Available online at www.sciencedirect.com

Science of
SCIENCE DIRECT®
@ Computer
3 Programming
ELSEVIER Science of Computer Programming 60 (2006) 205-220

www.elsevier.com/locate/scico

Documenting software systems using types

Arie van Deursef?*, Leon MooneR2

aCWI, Software Renovation Research Group, SEN-1, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
b Delft University of Technology, Software Evolution Research Lab, Faculty EEMCS, Mekelweg 4, 2628 CD, Delft, The Netherlands

Available online 14 November 2005

Abstract

We show how hypertext-based program understanding tools can achieve new levels of abstraction by using inferred type
information for cases where the subject software system is written in a weakly typed language. We prapelSRPLORER,
a tool for browsing ©@BoL legacy systems based on these types. The paper addresses (1) how types, an invented abstraction, ca
be presented meaningfully to software re-engineers; (2) the implementation techniques used to consiigPTORER and
(3) the use of ¥PEEXPLORERfor understanding legacy systems, at the level of individual statements as well as at the level of the
software architecture — which is illustrated by usingPEEXPLORERt0 browse an industrial @8oL system of 100,000 lines of
code.
(© 2005 Elsevier B.V. All rights reserved.

Keywords: Software maintenance; Software exploration; Program understanding; Program analysis; Type inference; Documentation generation;
Variable usage; Hypertext

1. Introduction

Software immigrantemployees that are added to an existing software project in order to conduct maintenance or
development, are faced with the difficult task of understanding an existing software sy@slefen the original
developers of a system generally have a hard time understanding their own code as time between development ar
maintenance goes by. As a consequence, maintenance tasks become difficult, expensive, and error prone.

To reduce these problems, much research is being invested in the development of tools to assist in progran
understanding. One line of research focuses on the use of hypertext for program comprehension B)gf%es [
35,38]. Within a hypertext, various layers of abstraction can be integrated, ranging from the system'’s architecture to
the individual statements in the source code. The maintenance engineer can navigate easily between these, using b
top-down and bottom-up comprehension strategies, as well as the “opportunistic” combination a24iR5e [

Such a hypertext can be seen as a (special form of) system documentation. Part of it will be hand-written, especially
those sections addressing domain-specific issues, the system’s requirements, or the rationale behind certain desi

U Revised version of the paper “Exploring Legacy Systems Using TypeBtdeeedings of the 7th Working Conference on Reverse Engineering
IEEE Computer Society, 2000.
* Corresponding author at: Department of Software Engineering, P.O. Box 94179, 1090 GB Amsterdam, The Netherlands.
E-mail addressesArie.van.Deursen@cwi.nl (A. van Deursen), Leon.Moonen@acm.org (L. Moonen).
URLSs: http://www.cwi.nl/~arie/ (A. van Deursen)http://www.cwi.nl/~leon/ (L. Moonen).

0167-6423/$ - see front matt@ 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.10.006


http://www.elsevier.com/locate/scico
http://www.cwi.nl/~arie/
http://www.cwi.nl/~arie/
http://www.cwi.nl/~arie/
http://www.cwi.nl/~arie/
http://www.cwi.nl/~arie/
http://www.cwi.nl/~leon/
http://www.cwi.nl/~leon/
http://www.cwi.nl/~leon/
http://www.cwi.nl/~leon/
http://www.cwi.nl/~leon/

206 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220

decisions. However, documentation at the more technical level should be generated whenever possible, in order
keep it up to date and consistent with the sources at all times.

The fundamental problem with documentation generation (and in fact, the key challenge of reverse engineering
is to arrive at non-trivial levels of abstraction, going beyond just cross-referencing information and source code
browsing. Our research aims at achieving such a level of abstraction by lookingytéisthat are used in a software
system.

For typed languages, such as Java, C, and Pascal, using types for program comprehension is relative
straightforward: types are explicit, and can help to determine interfaces, function signatures, permitted values fo
certain variables, etc. Many of the existing software systems, however, are written in older languages with very wea
type systems. In particular@BoL, the language in which at least 30% of the world’s software is written, does not
offer the possibility of type definitions. The question we ask ourselves is whether types nevertheless can help i
understanding such@BoL systems.

The solution we propose is iofer types for @BoL automatically, based on an analysis of tiseof variables [LQ].

This results in types for variables, program parameters, database records, literal values, and so on, which can be u:
to understand the relationships between, e.g., programs, copybooks, databases, screens.

In earlier work, we presented an algorithm and toolset for determining typessoCsystems10,11]. The current
paper addresses the problems involved in integrating inferred types into hypertext-based program understanding too
In particular, we will be concerned with the following three questions:

Presentation Types are an abstraction not directly present in the (legacy) system — types do not exist in the code
but must be inferred first. How do we present this abstraction in such a way that it provides an understandable
meaningful and useful view on a legacy system?

Implementation How do we implement tools to obtain this presentation?

Use What maintenance or program understanding questions can be answered using such a presentation, not only
the individual module level, but also at the architectural level?

We will explain how we dealt with these issues while constructivg @EXPLORER, a tool for exploring @BoL
systems using types. IBection 2we give an overview of related work. I8ection 3we discuss the theory of type
inferencing for @BOL. We cover the design of the hypertext structure used Y§EEXPLORERIn Section 4 and
the techniques that were used for implementatioSéation 5 We then discuss the usefulness ofPEEXPLORER
for various program understanding tasks and describe its application in a 100,000 lines ob®miedase study in
Section 6 Finally, we summarize our contributions, and list possibilities for future wofkdntion 7.

2. Related work

Our work on TrPEEXPLORER s related to three areas of research: (1) the exploration of legacy system using
reverse engineering techniques; (2) the use of types for analyzing legacy systems; and (3) specific techniques used
analyzing Cobol legacy systems. We discuss related work in each of these areas.

2.1. Software exploration

Software evolution involves the process of keeping a software system in sync with the ever-changing needs of th
system’s users and environment. An unfortunate side-effect of evolution is that it often causes the knowledge abol
a system to degrade, which in turn impedes further evoluwitware exploratiortools help software engineers
navigating through and understanding evolving software systems27n foonen investigates techniques and
tools that support the exploration of a software system and improve its legibility. He examines the analogy with
urban exploration and presents techniques for the extraction, abstraction, and presentation of information needed f
understanding software.

Exploration support can be seen as a form of (re)Jdocumentation. Chikofski and Crosgelddiciegmentatioas
the creation of a semantically equivalent representation of a software system within the same level of abstractior
Common tools include pretty printers, diagram generators, and cross-reference listing gendrdtargljs et al.
discuss various documentation methodologies, such as Nassi Schneiderman charts, flow charts and Jackson diagr:
[23). Today, a growing body of literature on automated program documentation ex&1[14,19,32,34,35,3842].

Of these, Brown discusses a tool that automatically creates links between program analysis data and hyperte



A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220 207

documentation3]. CHIME is a generator of tools that automatically insert certain links in source code elerh@nts [
Pas is a system that can be used to incrementally paditioned annotations of softwaf@5]. Documentu 82|
follows a tag-based method inspired by literate programming also used in Javadoc.

Wong et al. emphasizgtructural redocumentatigrwhich, as opposed tdocumentation in-the-smalfileals with
understanding architectural aspects of softwa®. [They use Rigi for the extraction, querying, and presentation,
using agraph editorfor manipulating program representations. Sevei@lsof the legacy system can be browsed
using the editor. Our approach also focuses on the structural aspects of documentation. Rather than using a dedicat
graph editor, we use standard HTML browsers for viewing the documentation. Furthermore, we determined the
required views in advance, via discussion with the team of maintenance programmers.

The software bookshelflf] is an IBM initiative building upon the Rigi experience. In this metaphor, three roles
are distinguished: thiuilder constructs (extraction) tools; thibrarian populates repository with information using
the building tools or other (manual) ways, and garonis the end user of the bookshelf.

DocCGEN is a tool for generating hyperlinked visual and textual documentation fr@BdZ and batch job
sources 9]. Distinguishing characteristics of @GEN include extraction based asland grammarg26,28] rather
than full parsing, emphasis on industrial applicattoand integration of various abstraction layers, ranging from
source code up to system architecture. We will see later how the type information deriveeébXlPLORER can be
integrated with documentation that is generated ImCBEN.

2.2. Type-based analysis of legacy systems

Our own work on type inferencing started witt], where we present the basic theory fap@bL type inferencing.
In [11], we describe an implementation using Tarski relational algebra. Moreover, we carried out a detailed assessmen
of the benefits of using subtyping to deal with the problerpalfution (inferring too many type equivalences). The
application of type inferencing (in combination with concept analysis) to the identification of objects in legacy systems
is discussed byZ2]. In this paper, we do not extend the theory of type inferencing: instead we explain how inferred
types can be presented using hypertext, and used to understewl Gystems at various levels of abstraction.

Closest in aims to the integration of type analysis and program understanding is Le8Rwat fool for analyzing
C programs using type inferencing. Lackwit allows one to ask queries like “Which functions could directly access
the representation of component X of variable Y?”. New in our work is not only the significantly different source
language, but also the inference of subtyping for assignments, and the use of type inference to classify literals. Othe
work on type inference for C includes that of Siff and Repd,[who use inferred types to generalize C functions to
C++ function templates and that of Chandra and Reps who discuss “physical type checking of C”, which is a stronger
form of type checking for type casts involving pointers to structusgs [

Wegman and Zadeck{)] describe a method for detecting whether the value of a variable occurring at a particular
point in the program is constant and, if so, what that value is. Merlo e2gldescribe an extension of this method
that allows detection of all constants that can be the value of a particular variable occurrence. This differs from our
approach which finds all constants that can be assignady®ariable of a given type. Furthermore, the methods
described in both papers take the flow of control into account where as our approach is flow insensitive (control flow
is completely ignored). Consequently, their results are more precise (e.g., we report constants that are used in dec
code) but their approach is also more expensive.

Gravley and Lakhotiall6] identify enumeration types that are modelled using symbolic constants. Their approach
is orthogonal to ours since they group constants whicldafmed‘in the same context” (i.e., close to each other in
the program text) whereas we group constants based oruaein the source code.

Other applications of type inferencing include the analysis of Fortran programs in order to find new type signatures
for subroutines 41]. Palsberg presents a more detailed survey of the literature on type-based analysis and its
applications 83].

2.3. CoBoL program analysis

In the area of analyzing@BoL programs, our type inferencing approach is related to various tools for the analysis
and correction of the year 2000 problem where datedsre tracked through the statements in a progran2p,20].

1 services using DCGEN are available via th&oftware Improvement Groupttp://www.software-improvers.com


http://www.software-improvers.com
http://www.software-improvers.com
http://www.software-improvers.com
http://www.software-improvers.com

208 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220

The approach of Kawabe et a2(] uses an equivalence relation between variables to deal with the year 2000 problem,
which is similar to our inferred type equivalence. They pay a lot of attentioise reductionbut have no solution
similar to our subtyping approach. They formulate their work in terms@B8@L, and do not provide a formal type
system. They discuss year 2000 as an application.

Chen et al. §] describe a (semi-)automaticdBoL variable classificatiormechanism. They distinguish a fixed
set of categories, such as input/output, constant, local variable, and each variable is placed into one or more of the
classes. They provide a set of rules to infer this classification automatically, essentially using data flow analysis. The
technique is orthogonal to ours: types we infer can be used for both local or global variables, for variables that ar
used for databases access and for those that are not, etc.

Newcomb and Kotik 30] describe a method for migratingd®oL to object orientation. Their approach takes all
level 01 records as starting point for classes. Records that are structurally equivalent, i.e., matching in record lengtl
field offset, field length, and field picture, but possibly with different names, are considered “aliases”. According
to Newcomb and Kotik, “for complex records consisting of 5-10 or more fields, the likelihood of false positives is
relatively small, but for smaller records the probability of false positives is fairly lar88 p. 240]. Our way of
type inferencing may help to reduce this risk, as it provides a complementary way of grouping such 01 level record:
together based amsage

An even more detailed solution to this problem is discusse®ByL§]. They propagate type information through
the elements of aggregate data structures, such as arrays or records. For example, when two entire records are mo
types are propagated through the individual fields. Moreover, these moves may even cross field boundaries if the tw
records differ in record layout, or if records are aliased usin@@L's redefine statement. The authors provide an
algorithm that finds a minimal splitting of all aggregate structures such that types can be correctly propagated fo
the resulting “atoms”. This decomposition is based on the access pattern®awd @Gicture clauses specific to the
given program. In our earlier papet(], we proposed a weaker method using an inference rule csilbstructure
completion which just ensures that type equivalences between structurally equivalent aggregates are propagated
the components. The aggregate analysi86f1[3 is orthogonal to our approach and can be combined with our type
inferencing approach to further improve the accuracy.

3. Typeinferencefor COBOL

CoBoL programs consist of @rocedure divisioncontaining the executable statements, andbata division
containing declarations for all variables used.

Some typical variable declarations are shown in lines 1 to 2Bigefl In line 6, a variablesTREET is declared.

Its physical layout is described using theture x(18), which means “a sequence of 18 characters” (characters are
indicated by picture codg). A numerical variable is defined in line 18, where the variahleo has pictures(3),
which is a sequence of three digits (picture cejle

The variablepERs0oN in line 3 is a record variable. The record structure is indicated by level numbers: the full
variable has leved1, and the subfieldsNITIALS, NAME, andSTREET, are at leveb3. The variableroo-pas, finally, is
an array variable: it is a single character (pictiite1)) occurring 40 times, i.e., an array of length 40.

From the perspective of types, such&oL variable declarations suffer from a number of problems. First of all, it
is not possible to separate type definitions from variable declarations. Consequently, when two variables for the san
record structure are needed, the full record construction needs to be rep@ateaot only increases the chances of
inconsistencies, but also makes it harder to understand the program, as the maintainer has to check and compare
record fields in order to decide that two records indeed have the same structure.

Furthermore, the absence of type definitions makes it difficult to group variables that are intended to represer
the same kind of entities. Clearly, all such variables will share the same physical representation. Unfortunately, th
converse does not hold: one cannot conclude that whenever two variables share the same byte representation, t
must represent the same kind of entity.

Besides these problems regarding tgledinitions CosoL only has limited means to indicate the allowed set of
values for a variable (i.e., there are no ranges or enumeration types). Moreos&r| Qsessectionor paragraphs

2In principle the COPY mechanism ofd®oL for file inclusion can be used to avoid code duplication here, but in practice there are many cases
in which this is not done.



A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220 209

to represent procedures. Neither sections nor paragraphs can have formal parameters, forcing the programmer to u
global variables for parameter passing.

In [10], we propose a method for inferring types foo€oL to remedy these problems. This method automatically
infers types for ©BOL variables by analyzing theseof these variables in the procedure division. The remainder of
this section summarizes the essentials oBOL type inferencing.

3.1. Primitive types

We distinguish three primitive types: (1) elementary types such as numeric values or strings; (2) arrays; and (3)
records. Initially every declared variable gets a unique primitive type. Since (qualified) variable names must be unique
in a CoBoL program, they can be used as labels within a type to ensure uniqueness. We qualify these names witt
program or copybook names to obtain uniqueness at the system level. We, tieelenote the primitive type of
variableA.

3.2. Type equivalence

From expressionsoccurring in statements, aequivalence relatiorbetween primitive types is inferred. We
distinguish three cases:

(1) Relational expressiorsuch aw = u or v < u result in an equivalence betwegnandT,.
(2) Arithmetic expressionsuch a + u or v * u result in an equivalence betwe&nandT,.
(3) Array accesse® the same array such agy] andafu] result in an equivalence betwegénandT,.

We will generally speak of aype meaning arequivalence class of primitive typed/e will give names to
types based on the names of the variables that are of that type. For example, the type of a variable with the nam
L100-DESCRIPTION Will be calledDESCRIPTION-type.

3.3. Subtyping

Fromassignment statemerdasubtype relatiorbetween primitive types is inferred. From the assignment u
we conclude thaly, is subtypeof T, i.e.,v can hold at least all the valuescan hold.

3.4. Union types

From CosoL redefine clausesa union typerelation between primitive types is inferred. When an entig the
data division redefines an entnywe conclude that, andT, are part of the samgnion type

3.5. System-level analysis

The type relations described before are derived at the program level. We also derive a number of type relations
at the system-wide level: (Program parametersthe types of the actual parameters of a program call (listed in the
CoBoL UusING clause) aresubtypesof the formal parameters (listed in theo€0OL LINKAGE section), (2)file/table
accessvariables read from or written to the same file or table hegyaivalentypes, and (3ropybooksa variable
which is declared in a copybook gets the same type in all the programs that include this copybook.

3.6. Literals

Our type inference algorithm can easily be extended with analysis of literals imeaCprogram. Whenever a
literal valuel is assigned to, or compared with a variableve infer thatl is apermitted valudor the type ofv. If
additional analysis indicates that variables in this type are only assigned values from this set of literals, we can infer
that the type in question is amumeration type



210 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220

1 DATA DIVISION.

2 / variables containing business data.

3 01 PERSON.

4 03 INITIALS PIC X(05).

5 03 NAME PIC X(27).

6 03 STREET PIC X(18).

7 R

8 / variables containing char array of length 40,
9 / as well as several counters.

10 01 TAB0OO.

11 03 AOO-NAME-PART.

12 05 A00-POS PIC X(01) OCCURS 40.

13 03 A00-MAX PIC S9(03) COMP-3 VALUE 40.
14 03 AOO-FILLED PIC $9(03) COMP-3 VALUE O.
15 .

16 / other counters declared elsewhere.

17 01 NOOO.

18 03 N100 PIC 89(03) COMP-3 VALUE 0.
19 03 N200 PIC 89(03) COMP-3 VALUE 0.
20

21 PROCEDURE DIVISION.

22 / procedure dealing with initials.

23 R210-VOORLT SECTION.

24 MOVE INITIALS TO AOO-NAME-PART.

25 PERFORM R300-COMPOSE-NAME.

26

27 / procedure dealing with last names.

28 R230-NAME SECTION.

29 MOVE NAME TO AOO-NAME-PART.

30 PERFORM R300-COMPOSE-NAME.

31

32 / procedure for computing a result based

33 / on the value of the AOO-NAME-PART.
34 / Uses AOO-FILLED, AOO-MAX, and N100

35 / for array indexing.

36 R300-COMPOSE-NAME SECTION.

37 -

38 PERFORM UNTIL N100 > AOO-MAX
39 .

40 IF AOO-FILLED = N100

41 .

Fig. 1. Excerpt from one of the @oL programs analyzed (with some explanatory comments added).

3.7. Aggregate structure identification

Whenever the types of two records are related to each other, types for the individual fields should be propagate
as well. In [LO], we adopted a rule callesuibstructure completigrwhich infers such type relations for record fields
whenever the two record structures are identical (having the same number of fields, each of the same size). Since th
both Eidorff et al. L 3] and Ramalingam et al3p] have published an algorithm which splits aggregate structures into
smaller “atoms”, such that types can be propagated through record fields even if the records do not have the sar
structure.

3.8. Pollution

We speak ofype pollutiorwhen the types of two variables are inferred to be equivalent but would have been given
different types if a typed language was used. Typical situations in which pollution occurs include the use of a single
variable for different purposes in different program slices; the use of a global variable for parameter passing; and th
use of aPRINT-LINE string variable for collecting values from various variables.

Inference okubtypedor assignments, rather than just type equivalences was introduced to avoid pollutitlj, In [
we describe a range of experimental data showing the effectiveness of subtyping for dealing with pollution.

3.9. Example

Fig. 1 contains a ©BoL fragment illustrating various aspects of type inferencing. The first half contains the
declarations of variables, the second half the actual statements from which type relations are inferred.



A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220 211

In line 40, variableaoo-FILLED is compared tai10o, which in line 38 is compared t@o0-MAX. This results in
an equivalence class between the primitive types of these three variables. Observe that these three variables are a
declared with the same picture (in lines 13, 14, and 18).

In line 29, we infer from the assignment that the typaiofE is asubtypeof the type ofNAME-PART. From line 24,
we infer thatINITIALS is a subtype ofiaME-PART as well, thus makingAME-PART the common supertype of the
other two. Here the three variables are declared with different pictures, namely strings of different lengths. In fact,
NAME-PART is a global variable acting as a formal parameter forgo®-coMPOSE-NAME (COBOL does not support the
declaration of parameters for procedures). Subtyping takes care that the different sorts of actual parameters used st
have different types.

4. Presentingtypesin hypertext

This section describes how types can be presented in a hypertext to support program understanding. We cover tt
challenges that need to be addressed, as well as the solutions that we adopteHEXALORER

4.1. Challenges

4.1.1. Inventing a name for a type

Recall fromSection 3that atypeis an equivalence class pfimitive typesand that each primitive type directly
corresponds to a variable declaration. For examplEjgn1, we inferred an equivalence between the three variables
AOO0-FILLED, N100, andA00-MAX. In TYPEEXPLORER, we need to invent names for these equivalence classes. One way
is to pick an arbitrary element, and make that the name of the type.

An alternative is to try to distill meaningful names from the variable names involved, by determiningttie
occurring in them. Such words can be found by splitting the variable names based on special characterst¢y, ’
or lexical properties (e.g., caseChange). The actual splitting should be a parameter of the analysis since it is influence
by the coding style that is used in a system. Candidate names of a given type can then be based on the frequency
words that occur in names of variable of that type. Since we want these hames to be as descriptive as possible, or
also needs to consider all combinations of words that occur in variable names. As an exampleydoNieE-PART
variable, we want to see not only the wordsiE andPART, but also the woraAME-PART.

4.1.2. Duality of subtyping

Our type inferencing algorithm uses subtyping to avoid pollution. In some cases, though, there would be no
pollution even if plain equivalences between types were to be used. One could even argue that using subtyping ir
those cases obscures understanding since it creates additional levels of indirection between types that would otherwi:
be considered equivalent. Thus, we are faced with the problem that for some types subtyping are necessary to avoi
pollution, whereas for others subtyping should actually have been type equivalence.

Our solution is to include an additional abstraction layertyipe clusterA cluster consists of all types that have an
equivalence or subtype relation to each other (effectively regarding the subtyping relation as an equivalence relation)
If the TYPEEXPLORERUSET is not interested in the subtyping details of a particular type, they can move up to the type
cluster level.

4.1.3. Static/dynamic hypertext

We distinguish two versions of the hypertext. In tf&line (static) version all pages are generated in advance. The
advantage of this version is portability; the complete documentation can be reproduced on a CD, taken anywhere, an
browsed on almost any computer system (only requiring a standard web browser). Disadvantages are the static natu
of the hypertext and the lack of dynamic querying.

In the on-line (dynamic) version the pages are generated on the fly based on queries on a database attached t
the links clicked on. When the users makes updates, for example to improve the name of a type, such changes al
propagated immediately. Advantages of this approach are the ability to generate hypertext based on queries by th
user and the immediate response to changes. Disadvantages are the lack of portability and relatively high technic:
requirements on the computer system that is used for browsing.



212 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220

Element | Available Information

annotation | hand-written description of this type

structure | the picture or record declaration(s) of variables of type

values all literal values found for.

type graph| visualization of subtypes and supertypes of

usage links to source code lines where a variable or literat @§ used.

parents | links to records with fields of type.

programs | links to programs that use

copybooks| links to copybooks that use

words domain concepts extracted from names of variables of typébased on
heuristics).

type name| suggestion for name of this type based on these domain concepts.

Fig. 2. Information presented for a type

4.1.4. What are good starting points for browsing?

To be flexible and generic enough to handle the multitude of program understanding tasks, the resulting hyperte:
should support multiple starting points. Example starting points are persistent data stores (which are likely to contai
data types that are closest to the business logic) program signatures, types matching a given name pattern (with
effect similar to seeding in year 2000 tools), or a specific variable directly in the source codeoffilthe version,
the top-level index pages should easily lead to such starting points. tmtlieeversion, more flexibility is provided,
as queries can be used to arrive at the desiredL page.

4.1.5. Annotations

For programs, it is possible in some cases to derive a textual description explaining their behavior based on th
comment prologued]. Since types are abstractions that are not directly present in one particular place in the source
code, it is not possible to find meaningful texts explaining types automatically. Therefore, we give maintainers the
ability to add (optional) annotations by hand. In practice, such a feature will be used mostly for types that play a
significant role in the system. Furthermore, there can be a special annotation allowing a maintainer to improve th
name given to a type. In the on-line version, annotations can be added on the fly, and have immediate effect; in th
off-line mode, annotations are incorporated after regeneration.

4.2. Information available per type

The most important pages inYFEEXPLORERare those that explain an inferred type, so we will first discuss the
contents of these pages. An overview of the various page elements is shbign2n

4.2.1. Pictures

The declared GBoOL picturesof primitive types provide information about the bytes occupied and the intended
use (number, character,.). In most cases, all primitive types in an equivalence class will have the same picture. If
the pictures are different, this means that thesOL code using variables of this type relies on coercions, which may
indicate bad programming style or potential programming errors.

4.2.2. Records

If the primitive types of a type are allrecords the commonest case is that where all variables in this type are
declared with the same number of fields, each of the same length. In this case, our rule of substructure completic



A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220 213

har006.-
Y ) * feature A A
| | |
| \ | |
rar001 .- rar001.- rar013.- ra3l.- rar008.-
salutation titled A paymnt-nw countrycd \ kind
/ N )
/ N
cfibra3s.- cfibra35.- ra3l.- rar007.-
payment payment-old | countrycd kind
/
/
cc700.- cfibra03.-

4 payment kind
/
/ /
cc502.-

num

Fig. 3. Example type graph.

will infer equivalences between these field types; if they are of different shggesgate structure identificatiqi3,
36] can be used to find subfields that are small enough to unify the various recardBhins, although the primitive
records int may be of different shape, we infer one record type with the smallest necessary fietdsfaf list the
fields ofz in its page.

4.2.3. Literals

The inferred literals provide information about the sort of values that are permitted for this type. Moreover, they
show which literal values are actually used in the system analyzed. Since a supectyphold at least the values of
all its subtypes, we also list the literals in all subtypes of

4.2.4. Usage

In addition to structural information about a typewe can provide data on itssage We include links to source
code lines in which a variable of typeis used, as well to those lines in which a literal of typis used. Moreover,
we include links to the documentation of all programs and copybooks that use the type.

For types used dteldsin other records, we include a link to each of the parent records.

4.2.5. Type graphs

An inferred typet can be related to other types via subtype (or supertype) relationships. As part of the
documentation generated for a typewe display all subtypes and supertypesrah a type graph An example
type grapgh is shown iifrig. 3. This figure comes from the actual type web derived for the case study described in
Section 6

The nodes in the graph are types: the text in a node is the name chosen for a type. This name is obtained by pickin
one of its primitive types as representative. Clicking on the nodes brings up the page for the type clicked on. The type
7 itself is shown in an ellipse. IRig. 3it has namédar006.featureAn arrow fromz; to 72 means that; is a subtype
of .

A number of observations can be made from this graph. First of all, the subtype relationship on types closely
corresponds to the assignment relationship between variables. Thus, one can read an-arreyalso as: “variables
of typet; are assigned to variables of type”

Second, within the graph, one can recognize groups of related typesy.iB, examples are the thréénd types
on the right, or the foupaymentypes in the middle.

Third, the type selectethar006.featurehappens to be a supertype of several other types. Tiau306.featurean
accept values of several different subtypes, dealing with various sorts of numbers, socimtag codestitle codes
Such a type with several different subtypes is typicallyitiput parameter of a procedure or program, where each

3For presentation purposes, we have translated the variable names from Dutch into English in the figure.



214 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220

incoming edge corresponds to the subtype of an actual parameter. If we were to infer not subtypes, but equivalenc
instead, all these types would become the sameh@i@06.featur

Fourth, some types have dashed outgoing (or incoming) edges. This means that these types have other superty
(subtypes), which are, however, not subtypes or supertypes of the type sefec@h.featureAn example is the
leftmostsalutationtype. Its outgoing edge tioar006.featuraneans thasalutationsare moved tdeaturesits dashed
outgoing edge means thedlutationsare moved elsewhere as well.

Fifth, the typec502.nunonly has outgoing edges. This typically means t&022.nuris the output parameter of
procedure or section. Furthermore, the fact t##12.nunhas no incoming edges means that there are no assignments
from other types inte502.numThis can mean one of three things for variables of p@2.num

(1) They never get a value within the programs analyzed, only in external libraries.

(2) They do get a value, but only from variables also of tgp82.num

(3) They do get a value, yet not as a scalar value, but viewed as an aggregate. This, is in fact thec&@grfom
which is filled as an array, digit by digit.

In short, type graphs can be used to show a number of interesting properties regarding types and variables. F
the case studies conducted, most of the type graphs are reasonably small and understandable. The dashed arrows
an important tool for keeping them small: if we were to expand all dashed arrows transitively, the type graph for
har006.featurevould become several hundreds of nodes larger.

4.2.6. Type metrics

Types can furthermore be characterized by metrics. Example metrics for an inferredibghede the number of
literal values occurring ifr, the number of variables in, or the number of record types thais involved in as a field.
Concerning the subtype relationship, the number of subtypes or supertypesafthe size of the type cluster that
belongs to are of interest. Relatively large values for these metrics point to heavily used types that will be difficult to
modify. In [11] we have analyzed these metrics for a given system in order to evaluate the effectiveness of subtyping
for dealing with pollution.

4.3. Types in programs and copybooks

To present types in the context of programs and copybooks, we integrate them with system documentation ths
is automatically derived from legacy sources usingd@BEN. This hypertext describes the system at various levels
of detail. At the program level we find copybooks that are included, flatfiles read or written, database tables that ar
updated or selected, screens that are presented to the user, etc. Zooming in from the program level, we arrive at the le
of the individual sections, copybooks, and ultimately the full source. Zooming out, we arrive at the subsystem leve
that groups collections of batch (JCL) jobs, programs, copybooks, etc. corresponding to subsystem decompositions
used by the maintenance team (usually visible in naming conventions or directory structure) or as found by automati
clustering technigues. A more detailed account can be fourfd.in [

One obvious (and straightforward) method of integration is to provide links from variables and literals occurring
in the source code to their inferred type pages.

Moreover, we deriveignaturedor modules that are called or can be called by others. Such a signhature documents
the intended use of a module. It gives the types ofdheal parameters, which are derived from the variables declared
in the CoBoL linkage section. This does not only provide information about the formal parameters: the type graph of
each of the formal parameters also contains subtypes for all actual parameters used in the system analyzed.

Second, we obtain types for the records that are written to or read from persistent data stores such as files |
database tables. In particular ir0o€oL systems, such records are likely to hold business-related data. The types of
these records indicate how such business data is used within individual programs, or across the entire software systt
analyzed.

Third, we can findtype dependencigsetween programs and copybooks. Clearly, if a program uses a variable
declared in a copybook, the program depends on that copybook. A second possibility, which we encountered i
our case study, is that a copyboGk containing a section (to be included in the procedure division) uses variables
declared in a separate copybdd (to be included in the data divisiofl)This leads to an inferred type dependency

4 since @BoL sections cannot have parameters, global variables are the only way to pass data to sections.



A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220 215

Type
Inferencing
Cobol .
sources Repository
— Documentation

Fig. 4. Overview of the YPEEXPLORERtoOISEt.

between the using copybodk, and the declaring copybodBy. In our case study, the programmers had tried to
document such dependencies in comments in both copybooks — however, our analysis found additional dependenci
not documented at all.

Last but not least, we provide index files for types and programs, listing all words found in types, type names, types
used in signatures, types used in persistent data stores, and so on. Moreover, we augment existing index files listin
all programs, tables, and so on with additional type information, such as the type signature which concisely reveals
the intended purpose of a program. These index files are included at the top level, but also at the subsystem, prograr
type cluster, and copybook level.

Index files can be simply sorted by name or by a particular metric of interest, such as the number of variables of that
type. We color items with a metric value higher than the average plus one standard deviation red, in order to indicate
that these may need special attention during maintenance. We have also used various graphical representations
order to show, for example, correlations between program size and the maximum value for the number of subtype
metric, but these have not been included YPEEXPLORERYet.

5. Implementation

The architecture of the IPEEXPLORERtoolset is shown ifFig. 4. The dashed line between documentation and
querying indicates the dynamic queries available in the on-liWeeEXPLORER

The toolset follows an extract—query—view approach, separating source code analysis, inferencing and presentatiol
This approach, also adopted in such tools as Rigj, [PBs[38], Dali [21], and DocGEN [9], makes it easier to adapt
to different source languages or to other ways of presenting the types foundyPEEXPLORERtoOISet incorporates
the CoBoL type inferencing tools presented it].

In the first phase, a collection (databasefauftsis derived from the ©BoL sources. For that purpose, we use
a parser generated from theo€oL grammar discussed irP]. The parser produces abstract syntax treesrs)
in a textual representation called thesAx format. TheseasTs are then processed using a Java package which
implements the visitor design pattern. The fact extractor is a refinement of this visitor which emits type facts at every
node of interest (for example, assignments, relational expressions).

In the second phase, the derived facts are combined and abstracted to infer a number of conclusions regarding tyy
relations. One of the tools we use for inferring type relationgrisk, a calculator foiTarski relational algebrg 18].
Relational algebra provides operators for relational composition, for computing the transitive closure of a relation, for
computing the difference between two relations, and so on. We use it, for example, to turn the derived type facts into
the required equivalence relation. Finally we store the derived and inferred factsviy$ige. relational database.

In the final phase, we query the database and generate hypertext documentation PWE isgyenerateTML
code based on queries on the databaseis anHTML-embedded scripting language that was developed to allow web
developers to write dynamically generated pages quickly. It contains support for a wide range of databases, including
MysQL. The on-line version of YPEEXPLORERUtilizesPHPas a server-side scripting engine to genewateL code
dynamically. For the off-line YPEEXPLORER, PHPIs used at “compile time” to generate staitML pages.

The pages documenting types contain pictures of type graphs showing the subtypes and supertypes of a type. The
type graphs are coupled to imagemaps that connect URLS to nodes in the picture allowing the user to navigate throug
the documentation by clicking in the graph. These graphs are extracted from the database in a Java program using tt

5 http://www.mysq|l.org/
6 php PHPHypertext Preprocessdittp://www.php.net/


http://www.mysql.org/
http://www.mysql.org/
http://www.mysql.org/
http://www.mysql.org/
http://www.php.net/
http://www.php.net/
http://www.php.net/
http://www.php.net/

216 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220

] - — i of Netscape: Copybook CY700 [x
= File Edit View Go Communicator Help
File Edit View Go Communicator Help -
Al CTO0.cT00-gre-adres 7 00.c700-srt-naarm-—cmm =i
TypeExplorer for = ccaradl caradt coarat cara®! -funktis
Hypos/Relation Administration CY700 cearadl caradl -hyplgny coaradl coradl-velatisgesend
coara] carad] ~srt-naam-opm cearadl.caradl -status
Types
« Listof all types gl
» Listof all variables %ﬁ% R . .
List of programs ﬁ“r Programs including this copybook
Listof copy books ] [ Dehcing
PP L} I Programs
o Netsoape: Type co700.0700-srl-adres %.S.IIIE ] RA11020P RA32010R RA32020R RA33010R RA35010R
File Edit View Go Communicator H dapending
Variables of this type Copybooks
Raced Copybooks depending on this copybook
cc700.c]| variable Declared in Degcrlption
CO700CT00-SRT-ADRES COTO0 Wo copyhooks depend on CY700.
W ’ Allg!bu k
iterals copybooks
. . Copybooks needed by this copybook
g;“g’,;’;';fs Literals of this type Py Y Py
Subtypes e -
Supertypes In cc700.0700-srt-adres 1 Main LD CuaAGL LUI00 m
Type i index.
L In supertypes 1,234
eragh In subtypes None .
Read/write of datasets
Alltypes
Programs in which this type is used ]| ATVPS 65700 5700 -rRat 3
File Edit View Go Commwnicator Help
RA1L020P RA32010F RA32020R RA33010R RA3S0L0Y Type graph for cc700.c700-straat 4
index
. . . . RA35MPS.- RA3SMPS.- RA33MPS.-
Copybooks in which this type is used §020-STRAAT-O \ SO3U-STRAAT-O‘ ‘ 5020-STRAAT-O
CY700
Subtypes CFIBRA3S.- CFIBRA33.-
yp FIB020-STRAAT FIB020-STRAAT
0c700.¢700-srt—adres has no subtypes
Supertypes CC700.- |
C700-STRAAT |
cearallcorall-—gri-gdres - b
T r— o [ | e e ge @ N2
= [ | o % 9P @2 w
— |

Fig. 5. The Ty PEEXPLORERIN action.

JDBC interfacé to MysQL. The layout and imagemaps for these images are generated usifgtteaph drawing
package15].

6. Using type explorer

TYPEEXPLORER helps a software engineer to taketygeful [4] look at their legacy system. In this section,
we will discuss what sort of questions can be fruitfully answered by navigating through a legacy system using
TYPEEXPLORER Clearly, TyPEEXPLORER reveals so much information that many different questions can be
answered using it. We will focus on two extremes: first, we will see that types are the natural way to reveal structure a
the detailed level of individualariables next we will cover how YPEEXPLORERhelps to get a high level overview
of the overall systenarchitecture Since the latter is, in our opinion, the most surprising application, we will focus
most of our attention on architectural understanding using types.

Our running example will be a real life@BoL/cics system called MRTGAGE of approximately 100,000 lines
of code. It consists of an on-line (interactive) part, as well as a batch part, and it is in fact a subsystem of a larger (.
MLOC) system. An example screen shot from a session USYREEXPLORERis shown inFig. 5. It shows the main
index, the page derived for copybookroo, the page for typec700.¢700-srt-adress well as the type graph for one
of the other types used 8v700.

6.1. Supporting maintenance tasks
One possible way of usingYPEEXPLORER for MORTGAGE is to support maintenance tasks related to specific

domain concepts or variables. A (fairly common) example is to modify the representation of a group of variables

7 MysQLJDBC drivers http://www.worldserver.com/mm.mysql/


http://www.worldserver.com/mm.mysql/
http://www.worldserver.com/mm.mysql/
http://www.worldserver.com/mm.mysql/
http://www.worldserver.com/mm.mysql/
http://www.worldserver.com/mm.mysql/
http://www.worldserver.com/mm.mysql/

A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220 217

(for example, expanding thidnd variables inFig. 3 from two to three digits). Since @oL has no facilities for
encapsulating such a representation using explicitly declared types, this usually involves a painful search for all
other variables affected by this modification, including those via chains of assignme&rEEXPLORER helps the
maintainer to operate at the higher type level, which immediately provides all related variables.

6.2. Architectural structures

TYPEEXPLORERCan be used to analyze the as-implemented softaatétectureof a system. The SEI school of
architecture defines software architecture as “the structure or structures of the system, which consist of elements, the
externally visible properties, and the relationships among thé8].[Bass et al. emphasize that there generally are
multiple structures (calledrchitectural structurels and that no one structure holds the irrefutable claim to biiag
architecture J]. Example architectural structures manifest themselves at the level of modules, processes, data flow,
control flow, and so on. Followindl], “each structure providesvdewthat imparts a particular kind of understanding
of the architecture”. We argue that thygpe structure of a system is an additional architectural structure, which is
important not only for systems constructed using strongly typed languages, but also for legacy systems built using
untyped languages such as CoboYPEEXPLORER helps to inspect this type structure. To illustrate this, we will
navigate through the MIRTGAGE case study, and discuss some architectural issues of interest.

6.3. ExploringM ORTGAGES architecture

When exploring MORTGAGE, a natural starting point is the index listing all programs together with their inferred
signature. When doing this, one observation can be immediately made: The type of the first formal parameter of all
batch programs is the same — flvegram-fielddype. This raises the question of why this is so, and what sort of type
this program-fieldsype is. Inspection shows us that it is a record type, storing the name of the program, the current
status, the name of the files currently processed, etc. Moreover, it holds data which is not necessary for the prope
execution of the program. Instead, the data is used to quickly find the program responsible for the problems if one of
the batch runs crashes.

This shared first parameter shown byPEEXPLORER thus immediately leads to an architectural requirement,
namely that the system should support fast repairs and restarts at the proper position whenever one of the batch rul
crashes in the middle of the night.

TYPEEXPLORERalso shows us that this convention is actually used.pgrbgram-fieldsecord contains one field
(the subroutinefield) holding the name of the program currently being rumPEEXPLORER lists all literal values
that are used for (i.e., assigned to variables of) the sywoutine This list exactly corresponds to the list of all
batch programs, which is the result of the fact that each program correctly starts by setSogringinefield to the
program’s name.

It is interesting to observe that BRTGAGE also clearly shows that just looking at themesof formal parameters
is not sufficient. To see why this is so, we take a look attiidinepart of MORTGAGE (the part invoked from screens
via cics). The first parameter in each on-line program is the same, navretpMMAREA. However, each one has a
different type! AllDFHCOMMAREA variables are strings of different lengths. The specific nBFEEOMMAREA is required
by cics. The first thing each program does is to assign that variable to a more structured record variable. It is the type
of that structured record variable thav FEEXPLORER recognizes as the appropriate type for the first parameter of
the linkage sections, which it displays in the inferred signature.

TYPEEXPLORERaISO helps us to understand the meaning of the program parameters. For example, many program:
in MORTGAGE have integer-valued numbers as parameters (having picture stdhgcoMp-3). Often, these are in
fact enumeration types, in which casgPEEXPLORERrecognizes them as such. Several programs turn out to have a
parameter namefdinction with five to ten permitted values. Based on this function value, the program performs one
of several functions. This leads us to two design decisions: different (but related) functions are grouped into programs
and the mechanism used is a switch on an enumerated value, instead of the Cobol feature in which one program ce
have multiple entry points.

Last but not least, TPEEXPLORERShows how sucfunctionenumeration parameters are passed from one program
to another. As an example, one of th©RITGAGEprograms contains a parameter for determining how a person’s name
is formatted (full first names, one initial only, with title, and so on), and another to format street names (capitalized,



218 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220

street abbreviated, and so on). One of the top level programs has ten different parameters, corresponding to the
formatting codes. The types inferred exactly show how each of the codes (which are all integer numbers) correspor
to the parameters of the various formatting programs.

In short, TrPEEXPLORER can be used to discuss whether requirements such as crash recovery are properly
supported, how functionality is grouped in modules, and how modules are dependent via types. Other architectur
issues can be identified usingrFEEXPLORER by studying the type relationships between copybooks, the use of
database record types across programs, and so on.

7. Concluding remarks

In this paper, we have shown how hypertext-based program understanding tools can achieve higher levels
abstraction by using inferred type information for cases where the underlying software system is written in a weakly
typed language. We propose®AEEXPLORER, a tool for browsing ©BoL legacy systems based on these types. The
main contributions of the paper are in the following areas:

Presentation Although types are an invented abstraction, not directly present in the code, we showed how they car
be made tangible by displaying a name for them, associated domain concepts, literal values, and variable use in t
source code. Moreover, type graphs help one to see types in context, and view their relationships to other type
Last but not least, type information can be integrated with pages documenting programs, databases and copyboo
extended them with type links for program signatures, copybook dependencies, and record types for persistent da
stores.

Implementation We have described an implementation based on the extract—query—view paradigm, using Tarski
relational algebra, SQL, arrHPto realize both an on-line and off-line version of FEEXPLORER

Use We have shown how navigating through a legacy system usireEXPLORER provides useful information
both at the detailed level of individual programs and at the higher level of the overall architecture. We have usec
TYPEEXPLORERt0 document an actual system, and used the resulting hypertext to identify type dependencies
between programs, to understand design decisions, and to highlight requirements such as support for cra
recovery.

Future work consists of applyingYPEEXPLORER to other @®BoOL systems as well. Furthermore, distributing
TYPEEXPLORER to industrial users will raise additional requirements and questions, and offer opportunities to
compare ¥PEEXPLORERWiIth the tools that they are already using.

Another interesting area of future work is to usePEEXPLORERt0 support the migration of @8oL to the new
CosoL standard, which is an object-oriented extension oB6L-85. This new version of GBoL does support
types, and offers the possibility of using type definitions. Our tools provide the technology for taking advantage of
this new possibility.

Acknowledgement
We would like to thank Jan Heering (CWI) for commenting on a draft of this paper.

References

[1] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, second ed., Addison-Wesley, 2003.

[2] M.G.J.van den Brand, A. Sellink, C. Verhoef, Generation of components for software renovation factories from context-free grammars, in: 4th
Working Conference on Reverse Engineering, WCRE'97, |IEEE, 1997, pp. 144-155.

[3] P. Brown, Integrated hypertext and program understanding tools, IBM Systems Journal 30 (3) (1991) 363-392.

[4] L. Cardelli, Typeful programming, in: E.J. Neuhold, M. Paul (Eds.), Formal Description of Programming Concepts, Springer-Verlag, Berlin,
1991, pp. 431-507.

[5] S. Chandra, T. Reps, Physical type checking for C, in: Workshop on Program Analysis for Software Tools and Engineering, PASTE'99,
September, ACM Press, 1999, pp. 66—75; SIGSOFT Software Engineering Notes 24(5).

[6] X.P. Chen, W.T. Tsai, J.K. Joiner, H. Gandamaneni, J. Sun, Automatic variable classification for COBOL programs, in: 18th Ann. Int.
Computer Software and Applications Conference, COMPSAC'94, |IEEE, 1994, pp. 432-437.

[7] E.J. Chikofsky, J.H. Cross, Reverse engineering and design recovery: A taxonomy, IEEE Software 7 (1) (1990) 13-17.

[8] P. Clements et al., Documenting Software Architectures: Views and Beyond, Addison-Wesley, 2003.



A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220 219

[9] A. van Deursen, T. Kuipers, Building documentation generators, in: International Conference on Software Maintenance, ICSM'99, IEEE

Computer Society, 1999, pp. 40-49.

[10] A. van Deursen, L. Moonen, Type inference for COBOL systems, in: 5th Working Conference on Reverse Engineering, WCRE’'98, |IEEE
Computer Society, 1998, pp. 220-230.

[11] A. van Deursen, L. Moonen, An empirical study into cobol type inferencing, Science of Computer Programming 40 (2—3) (2001) 189-211.
July.

[12] P. Devanbu, Y.-F. Chen, E. Gansner, Hull, J. Martin, CHIME: Customizable hyperlink insertion and maintenance engine for software
engineering environments, in: 21st International Conference on Software Engineering, ICSE-99, ACM, 1999, pp. 473-482.

[13] P.H. Eidorff, F. Henglein, C. Mossin, H. Niss, M.H. Sorensen, M. Tofte, Anno Domini: From type theory to Year 2000 conversion tool,
in: 26th Symp. on Principles of Progr. Languages, POPL'99, ACM, 1999, pp. 1-14.

[14] P.J.Finnigan, R.C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H.AulMf, J. Mylopoulos, S.G. Perelgut, The software bookshelf, IBM Systems
Journal 36 (4) (1997) 564-593.

[15] E.R. Gansner, E. Koutsofios, S. North, K.-P. Vo, A technique for drawing directed graphs, IEEE Transactions on Software Engineering 19 (3)
(1993) 214-230.

[16] J.M. Gravley, A. Lakhotia, Identifying enumeration types modeled with symbolic constants, in: Third Working Conference on Reverse
Engineering, WCRE'96, IEEE Computer Society Press, 1996, pp. 227—-236.

[17] J. Hart, A. Pizzarello, A scaleable, automated process for year 2000 system correction, in: 18th International Conference on Software
Engineering, ICSE-18, IEEE, 1996, pp. 475-484.

[18] R. Holt, Structural manipulations of software architecture using Tarski relational algebra, in: 5th Working Conference on Reverse Bngineerin
WCRE’'98, IEEE Computer Society, 1998, pp. 210-219.

[19] G.E. Kaiser, S.E. Dossick, W. Jiang, J.J. Yang, An architecture for WWW-based hypercode environments, in: 19th International Conference
on Software Engineering, ICSE-97, ACM, 1997, pp. 3-13.

[20] K. Kawabe, A. Matsuo, S. Uehara, A. Ogawa, Variable classification technique for software maintenance and application to the year 2000
problem, in: P. Nesi, F. Lehner (Eds.), Conference on Software Maintenance and Reengineering, IEEE Computer Society, 1998, pp. 44-50.

[21] R. Kazman, J. Carre, Playing detective: Reconstructing software architecture from available evidence, Automated Software Engineering 6
(1999) 107-138.

[22] T. Kuipers, L. Moonen, Types and concept analysis for legacy systems, in: 8th International Workshop on Program Comprehension, IEEE
Computer Society Press, 2000, June.

[23] L.D. Landis, P.M. Hyland, A.L. Gilbert, A.J. Fine, Documentation in a software maintenance environment, in: Conference on Software
Maintenance, IEEE Computer Society, 1988, pp. 66—73.

[24] A.von Mayrhauser, A.M. Vans, Program comprehension during software maintenance and evolution, IEEE Computer (1995) 44-55, August.

[25] E. Merlo, J.F. Girard, L. Hendren, R. De Mori, Multi-valued constant propagation analysis for user interface reengineering, International
Journal of Software Engineering and Knowledge Engineering 5 (1) (1995) 5-23, March.

[26] L. Moonen, Generating robust parsers using island grammars, in: 8th Working Conference on Reverse Engineering, IEEE Computer Society
Press, 2001, pp. 13-22, October.

[27] L. Moonen, Exploring Software Systems, Ph.D. Thesis, Faculty of Natural Sciences, Mathematics, and Computer Science, University of
Amsterdam, December 2002.

[28] L. Moonen, Lightweight impact analysis using island grammars, in: 10th International Workshop on Program Comprehension, IWPC 2002,
June, IEEE Computer Society Press, 2002.

[29] M.G. Nanda, P. Bhaduri, S. Oberoi, A. Sanyal, An application of compiler technology to the year 2000 problem, Software Practice and
Experience 29 (4) (1999) 359-377.

[30] P. Newcomb, G. Kottik, Reengineering procedural into object-oriented systems, in: Second Working Conference on Reverse Engineering,
WCRE’'95, IEEE Computer Society, 1995, pp. 237-249.

[31] R. O'Callahan, D. Jackson, Lackwit: A program understanding tool based on type inference, in: 19th International Conference on Software
Engineering, ICSE-97, ACM, 1997, pp. 338-348.

[32] Ch. de Oliveira Braga, A. von Staa, J.C.S. do Prado Leite, Documentu: A flexible architecture for documentation production based on a
reverse-engineering strategy, Journal of Software Maintenance 10 (1998) 279-303.

[33] J. Palsberg, Type-based analysis and applications. In: ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, PASTE, 2001, pp. 20-27.

[34] V. Rajlich, Incremental redocumentation with hypertext, in: 1st Euromicro Working Conference on Software Maintenance and Reengineering,
CSMR 97, IEEE Computer Society Press, 1997, pp. 68-72.

[35] V. Rajlich, S. Varadarajan, Using the web for software annotations, International Journal of Software Engineering and Knowledge Engineering
9 (1) (1999) 55-72.

[36] G. Ramalingam, J. Field, F. Tip, Aggregate structure identification and its application to program analysis, in: 26th Symp. on Principles of
Progr. Languages, POPL'99, ACM, 1999, pp. 119-132.

[37] M. Siff, T. Reps, Program generalization for software reuse, in: ACM SIGSOFT Symposium on the Foundations of Software Engineering,
FSE’96, 1996, pp. 135-146; Software Engineering Notes 21 (6).

[38] S.E. Sim, C.L.A. Clarke, R.C. Holt, A.M. Cox, Browsing and searching software architectures, in: International Conference on Software
Maintenance, ICSM'99, IEEE Computer Society, 1999, pp. 381-390.

[39] S.E. Sim, R.C. Holt, The ramp-up problem in software projects: A case study of how software immigrants naturalize, in: 20th International
Conference on Software Engineering, ICSE-97, ACM, 1998, pp. 361-370.



220 A. van Deursen, L. Moonen / Science of Computer Programming 60 (2006) 205-220

[40] M. Wegman, K. Zadeck, Constant propagation with conditional branches, ACM Transactions on Programming Languages and Systems 1
(2) (1991) 18-210.

[41] N. Williams-Preston, New type signatures for legacy Fortran subroutines, in: Workshop on Program Analysis for Software Tools and
Engineering, PASTE’'99, September, ACM Press, 1999, pp. 76-85; SIGSOFT Software Engineering Notes 24 (5).

[42] K. Wong, S.R. Tilley, H.A. Miller, M.-A.D. Storey, Structural redocumentation: A case study, IEEE Software 12 (1) (1995) 46-54.



	Documenting software systems using types
	Introduction
	Related work
	Software exploration
	Type-based analysis of legacy systems
	Cobol program analysis

	Type inference for COBOL
	Primitive types
	Type equivalence
	Subtyping
	Union types
	System-level analysis
	Literals
	Aggregate structure identification
	Pollution
	Example

	Presenting types in hypertext
	Challenges
	Inventing a name for a type
	Duality of subtyping
	Static/dynamic hypertext
	What are good starting points for browsing?
	Annotations

	Information available per type
	Pictures
	Records
	Literals
	Usage
	Type graphs
	Type metrics

	Types in programs and copybooks

	Implementation
	Using type explorer
	Supporting maintenance tasks
	Architectural structures
	Exploring Mortgage's architecture

	Concluding remarks
	Acknowledgement
	References


