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Abstract 
Typing has long been studied in psychology and HCI, and 
strong cognitive models for transcription typing exist. The 
goal of the present research was to test if there is any 
correlation between students’ keystroking speed and 
performance while they are programming. We present the 
results from two studies with computer science students 
conducted in different contexts. Keystroke timings were 
recorded while they worked on Java and Ada source code. 
Quality of their programming work was measured mainly 
in terms of completeness. In the controlled experiment 
that lasted six hours, 39 students undertook three change 
tasks on a 6000 LOC Java application. In the field study, 
data was collected over 6 weeks from 141 students while 
they worked unsupervised on Ada programming in first 
year laboratories. In both cases there were highly 
significant (P=0.001), moderately strong, negative 
correlations between speed and coding performance. With 
additional development, these techniques may have 
promise for user modelling and assessment as well as in 
educational diagnostics.. 

Keywords:  Digraph latencies, empirical methods, 
programming performance, keystroke model, chunking. 

1 Introduction 
One of the greatest challenges facing teachers of 
introductory computer science units is the high rate of 
attrition. Sometimes 25% or even 40% of enrolled 
students do not succeed. Associated with this is a desire 
to be able to spot the potential problem students as early 
as possible.  

Timely warning can aid the teacher to provide 
remediation, at least in a well-resourced world. The 
student too would be able to make more informed choices 
when presented with evidence that progress is not 
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encouraging, perhaps prompting a change of study 
methods or to review wider choices before it is too late. 

In this paper we present work in progress on the use of 
low level, continuous keystroke monitoring as a means to 
identify potential problems early on. In particular we 
investigate whether the latency, or delay, between certain 
keystrokes correlates with objective measures of 
programming performance. We have checked this for 
students in two countries: one in a controlled experiment 
developing Java code for a few hours; the other using first 
year laboratories over a few weeks, where Ada was the 
programming language. 

Keystrokes are well understood. There is a strong 
cognitive theory of typing, reviewed below. Furthermore 
keystroke latencies can be applied to user modelling. For 
instance their potential as a means for user authentication 
has been investigated (Joyce and Gupta, 1990; Monrose 
and Rubin 2000). 

Latencies have shown promise elsewhere. In the LISTEN 
project to teach children to read aloud, Beck et al (2003) 
found that latency before saying a word had promise as a 
feature for assessment of reading achievement. 

2 Models of Typing 
Typing has been studied in psychology, cognitive science 
and human-computer interaction. Although not 
mainstream, there is a solid body of knowledge on which 
to base the present investigation. 

Newell (1990) gives a very clear account of the process 
of transcription, or copy, typing. Typing is a pipeline 
process, basically: perceive a chunk, determine the 
spelling, obtain a letter, and execute a keystroke. The 
pipelining effect allows, for example, reading a word to 
happen in parallel with pressing the key for some 
previously identified letter, and one hand can operate in 
parallel with the other. It has been shown that SOAR 
cognitive models accurately reflect some observed typing 
phenomena. John and Newell (1989) give some detail of 
the perception of a chunk in these models. It could be a 
word or syllable or a single character depending upon 
circumstances, such as whether it contains random letters 
or is partially covered up. 

From psychology there are several phenomena (Salthouse 
1986) that inform the present investigations. Foremost for 



us is the word initiation effect: the first keystroke of each 
word is typed about 20% slower than the others. This is  
probably a manifestation of the parsing and chunking 
process. Furthermore word order does not affect typing, 
so nonsense sentences are as fast as semantically 
meaningful ones. In contrast non-words, e.g. HDRN 
rather than HARD, are typed up to 40% slower. 
Meaningless material is typed more slowly than normal 
text. Conversely comprehension is not a factor in typing 
performance: one does not copy type faster for 
understanding the content, nor do those who have high 
understanding of the material type faster.  

The keystroke-level model in human-computer 
interaction (Card, Moran and Newell 1983) presents a set 
of guidelines to determine how long a task will take. 
Times are given for mouse clicks, keystrokes, moving the 
hand from mouse to keyboard, and the important Mental 
Operator. The Mental Operator can be thought of as a 
mental chunking function. To estimate task execution 
time the procedure is: first determine the number of 
operators, insert Mental Operators at likely chunk 
boundaries and then compute task time from the standard 
values. Heuristics are provided as to where to insert 
Mental Operators, such as at the start of typing a word. 
So chunking is recognised as contributing to overall 
speed. 

A very common effect from psychology is the Power 
Law of Practice – the speed up that occurs when 
repeating a task. It has been shown that computer science 
students increase their overall typing rate during their first 
two years of university (Thomas 1998). 

These results provide the theoretical basis to develop a set 
of metrics to investigate typing speeds of programmers. 
An important caveat must be given, though. The above 
work mainly relates to expert behaviour in copy typing 
tasks. When editing program source texts, a problem-
solving mode is likely to be more dominant. This will 
affect thinking times and chunking. However one would 
expect that at the word level, such as typing the word 
print, students would revert to skilled behaviour.  

3 Goals of the Research 
The goal of this research was to test if there is any 
correlation between students’ typing speed and 
performance while they are programming. Based on the 
anecdotal evidence from observation in the laboratory 
classes we expect that more senior or domain competent 
students tap and click faster. However, the previous 
empirical studies do not address this directly. 
Accordingly we build on them and present in Section 3.1 
simple metrics for measuring subjects’ typing 
characteristics followed by our hypotheses in Section 3.2. 

3.1 Digraph Latency Metrics 
The raw data has each keystroke listed, together with a 
timestamp in milliseconds when the key is pressed. In 
principle the latency of a keystroke can simply be the 
difference in the timestamps between successive 
keystrokes, the key down to key down time. 

We allocate each keystroke into one of the following 
types 

• A : alphabetic characters, e.g. a, L 

• N : numerics, 0..9 

• C : control keys, e.g. CONTROL and then a C 

• O : other keys, e.g. ()[]/*=;. and CR, SHIFT, 
SPACE, DELETE 

• B : all the browsing (positioning) keys, such as 
HOME, left  

A digraph is a pair of sequential keys, such as th and he 
when typing the word the.  We choose to give each 
digraph a type, according to its two keys: 

• A, N, C, O or B if both are that type 

• H when exactly one is type B 

• E when they are different but neither is B 

The rationale is that the typing of a series of A, N or C 
digraphs is more likely to occur in a single chunk, 
whereas the E digraphs are likely to be on the boundary 
of a chunk and therefore longer. This is illustrated in 
Figure 1.   

 

 

 

 

Figure 1: The top row shows what is keyed on a US 
keyboard, and below is the corresponding digraph type. 
The E digraphs occur at or near likely chunk boundaries  

O digraphs are also relatively likely to be on a chunk 
boundary. H digraphs are expected to be slow because the 
arrow keys are often some distance away from the main 
alphanumeric keypad. So the hand takes time to transfer 
to or from a B key, rather like the keystroke model (Card 
et al 1983), regardless of any additional thinking time. 

The metrics themselves are the median latency value for 
each digraph type for each user while typing in files of 
program source text. Latencies in highly automated tasks, 
such as copy typing, are often not normally distributed: 
Joyce and Gupta (1990) observed log normal, for 
instance. Our observed data is even more right skewed 
due to the addition of thinking time and other delays, 
even lunch breaks. Accordingly we use the median, as 
have others (Genter, 1983; Salthouse 1986). For brevity, 
latency will henceforth be used to indicate median key 
down to key down time of a given digraph type, 
measured in milliseconds. 

3.2 Hypotheses 
We would expect that people who can program well 
would have more fluency than those who cannot. Such 
fluency would at least partially derive from thinking in 
terms of high level abstractions. The poor programmer 
would, at an extreme, perceive some code as almost 

TEXT:     typing words or 23476 [-] 

Digraph:   AAAAAEEAAAAEEAEENNNNEOOO 



meaningless, for example the := in assignment or the 
semicolon statement terminator.  From typing theory the 
poor programmer would be expected to have smaller 
chunks and slower typing of the perceived non words. 
However there would be parts of source code that would 
be perceived as normal, such as print.   

Given this background and the digraph types, our 
hypotheses were as follows: 

1. High chunking times indicate low programming 
performance 

2. Browsing/positioning (B digraphs) latency is 
independent of programming performance   

3. Alpha or numeric string typing is also 
independent of programming performance 

4. Alpha or numeric string typing (A or N 
digraphs) is faster than programming special 
syntax  (O digraphs) 

5. Chunking times (E, O, H digraphs) are slower 
than other digraphs   

4 Study One 
The results reported below were gained from the 
secondary analysis of data that had been collected for a 
controlled experiment into Think Aloud and related 
protocols (Karahasanovic et al 2004).  

4.1 Participants and Setting 
The participants had completed second or third year 
computer science at either The University of Oslo or Oslo 
College, Norway. They were experienced in Java. They 
were asked to volunteer for a day during a vacation and 
were paid. The mean age was 24, range 20-38, one 
female. One person dropped out towards the end of 
testing, yielding 38 participants for the main Think Aloud 
experiment, but he was included below as his typing and 
quality scores exist.  

These students attended an experimental session at 
Simula Research Laboratory, away from their institutes, 
starting either morning or afternoon and staying about 6 
hours. They were given a meal at an appropriate hour, 
e.g. lunch for 30 minutes. There were 4-10 students per 
day.  

4.2 Materials and Procedure 
Each participant used a PC, with a standard Scandinavian 
keyboard, running Windows. A remote connection was 
established using Terminal Services Client to a Windows 
Server. Thus each person saw a normal desktop, and 
could access Borland JBuilder for Java development. 
Tasks were downloaded and uploaded to the server via a 
web based application called Simula Experiment Support 
Environment (SESE) (Arisholm et al 2002). 

Keystroke and other data, such as mouse clicks and 
window focus events, were captured by the User Action 
Recorder (UAR), part of GRUMPS (GRUMPS 2004). 
Settings were such that a complete record of the keys 
actually pressed was obtained for each participant, 

together with millisecond timing. Keystrokes could 
usually be attributed back to an application or even Java 
class, but this was not always practical.  

On arrival at the Lab there was a short welcome and 
introduction period. Subjects were informed about 
experiments goals, procedure and asked to sign a consent 
form. After doing that, each person was given a unique 
username and password to be used during the day. Then 
everyone undertook a training task, involving a small 
change to about 400 lines of Java code. This was to 
familiarise themselves with the compiler, systems and 
experimental procedures in SESE. The next stage was to 
undertake a standard calibration task for up to an hour. 
All participants in experiments at this laboratory take this. 

A training session followed, depending upon the 
treatment of each person. Thus Think Aloud persons 
practiced that; people using retrospective think aloud 
were so trained and students using the Feedback 
Collection Method (Karahasanovic et al to appear) used 
that. The control group had no training. The first two 
groups worked in individual rooms accompanied by an 
observer, while the others were accommodated in a lab of 
up to 8 people plus an observer. 

After training the main tasks began. There were three 
change tasks on an application of about 6000 lines of 
Java, each intended to be harder that its predecessor. The 
last task was given to ensure that none of the subjects 
finished before the end of the time allocated for the 
experiment and was not intended to be used in any 
analysis. We did not want subjects who worked faster to 
disturb other participants. The main session lasted about 3 
to 4 hours. After this all participants answered a 
questionnaire and attended an interview. 

During the experiment each student uploaded amended 
source code after they were satisfied with each task. Two 
independent, experienced programmers then assessed the 
submitted work. Marking was on the basis of 
completeness, scoring 4 for a perfect solution, down to 
zero for a non-attempt. Total scores for each person were 
the sum of the individual task scores. For the analysis 
below, only the calibration and first two main tasks were 
considered as the third had an uneven completion rate.  

4.3 Results 
An example of the raw keystroke data is shown in Figure 
2.  In post experiment data cleaning and transformation 
most keystrokes were recovered into digraphs 
corresponding to the types in Section 3.1. Repeating keys 
were excluded. Keystrokes attributed to the JBuilder 
application were analysed, as this was where program 
source was edited. Calculation of latencies for digraph 
type was then fairly straightforward.  

Programming quality marks were summed over the three 
tasks, giving a maximum of 12. This is not an ordinal 
score, because it consists of three components.  
Accordingly a Spearman Rank Correlation Test was 
performed for each digraph type against programming 
score. The latency data are tabulated in Table 1: the mean 
count is digraphs per user; the mean value is for the set of 



latencies derived from the participants. Table 2 gives the 
results of the correlations of latency with programming 
scores, and a scatter diagram for the E digraph is in 
Figure 3.  We chose a significance factor of p=0.001 
because we intended to perform many tests and wished to 
reduce the chance of a false positive. ‘**’ indicates 
significant results in the tables below.  

 

ActionID Time XML 

1251079 1045143002268 

<k>VK_T</k> 
<ch>t</ch> 
<v>Y</v> 
<s>N</s> 
<c>N</c> 
<a>N</a> 
<p>N</p> 
<r>1</r>   

Figure 2: Example of full keystroke data. The actual key 
pressed and displayed is determined from the XML. 

Shown is the letter ‘t’, not a repeating key. 

 

 

Digraph type Mean 
count 

Mean 
Latency 

(millisecond) 

Standard 
deviation 

B (browse) 3921 109.36 57.47 

N (numeric) 144 170.74 41.57 

A (alphabetic) 1225 174.23 44.68 

O (other) 943 195.92 36.44 

C (control) 127 317.10 109.60 

E (edge not B) 1084 473.90 179.10 

H (to/from B) 655 662.10 250.50 

Table 1: Latency statistics by digraph type, Java students 

4.4 Discussion 
The mean (of median) latencies for each digraph type 
support hypotheses 4 and 5. It was surprising how fast the 
browsing, B, digraphs were; given that repeating keys 
were excluded, it shows how rapid the motor response 
can be. 

The mean number of digraph occurrences for each type 
are plausible in that fewer numeric, N, and control, C, 
keystrokes would be expected. For the other types, it 
appears that a reasonably large sample has been obtained.  

Turning to the correlations in Table 2, hypothesis 2 is 
supported by the result for browsing, B, digraphs. There 
is no case to reject the null hypothesis that they are 
independent. 

Hypothesis 3 holds for numeric, N, digraphs but we have 
to reject it for alpha, A, digraphs even at the p=0.001 
level. This is a surprise. It is possible there is some factor 

related to the auto-completion of identifiers in JBuilder, 
but this is still under investigation.   

 

Digraph type Spearman 
Rank 

Correlation 

P-value 

B (browse) 0.196 0.244 

N (numeric) -0.248 0.139 

A (alphabetic) -0.519 0.001 ** 

O (other) -0.485 0.006 

C (control) -0.485 0.003 

E (edge not B) -0.516 0.001 ** 

H (to/from B) -0.385 0.018 

Table 2: Programming score correlations with digraph 
type, Java students 

 

 
Figure 3: Scatter diagram of programming score against 

latency of type E digraphs, Java students 

Hypothesis 1 is strongly supported by the very significant 
correlation of the E digraph with programming score. 
This digraph was always expected to occur on chunk 
boundaries. To a lesser extent so were O and H types, and 
these correlations stand out from B and N.   

No predictions were made about C digraphs as their use is 
often a feature of keyboard type or interface preferences, 
for example control S and a menu command have 
identical effects.   

The correlations are of medium strength, around –0.5, 
and there is substantial scatter as seen in Figure 3. These 
metrics are not sufficient to measure programming 
performance under experimental conditions, of course. 
The negative value supports hypothesis 1. 

5 Study Two 
The previous experiment took place in a controlled 
situation.  In contrast we wanted to discover whether the 
correlations hold for students working in a natural setting, 
over a longer period.  We used data that was collected a 
year earlier as part of the development of GRUMPS. We 
had specified that reliable collection over several weeks 



was required and had some control over the actual items 
monitored. It was intended to use the data for more than 
one investigation.  A fuller description of this background 
is available in Thomas et al (2003). 

5.1 Participants and Setting 
The participants were students at Glasgow University 
taking the compulsory CS1P unit in first year computing 
science. This was available to freshers as well as 
repeating students. The Ada programming language was 
taught, which was unfamiliar to most new students. 
Monitoring data was recorded on 141 people, with full 
details, especially marks, available on the 125 in the 
present analysis.   

All students had a weekly scheduled laboratory session of 
two hours where Ada was the topic once per fortnight, the 
other week being used for database work. Students were 
free to come and go and use the computers as they 
pleased outside allocated laboratory sessions. During 
laboratory sessions, they were encouraged to work on 
study packs, but how strictly this was enforced depended 
on their individual tutors. 

5.2 Materials and Procedure  
The labs were equipped with PCs running Windows XP 
and had standard UK keyboards. At the end of January 
2003 one lecture was partly devoted to telling the 
students about GRUMPS and its monitoring of activity on 
these machines. After an explanation of ethical issues 
everyone was invited to sign a consent form. About three 
quarters of those present did so. The final count of 141 
unpaid volunteers covered about a third of the enrolled 
class. One person subsequently asked for his consent to 
be stopped as he felt his task bar was cluttered. 

The same UAR as in Study 1 was automatically invoked 
at Windows login but only for people who had previously 
given consent. All of their sessions were monitored 
during a six-week period from 10 February.  

 

Digraph 
type 

Mean 
count 

Mean 
Latency 

(millisecond) 

Standard 
deviation 

B (browse) 984 211.52 45.82 

N (numeric) 67 181.90 51.53 

A 
(alphabetic) 

2574 184.86 40.08 

O (other) 2087 253.93 49.80 

C (control) 77 282.10 142.00 

E (edge not 
B) 

1902 398.20 132.0 

H (to/from B) 501 651.70 257.6 

Table 3: Latency statistics by digraph type, Ada students 

At any time the user could switch off the UAR. For this 
study it collected Hidden Window Focus events, mouse 

clicks and keystrokes. Full keystroke data, as in Figure 2, 
were only gathered when the current process was 
Adagide.exe, the Ada programming environment. Further 
no window titles were stored, just process names, unlike 
in Study 1.  These settings made it far easier than in 
Study 1 to identify programming keystrokes. Usernames 
were coded before transmission into the secure data 
repository. Hence the privacy of participants was 
respected.  

There were two forms of assessment of programming 
ability. Both were closed book and were conducted 
shortly before the UAR started recording keystrokes. The 
scores contributed to the final grade of the unit, being 
marked as usual by a team of academics and 
demonstrator markers. None were involved in this 
research except for one person.  

The first assessment was an exam in the lab. Students 
were given the question two weeks in advance. The actual 
exam was closed book except for a reminder sheet on 
Ada syntax. Marking rewarded completed functionality. 
The second assessment was a written test on Ada 
programming, taken during a lecture.  

 

Written Test Lab Exam Digraph type 

Corrl. P Corrl. P 

B (browse) -0.093 0.314 -0.119 0.196 

N (numeric) -0.333 0.000 
** 

-0.220 0.016 

A (alphabetic) -0.183 0.042 -0.177 0.050 

O (other) -0.218 0.015 -0.283 0.002 

C (control) -0.083 0.404 -0.266 0.007 

E (edge not B) -0.276 0.002 -0.299 0.001 
** 

H (to/from B) -0.312 0.000 
** 

-0.401 0.000 
** 

Table 4: Correlation of lab exam and written test scores 
with digraph type, Ada students 

5.3 Results  
2655 UAR sessions were recorded, comprising 4.7M 
actions over 1767 hours of interaction.  This averages a 
total of about 19 hours per user, but much of this was not 
in Adagide.  

Analysis was almost the same as for Study 1. However 
the UK and Scandinavian keyboards are not identical. To 
input some of the type O characters, such as square and 
curly brackets, the Alternate Graphics key must be 
depressed in the Scandinavian version. Slightly different 
tables were required to decode the keystroke XML data 
for the two studies, and the same program text does not 
generate exactly the same digraphs because of the keys 
pressed.   



Another difference was that the Ada scores were on 
ordinal scales. Accordingly Pearson correlations were 
computed. Corresponding results for Experiment 2 are 
shown in Tables 3 and 4 and Figure 4. 

 

 

 

Figure 4: Scatter diagram of lab exam score against 
latency of type E digraphs, Ada students 

5.4 Discussion  
 

The digraphs counts are broadly in line with those in 
Study 1, with relatively few numeric and control types. 
Although the grand totals are strikingly similar at 8099 
and 8192 for Studies 1 and 2 respectively, the big 
difference is that the Java students did far more browsing 
or positioning with the keyboard. Indeed all Java students 
used it, whereas 9 in Ada had less than 10 browsing 
digraphs, 4 having zero.  So the Ada students used the 
browse keys less, but as beginners they had small 
program texts. 

The Ada latencies also lend support to hypotheses 4 and 
5. The alpha and numeric digraphs are faster than the E, 
H or O.  Comparing with Sudy 1, the Ada students are 
marginally slower on A and N, substantially so on B. This 
is consistent with the notion that the first year Ada 
students were generally less practiced at keyboard skills 
than the second and third year Java students. Other 
explanations such as prior typing training could be a 
factor but are unknown.   

The correlations support hypotheses 1 and 2. Chunking 
digraph times are important, E and H for the lab exam 
and H also for the written test.  B, browsing, digraph 
times are not significant.  

The surprise here is that N is highly significant for the 
written test. Outrageously, could the N digraph result 
suggest memory is also involved in the written test? 
People who remember well will be able to type long 
numbers more fluently. 

The fact that both the written test and lab exam show a 
relation with digraph latency suggests that knowledge and 
performance in Ada are involved. 

The general level of the probabilities for all the lab exam 
correlations does suggest there might be another factor 
for the Ada students. Perhaps they enter university with 

low typing skill and when they practice programming 
their tapping speed increases due to power law speed-ups. 
Perhaps the metrics merely reflect this rather than 
programming performance. If so, the A and B latencies 
would be faster when total digraph count is higher. In fact 
this can be rejected, r=-0.129, p=0.163 and r=-0.093, 
p=0.351 respectively.  This could be investigated more 
deeply for individual typing speeds following Genter 
(1983). 

An alternative possibility could be that these metrics are a 
proxy for learning in the lab: if they practice their Ada 
they will learn the concepts, not so much learn to type. 
Indeed written test score does increase with total digraph 
count, r=0.229, p=0.020. For the lab exam the hypothesis 
is rejected, r=0.174, p=0.081. A weakness in this 
argument is that the written test was taken before the 
digraphs were collected, though.  

Thus this Study has provided support for the main 
hypotheses and also produced evidence that the metrics 
are related to a learning effect. 

6 Summary of the Results 
As these two studies were conducted in different contexts 
(different countries, different background of students) and 
under different conditions (controlled experiment, field 
study) it is more likely that our results would yield 
inconsistent results. On the contrary the two sets of 
results support each other.  

The correlations are generally of a lower strength in 
Study 2.  This is reasonable because the typing metrics 
have been computed for all Ada programming activity 
over a six week period, not the typing to complete the 
tasks in the assessed work. One would expect a controlled 
experiment to yield a stronger result than an extended 
field study.  

We are still investigating why this result has occurred. 
We have background cognitive and other data on the Ada 
students for this. More detailed comparison of the 
weakest and strongest students may give insight on an 
explanation and also on how to refine the metrics. 

Our hypotheses and indeed results are consistent with 
some aspects of cognitive load theory (Sweller 1999). For 
instance we expect those with good conceptual schema of 
programming to have some faster digraphs.  It is possible 
that digraph metrics might reveal something of learning 
and problem solving preferences, such as adoption of 
means-ends search. 

6.1 Validity 
The results show one possible factor in a predictive 
model of programming performance. It is not sufficient in 
itself to be a substitute for other forms of assessment. 

Our sample sizes are not small, but we cannot be sure that 
they are representative of their cohorts or the wider 
student population. In both countries the participants were 
volunteers.  For Java one can imagine that the more 
confident students volunteered. For Ada it may be that 



those attending the recruitment lecture were keener than 
their peers; it was the last before a break.  

Although we have confidence in the UAR there could be 
some features in the timing of events that are unknown. 
Certainly UAR interval times are not normally 
distributed, showing a periodicity that may derive from 
process scheduler characteristics. There is also a small 
amount of evidence that the Java timestamps may have 
been distorted on occasions because of server congestion. 

The measures of programming performance were not 
exhaustive. It is possible there is bias as an important 
factor was completeness, which might favour faster 
students. 

6.2 Lessons Learned 
The collection of keystroke data is controversial. There is 
always the danger of privacy violations. Although 
extensive efforts were made in this regard, both studies 
highlighted unexpected difficulties. In the Ada data, 
program source sometimes has author names typed in. 
String searches have revealed a list of them. For Java it 
was expected that special usernames for the study would 
protect identities.  Indeed this was the case except when 
someone used the web browser to read their email on 
some third party provider. 

An advantage of the metrics is that individual keystrokes 
need not be stored.  These problems would then largely 
disappear. 

The cost of cleaning and transforming the UAR data was 
rather high. Generic data has been commented upon as 
problematic in this regard (Reeves and Hedberg, 2003). It 
is expected that in due course our data will be amenable 
to more generic support functions.  

7 Conclusions and Future Work 
We have presented two studies in widely varied situations 
that present essentially the same result. Namely that 
digraphs associated with chunking boundaries appear to 
be a promising feature in the assessment of programming 
performance. We have shown this for two programming 
languages involving 39 and 125 participants taught in two 
countries.  

There is also evidence from the first year students that 
performance in programming really was a factor rather 
than merely learning to type. First, the written test on Ada 
was just that, hand written. Second better programming 
scores were associated with higher practice in Ada as 
measured by total digraphs. 

Work is required to enhance the metrics, both to focus on 
important features like chunking and also to take account 
of future understanding of the basis of these results. 

There are many potential applications for our techniques. 
One is to be able to do rapid assignment of people to 
groups based on an approximation of programming 
performance. Our measure, taken with other data, may be 
quite effective. 

Another application is in plagiarism detection. If a 
student claims to be the author of a program, they could 
do the work again and latencies might detect the unwary. 
This would require extensive development. 

There are strong grounds to investigate these ideas 
further. In one initial step, we are instrumenting BlueJ to 
collect some data on programming and then to display 
results on a web page in near real time. 
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