumenting BlueJ to
collect some data on programming and then to display
results on a web page in near real time.

8 Acknowledgements
The authors are grateful to the students of the Department
of Informatics at the University of Oslo, Oslo University
College and Department of Computing Science at the
University of Glasgow who participated in our
experiments. We thank Unni Nyhamar Hinkel and
Annette Kristin Levine for contributions on the
experiment on the think-aloud methods. We thank Per
Thomas Jahr and Bent Østebø Johansen who tested and
assesed the Java solutions delivered by the subjects of the
think-aloud experiment; and Gunnar Carelius for his
technical assistance. We also thank the GRUMPS and
CS1P teams at Glasgow, especially Phil Gray, Iain
McLeod and Rebecca Mancy, and gratefully
acknowledge the funding provided for GRUMPS by the
UK’s EPSRC (GR/N381141). UWA PC307 students are
thanked for data transformation tools: Chris Harris,
Raymond Hon-man Yuen, Hayden Albrey, Christopher
Tzehong Jee, Hernani Binti Nahrawi, Mohammad
Yaqoob Siddiqui, Shen Zhang. Richard Thomas
gratefully acknowledges support from the Simula
Research Laboratory Guest Researcher programme.

9 References
Arisholm, E., Sjøberg, D.I.K., Carelius, G. and Lindsjørn,

Y. (2002): A Web-based Support Environment for
Software Engineering Experiments. Nordic Journal of
Computing, 9(4): 231–247.

Beck, J.E., Jia, P., Sison, J. and Mostow, J. (2003):
Predicting Student Help-Request Behavior in an
Intelligent Tutor for Reading. In User Modeling 2003
Conference, Johnstown, PA, USA, June 22-26. 303-
312. Brusilovsky, P., Corbett, A. T. and de Rosis, F.
(eds). Lecture Notes in Computer Science, 2702,
Springer Verlag.

Card, S.K., Moran, T.P. and Newell, A. (1983): The
psychology of human-computer interaction. Hillsdale
N.J., Lawrence Erlbaum.

Genter, D.A. (1983): The acquisition of typing skill. Acta
Psychologica, 54, 233-248.

GRUMPS: Generic Remote Usage Measurement
Production System, Department of Computing Science,
University of Glasgow. http://grumps.dcs.gla.ac.uk/.
Accessed 16 August 2004.

John, B.E and Newell, A. (1989) Cumulating the science
of HCI: From S-R compatibility to transcription typing.
In Proceedings of CHI, 1989, 109-114, ACM.

Joyce and Gupta (1990): Identity authentication based on
keystroke latencies. Communications of the ACM,
33(2): 168-176

Karahasanovic, A., Anda, B., A., Arisholm, E., Hove,
S.E., Jørgensen, M., Sjøberg, D.I.K., Welland, R.
Collecting Feedback during Software Engineering.
Experiments. Journal of Empirical Software
Engineering, to appear 2005.

Karahasanovic, A., Fjuk, A., Sjøberg and Thomas, R.C.
(2004): A controlled experiment to evaluate the
reactivity and usefulness of the think-aloud tool. Proc.
Information Resources Management Association
International Conference IRMA’04, New Orleans La,
USA, 1033-4, New Idea Group Publishing.

Monrose and Rubin (2000): Keystroke dynamics as a
biometric authentication. Future Generation Computer
Systems, 16: 351-359.Newell, A. (1990): Unified
theories of cognition. Harvard University Press.

Reeves, T.C. and Hedberg, J.G. (2003): Interactive
Learning Systems Evaluation. Educational Technology
Publications, Englewood Cliffs, NJ.

Salthouse, T.A. (1986): Perceptual, cognitive, and
motoric aspects of transcription typing. Psychological
Bulletin, 9(3): 303-319.

Sweller, J. (1999): Instructional design in technical
areas. ACER Press, Camberwell, Victoria, 43.

Thomas, R.C. (1998): Long term human-computer
interaction. Springer Verlag, London.

