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Abstract. Research in the area of end-to-end Quality of Service (QoS) has pro-
duced important results over the last years. However, most solutions are tai-
lored for specific environments, assume layered system architectures, or inte-
grate QoS management within the respective service components, such that the
QoS management functionality is not easily reusable. Furthermore, proprietary
QoS solutions are not interoperable and QoS management for logical objects is
not supported. In this paper, we present a separable and reusable QoS manage-
ment service for end-to-end QoS in a distributed environment. This QoS mid-
dleware extends the classical feedback controller with QoS-aware agents. We
describe the resulting seven-agent QoS manager, a generic management proto-
col, and define interfaces between the agents, platform services, and QoS-aware
application components. Wrappers can be used to interface the QoS middleware
with all types of legacy distributed service components, both QoS-aware and
QoS-unaware.

1   Introduction

Software development is - despite all recent advances in software engineering - still a
(time) costly and error prone task. This is especially true for the development of dis-
tributed applications and systems, because distribution generally means that the soft-
ware components must function well in heterogeneous environments. For example,
application components can be written in different programming languages on differ-
ent operating systems and communicate with each other over different kinds of net-
works. The main task of middleware is to mask out this heterogeneity and provide a
transparent view onto distributed systems to enable developers to implement correct
software components easier and faster. Heterogeneous components also have different
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non-functional requirements, like performance aspects and error tolerance. In re-
sponse, OSI defined the concept of QoS for communication services [38] in the late
70s. In the 90s, operating systems services were defined to enable end-to-end QoS
[23, 28]. In the classic understanding of QoS, service users express their needs in the
form of QoS specifications and negotiate a QoS contract with the service provider.
The service provider uses QoS management services like QoS negotiation, monitor-
ing, admission control, resource reservation and allocation, and adaptation to establish
and fulfill the QoS contract. Considerable research on QoS management services has
resulted in numerous proposals, standards, and implementations of mechanisms to
perform these services, e.g., ODP framework [17], ISO QoS framework [16], TINA
QoS framework [33]. In the OMODIS1 project [10], we reviewed the state-of-the-art
in QoS management in order to develop a QoS framework for multimedia database
management systems (MMDBMS). We observed the following problems in related
works:
•  Most QoS works (see [2]) are based on layered system architectures: Communica-

tion sub-systems are traditionally structured in layers, e.g., physical, link, network,
and transport layer. The current trend in distributed applications and other sub-
systems is to structure them as a set of configurable components. In general, a com-
ponent can be a system, service, or resource in a distributed environment. Compo-
nent configurations are a generalization of layers in which (1) the semantics of
service user and service provider are not predefined, and  (2) there is no a priori
knowledge about who will use the service of a component. Therefore, components
require more generalized QoS management services than layered architectures.

•  Most QoS works are tailored for specific environments: Domain-specific QoS
management solutions limit the problem scope to reduce complexity, e.g., [21], or
to improve performance, e.g., [11, 22]. Rather than providing a unifying solution,
these single-use services simply increase the heterogeneity problem in distributed
systems.

•  QoS management is implemented as part of the service components themselves:
Early works have integrated configurable QoS services into communication proto-
cols and end-systems to meet new application requirements and to support end-to-
end QoS guarantees, e.g., [5, 25, 37]. Others have proposed that all QoS service is-
sues be managed by the application [34] or by end service systems [13, 33, 11, 15].
QoS mechanisms that handle concrete resources, like CPU time or disk bandwidth,
must consider the particular properties of the resource. However, this typically re-
sults in QoS management techniques and mechanisms that are specific to that type
of service and are thus not easily reusable.

•  QoS management in Database Management Systems (DBMSs) and other complex
services is an open problem: QoS work in file systems and storage systems has fo-
cused on scheduling disk bandwidth and allocating buffer space, e.g., [1, 32], leaving
richer DBMS services unmanaged. For example, DBMS transactions must lock logi-
cal objects to assure data consistency. These objects must be regarded as logical re-
sources and must be considered by QoS management services.

                                                          
1 The OMODIS project is funded by the Norwegian Research Council (NFR), Distributed IT

Systems (DITS) program, 1996-2002.



126           Denise Ecklund et al.

 Recent works have contributed positively to the state-of-the-art with feedback con-
trol based adaptation, e.g., [32, 30, 4], new solutions to QoS mapping, e.g., [12, 26,
36, 29], QoS negotiation and pricing [35], and generalized frameworks for object-
oriented or component-based distributed systems [34, 6].

 However, all current solutions propose a static architecture2 comprised of a set of
autonomous QoS managers. This is not effective because: (1) autonomous QoS man-
agers can initiate conflicting adaptation strategies that are local in scope and that fail
to achieve their collective QoS goals; and (2) static, pre-defined negotiation ordering
among components can result in failure to reach a contract agreement. The problem of
static QoS management architectures has also been identified within service-specific
QoS management facilities [20]. To address the full set of identified problems, we
have proposed a runtime-reconfigurable hierarchy of QoS managers [7]. Within the
hierarchy, each application component is directly managed by one local QoS manager.
Higher-level QoS managers direct the local managers, to co-ordinate adaptations and
dynamically order QoS negotiations based on a broader view of the QoS tradeoffs
among managed components and a hierarchy of QoS policies. Higher-level managers
can accelerate negotiation convergence among local managers, thus reducing the cost
of QoS management. Runtime adaptation includes modifying the management hierar-
chy by adding and removing QoS managers, updating QoS policies and strategies, and
reorganizing manager relationships within the hierarchy. QoS managers are middle-
ware services, separate and distinct from the application components they manage.
Granularity of the managed component is defined by the component implementer. A
local QoS manager should be associated with each separable service component that
can efficiently support the minimal set of QoS management interfaces. Our scalable
solution uses two types of reusable QoS managers. In this work, we focus on the local
QoS manager, as a fundamental building block of our hierarchical, reconfigurable
solution. We define the architecture of a local QoS manager and its interactions with a
managed component. This architecture defines an abstraction over different compo-
nent types and over different QoS management solutions. The primary contribution of
this work is to provide a separable, reusable middleware solution that can manage any
type of service component, use existing (legacy) QoS management solutions, and be
organized in a dynamically configurable management hierarchy.

 The remainder of this paper is organized as follows: We present the QoS manage-
ment requirements for a distributed application. Based on these requirements, we
describe the design of our reusable QoS manager. Then, we present the QoS-aware
management agents within the QoS manager. Next, we demonstrate the feasibility of
our approach in an example execution sequence. In the following section, we define
the necessary interfaces between the QoS manager and a managed component. We
conclude with a summary of the contributions of this work and an outline of our future
work in this area.

                                                          
 2 Note that a static architecture does not exclude the use of dynamic mechanisms like dynamic

routing.



                                 QoS Management Middleware: A Separable, Reusable Solution           127

 2   Requirements

 We consider session-oriented applications in a distributed environment. Two popular
system architectures supporting such applications are: the N-tiered Server Architec-
ture, for synchronous multi-server applications, and the Multi-agent Collaboration
Architecture, for mobile computations and asynchronous applications, such as
workflow.

 Fig 1 shows a simple, two-tiered server architecture, with six major components
and seven QoS managers. Each component has a local QoS manager, and in this sim-
ple case, a single session-level QoS manager coordinates the local QoS managers.
During a session, the client system submits requests to the application server over
Net1. The application server requests data from a MMDBMS over Net1, and html
pages from a web server over Net2. The application server performs post-processing
on the data and sends the resulting data streams to the client system for presentation.
The quality of service received by the client depends on the aggregate QoS provided
by the three servers and the two networks.
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 Fig. 1. Example two-tiered server architecture with six components
and seven QoS managers.

 By controlling the characteristics that affect its QoS, a system can predictably and
effectively deliver satisfactory performance to its users.  Delivering QoS to a client
(user) is managed by QoS contracts, each matching a QoS offer of a component with a
QoS requirement of the client.

 QoS management services are responsible for establishing, controlling, and main-
taining QoS contracts for long-running sessions. Typical QoS management services
include: negotiation of end-to-end QoS contracts, detection of QoS violations, initia-
tion of service adaptation(s) to regain QoS conformance, and renegotiation of active
QoS contracts when service adaptation is insufficient. In addition to the functional
requirements for QoS management services, QoS management must provide a general,
minimally-invasive, low overhead, reusable solution for all types of components.

 3   Reusable QoS Manager

 One of the major tasks of QoS management is to control components such that their
cooperating services, i.e., observable behaviors, correspond to a client�s QoS require-
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ments. The traditional concept of feedback and closed-loop control theory defines
models and mechanisms to perform such control tasks. Feedback control has been
investigated as an approach to QoS management, but limited to layered services, do-
main-specific environments, or components with integrated controllers [32, 30, 4].
Even when applied in a general environment of interacting components, classical
feedback control is not a complete solution for QoS management because it works
best in fully deterministic environments. Therefore, we extend the traditional feedback
controller [8] with QoS management agents that respond to the non-deterministic
aspects of the runtime environment. In the following, we define the type of compo-
nents we intend to manage, explain the deficiencies of the classical controller archi-
tecture, and introduce extensions to form a complete QoS manager for a general dis-
tributed environment.

 3.1   Managed Components

 In an open distributed system, a Managed Component (MC) is any system, service, or
resource that presents itself as an atomic entity to a QoS manager. Components may
be QoS-aware or QoS-unaware. Example QoS-aware components include: Self-
adapting components [32], QoS-mechanistic components [25], and QoS-managed
subsystems (such as QuO [34] for communications, command, and control applica-
tions, and QoS-A [5] for network services) in addition to QoS-support mechanisms.

 QoS mechanisms contained in QoS-aware components are service-specific algo-
rithms for maintaining QoS contracts held by that component. For example, a QoS-
aware network service can implement flow filtering for multimedia streams, and chan-
nel sharing for specific types of network traffic. These mechanisms are not generic
QoS management services, but a generic, reusable QoS manager can control such
components using wrappers, that map portions of a common QoS management inter-
face to such service-specific mechanisms.

 3.2   Classical Feedback-Based Controllers

 The classical closed-loop, feedback controller consists of four agents: estimator,
regulator, prober, and observer [8]. The managed component is modeled by a com-
ponent state vector that contains values for the state variables, capturing component
state at a particular point in time. The estimator sets the values of the component state
vector based on a pre-defined component model for the managed component and
runtime input from the observer and the prober. The regulator uses the estimated state
vector to generate effective input control values to the component.

 The classical controller is not sufficient for QoS management. The primary defi-
ciency arises from the fact that classical controllers are most effective in deterministic
environments. An open environment of cooperating components is non-deterministic
in several respects: some components cannot be predictably controlled, components
do not have a deterministic workload, the migration of collaborating agents is based
on runtime data, and components do not have dedicated access to external, shared
resources in their base platforms. In addition, the classical controller monitors and
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controls a component based on attributes that summarize the component�s state in
general. These attributes may not relate directly to the QoS provided by the compo-
nent. And the attributes do not support fine-grained control of QoS on a per-client
basis. Also a highly complex component model may be needed to support the rapid
and extreme forms of change required to adaptively support QoS in a non-
deterministic environment.

 3.3   Architecture of the QoS Manager

 To address these shortcomings, we define a QoS manager consisting of seven QoS
management agents: a four-agent controller and three QoS-aware agents. The QoS-
aware agents create and maintain QoS contracts on behalf of a component. We also
extend the traditional controller behavior as follows:
•  Performance data gathered by the observer and the prober is partitioned and associ-

ated with specific component activities. A component activity is a separately identi-
fied unit of service performed by the component. An activity can correspond to one
client or a set of related clients. QoS performance is monitored per component ac-
tivity. Aggregate statistics may be computed over sets of activities.

•  Estimator and regulator use a dynamically sized state vector to exert control on a
per-activity basis. As activities are initiated and terminated, the subset of state vari-
ables used to control one activity are added to or deleted from the total component
state vector.
The three QoS-aware management agents perform QoS-specific management serv-

ices, including negotiation, admission control and reservation, and service adaptation.
QoS management policies and QoS profiles for components are computed offline and
periodically installed by system administrators. The QoS management agents use this
pre-computed information as well as runtime information on QoS performance to
manage QoS on behalf of components. The agents also make effective use of the clas-
sical controller by mapping between QoS goals (stated as QoS contracts) and the state
vector, which the controller uses to control the component. The architecture of the
seven-agent QoS manager is shown in Fig 2.
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Fig. 2. Architecture of the seven agent QoS Manager.
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4   QoS-Aware Management Agents and Platform Services

4.1   Negotiation, Renegotiation Agent

The QoS Negotiation Agent (QNA) implements a general negotiation protocol [12, 19]
between two QoS managers, to construct an acceptable QoS contract between two
parties, one acting as a client and the other as a server.  To carry out a successful ex-
ternal negotiation, the QNA uses the services of the local QoS agents and operates on
pre-computed, component-specific information, such as: QoS profiles of the local
component, which can be defined offline and modified at runtime using an interpreted
QoS specification language [24, 3]; QoS mapping functions, which define a many-to-
many mapping of QoS characteristics between a client�s QoS requirements and a
server�s QoS offers; and QoS negotiation policy, which governs how QoS require-
ments and QoS offers can be modified during the negotiation process, and includes the
policy for translating actual costs into offered prices when agents of separate domains
negotiate [18, 35].

Before committing to a QoS contract, the QNA uses the local QoS adaptation agent
(QAA) and the admission control and reservation agent (ACRA) to analyze resource
requirements and reserve the necessary local resources. The QAA proposes compo-
nent configurations each of which could support the client�s QoS requirements and
determines the resource requirements of those various configurations. The ACRA
admits or rejects a proposed configuration. If admitted, the ACRA reserves the re-
quired resources. A later section presents a detailed example of local interactions
during negotiation.

4.2   Adaptation Agent

The QoS Adaptation Agent (QAA) is responsible for defining quality-based configu-
rations of the local component. Quality configurations are derived from component
configurations that support the functional requirements of a client request. Each qual-
ity configuration should be able to support the contracted level of QoS, possibly at a
different cost. Traditionally, localized adaptation has been proposed as a mechanism
to maintain QoS when violations occur within an ongoing session. Adaptation can also
be applied: (1) during initial QoS contract negotiation to achieve an optimum, initial
component configuration, and (2) across QoS-conformant sessions to compensate for
other sessions that are experiencing QoS violations. To define a quality configuration
from a functional configuration, the QAA needs the following pre-computed informa-
tion: Local component description, which documents component structure and func-
tionality; Adaptation policies, which control how the local component can be recon-
figured; Adaptation strategies, which transform one component configuration into
another configuration that should better meet specific QoS requirements; and Adapta-
tion evaluation metrics, which compute the worth of a proposed component configu-
ration.

The QAA obtains the current component state from the estimator agent and uses
this as additional input to the configuration evaluation process. Once an adapted con-
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figuration has been approved for use, the QAA must represent that configuration in the
form of a component state vector that can be used by the regulator to make the com-
ponent conform to the adapted configuration. The QAA updates only the subset of the
component state vector associated with the affected activities. If the QAA is unable to
define an acceptable quality-based configuration, the QAA returns a list of unachiev-
able QoS requirements and the specific reasons for failure. Example failure conditions
include: transient or permanent resource insufficiency, inadmissible client requester,
minimum cost exceeds client's price limits, etc. Ultimately, the session-level QoS
manager uses this information to direct contract re-negotiation or to reject the end-
client request.

4.3   Admission Control and Reservation Agent

The Admission Control and Reservation Agent (ACRA) admits client requests based
on component-specific admission policies and resource availability, and reserves all
required resources. To accomplish these tasks, the ACRA needs the following compo-
nent-specific and request-specific information: Raw resource requirements, expressed
as a runtime-computed resource schedule for the admitted request; Raw resource
status, expressed as a runtime-computed aggregate resource schedule over all clients
on the local base platform, and the cost to reserve and use those resources; and pre-
computed, but updateable, Admission policies, which define conditions for admitting a
client request for service by the local component.

If the admission policy allows the request to be served and platform resources are
available, then the ACRA reserves the required resources. If the request cannot be
admitted, the ACRA rejects the request and returns the reasons for the rejection. The
session-level QoS manager uses this information to direct contract re-negotiation or to
reject the end-client request.

4.4   Platform Resource Management

Components consume platform resources in order to provide their services. The qual-
ity of that service depends on the sufficiency of available resources and the ability to
use resources according to a schedule. Local resources are managed by one or more
local Platform Resource Managers (PRMs).

Distributed applications operate on logical data objects, such as video clips, audio
sound tracks, web pages, data folders, and geographical maps. In many applications
(such as updating multimedia objects stored in a MMDBMS), a client must obtain a
lock before accessing the object. Once locked, the client has exclusive access to the
logical object. Physical resources are required to carry out operations on a logical
object. Clearly physical resources should not be reserved for a client prior to obtaining
the required set of logical locks. A logical lock has an application-specific semantic.
Hence, this defines a strict ordering between a component setting logical locks on
objects and a QoS manager reserving physical resources on behalf of the component
that will access and manipulate those objects.
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5   Example Execution Among Local QoS Agents

The following example illustrates local interactions among the QNA, QAA, and
ACRA in support of contract negotiation between two QoS managers. Fig 3 shows
process flow among the agents and the corresponding agent activity is described be-
low.

Fig 3. Process flow among local QoS agents supporting contract negotiation.

Receive-request. The QNA receives a set of QoS requirements defined by the re-
questing application and other service components involved in the application con-
figuration. Based on the requested data and services, the QNA selects, from the list of
QoS requirements, the requirements involving the QoS characteristic types that can be
served by the component for this specific request.
Config-generation. The QAA receives a subset of QoS requirements. Using an Ar-
chitecture Definition Language tool [9] or another runtime tool, the QAA obtains
component configurations that meet the functional requirements of the request. The
QAA matches the QoS requirements to the possible configurations and selects poten-
tial component configurations.
Sort-configurations. The QAA sorts the potential component configurations accord-
ing to the preference of the adaptation policy. If the QAA has received reasons for the
refusal of a previously checked configuration, the policy may take this into account
and change the order, or the policy may not change the existing order at all.
Select-config. The QAA removes the preferred component configuration from the
sorted list and translates it into a component state vector for the configuration. This
state vector ("request vector") represents the impact of serving the new request at the
requested QoS levels on an unloaded system.
Request-vector. The ACRA receives the request vector. The ACRA estimates the
future state of the component, if the request was served at the requested level of QoS.
Probe-resources. The ACRA probes PRMs to obtain information on the current state
of raw platform resources. (Raw platform resources are related to component state, but
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they are not identical. They include the resource usage of all QoS-managed and QoS-
unmanaged components executing on the platform).
Validate-vector. The ACRA examines the predicted future state vector and consults
the local admission control policy to determine whether to admit the new request. If
the admission policy rejects the state vector, a notification of the refusal including an
explanation is sent to the QAA.
Reserve-resources. The ACRA tries to reserve the resources specified in the accepted
state vector from the PRMs. If the future state is supported by the PRMs and the re-
quested QoS maintenance mode requires resource reservations, then the resources are
reserved, the component state vector is updated, and a notification of acceptance is
sent to the QAA. Otherwise, the ACRA sends a notification of the refusal including an
explanation to the QAA.
Accept-admission. The QAA has received a positive response. The response is for-
warded by the QAA to the QNA.
Accept-adaptation. The QNA informs the caller (application or remote QNA) about
the success. It includes two QoS statements in the notification. The first is the QoS
offer specifying the level of QoS that the local component has agreed to provide. The
second is the QoS requirement specifying the level of QoS required by the local com-
ponent to ensure that it meets its contracted-level of QoS.
Wait-for-commitment. The caller's request has been answered positively. The QNA
maintains all information about the ongoing negotiation.
Try-commit. The QNA validates that the request matches an existing pre-
commitment. If the validation fails, the caller is informed about the error.
Commit. The QNA calls the QAA, which in turn calls the ACRA to commit the pre-
committed resources. If the commitment fails, the caller is informed about the error.
Refuse-admission. All possible configurations were rejected by the ACRA. The QAA
creates a response, including reasons for the refusal, and sends it to the QNA.
Refuse-request. The QNA receives a negative response. If the negotiation policy does
not allow counter-proposals, the caller is informed about the refusal of the request.
Try-counter-request. If the number of negotiation attempts for a given end-user
session has reached a policy-defined limit, the QNA informs the caller about the ne-
gotiation failure, including the reasons in the response.
Counter-request. The QNA updates the number of attempts and makes a counter-
proposal to the caller. The counter-proposal contains QoS requirements that have been
modified based on feedback from the QAA and local negotiation policy. The negotia-
tions continue, and the QNA expects another proposal from the caller. A timer is
started to discard the session if no response to the counter-proposal arrives within a
policy-defined time.
Finish-negotiation. The caller's request has been answered. The QNA discards re-
maining information about the negotiation and waits for further requests.

6   Interface Specifications for QoS Management

Based on the execution flow, it is clear that the QoS management agents must interact
with the managed component at specific times during the QoS negotiation process
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(and also when performing other QoS management services). For example, the ACRA
cannot reserve resources on behalf of the component without knowing which types
and amounts of resources are required to serve the request at the contracted QoS level.
The four-agent classical controller must also interact with the component to probe for
component state and to control component behavior. Controller interfaces are not
QoS-specific, hence they are not presented here. Manager-to-manager interfaces are
overviewed in [7].  Table 1 presents the QoS-support interfaces that must be imple-
mented by a managed component or a wrapper encapsulating a managed component,
and the QoS-support interfaces that must be implemented by a PRM.

Implementer Interfaces to Support Specified Service
Caller Interface Prototype Functional Description

Managed Component Interfaces to Support QoS Negotiation and Renegotiation
QAA [ClientID, {FunctionalConfiguration}]

= ControlAndConfigure (ClientRe-
quest)

Obtain a set of component configu-
rations that functionally support the
client request.

QAA [ResourceSchedule, CostEstimate]  =
LockObjectsAndEstimateResources
(QualityConfig, ClientRequest)

The component sets logical locks
and returns the resource schedule
required to service the client re-
quest.

QNA Status = Process (ClientID, �commit/abort�,
ReservationHandle)

Informs the component of the final
outcome (commit/abort) of the
distributed negotiation.

PRM Interfaces to Support QoS-based Admission and Resource Mgmt
ACRA {(RsrciID, Rsrc1Schedule, RsrciCost)} =

ProbeResourceState (DomainID, Re-
sourceSchedule, ReservationHandle)

Gets the cost for a new or modified
resource schedule and the PRM�s
current aggregate resource sched-
ule.

ACRA [ReservationHandle, CostEstimate, Rejec-
tionReasons]  =
ReserveResources (ActivityID, Do-
mainID, ResourceSchedule, Reservation-
Handle)

Reserves a resource schedule for a
new request or modifies an existing
reservation. The reservation sup-
ports future allocations.

MC [Status, {AllocationHandlei}] = AllocateRe-
sources (ActivityID, ReservationHandle,
{RiSchedule})

Allocates resources for immediate
scheduling or use. The reservation
handle may be null.

MC {(RsrciID, Rsrc1Schedule, RsrciCost)} =
ReleaseResources (ClientID, {Allocation-
Handlei})

Releases one or more previously
allocated resources and updates the
resource schedule.

Managed Component Interfaces to Support QoS-motivated Adaptation
QAA [ResourceSchedule, CostEstimate]  = Esti-

mateResources (ClientID, AdaptedConfig)
Sets logical locks and estimates
resource requirements to modify an
executing client request.

QAA Status = MigrateService (ClientID, �com-
mit/abort�)

Informs the component of the final
outcome of the adaptation process.

Table 1. Summary of QoS management interfaces.
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7   Conclusions

This work is motivated by the fact that each existing solution for end-to-end QoS
management suffers from one or more of the following restrictions (or disadvantages):
(1) it is tailored for specific environments, (2) it assumes layered system architectures,
(3) it implements QoS management within the respective service components such
that the QoS management functionality is not easily reusable, (4) it does not interoper-
ate with other proprietary QoS solutions, and (5) it does not manage QoS for logical
objects, which are used by complex components, such as a DBMS. The QoS man-
agement middleware described in this paper overcomes these problems. By separating
QoS management services from the managed component and defining an interface
between them, we have created a reusable, generic solution for QoS management of
arbitrary components in open distributed and heterogeneous environments. Similar to
other recent approaches, we use feedback control in our QoS management middle-
ware. However, classical feedback control was not designed to manage components in
a non-deterministic environment, nor to exert control on a per-client basis. Therefore,
we have extended the classical four-agent controller architecture, with three QoS-
aware agents supporting negotiation, admission control and reservation, and adapta-
tion. We identified dependencies between the QoS agents, the managed component,
and the basic platform services. A critical dependency is that components must obtain
logical locks on data objects before using platform resources to manipulate those
objects. We defined a set of component interfaces to support a reusable QoS manager.
In addition, we defined interfaces between the QoS manager and a platform resource
manager supporting reservations to a resource schedule.

For our ongoing and future work on components, we are implementing the QoS
management interfaces as defined in this work. To integrate legacy components, we
are investigating wrappers for specialized QoS managers, such as QuO [34] and
MULTE [27], as well as for individual QoS-aware services, such as RSVP [14]. Each
wrapper defines a model for estimating component state information that is not pro-
vided by the legacy system, and makes runtime estimations within acceptable time-
and resource-cost. Experiments will be performed using QLinux [31], which provides
QoS-aware resource management services in the base platform. We are also continu-
ing our investigation of QoS manager interaction with, and QoS mechanisms within, a
compound service component for management of persistent multimedia objects.
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