Using a Domain-Specific Language and custom
tools to model a multi-tier service-oriented
application—experiences and challenges

Marek Vokdé! and Jens M. Glattetre?

1 Simula Research Laboratory, P.O.Box 134, 1325 Lysaker, Norway,
marekv@simula.no,
WWW home page: http://www.simula.no/
2 SuperOffice ASA / ICT Norway**, Drammensveien 211, 0212 Oslo, Norway,
jens.2005@superoffice.com,
WWW home page: http://www.superoffice.com

Abstract. A commercial Customer Relationship Management applica-
tion of approx. 1.5 MLOC of C++ code is being reimplemented, in stages,
as a service-oriented, multi-tier application in C# on Microsoft .NET.
We have chosen to use a domain-specific language both to model the
external service-oriented interfaces, and to manage the transition to the
internal, object-oriented implementation. Generic UML constructs such
as class diagrams do not capture enough semantics to model these con-
cepts. By defining a UML Profile that incorporates the concepts we wish
to model, we have in effect created a Domain-Specific Language for our
application. The models are edited using Rational XDE, but we have sub-
stituted our own code generator. This generator is a relatively generic
text-substitution engine, which takes a template text and performs sub-
stitutions based on the model. The generator uses reflection to convert
the UML and Profile concepts into substitution tags, which are in turn
used in the template text. In this way, we can translate the semantics
of the model into executable code, WSDL or other formats in a flexible
way. We have successfully used this approach on a prototype scale, and
are now transitioning to full-scale development.

1 Introduction and Problem Definition

Many companies are faced with a transition from an object-oriented program-
ming model that implements a rich client, to a service-oriented architecture
and an increasing emphasis on Web-based clients. A service-oriented architec-
ture (SOA) requires application components to be structured in a way that is
different from traditional, in-process object-oriented models.

Service-oriented architectures also prescribe a different approach than that of
earlier Remote Object or Remote Procedure Call architectures, such as CORBA

** Supported by the Norwegian Research Council ICT Programme “FAMILIER”, and
“FAMILIES”, ITEA project ip02009 of the EU Eureka X! 2023 Programme.

or DCOM. One of the main tenets of SOA is to make boundaries between sys-
tems and services explicit, to promote interoperability and to encourage their
proper use. Remote invocation is inherently orders of magnitude more expensive
than local execution, and the architecture and granularity of the interfaces and
messages must reflect this.

At the same time, the actual business and data access logic is generally imple-
mented using object-oriented languages such as Java or C#. It may be desirable
to reuse existing code, which typically represents a significant investment by the
organization.

A coherent SOA requires modelling—it is not enough to simply go ahead
and define services freely; this will result in a large set of disparate services that
do not work well together. The design of a large object-oriented implementation
will also benefit from modelling.

We are thus faced not only with the need to separately model a coherent
SOA and an object-oriented implementation, but also to model the transition
between the two—the connection between interfaces and their implementation.
Ultimately, this set of models should result in the generation of executable code
(including service definitions in WSDL or other appropriate description lan-
guages, and at least the skeletons of the implementations), as it will otherwise
be hard to realize benefits that justify the investment in the modelling effort.

This experience report is written from the perspective of an industrial devel-
opment project. We are looking for workable, pragmatic solutions that can be
used in a full scale development project at the present time. Our approach to
related work, tools and methods reflects this perspective.

We have conducted interviews with architects and developers in our organi-
zation to extract the knowledge presented here. The developers’ experience with
modelling ranges from minimal to extensive (more than 5 years), and their time
with the company from 7 years down to just a few months. We are therefore
able to present experience from a number of different viewpoints.

The rest of this experience report is organized as follows: section 2 sum-
marizes the different approaches and tools we have considered. In section 3 we
present our chosen solution, in the form of a Domain-Specific Language and its
related Code Generator. Section 4 reports on our experience from using this
approach for a modest, yet commercial and marketable, Collaborative CRM
product. Finally, section 5 concludes and outlines our future work.

2 Tools and approaches to modelling SOA and OO

Several approaches to modelling at roughly the level needed for a Service-Oriented
Architecture and its object-oriented implementation have been presented. A lot
of effort has been spent on the Unified Modelling Language (UML), and Model-
Driven Architecture (MDA) has been pushed as a concept and a trademark of
the Object Management Group (OMG).

From the standpoint of a practitioner facing a choice of approach and a
deadline, good tool support is perhaps the single most important factor. Manual,

paper-based modelling, or the use of prototype academic tools is not a sufficient
basis for an industrial project of significant size and complexity. For instance,
the MDA specification published by OMG (1) contains a bare three pages on
the subject of transformations from the platform-independent to the platform-
specific models.

Czarnecki (2) has proposed a taxonomy of transformations, as well as an
overview of existing techniques. For our needs, a template-based approach seemed
to provide the optimum balance between flexibility, power and readability (2, Ch.
3.1.2).

Our organization is a fairly small one, with six developers being considered
a fairly large team. Contrary to the practice in many large (especially North
American) companies of having strictly defined roles—such as architect, de-
signer, developer, tester—most of our developers at one time or another assume
almost every role, according to the stage of the development process and per-
sonal competence. This also influences our approach to modelling, since we do
not have a division between modellers and implementers, or between domain
and application engineers (3, Ch. 2).

Our evaluation of the state of the art therefore focused on available tools,
either released or in a late beta stage, rather than on academic publications and
methods therein. In practice, this restricted our choices to UML-based tools such
as Rational XDE (4), Telelogic Tau (5), Borland Together (6), and Microsoft
Visio (7). A further, important constraint is that our future development will be
on the Microsoft .NET platform, using the C# language and Microsoft Visual
Studio as the development environment.

A tempting alternative was to use tools designed for Software Factories (8),
an approach where separate Domain-Specific Languages are used for different
viewpoints within the total model. Transformations from model/viewpoint to
C+# code, SQL DDL or other artefacts can then be defined.

However, our search did not turn up any tools that we considered to be
sufficiently advanced, robust and scalable to support the kind of modelling we
wished to undertake. Microsoft’s initiative on Software Factories and extensible
modelers is interesting (9), but it is still at an early stage and not suitable for
production.

Our need was (and still is) for a tool that we can use to span from a data
dictionary, via simple object-oriented counterparts to relational tables, through
composition and business logic up to a service-oriented set of interfaces that
are not merely advanced CRUD operations; and to be able to generate the
interfaces, descriptions and skeletons needed for both local and remote (e.g., via
Web Services) invocations of the interfaces. It follows that reliance on the tools’
built-in code generators would be too restrictive, as the transformations between
the different viewpoints are not trivial.

It bears repetition that good tool support is absolutely essential in an in-
dustrial project; otherwise the model will quickly turn into more bureaucracy
than help. Certainly, if the development process model uses concepts from the
Agile/XP domain, with multiple, short iterations, we must expect the models

and the transformations to change. An inflexible tool would push the process
towards a more strict waterfall pattern, which we do not desire.

3 A Domain-Specific Language and Code Generator

While UML has become a de facto standard for modelling OO software, the
generic UML constructs such as classes, class diagrams and association have
relatively low semantic content. Simultaneously, there are constraints on what
one can model; for instance, an association cannot be set up between a specific
attribute in one class and an attribute in another class.

For modelling an SOA, we need a modelling language that can capture con-
cepts such as a Data Contract, a Message Contract and a Service Contract. We
need to be able to group these concepts, inherit, extend and reuse them. Our or-
ganization has also made a considerable investment in its data dictionary, which
describes (both at a table and an entity level) the data model underlying the
whole application. When modelling services, we wish to leverage this investment.

At the same time, the service interfaces should not be mere repetitions of
the underlying physical data model. This could very easily lead to a situation
reminiscent of DCE, CORBA or DCOM, where the remoteness of a service
call is hidden—the approach is to conceal the fact that a method invocation
is actually on a remote object. This leads to unwanted dependencies, where
internal behaviour (such as data types) is exposed, and often also to performance
problems, since iteration over remote, low-level CRUD operations is easy to
program but impossible to make fast and reliable.

Service-Oriented Architectures explicitly try to avoid sharing classes, since
there are bound to be platform differences; instead, Data, Message and Service
Contracts are used to specify messages and their associated content. The map-
ping from these types to the platform dependent types at each end is incidental
and may not be predictable.

As an example, a data type specifying an integer with no upper limit may
on some platforms be transformed into a string internally, if the platform lacks
native unlimited-precision data types. Sharing class across platforms would re-
quire the correspondence to be known in advance, which cannot be taken for
granted.

3.1 Using UML Profiles to define a Domain-Specific Language

UML is a modelling language for which there is quite extensive tool support. In
UML it is possible to define Profiles that add semantic content to the generic
mechanisms of UML itself, effectively making it possible to use it as a platform
for developing Domain-Specific Languages (DSL). This is not the only possible
approach; for instance, van Deursen (10) described a DSL for financial engineer-
ing that was used to generate several different kinds of artefacts (VSAM, CICS
and COBOL items). It uses the MetaEnvironment tools (11) for the transfor-
mation/generation. However, UML and UML Profiles are open standards, and

therefore attractive by not locking the organization into a particular tool or tool
vendor.

Of course, implementing a profile in a particular tool is dependent on the tool,
but the concepts of the profile can in principle be transferred to another tool if
needed, together with the models. The facilities provided by Rational XDE for
defining profiles are fairly rudimentary, but have so far proven adequate to our
needs.

In order to define our DSL, we have taken the minimum set of concepts
needed to capture our modelling requirements, and translated them into a UML
profile. These concepts cover both the service layer, the data dictionary, and
the transition between the Service-Oriented and Object-Oriented worlds. It is
critical to us that these two viewpoints are well integrated, since we will be
implementing the services using object-oriented languages and tools. Figure 1
shows a simplified example of a service interface and how some of its data fields
are derived from the data dictionary.

3.2 Generation of code and other artefacts

A model is useful in itself, as a design and documentation tool. However, its
value is significantly increased if it can also be used to generate code, tests and
embedded documentation. Such use is also a powerful incentive to keep the model
up to date, as a working tool, and not just as a construct that was made early
on in the development cycle and then quietly abandoned.

By definition, a model is an abstraction, and thus a simplification of the
underlying reality. If a model contains enough information to fully generate the
implementation, its complexity can easily become of the same order of magnitude
as that of the implementation and its usefulness becomes doubtful. We therefore
did not set out to find or create a tool that would generate the content of our
implementations.

However, the structure of the services, the structure and skeleton of the im-
plementation, and the “glue” logic required to technically define, deploy and put
together services and their interfaces and implementations, are prime candidates
for automated generation from models. The fact that these technologies change
significantly over time, as new standards, tools and frameworks are adopted,
provides a further powerful incentive for generating them.

Modelling and managing the transition between services and OO implemen-
tations is important, because best practices for design and grouping of them
can be quite different. From our experience we believe that this is best done at
the modelling level, and that generation of a skeleton for the implementation is
extremely useful.

3.3 Code generation by text substitution

Commercial UML tools such as Borland Together or Rational XDE include code
generators for several languages, such as C++, Java or C#. To a greater or lesser

degree, architects and developers can influence how the code generator works,
i.e., what the emitted code looks like. Generally, however, what is a class in
the UML diagram becomes a class or class-like construct in the code, and the
adjustments one can make are more in the realm of coding style than semantics.
One is also limited to generating the artefacts for which there is built-in support.

With the addition of semantic content through UML Profiles, this situation
becomes untenable. The whole purpose of the profile is to capture semantics,
that should then be reflected in the code. A UML “class” object that is assigned
to a certain stereotype may not represent a class at all, but rather a service, a
data contract, or a field with many descriptive attributes in a data dictionary.
The standard code generators are not designed to handle this level of content.

We have therefore created a generic code generator that works by text sub-
stitution. It takes as its input a template text, and replaces recognized tags in

«Soarchives
PersonList

+ GetPersonsFromContact ¢ [in] contactld © int 3 : Personf]

+ GetPersonsFromProject { [in] projectld : int) : Person

+ GefColleagues {) : Person

+ GetColleaguesByDepartrment { [in] departrentld @ int s : Personf]

+ GefColleaguesBySource ([in] sourceType : AssociateSourceType , [in] count ¢ int) : Person

- _PersonListibem
«SoCollectionCf:
- _Personld ey + Personld
- Personld
0.1 «SoTableField:
- _Firstname «SoFields + Firstname
0.1 firstname «SaTableFields| €SoTables
Person
- _Lasmame «SoFigld» + Lastname
0.1 Lastname | crtapleFields
- Description
01 «SoFigld» + Tent «SoTable»
0.1 ; Text <SaTableFieldy Ui
«Soarchivelterms
Person
- _FaxPhone
- DirectPhone 0.1 «SoFields + Phare wSoTables
) Phone Phone
- _MobilePhone 0.1 «SoTableField:
- _ContactPhone 0.1
0.1
- Email «SoField: + Address «SoTables
0.1 EmailAddress «S0TableField:» Email

Fig. 1. Interface example: The shaded items come from the data dictionary model,
while the clear items are service interfaces. The <<SoArchive>> stereotype denotes a
list-like data set, while an <<SoArchiveltem>> is a single row in such a list.

the text with values from the model. The generator uses reflection on the UML
profile and the UML tools’ data model to define the tags; the (human) template
author can then compose templates that translate into relevant, executable code.
Simple looping and conditional constructs provide additional flexibility, while we
do try to avoid the definition of an entire new programming language and en-
vironment within the code generator itself. Figure 2 shows a simple example,
where we generate a C# object that corresponds to one database table and its
fields; the lower half shows the result for a trivially simple table that has two
fields. Syntax coloring is provided by a custom version of the Notepad++ editor
(12).

—| [BWith (Tables)]// [@Table.Description]
| public struct [@Table.PublicMame]
i

]

With(Table.Fieids)]

/ [@TableField.Field.Description]

[BTableField.Field.Datalype.

[BLoop (Table.Fields)]

Csharp! [BTableField.Field.PublicMame] ;

e T e
=

W -] @t s W R e

:
[ELoop (Tables)]

[/ next id to be used for each table

public =struct Segquence

e

// Sequence-id of host - table
int Td;

// Hext id to be used for table
int MextId;

S ———

W - @ s W R e
i
-

Fig. 2. Simple data structure template, and generated result for a table with two fields

Our guiding principle is, as far as possible, to localize knowledge of the DSL
semantics in the UML Profile and in the code templates. By keeping the actual
code generator generic, we make it easier to extend and adapt the DSL as de-
velopment proceeds: it is not realistic to assume that we will be able to define
a DSL that fully supports all our needs early in the project, and then keep it
constant for the duration.

Changes to the DSL imply changes to the UML Profile, possibly the existing
models, and the code templates. They are therefore not to be undertaken lightly,
but as long as we confine ourselves to extensions the cost is manageable. A
breaking change to existing constructs would be costly; however, this is a problem
common to all DSL tools that we know of—and most do not handle even simple
extensions to the DSL.

As the problem domain is explored and the language matures, the rate of
change over time decreases and languages become more stable. However, if a
new aspect or a new domain needs to be modelled, we should expect to have to

make changes to the DSL. It is therefore critical that the tool chain supports at
least extensions to the DSL in a straightforward manner.

3.4 Other uses for “code” generation

Having a text-based code generator that works by text substitution opens the
possibility of generating other artifacts than executable code. The generator
effectively becomes a simple transformation engine, and can be used to generate
HTML documentation, WSDL service definitions, or deployment configuration
files.

For instance, we can use the generator, together with a suitable template,
to generate an HTML documentation file that contains service signatures, their
descriptions (from documentation in the model), and cross-referencing tags that
make it possible to seamlessly integrate the documentation into an existing de-
velopment environment such as Visual Studio.

Another use is to generate WSDL service descriptions. Since the UML Profile
contains concepts that make it possible to distinguish a public service from a
private service from a simple RPC interface, it is relatively straightforward to
use these attributes in the template text and generate WSDL only for the model
elements that actually model services at the desired level.

A third use, illustrating the advantages of a template-based approach, is that
we can also generate unit test skeletons from the same model—either in C#, or
in some other language suited to the testing framework used.

3.5 Model transformation by code generation and reverse
engineering

A conventional approach in Model-Driven Architecture (MDA) is to start with
a platform-independent model (PIM), transform it through a a set of rules to a
platform-specific model (PSM) and from there to code. Examples can be found
in (13; 14; 15), with some specifications in (1). However, the practical matter
of setting up the transformation rules and tools to manage this in an auto-
mated manner is difficult—and if the transformation is performed manually, the
overhead repeating it whenever the PIM or the transformation changes quickly
becomes prohibitive.

For us, the SOA model, expressed in our DSL is the PIM, while its imple-
mentation in an object-oriented form in C#, and using Web Services (16) as
a technical vehicle, is the corresponding PSM. That is, we define our DSL and
external, service-oriented interface to be “platform-independent”. Note that at
this level we hold no opinion as to the manner in which the service interfaces
are to be accessed. This corresponds to the standard MDA view (1, Ch. 4.1.2).

Changing to use, for instance, Microsoft Indigo as the service access mecha-
nism, would mean changing the transformation from the PIM to the PSM; since
the underlying C# execution platform is the same, we would expect to be able
to reuse the actual implementations with few changes. A more radical change,

for instance to a Java/Corba platform, would of course involve much more work,
but we would still expect to generate the service definitions, interfaces and im-
plementation skeletons.

Instead of performing a model-to-model transformation at a modelling-language
level, we have chosen to perform the transformation directly from the PIM—
which primarily models services—to the OO implementation (effectively the re-
sult of generating code from a PSM) directly.

The transformation rules are embedded in the code template that is half
of the input to the code generation, the other half being the model and the
semantics encoded in its use of the concepts from the UML Profile. Effectively,
the template is a transformation rule—and it could have been a model-to-model
transformation by setting up a template whose end product were valid XMI
or some other, relevant metadata format. However, since our emphasis as a
commercial development team is on creating a software product, we chose to
concentrate on generating code.

Thus, our code templates actually combine two roles: transformation of the
model from a platform-independent to a platform-dependent level; and trans-
formation from a model to code (or similar-level artefacts such as WSDL). This
combination is intentional, the main reason being efficiency.

Once the implementation code skeleton has been generated, it can be reverse-
engineered using the standard functionality of the UML tool. The resulting UML
model then becomes the result of applying the semantics of our UML Profile to
our PIM, i.e., the PSM. Since it is reverse-engineered it always reflects the code,
which is what is ultimately shipped to the customer. It therefore becomes a
useful documentation and verification tool, rather than an intermediate step in
the development process. A disadvantage of this approach is that the stereotypes
from the PIM are lost, unless the generated code is somehow tagged, and the
reverse-engineering mechanism recognizes the tags. Such recognition of extra
tags is currently not available in Rational XDE.

4 Practical experience

Initially, the designer and user of the modelling tools and code generator was the
same person (J. M. G.). As the project matured from a prototype / technology
demonstration project to a full-scale development project with six developers, we
have gathered more experience with both the technology and the organizational
side effects.

We have conducted interviews with all the developers, ranging from the senior
architect (M.V.) to recently hired developers with little modelling experience. In
general, increased modelling experience correlates with an increased perception
of the benefits of the approach.

4.1 Positive experiences

Perhaps the single most positive consequence of using a model is to raise the
general consciousness level about the need for well-designed, thought through

interfaces. By making the separation between a service interface and its object-
oriented implementation explicit, the developer is forced to take the difference
into account.

Standardization is also an important benefit. Our code-generation templates
contain and enforce a certain pattern for how a service, its messages and data
should be related, and how they should be implemented for local and remote
calls. Since all of this is generated, it will always be the same and consistent
between services. “Standard” items, such as authentication tickets, are auto-
matically added, again in a consistent way.

When new developers are added to an already established team, it may take
some time to learn all the written and unwritten rules for design and coding
styles. The combination of modelling and generation helps by codifying and
enforcing the “standard” way of doing things.

Simultaneous generation of remote interfaces, local implementations, data
and message contracts as well as unit test skeletons and documentation pages
from a single model ensures that all of these artefacts are actually created. While
we cannot force people to actually write good documentation or comprehensive
tests, there is at least little excuse for not doing so—and empty tests or docu-
mentation pages are highly visible in code reviews. This increases the consistency
of the work across developers

Generation also increases the visibility of “auxiliary” tasks such as documen-
tation and testing. The importance of this rises with the approach of a deadline
and the temptation to skip testing in order to finish in time.

While “local” changes—changes that affect just one or a few interfaces—do
not benefit much from code generation, “global” changes that involve changes
to how all interfaces or implementations are defined become much simpler to
perform, usually by making changes to the template. Since they are applied
equally to all relevant objects, consistency is easier to attain.

The fact that the code generator is an in-house tool is generally considered
to be a positive factor. The tool quickly becomes central to the development
process, and being dependent on a vendor’s release plan for fixes or changes
could easily become a bottleneck. While the availability of the few developers
who can update the tool can also become a limiting factor, it is at least under
the team’s control. Open source tools are a possible alternative in this situation.

4.2 Challenges and pitfalls

While there are important benefits to be realized from modelling and generation,
there are also costs and challenges involved. We have chosen to divide these
into the purely technical, and those that are more cultural or organizational in
character.

Technical challenges Currently, our model resides in a single file, and the code
generator runs on the entire model every time. In practice, this means that only
one developer at a time can have the model locked in the version control system

(merging of multiple versions is not practical). It also means that all target files
are regenerated for every change. While the version control system will recognize
and filter out submissions of files that have not actually changed, this still causes
problems when scaling up to a team of six developers.

The problem is periodic in nature—typically, there is a period in each itera-
tion where new services are designed and defined, followed by a period of actual
implementation. The design period is one of high contention for the model,
while the implementation and testing/debugging is independent of the model
and therefore does not suffer.

The problem can mostly be solved by dividing the model into separately
controlled packages, and by revising the code generator so it can be run on
single packages, instead of the whole model. However, changes to templates or
the UML profile will still force regeneration of the whole system.

To a certain degree, this problem is also related to the way our teams are
organized. A team that has only a few designed architects/interface designers
will have much less contention for the models, and can also afford to increase
the amount of special knowledge and skills required to manipulate the models.
Our teams are organized in the opposite direction, with most of the developers
assuming most of the roles during one complete cycle.

A different challenge is posed by the size and complexity of the entities be-
ing modelled, and the way they are modelled. Since we are using UML as our
basic modelling language, and the Association concept can only connect two
Classes (as opposed to connecting specific attributes within or between classes),
we ended up modelling service interface attributes as separate classes, with spe-
cific stereotypes. This gives us the flexibility and power we need, for instance by
making it possible to reuse an attribute in multiple interfaces.

At the same time, this approach increases the visual complexity of the model
and the screen real estate needed to contain it. When each attribute of an inter-
face becomes a separate box with a line going to it, it is easy to run out of space
on a screen. The model shown in Figure 1 was simplified for this paper, to make
it a reasonable size—in reality, there about three times as many boxes of vari-
ous kinds in the diagram. Even with dual 20-inch displays on each workstation,
this can become an irritating problem. In the near term we do not see any easy
solution; in the longer term, a modelling tool that is not based on UML, but is
instead built to handle DSL’s should provide a solution.

The template language is fairly straightforward, but since it is a proprietary
language there is little tool support for it, in the form of syntax highlighting
or word completion. We are currently looking at ways of adding these features
to Visual Studio, to make template editing easier. Most of the suggestions for
improvements—from the developers using the model—relate to details of the
template language and tool support for editing templates.

Two of the developers have prior experience using XSLT expressions to trans-
form models. Their perception is that the readability and traceability problems
(which part of the template causes a certain output to appear) were larger in
XSLT, and that they usually had to actually run a transformation or genera-

tion to see the output. With a template language based on simple substitution
of textual tags, it is much easier to predict the output. This agrees with the
experience of others, such as Czarnecki (2).

Tool support for transitioning from one version of the Profile to the next is
largely nonexistent. We have created our own tool to bridge the gap, but serious
use of any kind of DSL will be much hampered by the absence of such support.
Ideally, a tool should provide an analysis of the consequences of a language
change (such as an estimate of the number of modelled entities or associations
affected or made invalid), as well as support for mapping concepts in the two
language versions, and an application of that mapping to models made using the
language.

Organizational challenges Even though we consider our template language
to be simple, it still is a language, and it raises the learning threshold for new
members of the team. It has to be learned, understood and worked with in order
to be able to realize the full power of the approach. The alternative, where only
one or two “master developers” understand the whole system, is both inefficient
(they can become bottlenecks) and risky (in case they leave). The associated
training costs are significant but acceptable.

The “extra” work involved in modelling an interface—using the Rational
XDE GUI to draw interfaces, create or retrieve attributes and connect them,
and attach the various stereotypes and parameters needed, may seem to be
a drawback. A possible consequence is that this work is postponed, or that
weaknesses in an interface are not corrected because the effort needed to do
so is perceived as excessive. This may not actually be a big drawback: if it is
very easy to change or create service interfaces, they will proliferate, likely with
a decrease in the generality, stability and quality of each interface. Since our
service interfaces will be used by partners, customers and consultants for many
years, they have to be stable and of a high quality.

Generated code will often contain repetitions—the same template is used to
generate skeletons and (partial) implementations for many objects in the model.
At one level this may be considered a disadvantage; after all, refactoring to avoid
repeating an algorithm in multiple places is a well established practice. If we view
template as the “code”, it contains the algorithm only once, and changes to the
algorithm are performed in the template, not the generated code. On the other
hand, tools such as source browsers will show all the repetitions. Whether this
is actually a problem on a significant scale remains to be seen, and we suspect
it to be a matter of personal viewpoint and preference.

Costs and benefits Since we have not performed parallel development using
models and code generation versus a more traditional approach, we do not have
hard data on the costs and benefits. However, many of the features developed
by this project have equivalents in existing code in the company, and those were
implemented some time ago, mostly without modelling.

The costs are the most visible—it has taken one senior developer approxi-
mately two years to develop the Profile, the code generator and associated tools,
and implement both a table- and entity-level database abstraction layer, plus
a significant amount of infrastructure code. This is roughly comparable to the
effort required for comparable development when the previous generation of the
system was implemented.

The benefits, in terms of stability, error frequency or functionality, are harder
to characterize. There is no doubt that the model-based approach encourages a
much greater test coverage, and that it automatically leads to a degree of consis-
tency that would otherwise require strict enforcement of the company styleguide
and standards. We believe that the main benefits will accrue as we scale up the
development both in complexity and in volume.

Since the costs associated with this approach are significant, we do believe
that small or one-off projects are not likely to realize a net benefit. Our project
will now scale up to six developers for approximately one year; we expect this
to be large enough to realize a benefit, though we also expect the benefit to be
more in terms of increased code quality and functionality, rather than reduced
cost and time.

5 Conclusions and Future Work

Current modelling tools based on UML reflect the fact that UML semantics are
informal, while specific enough to point clearly in the direction of an object-
oriented target language. Since service-oriented architectures are not necessarily
object-oriented, while their implementations often are, the standard code gener-
ators included in UML tools cannot be used for modelling both SOA interfaces
and OO implementations directly.

At the same time, tools that support the creation of Domain-Specific Lan-
guages, are not yet ready for heavy industrial use. However, we view the DSL
approach as perhaps the most promising to date and have adopted it for our
development project.

Our solution has been to create a simple code generator based on text sub-
stitution, and to use a UML Profile to define the additional semantics we need
in the modelling language. We thus transform our chosen UML tool (Rational
XDE) into a simple DSL tool, albeit with limited functionality. The metadata
that represent the model are reflected into the code generator, and the model-to-
code transformations are provided by writing a code template that incorporates
substitution tags matching the model metadata.

Our experience so far is that the approach works quite well for those lower
layers of the application that express similar functionality repeatedly, such as
Data Access Objects for individual tables. Here, “mass production” of function-
ality based on a template, repeated for each table, makes good sense.

When modelling more high-level services, the emphasis is more on the stan-
dardization of naming and behaviour, and the generation of skeletons rather
than complete functionality. While the Data Access layer exhibits close to 80%

generated code, the service layer has less than 40% generated content—and this
percentage may decrease as the implementation complexity increases.

However, it is the generated content that defines the interfaces and the im-
plementation patterns, including the particular technology used to implement
services. This is important, since the current emphasis on Web Services will
surely be superseded by some other—hopefully compatible—technology within
a time span that overlaps the lifetime of our product (typically 10 years). When
this happens, regeneration of interfaces and “glue” logic should save a lot of
effort, and provide a faster time to market for solutions compatible with new
standards.

5.1 Future work

In the near future, our work will concentrate on making the template language
more readable, as well as extending support for it into our development envi-
ronment. Features such as syntax highlighting and auto-completion of reserved
words, variables and other constructs is today taken for granted. The absence of
such support makes editing of the templates unnecessarily tedious. Similarly, ac-
cessing the code generator from within the integrated development environment
is desirable.

Further major development will probably wait for the availability of more
sophisticated tools, for instance the Software Factory modellers announced by
Microsoft. By being designed for customization and implementation of DSL’s
such tools should be more suitable than using profiles to force foreign semantics
into existing UML tools.

We continually strive to find the correct balance between investment in in-
house tools and dependence on external tools. In-house tools offer full control,
at the price of full cost for the tools’ development and maintenance. External
tools reverse the equation, offering low cost but also a lower degree of control.

For a tool that is central to our development process, and using a technology
that is not yet mature, we believe the in-house approach to be the correct one at
this time. In the future, a switch to externally developed tools is quite probable,
when sufficiently mature and well-supported tools are offered. Availability of the
source code will probably be a distinct advantage, since it offers a “safety valve”
in the case of problems that would otherwise threaten a development project.

Acknowledgements

Thanks are due to Guttorm Nielsen, Director of research & development of
SuperOffice ASA for providing the time for writing papers in an otherwise hectic
project timetable. Thomas Schjerpen, Martin Valland, Trond Nilsen and Jgrund
Mgyhre generously shared their insight and experience.

Our work has also been supported by the Norwegian Research Council ICT
Programme “FAMILIER”, and participates in FAMILIES, ITEA project ip02009
of the EU Eureka X! 2023 Programme.

1]
2]

[15]

[16]

Bibliography

Object Management Group: Model Driven Arhictecture Home Page
(2004) http://www.omg.org/mda/.

Czarnecki, K., Helsen, S.: Classification of Model Transofrmation
Approaches. In: 2nd OOPSLA’03 Workshop on Generative Tech-
niques in the Context of MDA, Anaheim, USA (2003)

Czarnecki, K.: Overview of Generative Software Development (2005)
http://www.swen.uwaterloo.ca/ kczarnec/gsdoverview.pdf.

IBM: Rational XDE (2005) http://www-306.1ibm.com/software/
awdtools/developer/rosexde/.

Telelogic: Telelogic Tau (2005) http://www.telelogic.com/products/
tau/index.cfm.

Borland Inc: Together (2005) http://www.borland.com/together/.
Microsoft Inc: Visio 2003 (2005) http://office.microsoft.com/en-gb/
FX010857981033. aspx.

Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories. Wiley,
Indianapolis, USA (2004) ISBN: 0-471-20284-3.

Microsoft Inc: Microsoft Grows Partner Ecosystem Around Vi-
sual Studio 2005 Team System (2004) http://www.microsoft.com/
presspass/press/2004/o0ct04/10-2600PSLAEcosystemPR. asp.

Deursen, A.v.: Using a Domain-Specific Language for Financial En-
gineering. ERCIM News (1999)

CWI: ASF+SDF MetaEnvironment (2005) http://www.cwi.nl/
htbin/senl/twiki/bin/view/SEN1/MetaEnvironment.

Ho, D.: Notepad ++, Version 2.8 (2004) http://notepad-plus.
sourceforge.net/.

Judson, S.R., France, R.B., Carver, D.L.. Specifying Model Transfor-
mations At the Metamodel Level . In: UML 2003 - Workshop in
Software Model Engineering, San Francisco, USA (2003)

Pires, L.A.F., Sinderen, M.v., Farias, C.A.R.G.d., Almeida, J.A.P.A.: Use
of Models and Modelling Techniques for Service Development. In:
3rd IFIP International Conference on E-Commerce, E-Business
and E-Government (I3E 2003), GuarajA, Brazil, Kluwer (2003) 441
456

Solberg, A., Oldevik, J., Aagedal, J..A.: A Framework for QoS-Aware
Model Transformation, Using a Pattern-Based Approach. In Meers-
man, R., Tari, Z., eds.: On the Move to Meaningful Internet Systems
2004: CoopIS, DOA, and ODBASE. Volume 3291., Agia Napa, Cyprus,
Publisher: Springer-Verlag GmbH (2004) 1190

W3C: Web Services Activity (2004) http://www.w3.org/2002/ws/.

