
Do Developers Care about Code Smells?
An Exploratory Survey

Aiko Yamashita
Mesan AS & Simula Research Laboratory

Oslo, Norway
aiko@simula.no

Leon Moonen
Simula Research Laboratory

Oslo, Norway
leon.moonen@computer.org

Abstract—Code smells are a well-known metaphor to describe
symptoms of code decay or other issues with code quality which
can lead to a variety of maintenance problems. Even though
code smell detection and removal has been well-researched over
the last decade, it remains open to debate whether or not code
smells should be considered meaningful conceptualizations of
code quality issues from the developer’s perspective. To some
extent, this question applies as well to the results provided
by current code smell detection tools. Are code smells really
important for developers? If they are not, is this due to the
lack of relevance of the underlying concepts, due to the lack of
awareness about code smells on the developers’ side, or due to
the lack of appropriate tools for code smell analysis or removal?
In order to align and direct research efforts to address actual
needs and problems of professional developers, we need to better
understand the knowledge about, and interest in code smells,
together with their perceived criticality. This paper reports on
the results obtained from an exploratory survey involving 85
professional software developers.

Index Terms—maintainability; code smells; survey; code smell
detection; code analysis tools; usability; refactoring

I. INTRODUCTION

The presence of code smells indicates that there are issues
with code quality, such as understandability and changeability,
which can lead to a variety of maintenance problems, includ-
ing the introduction of faults [1]. In the last decade, code
smells have become an established concept for patterns or
aspects of software design that may cause problems for further
development and maintenance of these systems [2]. Because
code smells are motivated from situations familiar to devel-
opers, design critique that is based on these concepts is likely
to be easier interpretable by developers than the traditional
numeric OO software metrics. Moreover, since code smells are
associated to specific set of refactoring strategies to eliminate
them, they allow for integration of maintainability assessment
and improvement in the software evolution process.

Since the first formalization of code smells in an automated
code smell detection tool [3], numerous approaches for code
smell detection have been described in academic literature [4–
13]. Moreover, automated code smell detection has been
implemented in a variety of commercial, and free/open source
tools that are readily available to potential users.

However, even though code smell detection and removal
have been well-researched over the last decade, the evaluation
of the extent to which such approaches actually improve
software maintainability has been limited. More importantly,

it remains open to debate if code smells are useful con-
ceptualizations of code quality issues from the developer’s
perspective. For example, the authors of a recent study on the
lifespan of code smells in seven open source systems found
that developers almost never intentionally refactor code to
remove bad code smells from their software [14]. Similarly, in
our empirical study on the relation between code smells and
maintainability [15, 16], we found that code smells covered
some, but not all of the maintainability aspects that were
considered important by professional developers. We also
observed that the developers in our study did not refer to the
presence of code smells while discussing the maintainability
problems they experienced, nor did they take any conscious
action to alleviate the bad smells that were present in the code.

So, we can ask ourselves the question if code smells are
really important to developers? If they are not, is this due
to the lack of relevance of the underlying concepts (e.g., as
investigated in [15]), is it due to a lack of awareness about
code smells on the developer’s side, or due to the lack of ap-
propriate tools for code smell analysis and/or removal? Finally
if support for detection and analysis is lacking, which are the
features that would best support the needs of developers? To
direct research efforts so it can address the needs and problems
of professional developers, we need to better understand their
level of knowledge of, and interest in, code smells.

To investigate these questions, this paper presents an ex-
ploratory, descriptive survey involving 85 software profession-
als. The respondents were attracted by outsourcing the task
of completing our survey via an online freelance marketplace
for software engineers. This proved to be a successful method
for ensuring both sample size and covering diverse aspects of
the software profession demography. The paper analyzes and
discusses the trends in the responses to assess the level of
knowledge about code smells, their perceived criticality and
the usefulness of code smell related tooling. Based on our
findings, we provide advise on how to improve the impact
of the reverse engineering & code smell detection scientific
community on the state of the practice.

The remainder of this paper is as follows: Section II briefly
discusses the background and related work. In section III, we
present our research methodology. In section IV, we present
and discuss the results from the study, analyze trends in the
responses, and discuss limitations. Finally, we conclude in
Section V and discuss directions for future research.

978-1-4799-2931-3/13 c© 2013 IEEE WCRE 2013, Koblenz, Germany

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

242

II. BACKGROUND AND RELATED WORK

Code smells are characteristics or patterns that serve as indi-
cators of degraded code quality, which could hinder compre-
hensibility and modifiability. Code that exhibits code smells
can be more difficult to maintain, and this can lead to the
introduction of faults. Beck and Fowler [1, Ch. 3] informally
describe 22 smells and associate them with different refactor-
ing strategies that can be applied to improve the design. Martin
extended the work of Beck and Fowler with an elaboration
on a set of design principles and “new smells” that were
advocated by the Agile community [17].

Over the last decade, code smells have become an es-
tablished metaphor for aspects of software design that may
cause problems for further development and maintenance of
the system [1, 2]. Code smells identify locations in the code
that violate OO design principles and heuristics, such as the
ones described in the work by Riel [18] and by Coad and
Yourdon [19]. As such they are also closely related to the work
on design patterns [20, 21] and anti-patterns [22], although
code smells manifest themselves generally at a more local
scale than (anti-)patterns.

Because code smells are linked to challenges in compre-
hensibility and modifiability, the (automated) analysis of code
smells allows us to integrate both maintainability assessment
and maintainability improvement into the software evolution
process. Moreover, considering that many of the descriptions
of code smells in [1] are motivated by situations familiar
to developers, it can be expected that code smells lead
to software design critiques that are easier to interpret by
developers than the traditional numeric OO software metrics.

Van Emden and Moonen [3] provided the first formalization
of code smell detection and developed an automated code
smell detection tool for Java. Since then, numerous approaches
for code smell detection have been described in literature [4–
13]. Moreover, automated code smell detection has been
implemented in commercial tools such as Together, Analyst4J,
Stan4J, InCode, NDepend, and CppDepend, and in free/open
source tools like JDeodorant, and OClint.

Mäntylä investigated how developers identify and interpret
code smells, and how this compares to results from automatic
detection tools [23]. Other studies have empirically investi-
gated the effects of individual code smells on specific aspects
related to maintainability, such as defects [24–26], effort [27–
29] and changes [11, 30].

Recently, two studies were published that investigated the
lifespan of code smells during the evolution of software sys-
tems [14, 31]. Both studies found that code smells accumulate
in systems over time; smells are usually introduced when the
method in which they reside was initially added; smells are
almost never removed; and most smell removals were not due
to targeted refactoring but as a side effect of other changes.
Peters and Zaidman [14] conclude that developers may be
aware, but are not concerned by the presence of code smells.

In our earlier longitudinal maintenance case study on six
professional developers, we investigated how code smells

relate to the maintainability characteristics considered impor-
tant by professional developers [15], and how code smells
related to maintenance problems experienced by professional
developers [16]. We found that although code smells covered
some of the maintainability properties that were considered
important by developers, a considerable percentage of those
maintainability properties were unrelated to code smells. In
addition, we observed that the developers in our study did not
refer to the presence of code smells in relation to the problems
they experienced, they did not look for tools to analyze code
smells, nor did they take any conscious action to remove the
bad smells that were present in the code.

We conclude that, despite the significant amount of code
smell related research that has conducted in our community,
and despite the increasing number of code smell detection
tools that are available, it remains debatable how useful
these notions and tools are in practice, from the professional
developer’s perspective, and what would need to change.

We are aware of only one other study that investigated
the awareness, concern or perceived criticality of code smells
from the developer’s perspective (albeit in a specific context):
Arcoverde et al. [32] report on the preliminary results from
an exploratory survey amongst 33 developers of reusable
assets in a framework or product line context, investigating
why certain code smells are not refactored. They found that
developers in this context often skip or postpone refactoring
code smells to avoid changing the API or breaking the
contract, because this could introduce faults in client code or
derived applications. They conclude that better visualizations
of the impact of refactorings are needed, especially in the
context of maintaining frameworks or product lines.

Similarly, we have only been able to locate one study
that focused on developer’s needs and wishes for code smell
related tools: The Stench Blossom work by Murphy-Hill
and Black first explores the requirements for code smell
detectors to support refactoring [33], and then implements and
evaluates an unobtrusive ambient code smell visualization on
a mix of students and professional developers [34]. The main
conclusion from their study is that code smell detection tools
should not get in the way of development activities.

III. METHODOLOGY

In order to investigate the developers’ level of knowledge
and concern on code smells, we chose to use the survey
method. According to Fink [35], a survey is a: “system
for collecting information from or about people to describe,
compare, or explain their knowledge, attitudes, and behavior”.
As such, we consider this the most suitable research method
to investigate these questions on a relatively large sample of
software professionals. We use Fink’s guidelines for setting
up and conducting a survey, which involves the following
steps and activities: (a) setting objectives for information
collection, (b) designing the study, (c) preparing a reliable
and valid survey instrument, (d) administering the survey, and
(e) managing/analyzing the data. The reminder of this section
discusses in more detail what we did for each of these steps.

243

A. Setting Objectives for Information Collection

As the first step, a brainstorming session was organized to
define goals and scope of the survey. The main goal was set
to explore the level of insight (i.e., awareness, knowledge)
professional developers have with respect to code smells, and
to determine if, and why they are interested in code smell-
related concepts and tools. A secondary goal is to explore
how code smells (concept or tools) are currently used within
industry, how they could potentially be used within industry,
and what would be needed to address a potential gap.

B. Designing the Survey

Considering that our goal is to collect information to better
characterize and study the phenomenon of interest, we decided
that the best survey format would be an exploratory, descrip-
tive survey that consisted of both closed and open questions.
Open questions are especially suited for such qualitative
exploratory surveys when previous experience or literature is
insufficient to guide the design of closed questions [35].

We use non-probability sampling, more specifically conve-
nience sampling [35], by using freelance marketplaces [36,
37]. The marketplace used to conduct the survey was Free-
lancer.com,1 via which a total of 85 professional developers
where hired to fill out the survey. We chose Freelancer.com
because it offers the “Pay for Time” option, which we consider
ideal for rewarding tasks such as completing a questionnaire
comprising a relatively short period of time.

Although an ideal population sample should be drawn
randomly, the costs of hiring many developers and only using
the data of a few made this rather prohibitive. Instead, we
sampled participants based on their bidding on our task (which
solely consisted of filling out a survey). In the initial selection,
only those participants were selected for which it was clear
from their bid that they understood the task. Later, an few
additional participants were removed because their response
(or the timing of their response) led us to assume that they did
not fill out the survey with enough attention. All participants
were paid an hourly rate according to their bids, for up to
30US$/hr and up to 2 hrs. The task details and payment details
were announced in the Freelancer announcement.

For a detailed discussion of the rationale for, and potential
of freelance marketplaces for conducting Software Engineer-
ing studies, we refer to our earlier paper [37]. As discussed
there, one important aspect to keep in mind is that these
marketplaces are populated both by individual professionals
(i.e., traditional freelancers) and by software engineering
companies acting as a single entity on the marketplace.

C. Preparing the Survey Instrument

We defined a set of background information to collect to
characterize developer profiles. This information includes:
age, country, gender, predominant roles, programming lan-
guage expertise, familiarity with programming paradigms, and
working experience (in months and in code size).

1 Formerly active under the names RentACoder and VWorker.

A 5-point ordered response scale (“Likert-scale”) is used for
asking the developers to describe: (a) their level of knowledge
on code smells, (b) their perception on the degree of criticality
of code smells, and (c) their perception on how useful code
smell information is for different software engineering tasks.

We also asked the developers to identify one or more from
a collection of information sources that helped them to get to
know about code smells. We include an option “other sources”
to allow the respondents to mention any additional sources of
information on code smells.

A set of open-ended questions is used to investigate: (a)
the rationale behind the perceived criticality of code smells,
(b) which code smells are considered as the most critical,
(c) which code-smell related tools have been used previously
(and their experience using them), and (d) what are the desired
features in a code smell detection tool.

We follow the general code smell questions with a three-
option question about the respondent’s refactoring habits, to
investigate the level of planning involved with refactoring
activities (i.e., if they refactor as the project progresses, if they
plan ahead to perform refactoring, or if they do a combination
of both). This is followed by a few detailed questions to
characterize if, how often, and with what kind of support,
code smells are removed in practice.

Before conducting the survey we cross-examined and clar-
ified the questions and options for answering with help of
a third researcher not involved in our study. Due to time
constrains, we did not perform a pilot study on the target
audience, although this could have exposed a question on code
size that was open to misinterpretation (as we see later).

The list of survey questions is presented in Appendix A.

D. Administering the Survey and Analyzing the Data
The code smell survey was part of a larger survey amongst
professional developers conducted at Simula Research Labo-
ratory. The whole survey consisted of two parts: one part on
estimation of software tasks and one part on code smells It
was registered and administered via Qualtrics Research Suite,2

an online platform for conducting surveys.
The responses on questions that used an ordered response

scale based questions were analyzed and summarized via
percentage graphs. The response to the open question about
justifying the criticality of code smells, was analyzed via
open and axial coding [38]. Codes where extracted from the
statements given by the respondents. In relation to which
smells were considered most critical, the responses were inter-
preted and grouped into several discernible code smells and
anti-patterns. For analyzing the features desirable in a code
smell tool, we also interpreted the text and extracted concrete
features from each response and grouped them according to
our perceived level of similarity in each of the responses.

Although no formal inter-rater agreement tests were con-
ducted, each of the authors conducted the qualitative data
analysis individually, and the 3 classification differences were
discussed and solved by consensus in a subsequent stage.

2 http://www.qualtrics.com

244

TABLE I
COUNTRIES OF THE RESPONDENTS

Country No. Country No. Country No.
Australia 1 Bangladesh 3 Brazil 1
Chile 1 China 2 Croatia 1
Egypt 1 El Salvador 1 Finland 1
France 1 Germany 1 Hungary 1
India 12 Israel 1 Italy 2
Latvia 2 Lithuania 1 New Zealand 1
Nigeria 1 Pakistan 8 Poland 1
Portugal 1 Romania 8 Russia 1
Serbia 1 Thailand 1 UK 4
USA 10 Vietnam 3

IV. RESULTS AND DISCUSSION

A. Background and Skills of Respondents

In total, 73 out of 85 developers fully completed the survey,
yielding a response rate of 86%. The respondents originate
from 29 countries, indicating good international coverage (see
Table I). A few countries stood out in terms of number of
participants, such as India, USA, Pakistan and Romania.

The age of the respondents ranged from 19 to 53 (average
30.9, median 30), and their industrial experience ranged from
1 to 30 years (average 8.7, median 7, Figure 1 shows the
distribution). Most of the participants were male, with a total
of 69 (95%) male developers and 4 (5%) female developers.
In terms of roles in their daily projects, the majority of re-
spondents indicated that they worked as a developer, followed
by the role of team lead. Table II shows an overview of all
roles, ordered by frequency.

Figure 2 presents an overview of the self-assessed skills in
terms of familiarity with different programming languages and
programming paradigms. With respect to their proficiency in
programming paradigms, the majority of the respondents re-
ported to be confident with OO-programming paradigm (58%
chose “Extremely familiar”). For imperative programming,
the groups were evenly distributed, and, perhaps somewhat
surprising, a larger group reported to feel quite confident
in functional programming than in imperative programming
(29% for “Moderately” and 22% for “Extremely” familiar).

When analyzing the self-assessment of programming lan-
guage skills, we saw that the majority of the respondents were
not confident in Python (70% responded “Not at all familiar”)
and Visual Basic (44% in the same group). Javascript consti-

0% 5% 10% 15% 20% 25% 30% 35%

1 - 5 years

5 - 10 years

10 - 15 years

15 - 20 years

> 20 years

Fig. 1. Experience of the respondents

TABLE II
PREDOMINANT ROLE OF THE RESPONDENTS

Category No. (%) Category No. (%)
Developer 48 (66%) Self-employed 3 (4%)
Team Lead 13 (18%) Tester 0 (0%)
Architect 5 (7%) QA Manager 0 (0%)
Project Manager 4 (5%)

tutes the programming language for which the majority (34%
of the respondents) responded “Somewhat familiar”. The C,
C++, C# and Java programming languages showed a relatively
even distribution (with Java having a quite dominant group of
nearly 50% of the developers responding that they had no to
slight Java skills). Based on these results, we can assume that
the respondents have a fair (but not a strong) understanding
of OO programming principles. This consideration is of rel-
evance because many code smell definitions are intertwined
with OO design principles.

Other programming languages reported by the respondents
were Perl, PHP and Ruby. Although we did not ask for the
primary working domain, the survey data suggests that the
respondents are rather well-acquainted with web-applications,
based on their skill-assessment of Javascript and the fact that
many of them mentioned PHP (20) and Ruby (6). Initially,
we had intended to triangulate the skill self-assessment with
the size of the code (in kLOC) that respondents had produced
in these languages or paradigms. However, we discarded the
size data because many participants reported unrealistically
high values, seemingly confusing kLOC and LOC values.

B. Level of Insight in Code Smells

From the total set of respondents, up to 23 (32%) replied
that they have never heard of code smells nor anti-patterns
(Figure 3). From the remaining 50, the great majority (37,
50%) belonged to either group 2 (i.e., “I have heard about
them in blogs or discussions but I am not so sure what they
are.”) or group 3 (i.e., “I have a general understanding, but do
not use these concepts.”). Thus only 18% of the respondents

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

Java

C

C++

C#

Python

Js

VB

Functional

Imperative

Object Oriented

Not at all Slightly Somewhat Moderately Extremely

Fig. 2. Familiarity with Programming Languages & Paradigms

245

23	 19	 18	 10	 3	

0%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

Never heard of them
Heard about them but not sure what they are
General understanding but don't apply the concepts
Good understanding and apply the concepts
Strong understanding and apply concepts frequently

Fig. 3. Knowledge about code smells and anti-patterns

indicated that they had a good or strong understanding about
code smells and applied these concepts in their daily activities.

The analysis on information sources will include only the
respondents that belong to this last group. When asked about
the most common source of information for code smells
or design-patterns, Blogs and developer forums were the
most answered amongst the respondents (see Figure 4). The
least mentioned sources are Tool vendor sites and scientific
papers, which constituted, each 4% of the options chosen by
the respondents. It is interesting to note that amongst other
sources than the predefined ones that were mentioned by the
respondents, colleagues, and seminars were a frequent source
of information (20%).

These findings suggest that, to increase research impact on
industry, the code smell analysis communities’ findings and
tools should be easily accessible via resources such as Internet
forums, technical blogs and industry seminars because that is
where professional developers collect their information.

C. Perceived Criticality of Code Smells and Anti-Patterns

With respect to the level of concern that respondents expressed
about the presence of code smells, the majority of the devel-
opers (19 respondents) mentioned that they were moderately
concerned about the presence of code smells in their source
code. A very small selection of 6% (3 respondents) were not
concerned at all, whereas 14% (7) responded that they were
extremely concerned (see Figure 5).

In order to better understand the rationale behind the
perceived criticality of code smells on software evolution,

0% 10% 20% 30% 40% 50% 60% 70% 80%

Blogs (38)

Internet Forums (32)

Gurus' websites (9)

Books (18)

Scientific Papers (5)

Tool Vendors' webistes (5)

Forums and wikipedia (6)

Colleagues, seminars (10)

Fig. 4. Sources of information on code smells/anti-patterns

3 10 11 19 7

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Not at all Slightly Somewhat Moderately Extremely

Fig. 5. Concern about the presence of code smells and anti-patterns

we used coding techniques following grounded theory [38]
to analyze the answers to the open questions.

Table III shows some examples of the statements, and
the codes assigned to each. The complete list of statements
with the coding were not included due to space limitations,
but are available in the technical report that accompanies
this paper [39]. In total, we extracted 32 codes during open
coding which were grouped using axial coding into 10 higher
abstraction categories. These 10 categories can be thought of
as rationales and they can be characterized as follows:

1) Developer productivity: This category captures rationale
in connection to productivity and efficiency in a project,
at individual and at group levels (e.g., the amount of
desired outcome per unit of time). Codes that belong to
this category are: ‘Effectiveness’, ‘Efficiency in teams’,
‘Efficiency’, and ‘Productivity’.

2) Product evolvability: This category relates to potential
risks, and issues that occur during the product evolution.
The codes that belong to this category are: ‘Impact
on software evolution’, ‘Risk’, ‘Ripple effect’, ‘Time-
consuming debugging’, and ‘Testability’.

3) Quality of end-product: This category is mainly con-
cerned with product quality from the end-user’s or cus-
tomer’s perspective. The codes in this group are: ‘Product
quality’, ‘Product reliability’, ‘Error probability’, and
‘Product performance’.

4) Self-improvement: This category covers the rationale of
respondents wishing to increase/improve their skills and
knowledge (i.e., respondent: “I am very concerned be-
cause existences of code smells shows does not show
professionalism in coding. It makes me feel like a novice
or amateur”). Codes that belong to this group are: ‘Im-
prove own skills’, and ‘Programmer skills/status’.

5) (Lack of) Developer’s skills: This category groups codes
indicating that the respondents did not know enough
about the subject, and therefore were not concerned with
the presence of code smells (e.g., respondent: “Because
I have no such clear idea about it”). The codes in
this category are: ‘Intuition’, ‘Lack of knowledge’, and
‘Programmers skills’.

6) (Lack of) Organizational support: This category en-
compasses cases where respondents explained that they
lacked of support from the organization (i.e., their project
managers) or the members of their team. Codes in
this category are: ‘Lack of support by management’,
‘Difficult to promote’, and ‘Lack of time’.

246

TABLE III
STATEMENTS FROM THE RESPONDENTS WITH THEIR CORRESPONDING CODING

ID Statement Codes

2 I want to be reliable as a developer, and adhere to universal conventions on software development, so
that the code I produce is reliable, performant and adheres to established standards used for software
development.

Standard compliance, Improve own
skills, Product Quality, Product relia-
bility

30 Code smells - It seems like a pretty small bug to start off and if left ignored could be hugely destructive.
We have seen a similar case in one of our projects and this lead to a delay in project when we could
have finished way before the timelines.

Product quality, Ripple effect, Impact
on evolution

34 There are some code smells/anti-patterns that I don’t like and fight/educate against them. / Then there
are others like long identifiers, use of literals, premature optimizations, etc. where I’m concerned but
choose to ignore most of the time because it’s not worth my time to try to convince the developer.

Case-by-case basis, Difficult to pro-
mote

40 I’m concerned about code smells because if there will be many of them the programming process and
estimate work-hours of my projects can be multiplied because needs of more refactoring.

Efficiency, Productivity

44 I am very concerned because existences of code smells shows does not show professionalism in coding.
It makes me feel like a NOVICE or AMATEUR

Programmer skills/status

7) (Lack of) Tool support: This category represents respon-
dents stating that they are not concerned with smells
because of the lack of tools that can help to detect them.

8) Cost/benefit considerations: This category is composed
of statements relating to trade-offs between costs (e.g.,
time available in relation to deadlines) and quality (in-
trinsic and extrinsic) of the product. Codes in this cate-
gory are: ‘Trade-offs’, ‘Case-by-case basis’, and ‘Within
project constraints’.

9) Availability of alternative approaches: This category
represents statements where respondents argued that al-
ternative approaches or concepts can be used instead of
code smells and anti-patterns.

10) Understandability: This category relates to concerns on
readability and comprehensibility of the source code, and
approaches to improve these aspects. Codes included in
this category are: ‘Code aesthetics’, ‘Code understand-
ability’, ‘Compliance to standards/known practices’, and
‘Software inspection/code review’.

Figure 6 presents an overview of the number of times (codes
for) these rationales were mentioned by respondents, grouping
them on perceived criticality of smells, as stated by the re-
spondent. By analyzing all rationales matching one criticality

group (i.e., one single color), we get more insight into the
reasons why those respondents were, or were not, concerned
about the presence of code smells or anti-patterns.

For example, the rationales Quality of end-product, Prod-
uct evolvability, and Developer productivity were the most
frequent for developers who responded that they were either
moderately or extremely concerned about code smells/anti-
patterns. Amongst the respondents belonging to the group that
was somewhat concerned with smells, the rationale for their
concern was diverse, covering all categories except for Self-
improvement. The rationale for concern given by respondents
that were slightly concerned by smells was also diverse,
including concerns for reduced Understandability, and only
being slightly concerned by smells because alternative quality
evaluation approaches exist/were used.

To investigate if the respondent’s background (i.e., role, ex-
perience, familiarity with programming languages/paradigms,
and familiarity with code smells) could explain their per-
ception of criticality, we conducted a Categorical Regression
Analysis [40, 41] using SPSS.3 Categorical regressions enable
the quantification of categorical data by assigning numerical
values to the categories, resulting in an optimal linear regres-

3 http://www.ibm.com/software/analytics/spss

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	

Developer	 produc2vity	

Product	 evolvability	

Quality	 of	 end-‐product	

Self-‐improvement	

(Lack	 of)	 Developer's	 skills	

(Lack	 of)	 Organiza2onal	 support	

(Lack	 of)	 Tool	 support	

Cost/benefit	 considera2ons	

Availability	 of	 alterna2ve	 approaches	

Understandability	

Not	 at	 all	 concerned	

Slightly	 concerned	

Somewhat	 concerned	

Moderately	 concerned	

Extremely	 concerned	 	

Fig. 6. Frequency of concern categories across respondent groups

247

sion equation for the transformed variables [40]. This type
of analysis supports the development of predictive and ex-
planatory models where both the dependent and independent
variables can be of continuous, ordinal, or nominal scale.

The result of the analysis was that none of the background
variables except for a respondent’s familiarity with code
smells had a significant contribution to the perceived level
of criticality of code smells for that respondent (B = .388,
p < .05). This is in accordance to our observations from
Figure 6 and signifies that, in general, the more details people
actually know about code smells, the more concerned they are
by the presence of smells in their code.

Although we could not find a significant effect of the
respondent’s role on the level of criticality, we did notice that
respondents who had the role of Project Manager tended to
be less concerned. In contrast, respondents who defined their
role as Self-employed were much more concerned (Figure 7).

D. Ranking of Code Smells and Anti-Patterns

In total, 34 code smells/anti-patterns were mentioned by the
respondents. To summarize this data into a ranked list, we
used the Borda count [42]. This is a rank-order aggregation
technique where, if there are n candidates, the first ranked can-
didate will get n points, n−1 points for a second preference,
n − 2 for a third, etc. By weighing a series of “votes” for
each respondent, the Borda count yields a consensus-based
ranking instead of a majority-based one. We used a small
variation where the first-ranked candidate receive one point,
the second-ranked candidate receives half of a point, the third-
ranked candidate receives one-third of a point, etc. We chose
this variation to keep the aggregated points at a manageable
level, due to the large set of candidates. Table IV shows the
results from the aggregation, where smells that “scored” 1
point or less where excluded for brevity. This table shows
that Duplicated code was by far the most mentioned smell,
followed by smells/anti-patterns related to size and complex-
ity: Long Method, Large Class and Accidental Complexity.4

E. Use of Analysis Tools in Practice

We asked the participants to indicate which tools they had
used for analysis of code smells or anti-patterns and to

4 Accidental complexity signals a mismatch between the degree of complex-
ity in the solution and the complexity of the problem to be solved.

0%	 20%	 40%	 60%	 80%	 100%	

Architect	

Developer	

Project	 Manager	

Self-‐employed	

Team	 Lead	

Not	 at	 all	 concerned	

Slightly	 concerned	

Somewhat	 concerned	

Moderately	 concerned	

Extremely	 concerned	

Fig. 7. Role vs. Perceived Criticality

comment on the usefulness of these tools. Not all participants
answered this question, and the ones that did in general
interpreted the question wider than just tools aimed at code
smells. Instead they reflected on all tools and plug-ins that
they used to assure software quality. We received 50 of 73
responses, of which 15 (30%) answered that they used one or
more tools and 35 (70%) of them did not use additional tools.

With respect to code smell related tools that were used, only
two of the respondents (4%) used specific code smell detection
tools and they also used refactoring tools in connection with
these to remove the smells. The tools were JetBrains Re-
sharper which combines smell detection and refactoring, and
the combination of DevExpress CodeRush and Refactor!Pro.

We learned that the most popular tools were automated soft-
ware inspection tools that help to adhere to coding standards
and detect potentially problematic code patterns as a means
to ensure software quality. These were used by 9 respondents
and included tools such as CheckStyle, FindBugs, FxCop,
and PMD. The next largest group of tools were used by
6 respondents and were dedicated to analyzing performance
of web applications. This included tools such as FireBugs,
Pagespeed, Yslow and Pingdom. Five of the respondents
mentioned that they made use of the exploration and code
organization features in their IDEs (either Visual Studio or
Eclipse) to do manual code reviews. Three respondents used
tools to detect duplicated code (clone detection). Other tools
mentioned included a pretty-printer/beautifier to ensure read-
ability of the code and a tool to identify potentially difficult
code by means of computing the cyclomatic complexity.5

Unfortunately, the respondent’s answers on tool usefulness
were too divergent to detect consistent patterns. Where one
developer found a given tool very useful in their context,
another developer would respond that they did not feel the

5 Note the total number of tools used is larger than the number of respondents
because some people used more than one tool.

TABLE IV
RANKING OF MOST POPULAR CODE SMELLS/ANTI-PATTERNS

Smell/Anti-Pattern Points
1. Duplicated code 19.53

2. Long method 9.78

3. Accidental complexity 8.32

4. Large class 7.09

5. Excessive use of literals 3.04

6. Suboptimal information hiding 2.70

7. Lazy class 2.33

8. Feature Envy 2.33

9. Long parameter list 2.31

10. Dead code 2.25

11. Bad (or lack of good) comments 1.50

12. Use deprecated components 1.50

13. Single Responsibility 1.20

14. Complex conditionals 1.12

15. Bad naming 1.12

248

TABLE V
MOST DESIRED FEATURES FOR CODE SMELL ANALYSIS TOOLS

Feature Points
1. Detection of duplicated and near-duplicated code 10.00

2. Dynamic analysis (number of calls, etc) 4.08

3. Define and customize detection strategies 3.50

4. Support code inspection 2.67

5. Suggest refactorings 2.50

6. Good usability 2.50

7. Detect potentially problematic areas 2.33

8. Real-time update 2.33

9. Detect memory leaks 2.25

10. Detect dead code 2.03

11. Integrate with versioning & deployment infrastructure 2.00

12. Report generation 1.33

13. Integration with IDE 1.33

tool contributed much. Overall, most developers were positive
about the benefits of the automated software inspection tools,
there were complaints about the number of false positives
reported, and the respondents reflected positively on how some
of the tools did not intrude on their development work-flow.

F. Desired Features for Code Smell Related Tools

We extracted 29 desired features or characteristics for tools
supporting detection or analysis of code smells and anti-
patterns. To summarize the results, we again applied the
variation on the Borda count aggregation technique that was
described above. Table V shows those features or character-
istics that scored higher than 1 point. Not surprisingly in the
light of the most mentioned smell, the most desired feature
by the respondents was the detection of duplicated and near
duplicated code. In addition, respondents would like to see
support for dynamic analysis, closely followed by desire to
define and customize detection strategies (e.g., detection rule
templates) based on their project context.

One of the respondents answered that they would like a
better version of their current tool, requiring readily usable
but customizable rules for detecting problematic code. This
corresponds with the fact that developers ranked “support code
inspection” and “suggest refactorings” as the most desirable
features after the “customizable detection strategies”.

G. Usefulness of Code Smells, and Refactoring Habits

Based on the answers of the 50 respondents that had pre-
viously used code smell related tools, we analyzed their
responses with respect to the usefulness of code smells.
Approximately half of the developers expressed that code
smells/anti-patterns can be either moderately or extremely use-
ful for conducting different activities in a project (Figure 8).
The overall distribution was quite balanced with two activities
scoring a bit better: 29 (60%) of the developers responded that
code smells and anti-patterns can be moderately or extremely
useful for Code Inspection, and 33 (66%) responded that they
can be moderately or extremely useful for Error Prediction.

2	

2	

1	

3	

4	

11	

5	

3	

10	

4	

12	

16	

13	

13	

13	

13	

18	

24	

13	

18	

12	

9	

9	

11	

11	

0% 20% 40% 60% 80% 100%

Refactoring guidance

Quality Assurance

Error prediction

Effort prediction

Code inspection

Not at all Slightly Somewhat Moderately Extremely

Fig. 8. Usefulness of code smells/anti-patterns for various activities

Finally, with respect to the refactoring habits of the re-
spondents, 17 (34%) answered that they refactor on the fly, 8
respondents (16%) answered that they plan for refactoring in
their projects, and 25 (50%) of the respondents replied that
they follow a combination of these strategies.

H. Limitations of the Work

The main threat to the external validity of survey results is
attracting a large enough and representative sample of the
population, which is generally difficult to obtain for studies
on professional software engineers. We used outsourcing on
freelance marketplaces to overcome this challenge. We refer
to our companion paper for a detailed discussion of the
challenges and opportunities of this approach [37], but repeat
here that the challenges lie in uncertainty about background
and skills of participants, and it is difficult to objectively assess
aspects such as competence, education and experience.6

The main limitations of the particular survey questions
come from their exploratory nature. One example is that
we did not collect further information on the expertise and
“business domain” of the respondents. In addition, we had to
dismiss responses to one of the questions because it was open
to interpretation. Additional information might have explained
better why many of them were not better acquainted with code
smells, and what were the reasons for the (dis)interest.

Another limitation is that is hard to control for completeness
and clarity in open responses within a survey. This means
answers may be incomplete, or may require interpretation by
the researcher. As a result, the background of the researchers
that interpreted the answers can become a source of bias.

Nevertheless, considering there was little prior knowledge
on the topics of this survey, we believe it was a good decision
to use open questions as a first exploratory step. The analysis
of responses presented in this paper can now act as a basis
for developing further concrete research questions.

V. CONCLUSION AND FUTURE WORK

This paper reports on the findings from a survey conducted
on 85 software professionals, in order to better understand

6 Note that we have left out education levels in our survey as these are next
to impossible to compare internationally.

249

the level of knowledge about code smells, their perceived
criticality and the usefulness of code smell related tooling.

We found that a considerably large proportion (32%) of
respondents stated that they did not know about code smells.
Respondents indicated that they use technical blogs, pro-
grammer forums, colleagues and industry seminars as their
main sources of information. Our advise is that the research
community should target these channels to make findings and
tools easier to access, and increase the impact on practice.

With respect to the perceived criticality of code smells and
anti-patterns, the responses where divided, but the majority
of respondents were moderately concerned. Deeper analysis
of the responses to open questions showed that respondents
who did not care at all about code smells also indicated
that they did not know much about smells and anti-patterns.
Respondents who were extremely or moderately concerned
gave as rationale reasons like product evolvability, end-product
quality, and developer productivity. Respondents who were
somewhat concerned about code smells indicated that it is
often difficult to obtain organizational support, that they lacked
adequate tools, and that they often need to make trade-offs
between code quality and delivering a product on time.

Looking at individual smells and anti-patterns, Duplicated
Code was mentioned most by the respondents, followed by
smells and anti-patterns related to code size and complexity,
such as Large Class, Long Method, and the anti-pattern
Accidental Complexity. Identification of the latter could be
an interesting problem for the research community to work
on, but will be far from trivial to assess automatically.

Finally, with respect to tool support, the majority of respon-
dents expressed the need for better tools to detect duplicated
code/duplicated logic (another sign that the research commu-
nity’s result are not easily accessible for practitioners), and for
customizable detection strategies that would enable context-
sensitive (or domain specific) detection of code smells.

In general, we found that software professionals who are
interested on code smells and anti-patterns expressed a need
for better support during the software evolution cycle. More
specifically they expressed the need for a user-friendly, real-
time tool support for conducting code inspections, which
could ultimately help them to identify problematic areas (e.g.,
using error prediction). Refactoring tools should provide better
support for understanding which choices developers have for
refactoring/restructuring their code to improve the quality.

As future work, we intend to contact some of the respon-
dents of the survey and conduct a semi-structured interview in
order to investigate in detail the motivation and challenges for
using code smells during software evolution, and to investigate
specific features that should be supported in a tool. We also
plan to conduct a more extensive, structured survey, based on
the answers obtained from this exploratory study, involving a
larger sample of software professionals.
Acknowledgments: The authors thank Magne Jørgensen for
helping us collect the data for this study. This work was partly
funded by Simula Research Laboratory and the Research
Council of Norway through the project EvolveIT (#221751).

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[2] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer, 2005.

[3] E. Van Emden and L. Moonen, “Java quality assurance by detecting
code smells,” in Working Conf. Reverse Eng., 2001, pp. 97–106.

[4] R. Marinescu and D. Ratiu, “Quantifying the quality of object-oriented
design: the factor-strategy model,” in Working Conf. Reverse Eng.
IEEE, 2004, pp. 192–201.

[5] R. Marinescu, “Measurement and quality in object-oriented design,” in
IEEE Int’l Conf. Softw. Maintenance, 2005, pp. 701–704.

[6] N. Moha, Y.-g. Gueheneuc, and P. Leduc, “Automatic Generation of
Detection Algorithms for Design Defects,” in 21st IEEE/ACM Int’l
Conf. Automated Softw. Eng. IEEE, 2006, pp. 297–300.

[7] N. Moha, “Detection and correction of design defects in object-oriented
designs,” in ACM SIGPLAN Conf. Object-oriented programming, sys-
tems, languages, and applications, 2007, pp. 949–950.

[8] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, and L. Duchien, “A domain
analysis to specify design defects and generate detection algorithms,”
in Fundamental Approaches to Softw. Eng., 2008, pp. 276–291.

[9] A. A. Rao and K. N. Reddy, “Detecting bad smells in object oriented
design using design change propagation probability matrix,” in Int’l
MultiConf. Engineers and Computer Scientists, 2008, pp. 1001–1007.

[10] E. H. Alikacem and H. A. Sahraoui, “A Metric Extraction Framework
Based on a High-Level Description Language,” in IEEE Int’l Conf.
Source Code Analysis and Manipulation (SCAM), 2009, pp. 159–167.

[11] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An Exploratory Study
of the Impact of Code Smells on Software Change-proneness,” in
Working Conf. Reverse Eng. IEEE, 2009, pp. 75–84.

[12] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “DECOR:
A Method for the Specification and Detection of Code and Design
Smells,” IEEE Transactions on Software Engineering, vol. 36, no. 1,
pp. 20–36, 2010.

[13] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, L. Duchien, and
A. Tiberghien, “From a domain analysis to the specification and
detection of code and design smells,” Formal Aspects of Computing,
vol. 22, no. 3, pp. 345–361, 2010.

[14] R. Peters and A. Zaidman, “Evaluating the Lifespan of Code Smells
using Software Repository Mining,” in European Conf. Softw. Mainte-
nance and ReEng. IEEE, 2012, pp. 411–416.

[15] A. Yamashita and L. Moonen, “Do code smells reflect important
maintainability aspects?” in IEEE Int’l Conf. Softw. Maintenance, 2012,
pp. 306–315.

[16] A. Yamashita and L. Moonen, “Exploring the Impact of Inter-Smell
Relations on Software Maintainability: An Empirical Study,” in Int’l
Conf. Softw. Eng., 2013, pp. 682–691.

[17] R. C. Martin, Agile Software Development, Principles, Patterns and
Practice. Prentice Hall, 2002.

[18] A. J. Riel, Object-Oriented Design Heuristics, 1st ed. Boston, MA,
USA: Addison-Wesley, 1996.

[19] P. Coad and E. Yourdon, Object-Oriented Design. Prentice Hall, 1991.
[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.

Addison-Wesley, 1994.
[21] C. Larman, Applying UML and Patterns, 3rd ed. Prentice Hall, 2004.
[22] W. Brown, R. Malveau, S. McCormick, and Tom Mowbray, AntiPat-

terns: refactoring software, architectures, and projects in crisis. John
Wiley & Sons, Inc., 1998.

[23] M. V. Mäntylä, “Software Evolvability - Empirically Discovered Evolv-
ability Issues and Human Evaluations,” PhD Thesis, Helsinki University
of Technology, 2009.

[24] W. Li and R. Shatnawi, “An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution,”
Journal of Systems and Software, vol. 80, no. 7, pp. 1120–1128, 2007.

[25] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the Impact of Design
Flaws on Software Defects,” in Int’l Conf. Quality Softw., 2010, pp.
23–31.

[26] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that smell?” in
Working Conf. Mining Softw. Repositories, 2010, pp. 72–81.

[27] I. Deligiannis, I. Stamelos, L. Angelis, M. Roumeliotis, and M. Shep-
perd, “A controlled experiment investigation of an object-oriented
design heuristic for maintainability,” Journal of Systems and Software,
vol. 72, no. 2, pp. 129–143, 2004.

250

[28] A. Lozano and M. Wermelinger, “Assessing the effect of clones on
changeability,” in IEEE Int’l Conf. Softw. Maintenance, 2008, pp. 227–
236.

[29] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An Empirical
Study of the Impact of Two Antipatterns, Blob and Spaghetti Code, on
Program Comprehension,” in 15th European Conf. Softw. Maintenance
and ReEng. IEEE, 2011, pp. 181–190.

[30] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjøberg, “Are all code smells
harmful? A study of God Classes and Brain Classes in the evolution
of three open source systems,” in IEEE Int’l Conf. Softw. Maintenance,
2010, pp. 1–10.

[31] A. Chatzigeorgiou and A. Manakos, “Investigating the Evolution of Bad
Smells in Object-Oriented Code,” in Int’l Conf. Quality of Information
and Communications Technology. IEEE, 2010, pp. 106–115.

[32] R. Arcoverde, A. Garcia, and E. Figueiredo, “Understanding the
longevity of code smells,” in Ws. Refactoring tools (WRT). New York,
New York, USA: ACM Press, 2011, pp. 33–36.

[33] E. Murphy-Hill and A. P. Black, “Seven habits of a highly effective
smell detector,” in Int’l Ws. Recommendation Systems for Softw. Eng.
(RSSE). ACM, 2008, pp. 36–40.

[34] E. Murphy-Hill and A. P. Black, “An interactive ambient visualization
for code smells,” in Int’l Symposium on Softw. Visualization (SOFTVIS).
ACM, 2010, pp. 5–14.

[35] A. Fink, The Survey Handbook, 2nd ed. Thousand Oaks, California:
SAGE, 2003.

[36] D. F. Bacon, Y. Chen, D. Parkes, and M. Rao, “A market-based approach
to software evolution,” in Conf. Object-oriented programming, systems,
languages, and applications. ACM, 2009, p. 973.

[37] A. Yamashita and L. Moonen, “Surveying Developer Knowledge and
Interest in Code Smells through Online Freelance Marketplaces,” in
User Evaluations for Softw. Eng. Researchers (USER), 2013.

[38] A. Strauss and J. Corbin, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. SAGE, 1998.

[39] A. Yamashita and L. Moonen, “Do Developers Care About Code
Smells? An Exploratory Survey,” Simula Research Laboratory, Tech-
nical Report 2013-01, 2013.

[40] J. J. Meulman, “Optimal scaling methods for multivariate categorical
data analysis.” SPSS, Inc., Tech. Rep., 1998.

[41] J. P. Van Der Geer, Multivariate analysis of categorical data: Applica-
tions, advanced q ed. SAGE, 1993.

[42] B. Reilly, “Social Choice in the South Seas: Electoral Innovation and
the Borda Count in the Pacific Island Countries,” International Political
Science Review, vol. 23, no. 4, pp. 355–372, 2002.

APPENDIX A
SURVEY QUESTIONS

[NB: the layout below was somewhat adapted to meet space limitations]

Section I: Background
1. What is your predominant role within your organization?

[] Developer
[] Team Lead
[] Tester

[] Architect
[] QA Manager
[] Project mngr

[] Self-employed

2. What is your level of skill in the following languages?
(1=novice, 5=expert, please specify which other languages if relevant):

Language Level Language Level Language Level
Java C# VisualBasic
C Python other:
C++ Javascript

3. What is your level of experience (in kLOC and months) in
the following languages?

Language size time Language size time
Java Python
C Javascript
C++ VisualBasic
C# other:

4. Rank the following programming paradigms according to how
familiar you are with each? (1=least familiar, 5=most familiar)

Paradigm Functional Imperative Object Oriented
Familiarity

Section II: Code Smells

5. How familiar are you with code smells or design anti-patterns?
(please choose one)
[] I have never heard of them
[] I have heard about them, but I am not so sure what they are
[] I have a general understanding, but do not use these concepts
[] I have a good understanding, and use these concepts sometimes
[] I have a strong understanding, and use these concepts frequently

6. What are the sources from which you learn on code smells?
(multiple choices possible)
[] Blogs
[] Discussion forums
[] Guru’s websites

[] Books
[] Research papers
[] Tool vendors’ websites

7. How concerned are you with the presence of code smells or anti-patterns
in your code? (1=not concerned, 5=very concerned) Please motivate why?

8. Are there specific code smells / anti-patterns that you are concerned
about? Please list them in order of their perceived importance.

9. Rank the situations where do you think code smell analysis/tools
can be helpful (1=not helpful, 5=essential)

Situation Level
Refactoring guidance (find out where to refactor)
Quality assessment (e.g., certification processes)
Bug prediction (identify code likely to have more defects)
Effort prediction (identify code that takes time to change)
Code inspection (prioritize areas of the code to improve)
Others (mention):

10. Have you used tools for detecting/analyzing code smells? Which ones?

11. Did you find the tools useful? Why/why not?

12. What features would you like in a tool for supporting detection
or analysis of code smells? (list the most important ones first).

No. Feature

13. Do you remove code smells “on the fly” or you plan and allocate
time to “cleanup your code”? (please choose one)
[] On the fly [] Plan [] Combination

Section III: Removal of code-smells

14. How often do you refactor to remove code smells? (choose one)
[] Never
[] Almost never
[] Sometimes, when it is absolutely essential
[] On a regular basis
[] Refactoring is included as a formal activity within the project

15. Can you characterize how much (seldom/regularly/often) of the
refactoring is manual, tool assisted or combined?

Method Manual Tool assisted Combined
Frequency

16. Can you estimate how much (seldom/regularly/often) of the refactoring
done is of low (renaming methods), of medium (relocating classes, extracting
methods) or high (modify large segments of the code, replace solutions with
the usage of patterns, etc.) complexity?

Refactoring complexity Low Medium High
Frequency

17. Would you like to know more about code smells / anti-patterns
or refactoring? Why?

251

