
Science of Computer Programming 60 (2006) 205–220
www.elsevier.com/locate/scico

Documenting software systems using types✩

Arie van Deursena,b,∗, Leon Moonenb,a

aCWI, Software Renovation Research Group, SEN-1, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
b Delft University of Technology, Software Evolution Research Lab, Faculty EEMCS, Mekelweg 4, 2628 CD, Delft, The Netherlands

Available online 14 November 2005

Abstract

We show how hypertext-based program understanding tools can achieve new levels of abstraction by using inferred type
information for cases where the subject software system is written in a weakly typed language. We propose TYPEEXPLORER,
a tool for browsing COBOL legacy systems based on these types. The paper addresses (1) how types, an invented abstraction, can
be presented meaningfully to software re-engineers; (2) the implementation techniques used to construct TYPEEXPLORER; and
(3) the use of TYPEEXPLORERfor understanding legacy systems, at the level of individual statements as well as at the level of the
software architecture — which is illustrated by using TYPEEXPLORERto browse an industrial COBOL system of 100,000 lines of
code.
c© 2005 Elsevier B.V. All rights reserved.

Keywords:Software maintenance; Software exploration; Program understanding; Program analysis; Type inference; Documentation generation;
Variable usage; Hypertext

1. Introduction

Software immigrants, employees that are added to an existing software project in order to conduct maintenance or
development, are faced with the difficult task of understanding an existing software system [39]. Even the original
developers of a system generally have a hard time understanding their own code as time between development and
maintenance goes by. As a consequence, maintenance tasks become difficult, expensive, and error prone.

To reduce these problems, much research is being invested in the development of tools to assist in program
understanding. One line of research focuses on the use of hypertext for program comprehension purposes [3,9,32,
35,38]. Within a hypertext, various layers of abstraction can be integrated, ranging from the system’s architecture to
the individual statements in the source code. The maintenance engineer can navigate easily between these, using both
top-down and bottom-up comprehension strategies, as well as the “opportunistic” combination of these [24,35].

Such a hypertext can be seen as a (special form of) system documentation. Part of it will be hand-written, especially
those sections addressing domain-specific issues, the system’s requirements, or the rationale behind certain design

✩ Revised version of the paper “Exploring Legacy Systems Using Types”. InProceedings of the 7th Working Conference on Reverse Engineering.
IEEE Computer Society, 2000.

∗ Corresponding author at: Department of Software Engineering, P.O. Box 94179, 1090 GB Amsterdam, The Netherlands.
E-mail addresses:Arie.van.Deursen@cwi.nl (A. van Deursen), Leon.Moonen@acm.org (L. Moonen).
URLs:http://www.cwi.nl/∼arie/(A. van Deursen),http://www.cwi.nl/∼leon/(L. Moonen).

0167-6423/$ - see front matterc© 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.10.006

http://www.elsevier.com/locate/scico
http://www.cwi.nl/~arie/
http://www.cwi.nl/~arie/
http://www.cwi.nl/~arie/
http://www.cwi.nl/~arie/
http://www.cwi.nl/~arie/
http://www.cwi.nl/~leon/
http://www.cwi.nl/~leon/
http://www.cwi.nl/~leon/
http://www.cwi.nl/~leon/
http://www.cwi.nl/~leon/


206 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220

decisions. However, documentation at the more technical level should be generated whenever possible, in order to
keep it up to date and consistent with the sources at all times.

The fundamental problem with documentation generation (and in fact, the key challenge of reverse engineering)
is to arrive at non-trivial levels of abstraction, going beyond just cross-referencing information and source code
browsing. Our research aims at achieving such a level of abstraction by looking at thetypesthat are used in a software
system.

For typed languages, such as Java, C, and Pascal, using types for program comprehension is relatively
straightforward: types are explicit, and can help to determine interfaces, function signatures, permitted values for
certain variables, etc. Many of the existing software systems, however, are written in older languages with very weak
type systems. In particular COBOL, the language in which at least 30% of the world’s software is written, does not
offer the possibility of type definitions. The question we ask ourselves is whether types nevertheless can help in
understanding such COBOL systems.

The solution we propose is toinfer types for COBOL automatically, based on an analysis of theuseof variables [10].
This results in types for variables, program parameters, database records, literal values, and so on, which can be used
to understand the relationships between, e.g., programs, copybooks, databases, screens.

In earlier work, we presented an algorithm and toolset for determining types in COBOL systems [10,11]. The current
paper addresses the problems involved in integrating inferred types into hypertext-based program understanding tools.
In particular, we will be concerned with the following three questions:

Presentation Types are an abstraction not directly present in the (legacy) system — types do not exist in the code,
but must be inferred first. How do we present this abstraction in such a way that it provides an understandable,
meaningful and useful view on a legacy system?

Implementation How do we implement tools to obtain this presentation?
Use What maintenance or program understanding questions can be answered using such a presentation, not only at

the individual module level, but also at the architectural level?

We will explain how we dealt with these issues while constructing TYPEEXPLORER, a tool for exploring COBOL

systems using types. InSection 2we give an overview of related work. InSection 3we discuss the theory of type
inferencing for COBOL. We cover the design of the hypertext structure used by TYPEEXPLORER in Section 4, and
the techniques that were used for implementation inSection 5. We then discuss the usefulness of TYPEEXPLORER

for various program understanding tasks and describe its application in a 100,000 lines of code COBOL case study in
Section 6. Finally, we summarize our contributions, and list possibilities for future work inSection 7.

2. Related work

Our work on TYPEEXPLORER is related to three areas of research: (1) the exploration of legacy system using
reverse engineering techniques; (2) the use of types for analyzing legacy systems; and (3) specific techniques used for
analyzing Cobol legacy systems. We discuss related work in each of these areas.

2.1. Software exploration

Software evolution involves the process of keeping a software system in sync with the ever-changing needs of the
system’s users and environment. An unfortunate side-effect of evolution is that it often causes the knowledge about
a system to degrade, which in turn impedes further evolution.Software explorationtools help software engineers
navigating through and understanding evolving software systems. In [27], Moonen investigates techniques and
tools that support the exploration of a software system and improve its legibility. He examines the analogy with
urban exploration and presents techniques for the extraction, abstraction, and presentation of information needed for
understanding software.

Exploration support can be seen as a form of (re)documentation. Chikofski and Cross defineredocumentationas
the creation of a semantically equivalent representation of a software system within the same level of abstraction.
Common tools include pretty printers, diagram generators, and cross-reference listing generators [7]. Landis et al.
discuss various documentation methodologies, such as Nassi Schneiderman charts, flow charts and Jackson diagrams
[23]. Today, a growing body of literature on automated program documentation exists [3,9,12,14,19,32,34,35,38,42].
Of these, Brown discusses a tool that automatically creates links between program analysis data and hypertext



A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220 207

documentation [3]. CHIME is a generator of tools that automatically insert certain links in source code elements [12].
PAS is a system that can be used to incrementally addpartitioned annotations of software[35]. Documentu [32]
follows a tag-based method inspired by literate programming also used in Javadoc.

Wong et al. emphasizestructural redocumentation, which, as opposed todocumentation in-the-small, deals with
understanding architectural aspects of software [42]. They use Rigi for the extraction, querying, and presentation,
using agraph editorfor manipulating program representations. Severalviewsof the legacy system can be browsed
using the editor. Our approach also focuses on the structural aspects of documentation. Rather than using a dedicated
graph editor, we use standard HTML browsers for viewing the documentation. Furthermore, we determined the
required views in advance, via discussion with the team of maintenance programmers.

The software bookshelf [14] is an IBM initiative building upon the Rigi experience. In this metaphor, three roles
are distinguished: thebuilder constructs (extraction) tools; thelibrarian populates repository with information using
the building tools or other (manual) ways, and thepatron is the end user of the bookshelf.

DOCGEN is a tool for generating hyperlinked visual and textual documentation from COBOL and batch job
sources [9]. Distinguishing characteristics of DOCGEN include extraction based onisland grammars[26,28] rather
than full parsing, emphasis on industrial application,1 and integration of various abstraction layers, ranging from
source code up to system architecture. We will see later how the type information derived by TYPEEXPLORERcan be
integrated with documentation that is generated by DOCGEN.

2.2. Type-based analysis of legacy systems

Our own work on type inferencing started with [10], where we present the basic theory for COBOL type inferencing.
In [11], we describe an implementation using Tarski relational algebra. Moreover, we carried out a detailed assessment
of the benefits of using subtyping to deal with the problem ofpollution (inferring too many type equivalences). The
application of type inferencing (in combination with concept analysis) to the identification of objects in legacy systems
is discussed by [22]. In this paper, we do not extend the theory of type inferencing: instead we explain how inferred
types can be presented using hypertext, and used to understand COBOL systems at various levels of abstraction.

Closest in aims to the integration of type analysis and program understanding is Lackwit [31], a tool for analyzing
C programs using type inferencing. Lackwit allows one to ask queries like “Which functions could directly access
the representation of component X of variable Y?”. New in our work is not only the significantly different source
language, but also the inference of subtyping for assignments, and the use of type inference to classify literals. Other
work on type inference for C includes that of Siff and Reps [37], who use inferred types to generalize C functions to
C++ function templates and that of Chandra and Reps who discuss “physical type checking of C”, which is a stronger
form of type checking for type casts involving pointers to structures [5].

Wegman and Zadeck [40] describe a method for detecting whether the value of a variable occurring at a particular
point in the program is constant and, if so, what that value is. Merlo et al. [25] describe an extension of this method
that allows detection of all constants that can be the value of a particular variable occurrence. This differs from our
approach which finds all constants that can be assigned toany variable of a given type. Furthermore, the methods
described in both papers take the flow of control into account where as our approach is flow insensitive (control flow
is completely ignored). Consequently, their results are more precise (e.g., we report constants that are used in dead
code) but their approach is also more expensive.

Gravley and Lakhotia [16] identify enumeration types that are modelled using symbolic constants. Their approach
is orthogonal to ours since they group constants which aredefined“in the same context” (i.e., close to each other in
the program text) whereas we group constants based on theirusagein the source code.

Other applications of type inferencing include the analysis of Fortran programs in order to find new type signatures
for subroutines [41]. Palsberg presents a more detailed survey of the literature on type-based analysis and its
applications [33].

2.3. COBOL program analysis

In the area of analyzing COBOL programs, our type inferencing approach is related to various tools for the analysis
and correction of the year 2000 problem where dateseedsare tracked through the statements in a program [17,29,20].

1 Services using DOCGEN are available via theSoftware Improvement Group, http://www.software-improvers.com.

http://www.software-improvers.com
http://www.software-improvers.com
http://www.software-improvers.com
http://www.software-improvers.com


208 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220

The approach of Kawabe et al. [20] uses an equivalence relation between variables to deal with the year 2000 problem,
which is similar to our inferred type equivalence. They pay a lot of attention tonoise reduction, but have no solution
similar to our subtyping approach. They formulate their work in terms of COBOL, and do not provide a formal type
system. They discuss year 2000 as an application.

Chen et al. [6] describe a (semi-)automatic COBOL variable classificationmechanism. They distinguish a fixed
set of categories, such as input/output, constant, local variable, and each variable is placed into one or more of these
classes. They provide a set of rules to infer this classification automatically, essentially using data flow analysis. Their
technique is orthogonal to ours: types we infer can be used for both local or global variables, for variables that are
used for databases access and for those that are not, etc.

Newcomb and Kotik [30] describe a method for migrating COBOL to object orientation. Their approach takes all
level 01 records as starting point for classes. Records that are structurally equivalent, i.e., matching in record length,
field offset, field length, and field picture, but possibly with different names, are considered “aliases”. According
to Newcomb and Kotik, “for complex records consisting of 5–10 or more fields, the likelihood of false positives is
relatively small, but for smaller records the probability of false positives is fairly large” [30, p. 240]. Our way of
type inferencing may help to reduce this risk, as it provides a complementary way of grouping such 01 level records
together based onusage.

An even more detailed solution to this problem is discussed by [36,13]. They propagate type information through
the elements of aggregate data structures, such as arrays or records. For example, when two entire records are moved,
types are propagated through the individual fields. Moreover, these moves may even cross field boundaries if the two
records differ in record layout, or if records are aliased using COBOL’s redefine statement. The authors provide an
algorithm that finds a minimal splitting of all aggregate structures such that types can be correctly propagated for
the resulting “atoms”. This decomposition is based on the access patterns and COBOL picture clauses specific to the
given program. In our earlier paper [10], we proposed a weaker method using an inference rule calledsubstructure
completion, which just ensures that type equivalences between structurally equivalent aggregates are propagated to
the components. The aggregate analysis of [36,13] is orthogonal to our approach and can be combined with our type
inferencing approach to further improve the accuracy.

3. Type inference for COBOL

COBOL programs consist of aprocedure division, containing the executable statements, and adata division,
containing declarations for all variables used.

Some typical variable declarations are shown in lines 1 to 20 ofFig. 1. In line 6, a variableSTREET is declared.
Its physical layout is described using thepictureX(18), which means “a sequence of 18 characters” (characters are
indicated by picture codeX). A numerical variable is defined in line 18, where the variableN100 has picture9(3),
which is a sequence of three digits (picture code9).

The variablePERSON in line 3 is a record variable. The record structure is indicated by level numbers: the full
variable has level01, and the subfieldsINITIALS, NAME, andSTREET, are at level03. The variableA00-POS, finally, is
an array variable: it is a single character (pictureX(01)) occurring 40 times, i.e., an array of length 40.

From the perspective of types, such COBOL variable declarations suffer from a number of problems. First of all, it
is not possible to separate type definitions from variable declarations. Consequently, when two variables for the same
record structure are needed, the full record construction needs to be repeated.2 This not only increases the chances of
inconsistencies, but also makes it harder to understand the program, as the maintainer has to check and compare all
record fields in order to decide that two records indeed have the same structure.

Furthermore, the absence of type definitions makes it difficult to group variables that are intended to represent
the same kind of entities. Clearly, all such variables will share the same physical representation. Unfortunately, the
converse does not hold: one cannot conclude that whenever two variables share the same byte representation, they
must represent the same kind of entity.

Besides these problems regarding typedefinitions, COBOL only has limited means to indicate the allowed set of
values for a variable (i.e., there are no ranges or enumeration types). Moreover, COBOL usessectionsor paragraphs

2 In principle the COPY mechanism of COBOL for file inclusion can be used to avoid code duplication here, but in practice there are many cases
in which this is not done.



A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220 209

to represent procedures. Neither sections nor paragraphs can have formal parameters, forcing the programmer to use
global variables for parameter passing.

In [10], we propose a method for inferring types for COBOL to remedy these problems. This method automatically
infers types for COBOL variables by analyzing theuseof these variables in the procedure division. The remainder of
this section summarizes the essentials of COBOL type inferencing.

3.1. Primitive types

We distinguish three primitive types: (1) elementary types such as numeric values or strings; (2) arrays; and (3)
records. Initially every declared variable gets a unique primitive type. Since (qualified) variable names must be unique
in a COBOL program, they can be used as labels within a type to ensure uniqueness. We qualify these names with
program or copybook names to obtain uniqueness at the system level. We useTA to denote the primitive type of
variableA.

3.2. Type equivalence

From expressionsoccurring in statements, anequivalence relationbetween primitive types is inferred. We
distinguish three cases:

(1) Relational expressionssuch asv = u or v ≤ u result in an equivalence betweenTv andTu.
(2) Arithmetic expressionssuch asv + u or v ∗ u result in an equivalence betweenTv andTu.
(3) Array accessesto the same array such asa[v] anda[u] result in an equivalence betweenTv andTu.

We will generally speak of atype, meaning anequivalence class of primitive types. We will give names to
types based on the names of the variables that are of that type. For example, the type of a variable with the name
L100-DESCRIPTION will be calledDESCRIPTION-type.

3.3. Subtyping

Fromassignment statementsa subtype relationbetween primitive types is inferred. From the assignmentv := u
we conclude thatTu is subtypeof Tv, i.e.,v can hold at least all the valuesu can hold.

3.4. Union types

From COBOL redefine clauses, a union typerelation between primitive types is inferred. When an entryv in the
data division redefines an entryu, we conclude thatTv andTu are part of the sameunion type.

3.5. System-level analysis

The type relations described before are derived at the program level. We also derive a number of type relations
at the system-wide level: (1)program parameters:the types of the actual parameters of a program call (listed in the
COBOL USING clause) aresubtypesof the formal parameters (listed in the COBOL LINKAGE section), (2)file/table
access:variables read from or written to the same file or table haveequivalenttypes, and (3)copybooks:a variable
which is declared in a copybook gets the same type in all the programs that include this copybook.

3.6. Literals

Our type inference algorithm can easily be extended with analysis of literals in a COBOL program. Whenever a
literal valuel is assigned to, or compared with a variablev, we infer thatl is apermitted valuefor the type ofv. If
additional analysis indicates that variables in this type are only assigned values from this set of literals, we can infer
that the type in question is anenumeration type.



210 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220

1 DATA DIVISION.
2 / variables containing business data.
3 01 PERSON.
4 03 INITIALS PIC X(05).
5 03 NAME PIC X(27).
6 03 STREET PIC X(18).
7 ...
8 / variables containing char array of length 40,
9 / as well as several counters.
10 01 TAB000.
11 03 A00-NAME-PART.
12 05 A00-POS PIC X(01) OCCURS 40.
13 03 A00-MAX PIC S9(03) COMP-3 VALUE 40.
14 03 A00-FILLED PIC S9(03) COMP-3 VALUE 0.
15 ...
16 / other counters declared elsewhere.
17 01 N000.
18 03 N100 PIC S9(03) COMP-3 VALUE 0.
19 03 N200 PIC S9(03) COMP-3 VALUE 0.
20
21 PROCEDURE DIVISION.
22 / procedure dealing with initials.
23 R210-VOORLT SECTION.
24 MOVE INITIALS TO A00-NAME-PART.
25 PERFORM R300-COMPOSE-NAME.
26
27 / procedure dealing with last names.
28 R230-NAME SECTION.
29 MOVE NAME TO A00-NAME-PART.
30 PERFORM R300-COMPOSE-NAME.
31
32 / procedure for computing a result based
33 / on the value of the A00-NAME-PART.
34 / Uses A00-FILLED, A00-MAX, and N100
35 / for array indexing.
36 R300-COMPOSE-NAME SECTION.
37 ...
38 PERFORM UNTIL N100 > A00-MAX
39 ...
40 IF A00-FILLED = N100
41 ...

Fig. 1. Excerpt from one of the COBOL programs analyzed (with some explanatory comments added).

3.7. Aggregate structure identification

Whenever the types of two records are related to each other, types for the individual fields should be propagated
as well. In [10], we adopted a rule calledsubstructure completion, which infers such type relations for record fields
whenever the two record structures are identical (having the same number of fields, each of the same size). Since then,
both Eidorff et al. [13] and Ramalingam et al. [36] have published an algorithm which splits aggregate structures into
smaller “atoms”, such that types can be propagated through record fields even if the records do not have the same
structure.

3.8. Pollution

We speak oftype pollutionwhen the types of two variables are inferred to be equivalent but would have been given
different types if a typed language was used. Typical situations in which pollution occurs include the use of a single
variable for different purposes in different program slices; the use of a global variable for parameter passing; and the
use of aPRINT-LINE string variable for collecting values from various variables.

Inference ofsubtypesfor assignments, rather than just type equivalences was introduced to avoid pollution. In [11],
we describe a range of experimental data showing the effectiveness of subtyping for dealing with pollution.

3.9. Example

Fig. 1 contains a COBOL fragment illustrating various aspects of type inferencing. The first half contains the
declarations of variables, the second half the actual statements from which type relations are inferred.



A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220 211

In line 40, variableA00-FILLED is compared toN100, which in line 38 is compared toA00-MAX. This results in
an equivalence class between the primitive types of these three variables. Observe that these three variables are also
declared with the same picture (in lines 13, 14, and 18).

In line 29, we infer from the assignment that the type ofNAME is asubtypeof the type ofNAME-PART. From line 24,
we infer thatINITIALS is a subtype ofNAME-PART as well, thus makingNAME-PART the common supertype of the
other two. Here the three variables are declared with different pictures, namely strings of different lengths. In fact,
NAME-PART is a global variable acting as a formal parameter for theR300-COMPOSE-NAME (COBOL does not support the
declaration of parameters for procedures). Subtyping takes care that the different sorts of actual parameters used still
have different types.

4. Presenting types in hypertext

This section describes how types can be presented in a hypertext to support program understanding. We cover the
challenges that need to be addressed, as well as the solutions that we adopted in TYPEEXPLORER.

4.1. Challenges

4.1.1. Inventing a name for a type
Recall fromSection 3that atype is an equivalence class ofprimitive types, and that each primitive type directly

corresponds to a variable declaration. For example, inFig. 1, we inferred an equivalence between the three variables
A00-FILLED, N100, andA00-MAX. In TYPEEXPLORER, we need to invent names for these equivalence classes. One way
is to pick an arbitrary element, and make that the name of the type.

An alternative is to try to distill meaningful names from the variable names involved, by determining thewords
occurring in them. Such words can be found by splitting the variable names based on special characters (’-’, ’’, etc.)
or lexical properties (e.g., caseChange). The actual splitting should be a parameter of the analysis since it is influenced
by the coding style that is used in a system. Candidate names of a given type can then be based on the frequency of
words that occur in names of variable of that type. Since we want these names to be as descriptive as possible, one
also needs to consider all combinations of words that occur in variable names. As an example, for theA00-NAME-PART

variable, we want to see not only the wordsNAME andPART, but also the wordNAME-PART.

4.1.2. Duality of subtyping
Our type inferencing algorithm uses subtyping to avoid pollution. In some cases, though, there would be no

pollution even if plain equivalences between types were to be used. One could even argue that using subtyping in
those cases obscures understanding since it creates additional levels of indirection between types that would otherwise
be considered equivalent. Thus, we are faced with the problem that for some types subtyping are necessary to avoid
pollution, whereas for others subtyping should actually have been type equivalence.

Our solution is to include an additional abstraction layer, thetype cluster. A cluster consists of all types that have an
equivalence or subtype relation to each other (effectively regarding the subtyping relation as an equivalence relation).
If the TYPEEXPLORERuser is not interested in the subtyping details of a particular type, they can move up to the type
cluster level.

4.1.3. Static/dynamic hypertext
We distinguish two versions of the hypertext. In theoff-line(static) version all pages are generated in advance. The

advantage of this version is portability; the complete documentation can be reproduced on a CD, taken anywhere, and
browsed on almost any computer system (only requiring a standard web browser). Disadvantages are the static nature
of the hypertext and the lack of dynamic querying.

In the on-line (dynamic) version the pages are generated on the fly based on queries on a database attached to
the links clicked on. When the users makes updates, for example to improve the name of a type, such changes are
propagated immediately. Advantages of this approach are the ability to generate hypertext based on queries by the
user and the immediate response to changes. Disadvantages are the lack of portability and relatively high technical
requirements on the computer system that is used for browsing.



212 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220

Element Available Information

annotation hand-written description of this type

structure the picture or record declaration(s) of variables of typeτ

values all literal values found forτ .

type graph visualization of subtypes and supertypes ofτ .

usage links to source code lines where a variable or literal ofτ is used.

parents links to records with fields of typeτ .

programs links to programs that useτ .

copybooks links to copybooks that useτ .

words domain concepts extracted from names of variables of typeτ (based on
heuristics).

type name suggestion for name of this type based on these domain concepts.

Fig. 2. Information presented for a typeτ .

4.1.4. What are good starting points for browsing?
To be flexible and generic enough to handle the multitude of program understanding tasks, the resulting hypertext

should support multiple starting points. Example starting points are persistent data stores (which are likely to contain
data types that are closest to the business logic) program signatures, types matching a given name pattern (with an
effect similar to seeding in year 2000 tools), or a specific variable directly in the source code. In theoff-line version,
the top-level index pages should easily lead to such starting points. In theon-lineversion, more flexibility is provided,
as queries can be used to arrive at the desiredHTML page.

4.1.5. Annotations
For programs, it is possible in some cases to derive a textual description explaining their behavior based on the

comment prologue [9]. Since types are abstractions that are not directly present in one particular place in the source
code, it is not possible to find meaningful texts explaining types automatically. Therefore, we give maintainers the
ability to add (optional) annotations by hand. In practice, such a feature will be used mostly for types that play a
significant role in the system. Furthermore, there can be a special annotation allowing a maintainer to improve the
name given to a type. In the on-line version, annotations can be added on the fly, and have immediate effect; in the
off-line mode, annotations are incorporated after regeneration.

4.2. Information available per type

The most important pages in TYPEEXPLORERare those that explain an inferred type, so we will first discuss the
contents of these pages. An overview of the various page elements is shown inFig. 2.

4.2.1. Pictures
The declared COBOL picturesof primitive types provide information about the bytes occupied and the intended

use (number, character,. . .). In most cases, all primitive types in an equivalence class will have the same picture. If
the pictures are different, this means that the COBOL code using variables of this type relies on coercions, which may
indicate bad programming style or potential programming errors.

4.2.2. Records
If the primitive types of a typeτ are all records, the commonest case is that where all variables in this type are

declared with the same number of fields, each of the same length. In this case, our rule of substructure completion



A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220 213

Fig. 3. Example type graph.

will infer equivalences between these field types; if they are of different shape,aggregate structure identification[13,
36] can be used to find subfields that are small enough to unify the various records inτ . Thus, although the primitive
records inτ may be of different shape, we infer one record type with the smallest necessary fields forτ , and list the
fields ofτ in its page.

4.2.3. Literals
The inferred literals provide information about the sort of values that are permitted for this type. Moreover, they

show which literal values are actually used in the system analyzed. Since a supertypeτ can hold at least the values of
all its subtypes, we also list the literals in all subtypes ofτ .

4.2.4. Usage
In addition to structural information about a typeτ , we can provide data on itsusage. We include links to source

code lines in which a variable of typeτ is used, as well to those lines in which a literal of typeτ is used. Moreover,
we include links to the documentation of all programs and copybooks that use the type.

For types used asfieldsin other records, we include a link to each of the parent records.

4.2.5. Type graphs
An inferred typeτ can be related to other types via subtype (or supertype) relationships. As part of the

documentation generated for a typeτ , we display all subtypes and supertypes ofτ in a type graph. An example
type graph is shown inFig. 3. This figure comes from the actual type web derived for the case study described in
Section 6.3

The nodes in the graph are types: the text in a node is the name chosen for a type. This name is obtained by picking
one of its primitive types as representative. Clicking on the nodes brings up the page for the type clicked on. The type
τ itself is shown in an ellipse. InFig. 3 it has namehar006.feature. An arrow fromτ1 to τ2 means thatτ1 is a subtype
of τ2.

A number of observations can be made from this graph. First of all, the subtype relationship on types closely
corresponds to the assignment relationship between variables. Thus, one can read an arrowτ1 → τ2 also as: “variables
of typeτ1 are assigned to variables of typeτ2.”

Second, within the graph, one can recognize groups of related types: inFig. 3, examples are the threekind types
on the right, or the fourpaymenttypes in the middle.

Third, the type selected,har006.feature, happens to be a supertype of several other types. Thus,har006.featurecan
accept values of several different subtypes, dealing with various sorts of numbers, such ascountry codes, title codes.
Such a type with several different subtypes is typically theinput parameter of a procedure or program, where each

3 For presentation purposes, we have translated the variable names from Dutch into English in the figure.



214 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220

incoming edge corresponds to the subtype of an actual parameter. If we were to infer not subtypes, but equivalences
instead, all these types would become the same (viahar006.feature).

Fourth, some types have dashed outgoing (or incoming) edges. This means that these types have other supertypes
(subtypes), which are, however, not subtypes or supertypes of the type selected,har006.feature. An example is the
leftmostsalutationtype. Its outgoing edge tohar006.featuremeans thatsalutationsare moved tofeatures; its dashed
outgoing edge means thatsalutationsare moved elsewhere as well.

Fifth, the typec502.numonly has outgoing edges. This typically means thatc502.numis the output parameter of
procedure or section. Furthermore, the fact thatc502.numhas no incoming edges means that there are no assignments
from other types intoc502.num. This can mean one of three things for variables of typec502.num:

(1) They never get a value within the programs analyzed, only in external libraries.
(2) They do get a value, but only from variables also of typec502.num.
(3) They do get a value, yet not as a scalar value, but viewed as an aggregate. This, is in fact the case forc502.num,

which is filled as an array, digit by digit.

In short, type graphs can be used to show a number of interesting properties regarding types and variables. For
the case studies conducted, most of the type graphs are reasonably small and understandable. The dashed arrows are
an important tool for keeping them small: if we were to expand all dashed arrows transitively, the type graph for
har006.featurewould become several hundreds of nodes larger.

4.2.6. Type metrics
Types can furthermore be characterized by metrics. Example metrics for an inferred typeτ include the number of

literal values occurring inτ , the number of variables inτ , or the number of record types thatτ is involved in as a field.
Concerning the subtype relationship, the number of subtypes or supertypes ofτ , and the size of the type cluster thatτ

belongs to are of interest. Relatively large values for these metrics point to heavily used types that will be difficult to
modify. In [11] we have analyzed these metrics for a given system in order to evaluate the effectiveness of subtyping
for dealing with pollution.

4.3. Types in programs and copybooks

To present types in the context of programs and copybooks, we integrate them with system documentation that
is automatically derived from legacy sources using DOCGEN. This hypertext describes the system at various levels
of detail. At the program level we find copybooks that are included, flatfiles read or written, database tables that are
updated or selected, screens that are presented to the user, etc. Zooming in from the program level, we arrive at the level
of the individual sections, copybooks, and ultimately the full source. Zooming out, we arrive at the subsystem level
that groups collections of batch (JCL) jobs, programs, copybooks, etc. corresponding to subsystem decompositions as
used by the maintenance team (usually visible in naming conventions or directory structure) or as found by automatic
clustering techniques. A more detailed account can be found in [9].

One obvious (and straightforward) method of integration is to provide links from variables and literals occurring
in the source code to their inferred type pages.

Moreover, we derivesignaturesfor modules that are called or can be called by others. Such a signature documents
the intended use of a module. It gives the types of theformalparameters, which are derived from the variables declared
in the COBOL linkage section. This does not only provide information about the formal parameters: the type graph of
each of the formal parameters also contains subtypes for all actual parameters used in the system analyzed.

Second, we obtain types for the records that are written to or read from persistent data stores such as files or
database tables. In particular in COBOL systems, such records are likely to hold business-related data. The types of
these records indicate how such business data is used within individual programs, or across the entire software system
analyzed.

Third, we can findtype dependenciesbetween programs and copybooks. Clearly, if a program uses a variable
declared in a copybook, the program depends on that copybook. A second possibility, which we encountered in
our case study, is that a copybookCp containing a section (to be included in the procedure division) uses variables
declared in a separate copybookCd (to be included in the data division).4 This leads to an inferred type dependency

4 Since COBOL sections cannot have parameters, global variables are the only way to pass data to sections.



A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220 215

Fig. 4. Overview of the TYPEEXPLORERtoolset.

between the using copybookCp and the declaring copybookCd. In our case study, the programmers had tried to
document such dependencies in comments in both copybooks — however, our analysis found additional dependencies
not documented at all.

Last but not least, we provide index files for types and programs, listing all words found in types, type names, types
used in signatures, types used in persistent data stores, and so on. Moreover, we augment existing index files listing
all programs, tables, and so on with additional type information, such as the type signature which concisely reveals
the intended purpose of a program. These index files are included at the top level, but also at the subsystem, program,
type cluster, and copybook level.

Index files can be simply sorted by name or by a particular metric of interest, such as the number of variables of that
type. We color items with a metric value higher than the average plus one standard deviation red, in order to indicate
that these may need special attention during maintenance. We have also used various graphical representations in
order to show, for example, correlations between program size and the maximum value for the number of subtype
metric, but these have not been included in TYPEEXPLORERyet.

5. Implementation

The architecture of the TYPEEXPLORER toolset is shown inFig. 4. The dashed line between documentation and
querying indicates the dynamic queries available in the on-line TYPEEXPLORER.

The toolset follows an extract–query–view approach, separating source code analysis, inferencing and presentation.
This approach, also adopted in such tools as Rigi [42], PBS[38], Dali [21], and DOCGEN [9], makes it easier to adapt
to different source languages or to other ways of presenting the types found. The TYPEEXPLORERtoolset incorporates
the COBOL type inferencing tools presented in [11].

In the first phase, a collection (database) offacts is derived from the COBOL sources. For that purpose, we use
a parser generated from the COBOL grammar discussed in [2]. The parser produces abstract syntax trees (ASTs)
in a textual representation called the ASFIX format. TheseASTs are then processed using a Java package which
implements the visitor design pattern. The fact extractor is a refinement of this visitor which emits type facts at every
node of interest (for example, assignments, relational expressions).

In the second phase, the derived facts are combined and abstracted to infer a number of conclusions regarding type
relations. One of the tools we use for inferring type relations isgrok, a calculator forTarski relational algebra[18].
Relational algebra provides operators for relational composition, for computing the transitive closure of a relation, for
computing the difference between two relations, and so on. We use it, for example, to turn the derived type facts into
the required equivalence relation. Finally we store the derived and inferred facts in theMySQL relational database.5

In the final phase, we query the database and generate hypertext documentation. We usePHP6 to generateHTML

code based on queries on the database.PHPis anHTML-embedded scripting language that was developed to allow web
developers to write dynamically generated pages quickly. It contains support for a wide range of databases, including
MySQL. The on-line version of TYPEEXPLORERutilizesPHPas a server-side scripting engine to generateHTML code
dynamically. For the off-line TYPEEXPLORER, PHPis used at “compile time” to generate staticHTML pages.

The pages documenting types contain pictures of type graphs showing the subtypes and supertypes of a type. These
type graphs are coupled to imagemaps that connect URLs to nodes in the picture allowing the user to navigate through
the documentation by clicking in the graph. These graphs are extracted from the database in a Java program using the

5 http://www.mysql.org/.
6 PHP: PHPHypertext Preprocessor.http://www.php.net/.

http://www.mysql.org/
http://www.mysql.org/
http://www.mysql.org/
http://www.mysql.org/
http://www.php.net/
http://www.php.net/
http://www.php.net/
http://www.php.net/


216 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220

Fig. 5. The TYPEEXPLORERin action.

JDBC interface7 to MySQL. The layout and imagemaps for these images are generated using thedot graph drawing
package [15].

6. Using type explorer

TYPEEXPLORER helps a software engineer to take atypeful [4] look at their legacy system. In this section,
we will discuss what sort of questions can be fruitfully answered by navigating through a legacy system using
TYPEEXPLORER. Clearly, TYPEEXPLORER reveals so much information that many different questions can be
answered using it. We will focus on two extremes: first, we will see that types are the natural way to reveal structure at
the detailed level of individualvariables; next we will cover how TYPEEXPLORERhelps to get a high level overview
of the overall systemarchitecture. Since the latter is, in our opinion, the most surprising application, we will focus
most of our attention on architectural understanding using types.

Our running example will be a real life COBOL/CICS system called MORTGAGE of approximately 100,000 lines
of code. It consists of an on-line (interactive) part, as well as a batch part, and it is in fact a subsystem of a larger (1
MLOC) system. An example screen shot from a session using TYPEEXPLORERis shown inFig. 5. It shows the main
index, the page derived for copybookCY700, the page for typecc700.c700-srt-adres, as well as the type graph for one
of the other types used inCY700.

6.1. Supporting maintenance tasks

One possible way of using TYPEEXPLORER for MORTGAGE is to support maintenance tasks related to specific
domain concepts or variables. A (fairly common) example is to modify the representation of a group of variables

7 MySQL JDBC drivers.http://www.worldserver.com/mm.mysql/.

http://www.worldserver.com/mm.mysql/
http://www.worldserver.com/mm.mysql/
http://www.worldserver.com/mm.mysql/
http://www.worldserver.com/mm.mysql/
http://www.worldserver.com/mm.mysql/
http://www.worldserver.com/mm.mysql/


A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220 217

(for example, expanding thekind variables inFig. 3 from two to three digits). Since COBOL has no facilities for
encapsulating such a representation using explicitly declared types, this usually involves a painful search for all
other variables affected by this modification, including those via chains of assignments. TYPEEXPLORER helps the
maintainer to operate at the higher type level, which immediately provides all related variables.

6.2. Architectural structures

TYPEEXPLORERcan be used to analyze the as-implemented softwarearchitectureof a system. The SEI school of
architecture defines software architecture as “the structure or structures of the system, which consist of elements, their
externally visible properties, and the relationships among them” [1,8]. Bass et al. emphasize that there generally are
multiple structures (calledarchitectural structures), and that no one structure holds the irrefutable claim to beingthe
architecture [1]. Example architectural structures manifest themselves at the level of modules, processes, data flow,
control flow, and so on. Following [8], “each structure provides aviewthat imparts a particular kind of understanding
of the architecture”. We argue that thetypestructure of a system is an additional architectural structure, which is
important not only for systems constructed using strongly typed languages, but also for legacy systems built using
untyped languages such as Cobol. TYPEEXPLORER helps to inspect this type structure. To illustrate this, we will
navigate through the MORTGAGEcase study, and discuss some architectural issues of interest.

6.3. ExploringMORTGAGE’s architecture

When exploring MORTGAGE, a natural starting point is the index listing all programs together with their inferred
signature. When doing this, one observation can be immediately made: The type of the first formal parameter of all
batch programs is the same — theprogram-fieldstype. This raises the question of why this is so, and what sort of type
this program-fieldstype is. Inspection shows us that it is a record type, storing the name of the program, the current
status, the name of the files currently processed, etc. Moreover, it holds data which is not necessary for the proper
execution of the program. Instead, the data is used to quickly find the program responsible for the problems if one of
the batch runs crashes.

This shared first parameter shown by TYPEEXPLORER thus immediately leads to an architectural requirement,
namely that the system should support fast repairs and restarts at the proper position whenever one of the batch runs
crashes in the middle of the night.

TYPEEXPLORERalso shows us that this convention is actually used. Theprogram-fieldsrecord contains one field
(the subroutinefield) holding the name of the program currently being run. TYPEEXPLORER lists all literal values
that are used for (i.e., assigned to variables of) the typesubroutine, This list exactly corresponds to the list of all
batch programs, which is the result of the fact that each program correctly starts by setting thesubroutinefield to the
program’s name.

It is interesting to observe that MORTGAGEalso clearly shows that just looking at thenamesof formal parameters
is not sufficient. To see why this is so, we take a look at theon-linepart of MORTGAGE(the part invoked from screens
via CICS). The first parameter in each on-line program is the same, namelyDFHCOMMAREA. However, each one has a
different type! All DFHCOMMAREA variables are strings of different lengths. The specific nameDFHCOMMAREA is required
by CICS. The first thing each program does is to assign that variable to a more structured record variable. It is the type
of that structured record variable that TYPEEXPLORER recognizes as the appropriate type for the first parameter of
the linkage sections, which it displays in the inferred signature.

TYPEEXPLORERalso helps us to understand the meaning of the program parameters. For example, many programs
in MORTGAGE have integer-valued numbers as parameters (having picture stringS(9) COMP-3). Often, these are in
fact enumeration types, in which case TYPEEXPLORERrecognizes them as such. Several programs turn out to have a
parameter namedfunction, with five to ten permitted values. Based on this function value, the program performs one
of several functions. This leads us to two design decisions: different (but related) functions are grouped into programs,
and the mechanism used is a switch on an enumerated value, instead of the Cobol feature in which one program can
have multiple entry points.

Last but not least, TYPEEXPLORERshows how suchfunctionenumeration parameters are passed from one program
to another. As an example, one of the MORTGAGEprograms contains a parameter for determining how a person’s name
is formatted (full first names, one initial only, with title, and so on), and another to format street names (capitalized,



218 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220

street abbreviated, and so on). One of the top level programs has ten different parameters, corresponding to these
formatting codes. The types inferred exactly show how each of the codes (which are all integer numbers) correspond
to the parameters of the various formatting programs.

In short, TYPEEXPLORER can be used to discuss whether requirements such as crash recovery are properly
supported, how functionality is grouped in modules, and how modules are dependent via types. Other architectural
issues can be identified using TYPEEXPLORER by studying the type relationships between copybooks, the use of
database record types across programs, and so on.

7. Concluding remarks

In this paper, we have shown how hypertext-based program understanding tools can achieve higher levels of
abstraction by using inferred type information for cases where the underlying software system is written in a weakly
typed language. We proposed TYPEEXPLORER, a tool for browsing COBOL legacy systems based on these types. The
main contributions of the paper are in the following areas:

Presentation Although types are an invented abstraction, not directly present in the code, we showed how they can
be made tangible by displaying a name for them, associated domain concepts, literal values, and variable use in the
source code. Moreover, type graphs help one to see types in context, and view their relationships to other types.
Last but not least, type information can be integrated with pages documenting programs, databases and copybooks,
extended them with type links for program signatures, copybook dependencies, and record types for persistent data
stores.

Implementation We have described an implementation based on the extract–query–view paradigm, using Tarski
relational algebra, SQL, andPHPto realize both an on-line and off-line version of TYPEEXPLORER.

Use We have shown how navigating through a legacy system using TYPEEXPLORER provides useful information
both at the detailed level of individual programs and at the higher level of the overall architecture. We have used
TYPEEXPLORER to document an actual system, and used the resulting hypertext to identify type dependencies
between programs, to understand design decisions, and to highlight requirements such as support for crash
recovery.

Future work consists of applying TYPEEXPLORER to other COBOL systems as well. Furthermore, distributing
TYPEEXPLORER to industrial users will raise additional requirements and questions, and offer opportunities to
compare TYPEEXPLORERwith the tools that they are already using.

Another interesting area of future work is to use TYPEEXPLORERto support the migration of COBOL to the new
COBOL standard, which is an object-oriented extension of COBOL-85. This new version of COBOL does support
types, and offers the possibility of using type definitions. Our tools provide the technology for taking advantage of
this new possibility.

Acknowledgement

We would like to thank Jan Heering (CWI) for commenting on a draft of this paper.

References

[1] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, second ed., Addison-Wesley, 2003.
[2] M.G.J. van den Brand, A. Sellink, C. Verhoef, Generation of components for software renovation factories from context-free grammars, in: 4th

Working Conference on Reverse Engineering, WCRE’97, IEEE, 1997, pp. 144–155.
[3] P. Brown, Integrated hypertext and program understanding tools, IBM Systems Journal 30 (3) (1991) 363–392.
[4] L. Cardelli, Typeful programming, in: E.J. Neuhold, M. Paul (Eds.), Formal Description of Programming Concepts, Springer-Verlag, Berlin,

1991, pp. 431–507.
[5] S. Chandra, T. Reps, Physical type checking for C, in: Workshop on Program Analysis for Software Tools and Engineering, PASTE’99,

September, ACM Press, 1999, pp. 66–75; SIGSOFT Software Engineering Notes 24(5).
[6] X.P. Chen, W.T. Tsai, J.K. Joiner, H. Gandamaneni, J. Sun, Automatic variable classification for COBOL programs, in: 18th Ann. Int.

Computer Software and Applications Conference, COMPSAC’94, IEEE, 1994, pp. 432–437.
[7] E.J. Chikofsky, J.H. Cross, Reverse engineering and design recovery: A taxonomy, IEEE Software 7 (1) (1990) 13–17.
[8] P. Clements et al., Documenting Software Architectures: Views and Beyond, Addison-Wesley, 2003.



A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220 219

[9] A. van Deursen, T. Kuipers, Building documentation generators, in: International Conference on Software Maintenance, ICSM’99, IEEE
Computer Society, 1999, pp. 40–49.

[10] A. van Deursen, L. Moonen, Type inference for COBOL systems, in: 5th Working Conference on Reverse Engineering, WCRE’98, IEEE
Computer Society, 1998, pp. 220–230.

[11] A. van Deursen, L. Moonen, An empirical study into cobol type inferencing, Science of Computer Programming 40 (2–3) (2001) 189–211.
July.

[12] P. Devanbu, Y.-F. Chen, E. Gansner, H. M¨uller, J. Martin, CHIME: Customizable hyperlink insertion and maintenance engine for software
engineering environments, in: 21st International Conference on Software Engineering, ICSE-99, ACM, 1999, pp. 473–482.

[13] P.H. Eidorff, F. Henglein, C. Mossin, H. Niss, M.H. Sorensen, M. Tofte, Anno Domini: From type theory to Year 2000 conversion tool,
in: 26th Symp. on Principles of Progr. Languages, POPL’99, ACM, 1999, pp. 1–14.

[14] P.J. Finnigan, R.C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H.A. M¨uller, J. Mylopoulos, S.G. Perelgut, The software bookshelf, IBM Systems
Journal 36 (4) (1997) 564–593.

[15] E.R. Gansner, E. Koutsofios, S. North, K.-P. Vo, A technique for drawing directed graphs, IEEE Transactions on Software Engineering 19 (3)
(1993) 214–230.

[16] J.M. Gravley, A. Lakhotia, Identifying enumeration types modeled with symbolic constants, in: Third Working Conference on Reverse
Engineering, WCRE’96, IEEE Computer Society Press, 1996, pp. 227–236.

[17] J. Hart, A. Pizzarello, A scaleable, automated process for year 2000 system correction, in: 18th International Conference on Software
Engineering, ICSE-18, IEEE, 1996, pp. 475–484.

[18] R. Holt, Structural manipulations of software architecture using Tarski relational algebra, in: 5th Working Conference on Reverse Engineering,
WCRE’98, IEEE Computer Society, 1998, pp. 210–219.

[19] G.E. Kaiser, S.E. Dossick, W. Jiang, J.J. Yang, An architecture for WWW-based hypercode environments, in: 19th International Conference
on Software Engineering, ICSE-97, ACM, 1997, pp. 3–13.

[20] K. Kawabe, A. Matsuo, S. Uehara, A. Ogawa, Variable classification technique for software maintenance and application to the year 2000
problem, in: P. Nesi, F. Lehner (Eds.), Conference on Software Maintenance and Reengineering, IEEE Computer Society, 1998, pp. 44–50.

[21] R. Kazman, J. Carri`ere, Playing detective: Reconstructing software architecture from available evidence, Automated Software Engineering 6
(1999) 107–138.

[22] T. Kuipers, L. Moonen, Types and concept analysis for legacy systems, in: 8th International Workshop on Program Comprehension, IEEE
Computer Society Press, 2000, June.

[23] L.D. Landis, P.M. Hyland, A.L. Gilbert, A.J. Fine, Documentation in a software maintenance environment, in: Conference on Software
Maintenance, IEEE Computer Society, 1988, pp. 66–73.

[24] A. von Mayrhauser, A.M. Vans, Program comprehension during software maintenance and evolution, IEEE Computer (1995) 44–55, August.
[25] E. Merlo, J.F. Girard, L. Hendren, R. De Mori, Multi-valued constant propagation analysis for user interface reengineering, International

Journal of Software Engineering and Knowledge Engineering 5 (1) (1995) 5–23, March.
[26] L. Moonen, Generating robust parsers using island grammars, in: 8th Working Conference on Reverse Engineering, IEEE Computer Society

Press, 2001, pp. 13–22, October.
[27] L. Moonen, Exploring Software Systems, Ph.D. Thesis, Faculty of Natural Sciences, Mathematics, and Computer Science, University of

Amsterdam, December 2002.
[28] L. Moonen, Lightweight impact analysis using island grammars, in: 10th International Workshop on Program Comprehension, IWPC 2002,

June, IEEE Computer Society Press, 2002.
[29] M.G. Nanda, P. Bhaduri, S. Oberoi, A. Sanyal, An application of compiler technology to the year 2000 problem, Software Practice and

Experience 29 (4) (1999) 359–377.
[30] P. Newcomb, G. Kottik, Reengineering procedural into object-oriented systems, in: Second Working Conference on Reverse Engineering,

WCRE’95, IEEE Computer Society, 1995, pp. 237–249.
[31] R. O’Callahan, D. Jackson, Lackwit: A program understanding tool based on type inference, in: 19th International Conference on Software

Engineering, ICSE-97, ACM, 1997, pp. 338–348.
[32] Ch. de Oliveira Braga, A. von Staa, J.C.S. do Prado Leite, Documentu: A flexible architecture for documentation production based on a

reverse-engineering strategy, Journal of Software Maintenance 10 (1998) 279–303.
[33] J. Palsberg, Type-based analysis and applications. In: ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering, PASTE, 2001, pp. 20–27.
[34] V. Rajlich, Incremental redocumentation with hypertext, in: 1st Euromicro Working Conference on Software Maintenance and Reengineering,

CSMR 97, IEEE Computer Society Press, 1997, pp. 68–72.
[35] V. Rajlich, S. Varadarajan, Using the web for software annotations, International Journal of Software Engineering and Knowledge Engineering

9 (1) (1999) 55–72.
[36] G. Ramalingam, J. Field, F. Tip, Aggregate structure identification and its application to program analysis, in: 26th Symp. on Principles of

Progr. Languages, POPL’99, ACM, 1999, pp. 119–132.
[37] M. Siff, T. Reps, Program generalization for software reuse, in: ACM SIGSOFT Symposium on the Foundations of Software Engineering,

FSE’96, 1996, pp. 135–146; Software Engineering Notes 21 (6).
[38] S.E. Sim, C.L.A. Clarke, R.C. Holt, A.M. Cox, Browsing and searching software architectures, in: International Conference on Software

Maintenance, ICSM’99, IEEE Computer Society, 1999, pp. 381–390.
[39] S.E. Sim, R.C. Holt, The ramp-up problem in software projects: A case study of how software immigrants naturalize, in: 20th International

Conference on Software Engineering, ICSE-97, ACM, 1998, pp. 361–370.



220 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205–220

[40] M. Wegman, K. Zadeck, Constant propagation with conditional branches, ACM Transactions on Programming Languages and Systems 13
(2) (1991) 18–210.

[41] N. Williams-Preston, New type signatures for legacy Fortran subroutines, in: Workshop on Program Analysis for Software Tools and
Engineering, PASTE’99, September, ACM Press, 1999, pp. 76–85; SIGSOFT Software Engineering Notes 24 (5).

[42] K. Wong, S.R. Tilley, H.A. Müller, M.-A.D. Storey, Structural redocumentation: A case study, IEEE Software 12 (1) (1995) 46–54.


	Documenting software systems using types
	Introduction
	Related work
	Software exploration
	Type-based analysis of legacy systems
	Cobol program analysis

	Type inference for COBOL
	Primitive types
	Type equivalence
	Subtyping
	Union types
	System-level analysis
	Literals
	Aggregate structure identification
	Pollution
	Example

	Presenting types in hypertext
	Challenges
	Inventing a name for a type
	Duality of subtyping
	Static/dynamic hypertext
	What are good starting points for browsing?
	Annotations

	Information available per type
	Pictures
	Records
	Literals
	Usage
	Type graphs
	Type metrics

	Types in programs and copybooks

	Implementation
	Using type explorer
	Supporting maintenance tasks
	Architectural structures
	Exploring Mortgage's architecture

	Concluding remarks
	Acknowledgement
	References


