
The Journal of Systems and Software 81 (2008) 2252–2268
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss
Execution trace analysis through massive sequence and circular bundle views

Bas Cornelissen a,*, Andy Zaidman a, Danny Holten b, Leon Moonen a, Arie van Deursen a,c, Jarke J. van Wijk b

a Delft University, Faculty of Electrical Engineering, Mathematics and Computer Science, Mekelweg 4, 2628 CD Delft, The Netherlands
b Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
c CWI, P.O. Box 94079, 1098 SJ Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 October 2007
Received in revised form 26 February 2008
Accepted 27 February 2008
Available online 14 March 2008

Keywords:
Program comprehension
Dynamic analysis
Execution traces
Visualization
0164-1212/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.jss.2008.02.068

* Corresponding author.
E-mail addresses: s.g.m.cornelissen@tudelft.nl (B

tudelft.nl (A. Zaidman), d.h.r.holten@tue.nl (D. Holte
org (L. Moonen), arie.vandeursen@tudelft.nl (A. van D
(J.J. van Wijk).
An important part of many software maintenance tasks is to gain a sufficient level of understanding of the
system at hand. The use of dynamic information to aid in this software understanding process is a com-
mon practice nowadays. A major issue in this context is scalability: due to the vast amounts of informa-
tion, it is a very difficult task to successfully navigate through the dynamic data contained in execution
traces without getting lost.
In this paper, we propose the use of two novel trace visualization techniques based on the massive
sequence and circular bundle view, which both reflect a strong emphasis on scalability. These techniques
have been implemented in a tool called Extravis. By means of distinct usage scenarios that were conducted
on three different software systems, we show how our approach is applicable in three typical program
comprehension tasks: trace exploration, feature location, and top-down analysis with domain knowledge.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Software engineering is a multidisciplinary activity that has
many facets to it. In particular, in the context of software mainte-
nance, one of the most daunting tasks is to understand the software
system at hand. During this task, the software engineer attempts to
build a mental map that relates the system’s functionality and con-
cepts to its source code (Renieris and Reiss, 1999; LaToza et al.,
2006).

Understanding a system’s behavior implies studying existing
code, documentation, and other design artifacts in order to gain a
level of understanding that is sufficient for a given maintenance
task. This program comprehension process is known to be very
time-consuming, and Basili reports that 50–60% of the software
engineering effort is spent on understanding the software system
at hand (Basili, 1997). Thus, considerable gains in overall efficiency
can be obtained if tools are available that facilitate this compre-
hension process. The greatest challenge for such tools is to create
an accurate image of the entities and relations in a system that play
a role in a particular task.
ll rights reserved.

. Cornelissen), a.e.zaidman@
n), Leon.Moonen@computer.
eursen), vanwijk@win.tue.nl
1.1. Dynamic analysis

Dynamic analysis, or the analysis of data gathered from a run-
ning program, has the potential to provide an accurate picture of
a software system: e.g., in the context of object-oriented systems
it can reveal object identities and occurrences of late binding. Fur-
thermore, through the careful selection of an execution scenario, a
goal-driven program comprehension strategy can be followed
(Zaidman et al., 2005). The data are obtained through the instru-
mentation and execution of a system, which (in the case of a post-
mortem analysis) results in one or more execution traces that are to
be analyzed.

1.2. Challenges and goal

The main issue in the context of dynamic analysis approaches
for program comprehension is the enormous amount of data that
is collected at run-time, since it gives rise to scalability issues
(Zaidman, 2006). Particularly in the case of a sizable program,
the main challenge for any dynamic analysis based technique is
to convey both the program’s large structure and its many interre-
lationships to the user, such that the available screen real estate is
used efficiently. This is not a trivial task, and straightforward visu-
alizations typically do not suffice because they often require two-
dimensional scrolling, thus hindering the comprehension process
(Yang et al., 1997). An example of such visualizations are UML se-
quence diagrams which we reconstructed in earlier work (Corne-
lissen et al., 2007).

The goal of this paper is the development of new techniques
that allow the visualization of dynamically gathered data from a

mailto:s.g.m.cornelissen@tudelft.nl
mailto:a.e.zaidman@ tudelft.nl
mailto:a.e.zaidman@ tudelft.nl
mailto:d.h.r.holten@tue.nl
mailto:Leon.Moonen@computer. org
mailto:Leon.Moonen@computer. org
mailto:arie.vandeursen@tudelft.nl
mailto:vanwijk@win.tue.nl
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268 2253
software system in a condensed way, while still being highly scal-
able and interactive.

1.3. Visualization approach

We attempt to achieve our goal by presenting two synergistic
views of a software system. The first view is the circular bundle
view that projects the system’s structural elements on the circum-
ference of a circle and visualizes the call relationships in between.
The second view, the massive sequence view, provides an interac-
tive, high-level overview of the traced events. These techniques
are implemented in our tool Extravis (EXecution TRAce VISualizer).

To characterize our approach, we use the framework introduced
by Maletic et al. (2002):

1. Task: Why is the visualization needed? The amount of trace data
that often results from dynamic analysis, calls for a visualization
that represents an execution trace in a concise and interactive
manner. More specifically, we describe how our approach is use-
ful for three representative program understanding scenarios:
� trace exploration;
� feature location; and
� top-down program comprehension with domain knowledge.
2. Audience: Who will use the visualization? The target audience
consists of software developers and re-engineers who are faced
with understanding (part of) an unknown software system.

3. Target: What low level aspects are visualized? Our main aim is to
represent information pertaining to call relationships, and the
chronological order in which these interactions occur. This
information is augmented with static data to establish the sys-
tem’s structural decomposition.

4. Representation: What form of representation best conveys the tar-
get information to the user? We strive for our visualization to be
both intuitive and scalable. To optimize the use of screen real
estate, we represent a system’s structure in a circular view.
Moreover, our massive sequence view presents an interactive
overview.

5. Medium: Where is the visualization rendered? The visualization is
built up from two synchronized views that are rendered on a
single computer screen.

Our approach enables software engineers to quickly gain an
understanding of unfamiliar software systems, thus enabling re-
lated tasks such as software maintenance to be performed more
efficiently. We illustrate this through the application of our tool
implementation in the context of trace exploration, feature loca-
Fig. 1. Call relations within a program shown using linear e
tion, and top-down analysis. These studies involve two open-
source programs and an industrial system.

With respect to previous work (Cornelissen et al., 2007), we
have made the following extensions. First, we present the results
of an elaborate new case study involving a new, larger software
system. Second, two existing case studies have been substantially
revised and extended. Third, we provide a more thorough discus-
sion of the benefits and drawbacks of our approach, and of poten-
tial validity threats.

1.4. Contributions

This paper makes the following contributions:

� A novel approach to execution trace visualization that is based
on two linked views: (1) the circular bundle view that displays
the structural elements and bundles their call relationships
and (2) the massive sequence view that provides an interactive
overview.

� The application of our tool implementation on three distinct
software systems in three different program comprehension
contexts.
1.5. Structure of the paper

In Section 2 we discuss the existing visualization techniques
that our approach relies on, while Section 3 provides a detailed
description of our own approach. Section 4 introduces our experi-
mental setup and case studies, while Sections 5–7 deal with the
three case studies that we have performed. Section 8 discusses
benefits and drawbacks of our approach and Section 9 outlines re-
lated work. Section 10 summarizes our work and provides pointers
for future work.

2. Existing work

The two synergistic views that we propose in our approach are
based on a number of existing information visualization tech-
niques. In this section we briefly introduce these existing tech-
niques and point out how our approach differs from their original
application.

2.1. Circle approach

In order to address the issue of visualizing the large number of
structural entities that constitute a software system, we propose to
dges (left) and using hierarchical edge bundles (right).

Fig. 2. Full view of an entire Cromod trace.

2254 B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268
employ a circle approach in which all structural elements are pro-
jected on the circumference of the circle.

2.1.1. Hierarchical edge bundles
To depict a system’s structural information we use the circle ap-

proach from Holten (2006), who proposed to project all of a sys-
tem’s structural entities on the outline of a circle and to draw
their relations in the middle. The entities are presented in a nested
fashion on the circle in order to convey their hierarchical proper-
ties, e.g., package structures or architectural layers.

Within the circle the relationships between the structural ele-
ments are drawn. These relations are depicted by bundled splines
(Fig. 1): the visual bundling of relations helps to reduce visual clut-
ter, and also shows the implicit relationships that exist between
parent elements resulting from explicit calls between their respec-
tive children. These hierarchical edge bundles were used in Holten
(2006) to depict static dependencies; we enrich this visualization
so that it can show dynamic information.

2.2. Message sequence charts

The technique that we propose to use for the interactive visual-
ization of time-ordered events builds upon the notion of message
sequence charts. Message sequence charts are commonly used to
visualize a series of chronologically ordered interactions between
the entities of a system (Briand et al., 2006). Their main advantage
is readability: the fact that the events are ordered from top to bot-
tom makes the diagrams intuitive for humans. Scalability, how-
ever, is an important limitation for this technique: the charts
rapidly become hard to navigate when dealing with too much
information, which makes them less suitable for large amounts
of entities and interactions.

2.2.1. Information murals
To tackle the scalability issue in visualizing large amounts of

dynamic information, Jerding and Stasko proposed the ‘‘informa-
tion mural” (Jerding and Stasko, 1998). This technique creates a
two-dimensional miniature version of the information space and
is appropriately scaled to fit on one screen. In this paper, we use
a similar technique to visualize large-scale message sequence
charts: we show a system’s entire (nested) structure on the hori-
zontal axis, while plotting the interactions as rectangles along
the vertical axis. The rectangles are appropriately colored to indi-
cate the directions of the calls. The purpose of the resulting view
is to provide a navigable overview of an execution trace.

2.3. Visualization criteria

When constructing new techniques to visualize large amounts
of data in a comprehensible way, we need criteria that capture
‘‘comprehensibility”. Taken from the realm of visual programming
languages, we discuss two properties that express these criteria
and represent a set of important requirements (Yang et al., 1997).

2.3.1. Accessibility of related information
It is essential that related information is viewed in close prox-

imity. When considering two objects in a visualization that are
not close to each other, there is the psychological claim that these
objects are not closely related, or are not dedicated to solving the
same problem. Translated to the field of software visualization,
we observe two dimensions that pertain to this criterion:

1. Structural entities that are bound by a parent–child relation
should be visualized in close proximity of each other.

2. Structural entities that participate in the execution in a partic-
ular time interval should be visualized in close proximity of
each other.
2.3.2. Use of screen real estate
The term ‘‘screen real estate” refers to the size of a physical dis-

play screen and connotes the fact that screen space is a valuable re-
source. During information comprehension tasks, it is of great
importance to make optimal use of the available screen real estate
in order to prevent excessive scrolling and to reduce the effort from
the user’s part.

Keeping these criteria in mind, any trace visualization technique
faces a twofold challenge: it must depict (1) a potentially large
number of structural entities, all the while keeping related entities

Fig. 3. Using Importance-Based Anti-Aliasing (IBAA) to visualize outlier calls.

B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268 2255
relatively close together and (2) massive amounts of run-time
information without confusing the viewer, e.g., preferably without
the need for scrolling.

3. Our approach

The techniques that we described in the previous section have
been implemented in a prototype tool called Extravis. Given an exe-
cution trace (or part thereof), Extravis presents two linked views:

� the circular bundle view that shows the system’s structural
decomposition and the nature of its interactions during (part
of) an execution trace;

� the massive sequence view that provides a concise and navigable
overview of the consecutive calls between the system’s entities
in a chronological order.

The tool’s user interface is depicted in Fig. 2, which illustrates
the actual views in the context of a large execution trace.1 Both
views offer multiple interaction methods and detailed textual infor-
mation on demand, and a synchronized mode of operation ensures
that changes in the one view are propagated to the other. In this sec-
tion, we discuss the meta-model used by Extravis and describe the
two views in more detail.

3.1. Meta-model

Extravis is based on a meta-model that describes the structural
decomposition of the system (a contains hierarchy) and a time-
stamped call relation. Optionally, additional relations can be sup-
plied which contain more detailed information.

3.1.1. Structural information
To visualize the structure of a program, the tool requires a con-

tainment relation that defines the system’s structural decomposi-
tion. In this context, one could think of package or directory
structures, or architectural layers.

3.1.2. Basic call relations
The second mandatory part of the meta-model is a series of call

relations which are extracted from an execution trace. The input
1 The figures in this paper are best viewed in color, and are also available in hi-res
at http://www.swerl.tudelft.nl/extravis/.
thus contains information on the caller and callee’s classes, the
method signatures, and the chronological order of the calls (by
means of an increment). Additionally, to link with the source code,
the method signatures contain pointers to the source files (if avail-
able) and include the relevant line numbers.

3.1.3. Detailed call relations
In case the execution trace is rich in the sense that detailed call

information is available, the meta-model also allows the specifica-
tion of such data as object identifiers, run-time parameters, and ac-
tual return values.

3.2. Circular bundle view

The first of the two views, the circular bundle view, offers a de-
tailed visualization of the system’s structural entities and their
interrelationships. At the basis of this view lie the techniques that
were proposed in Section 2.1:

� The projection of the software system’s structural elements on
the circumference of a circle, including their hierarchical
structuring.

� The visual bundling of the relationships between these elements
in the circle.

Furthermore, we have made several enhancements to further
facilitate the comprehension process.

First, the high-level structural entities can be collapsed to enable
focusing on specific parts of the system. As is illustrated in Fig. 4,
collapsing an element hides all of its child elements and ‘‘lifts”
the relations pertaining to these child elements to the parent ele-
ment, thus providing a straightforward abstraction mechanism.
The (un-)collapsing process is fully animated for the user to main-
tain a coherent view of the system, i.e., to facilitate the cognitive
linking of the ‘‘pre” and ‘‘post” view.

Secondly, the circular bundle view provides a snapshot in time
that corresponds to the part of the execution trace that is currently
being viewed. As such, the hierarchical edge bundles visualize the
interactions occurring during a certain time interval. Edges are
drawn between the elements that communicate with each other,
and the thickness of an edge indicates the number of calls between
two elements, thus providing a measure for their degree of coupling.
Furthermore, textual information related to the underlying source
code is provided by means of call highlighting (i.e., by hovering over
an edge) and by providing direct links to the relevant source parts.

http://www.swerl.tudelft.nl/extravis/

Fig. 4. Collapsing the model and util.fileio packages in the Cromod trace.

2 The AspectJ project, http://www.eclipse.org/aspectj/.
3 Available at http://www.swerl.tudelft.nl/extravis/.

2256 B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268
Finally, with respect to the coloring, the user can choose from
either the directional or the temporal mode. In the former case, a
color gradient along the edge indicates its direction. The latter
mode colors the edges such that the calls are ordered from least re-
cent (light) to most recent (dark).

3.3. Massive sequence view

To support users in navigating through traces and identifying
parts of interest, Extravis offers the massive sequence view. Being
a derivative of the information mural, it provides an overview of
(part of) an execution trace in which the directions of the relations
are color coded using a gradient (Fig. 2). Additionally, the massive
sequence view allows to zoom in on parts of the execution trace by
the selection of a fragment that needs closer inspection.

3.3.1. Importance-Based Anti-Aliasing
When visualizing information murals and large-scale message

sequence charts in particular, it becomes apparent that the amount
of available pixel lines on a normal display is not sufficient. Rather
than visualizing every event, one typically resorts to such mea-
sures as abstraction and linear anti-aliasing (Jerding et al., 1997).
While being useful in maintaining the big picture, certain poten-
tially useful outlier calls may not ‘‘survive” these measures.

To keep the loss of such calls to a minimum, we propose a new
anti-aliasing technique that uses an importance-based blending
mode to calculate a pixel line’s average color. Calls are weighted
depending on the frequency with which they appear within a certain
time frame, and calls with small frequencies are emphasized. This
technique is called Importance-Based Anti-Aliasing (IBAA) and en-
sures that outlier calls remain visible in the proximity of thousands
of calls, thus ensuring that potentially important calls are not missed
by the user. A detailed description is provided in Holten et al. (2007).

3.4. View interaction

An important strength of our approach is the synergy between
the two views. The views are linked in the sense that user interac-
tions in the one view are visible in the other. This ensures that the
user maintains a coherent view of the system during all view
interactions.

An example is the collapsing process that was described earlier.
Collapsing a structural entity in the circular view hides its interre-
lationships and aggregates its relations with other entities; this re-
sults in an abstraction that is propagated to the massive sequence
view, in which the structural hierarchy and the series of calls are
modified accordingly. Additionally, the user may zoom in on part
of the massive sequence view, thus reducing the time frame under
consideration in both views.

Another example that illustrates the usefulness of the linked views
concerns highlighting. In the circular view, the viewer can select a
structural element, upon which the massive sequence view shows
the interactions involving this element by graying out the other calls.
Selecting two elements, on the other hand, highlights their mutual
interactions. Hovering over a call in either of the two views shows its
occurrence(s) in the other view, and spawns a tooltip that describes
its nature (e.g., the method signature and call site information).

3.5. Implementation

This section focuses on the technologies that were used to build
Extravis.

The front-end of Extravis is written in Delphi and makes heavy
use of OpenGL. For extracting a system’s class decomposition from
its directory structure, we make use of a simple Perl script. As for
the dynamic part, we trace a system’s execution by monitoring
for (static) method and constructor invocations, and registering
the objects that are involved. We achieve this by extending the
SDR framework from our earlier work (Cornelissen et al., 2007),
which incorporates a tracer that employs AspectJ2 for the instru-
mentation. During an execution, this tracer registers unique objects,
method and constructor names, information on the call sites (i.e.,
source filenames and line numbers), run-time parameters, and ac-
tual return values, while a custom-built event listener converts the
events to our tool’s input format.

Extravis is available for download and requires a modern Win-
dows PC to run.3 A modern graphics card is highly recommended in
order to fully benefit from the importance-based anti-aliasing.

4. Case studies

To illustrate the effectiveness of our techniques, we have con-
ducted three distinct case studies. Each of these studies is centered
around a specific use case for our techniques, and is representative
for program comprehension challenges that are faced by software
engineers in everyday life. While in certain cases there is some a

http://www.eclipse.org/aspectj/
http://www.swerl.tudelft.nl/extravis/

Fig. 5. Circular view of Cromod’s initialization phase.

B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268 2257
priori knowledge regarding the user-level functionality of the sys-
tem at hand, no implementation details are known in advance.
Trace exploration (Section 5)

� Context: The system is largely unknown, but an execution trace
is available. No (or little) up-front knowledge is present.

� Task: Identify the phases that constitute the system’s execution,
and study its fan-in and fan-out characteristics.

� Goal: Get an initial feeling of how the system works, as a basis
for a more focused examination.

Feature location (Section 6)

� Context: The user-level functionality of the system is known. The
nature of the system is such that the features can be invoked at
the user’s discretion.

� Task: The execution of a scenario in which a set of features is
invoked, and the visual detection of these features in the result-
ing trace.

� Goal: The establishment of relations between feature invoca-
tions and the corresponding source code elements.

Top-down program comprehension with domain knowledge
(Section 7)

� Context: The system is unknown, and the user has little control
over its functionality since it concerns a batch execution. How-
ever, the system’s description provides clues as to the behavioral
aspects (i.e., the execution phases) that are to be expected.

� Task: Using domain knowledge, formulate a hypothesis describ-
ing a set of conceptual phases, and validate it through the anal-
ysis of a typical trace.

� Goal: The use of a top-down approach to gain and refine
(detailed) knowledge of a system’s inner workings.

Each of these use cases is exemplified by means of a typical
usage scenario that involves a medium-scale Java system.4
4 Note that although these experiments involve Java because our tool-chain is
optimized for Java systems, we are confident that our technique is applicable to other
(non-object-oriented) languages.
5. Case study 1: trace exploration

5.1. Motivation

When a system is largely unknown and an execution trace is
available, being able to globally understand the control flow in
the trace can be of great help in understanding the system. Partic-
ularly in the context of a legacy system that lacks a thorough doc-
umentation, any information on the system’s inner workings is
welcome. However, since execution tracing tends to result in large
amounts of data, the exploration of such traces is by no means a
trivial task. To illustrate how our techniques facilitate this process,
we explore an industrial system called CROMOD.

5.2. Cromod

CROMOD is an industrial Java system that predicts the environ-
mental conditions in greenhouses. The system is built up from
145 classes that are distributed across 20 packages. According to
the manual, it takes a greenhouse configuration (e.g., 4 sections,
15 shutters, and 40 lights) and a weather forecast as its input; it
then calculates the optimal conditions and determines how certain
parameters such as heating, lights, and shutters should be con-
trolled; and then writes the recommended values. Since the calcu-
lations are done for a large number of discrete time frames, they
typically induce massive amounts of interactions, which makes
this system an interesting subject for trace visualization.

5.3. Obtaining the trace

The trace that results from a typical CROMOD execution contains
millions of events, of which a large part can be attributed to log-
ging. At the recommendation of the developers, we have run the
program at a log level such that the resulting trace contains
roughly 270,000 method and constructor calls. This trace captures
the essence of the execution scenario, and in terms of size, the
visualization and comprehension of this trace remain a challenge.
We conclude the setup with the extension of the trace with infor-
mation on the system’s hierarchical decomposition in terms of its
package structure.

5.4. Analyzing the trace

Loading the trace into Extravis provides us with the initial views
that are shown in Fig. 2.

5.4.1. Studying fan-in and fan-out behavior
The circular view of the trace shows CROMOD’s structural decom-

position and (the frequency of) the calls that occurred during exe-
cution. For example, we can see several edges that are thicker than
usual, which suggests that most of the activity is centered around
these particular calls. What is also noteworthy is that in the vicin-
ity of certain packages the edges are predominantly colored red,
which indicates a high degree of fan-in: the only outgoing calls
here seem to be directed toward classes within the package. Exam-
ples of such packages are util.fileio and model: Fig. 4 confirms
our assumption by collapsing these packages, which results in
aggregated relations that are clearly incoming in nature. From this
observation, we draw the conclusion that these packages fulfill a
library or utility role.

5.4.2. Identifying phases
The massive sequence view indicates that there are three major

‘‘phases” in the execution scenario. The first and third phases are
characterized by two small beams; in between we observe a long

2258 B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268
segment that appears to be somewhat broader, and shows a very
consistent coloring. At this point in time, we made the hypothesis
that the three stages concern (1) an input phase, (2) a calculation
phase, and (3) an output phase. We attempt to validate this
hypothesis in the following steps.

The first phase that we can visually discern looks like an almost
straight vertical ‘‘beam”. We zoom in on this phase by selecting a
suitable interval, thus reducing the time frame under consider-
ation. Now, Extravis only visualizes the interactions within the
chosen time frame in both views. Turning our attention to the cir-
cular view (Fig. 5), we learn that this first phase merely involves a
limited number of classes and packages, and judging by the names
of the packages and classes involved (e.g., inputcontrol-

ler.ReadCromodForecast and fileio.InputFileScanner),
this phase mainly concerns I/O activity with an emphasis on input
processing.

A quick glance through the second phase reveals a massive
amount of recurrent calls within the model package. The phase
is mainly made up from the construction of model.advancedra-
diation.Sun objects by model.advancedradiation.Solar-

Model, and the creation of model.Time instances by
model.TimeValue. Indeed, out of the 270,000 events in this exe-
Fig. 6. Zoomed massive sequence view of Cromod’s second phase, focusing on a
periodic fragment.
cution scenario, 260,000 events concern calls to constructors. From
these findings we conclude that this phase is concerned with the
CROMOD’s main functionality, i.e., the model calculations.

Another noteworthy observation in the second phase is the occa-
sional appearance of very thin lines in the massive sequence view of
Fig. 2. A closer look reveals that the aforementioned construction pro-
cesses are incidentally interleaved with short fragments that involve
readers of CROMOD’s XML inputs. Focusing on one such fragment
(Fig. 6), we learn that util.PeriodicThread.run() is invoked on
inputcontroller.ReadCromodForecast, which results in a call
to util.fileio.InputFileScanner.scanForFiles(). This
example illustrates the purpose of our anti-aliasing technique: without
the use of IBAA, on a typical display that offers 1200 pixel lines, and gi-
ven a trace size of 270,000 calls, the odds of two calls ending up in the
resulting massive sequence view would have been less than 1%.

The third phase is similar to the first phase: here we observe
interactions between maincontroller.tasks.CurrentValues-

Generator and util.fileio.OutputFile which again suggests
I/O activity, focused on output rather than input. This provides
strong evidence for the validation of the hypothesis formulated
earlier.

5.5. Discussion

In this experiment, we explored a typical execution trace of an
industrial system of which we had very little knowledge in ad-
vance. Our visualization techniques proved to be very useful in this
context, and rapidly helped us gain a certain degree of knowledge
of the system.

More specifically, the circular bundle view showed (1) CROMOD’s
fan-in and fan-out behavior and (2) the distribution of the events
across the system. Moreover, the collapsing of packages aggregates
the interrelationships of these packages, rendering both the circu-
lar and the massive sequence view easier to read.

The massive sequence view provided an overview of the trace
and indicated the existence of three major phases in the execution.
We used zooming and call highlighting to learn more about the
nature of these phases. The use of IBAA pointed out a series of out-
lier calls.

6. Case study 2: feature location

6.1. Motivation

A significant portion of the effort in a maintenance task is spent
on determining where to start looking within the system. In the
context of specific features, this process is called feature location
(Wilde et al., 1992). Its purpose is to relate a system’s features to
its source code, which enables an engineer to focus on the code
fragments that are relevant to a feature’s implementation (e.g., to
handle change requests). While research into feature location is of-
ten concerned with automatic techniques such as concept analysis
(Eisenbarth et al., 2001) and Latent Semantic Indexing (Poshyv-
anyk et al., 2007), we will attempt to visually (Kuhn and Greevy,
2006) locate certain features in an execution trace. In this context,
we consider a feature to be a user-triggerable unit of functionality
(Eisenbarth et al., 2003).

6.2. JHotDraw

JHOTDRAW
5 is a well known, highly customizable Java framework

for graphics editing. It was developed as a ‘‘design exercise” and is
generally considered to be well-designed. It comprises 344 classes
5 JHotDraw 6.0, http://www.jhotdraw.org/.

http://www.jhotdraw.org/

Fig. 7. Execution scenario for JHotDraw, in which five different figures are inserted in three distinct drawings.

B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268 2259
and 21 packages. Running the program presents the user with a GUI
in which there is a set of features that may be invoked at the user’s
discretion, such as opening a file, inserting predefined figures or
manual sketches, and adding textual information. While the authors
are familiar with JHOTDRAW’s user-level functionality, its inner work-
ings are unknown in advance.

6.3. Obtaining the trace

To generate a suitable feature trace, we use an execution sce-
nario that involves several major features that we want to detect:
the creation of a new drawing, and the insertion of five different
types of figures therein. These figures include rectangles, rounded
rectangles, ellipses, triangles, and diamonds. To make the localiza-
tion of the ‘‘new drawing” and the ‘‘insert figure” features easier,
we invoke the aforementioned scenario a total of three times
(Fig. 7).

Since JHOTDRAW registers all mouse movements, the trace that re-
sults from our scenario is bound to contain a lot of noise. We have
therefore filtered these mouse events to obtain a trace that is
somewhat cleaner. The resulting trace contains a little over
180,000 events.

6.4. Analyzing the trace

Fig. 8a shows the massive sequence view of the entire execution
trace, in which we can immediately observe several recurrent
patterns.

6.4.1. Locating the ‘‘new drawing” feature
Since in our trace scenario we invoked the ‘‘new drawing” fea-

ture three times, we are looking for a pattern that has the same
number of occurrences. Finding these patterns in the massive se-
quence view is not very difficult: we can discern three similar
blocks, all of which are followed by fragments of roughly the same
length. This leads us to the assumption that the blocks concern the
initialization of new drawings, and that the subsequent fragments
pertain to the figure insertions. As a means of verification, we zoom
in on these patterns to gather more evidence.
6.4.2. Locating the ‘‘insert figure” feature
Fig. 8b presents a zoomed view of such a fragment, in which we

can see the alleged initialization of the drawing in the top fraction.
What follows is a series of five patterns that look very similar: a
closer look reveals the most prominent difference to be the desti-
nations of certain outgoing calls, which seem to differ especially
in the fourth and fifth patterns. These calls are part of an intermit-
ting series and in the latter patterns they are directed toward clas-
ses in different packages. To determine the identities of these
classes, we zoom in on the third and fourth patterns and, in each
case, refer to the circular view. Comparing the two views points
out the differences: at the bottom of Fig. 9 we observe calls toward
three different figure types in the figures package (the result of
the three figures that are drawn at this point) whereas in the right-
most portion of Fig. 3 there is also an additional call toward con-

trib.TriangleFigure. Repeating this task for the fifth pattern
reveals another new figure: contrib.DiamondFigure, the fifth
figure that was drawn in our scenario. These observations confirm
that each of the five fragments concerns a figure insertion.

Taking into consideration that JHOTDRAW is an open-source pro-
ject, the division between the figures can be explained as follows:
RectangleFigure, RoundRectangleFigure, and Ellipse-

Figure are standard figures in JHOTDRAW and therefore reside in
figures, whereas TriangleFigure and DiamondFigure are
in the contrib package because they were contributed by third
parties.

6.5. Discussion

In this experiment, we have instrumented and executed a med-
ium-sized, GUI-based program according to a scenario that in-
volves certain user-triggerable features. We then visualized the
resulting execution trace and pinpointed the locations of these fea-
tures. The results are promising: choosing an appropriate scenario
establishes a strong focus in recognizing the patterns associated
with the features, which consequently requires little effort. The
feature location process serves as an important first step toward
understanding how the system’s features are implemented (Wilde
et al., 1992).

Fig. 8. (a) Full trace of the JHotDraw scenario. (b) Zooming in on the ‘‘new drawing”
feature and the subsequent figure insertions.

6 Checkstyle 4.3, http://checkstyle.sourceforge.net/.
7 Code Conventions for the Java Programming Language, http://java.sun.com/docs/
deconv/.

2260 B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268
Our study has pointed out how the massive sequence view
serves as an excellent basis for the (visual) recognition of recurrent
patterns. While it does not allow for an easy extraction of more de-
tailed information, selecting a suitable interval requires little ef-
fort. Consequently, the circular bundle supports the user in
learning more about the events at hand, e.g., by enabling the iden-
tification of rather subtle differences in recurrent patterns.

7. Case study 3: top-down program comprehension with
domain knowledge

7.1. Motivation

A common situation that developers often find themselves in is
when they are not familiar with a specific software system, but
that they do have a general knowledge concerning the system’s
background. Such domain knowledge may have been gained
through experience with similar projects in the past. The existence
of this up-front domain knowledge means that, a priori, a number
of hypotheses about the software system can be formulated and
then validated and refined in a top-down fashion (von Mayrhauser
and Vans, 1995). In the process, we form auxiliary hypotheses and
receive help from beacons that can direct us. Examples of such bea-
cons are design patterns, and identifiers that have meaningful
names. The findings lead to a greater understanding of the system
under study, and form a basis for the refinement of the initial
hypotheses. The subject system in this experiment is CHECKSTYLE.

7.2. Checkstyle

CHECKSTYLE
6 is an open-source tool that validates Java code. At the

basis of this process lies a set of coding standards that can be ex-
tended by third parties, and while formerly the focus was on code
layout issues, nowadays it also addresses such issues as design prob-
lems and bug patterns. The program consists of 23 packages that
contain a total of 294 classes and offers both a graphical and a com-
mand line user interface. From a user’s perspective, its functionality
comprises taking a set of coding standards and a Java file as its input,
and subsequently presenting a report. Since the system utilizes a
batch execution, unlike in the previous case study we can only con-
trol the execution very indirectly.

7.3. Obtaining the trace

The generation of an execution trace is achieved by instrumen-
ting and running CHECKSTYLE from the command line. The input for
our scenario consists of an XML file specifying Sun’s Java coding
conventions,7 and a typical, well-documented Java file that defines
one class with 20 methods (300 LOC). Note that while CHECKSTYLE also
offers a GUI, in this case study we focus on its command line inter-
face in order to fully concentrate on its core functionality. Executing
and tracing this scenario yields an execution trace of nearly 200,000
events.

7.4. Comprehension hypothesis

The main advantage in this case study is the presence of domain
knowledge: based on our knowledge of typical source code analy-
sis tools we can speculate about certain properties of CHECKSTYLE. In
this experiment, the focus is on its phases of execution. In particular,
we specify a set of characteristic phases that we expect during the
execution of our scenario:

1. Initialization. As with most programs, we expect the initial
phase to be concerned with initializations tasks such as com-
mand line parsing and input reading.

2. AST construction. Since tools dealing with source code structures
typically make use of Abstract Syntax Trees (ASTs), we antici-
pate that CHECKSTYLE exhibits a similar behavior. The first step
in such approaches is the creation of an AST.

3. AST traversal. Once the AST has been generated, the standard
procedure for programs in this context is to traverse its nodes
and to take action when necessary.

4. Report generation. We expect the final phase to involve the gen-
eration of a report and its presentation to the user.

The hypothesis can be considered as a definition of conceptual
phases. The aim in this experiment is to map these phases onto
CHECKSTYLE’s actual execution.

7.5. Analyzing the trace

The leftmost view in Fig. 10 shows the massive sequence view
for the full execution trace. Based on the initial view (i.e., at the
co

http://checkstyle.sourceforge.net/
http://java.sun.com/docs/codeconv/
http://java.sun.com/docs/codeconv/

Fig. 9. Circular bundle views of two alleged figure drawings, indicating very subtle differences.

B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268 2261
highest level of granularity) we can roughly discern five major
phases. For each of these phases, we report and interpret our find-
ings in the next sections.

7.5.1. First phase
Based on the initial massive sequence view, we choose to zoom

in on the first phase (events 1 through 6400). As it turns out, we are
actually dealing with two subphases: this is demonstrated by the
first of the zoomed views in Fig. 10.

First subphase. A quick glance through the first subphase reveals
a strong activity among a limited set of objects, being Config-

Loader and DefaultConfiguration.
Second subphase. The second subphase appears to be more inter-

esting: here we witness an interleaving of sequences of similar
calls. The main differences between these sequences are the ob-
jects on the receiving end, all of which seem to be located within
the checks package. This is where the circular view proves help-
ful: in its temporal mode, browsing through the sequences reveals
how all of the checks are processed one by one. This is illustrated in
Fig. 11, in which the calls are shown in a yellow-to-black (old-to-
recent) fashion. Indeed, upon highlighting these calls, the tooltips
tell us that the calls pertain to interactions between DefaultCon-

figuration and such checks as checks.naming.PackageName-
Check and checks.header.HeaderCheck. As a side note, we
suspect the reason for the seemingly clockwise trend of the calls
in Fig. 11 to be the alphabetic order in which the checks are pro-
cessed, which corresponds to the similarly alphabetically ordered
packages and classes in the circular view.

Interpretation. From the many interactions involving configura-
tion classes, we conclude that we are indeed dealing with initiali-
zation and configuration tasks. As such, we map CHECKSTYLE’s first
phase onto the ‘‘initialization” phase in our hypothesis.

7.5.2. Second phase
The second major phase that we consider is a series of 91,000

events, of which the largest part displays a very local behavior (sec-
ond zoomed view in Fig. 10). Referring to the circular view in this
interval, we learn that most of the activity is concentrated in the
grammars package, and in grammars.GeneratedJavaLexer in
particular. To determine what caused this chain of events, we focus
on the transition between this phase and the previous phase
(Fig. 12). Browsing through a limited set of events while scanning
for events that have interesting identifier names, leads us to a call
that bears the signature api.DetailAST

TreeWalker.parse(api.FileContents).
Interpretation. The signature of the aforementioned call suggests

that this phase is concerned with parsing the input file and build-
ing an AST. The reason that we are not witnessing the explicit cre-
ation of the tree (i.e., node creations) is assumably because we
have not instrumented external libraries such as the ANTLR Parser
Generator. In conclusion, this phase maps seamlessly onto the ‘‘AST
construction” phase in our hypothesis.

7.5.3. Third phase
The next phase is a sequence that is characterized by a very con-

sistent shape and coloring, which indicates a great degree of simi-
larity between its 18,000 calls. By examining the earliest calls, we
learn that the signatures of the initial calls are void TreeWalk-

er.walk(api.DetailAST, api.FileContents) and void

TreeWalker.notifyBegin(api.DetailAST, api.FileCon-

tents). However, as pointed out by the zoomed view of this third
phase in Fig. 10, we are actually dealing with roughly three subpha-
ses: two relatively short parts, and a much longer one in between.

First subphase. This subphase consists of 1300 events and starts
off with a series of double calls, in which the TreeWalker repeat-
edly invokes void api.Check.setFileContents(api.File-

Contents) and void api.Check.beginTree(api.DetailAST)

on a series of different Check subclass instances. Most of these
calls lead to no further interactions, with the exception of
checks.TodoCommentCheck (very short, broad ‘‘box” at the
beginning of the zoomed view) and checks.Generic-

IllegalRegexpCheck (somewhat longer box).
Second subphase. In the second subphase, the receiver of the

aforementioned calls is checks.whitespace.TabCharacter-

Check. The result is the involvement of this class in no less than
15,000 similar interactions, constituting most of the events in this
phase. Judging by the method names and the return values that are
being passed (e.g., getLines() and getTabWidth()), we are wit-
nessing the processing of tab characters in the input Java file.

Third subphase. The third subphase is initially similar to the first
subphase: more Check subclasses receive double calls. Further-
more, in the case of checks.sizes.LineLengthCheck the result
is a total of 1100 comparable calls of a line processing nature.

Interpretation. The rather meaningful names of the first few calls
in this phase lead to the initial assumption that we are witnessing
the traversal of the AST. However, this does not fully explain the

Fig. 10. Massive sequence view of the entire Checkstyle trace (left), and zoomed views of each of its five phases (right).

2262 B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268
peculiar shape of the massive sequence view in this stage. Class
highlighting provides the answer as it reveals that api.DetailAST
is completely absent in the interactions, which means that the
aforementioned checks are not reliant on ASTs to fulfill their tasks.
This can be explained by the fact that such formatting-oriented
checks merely require a lexical analysis of the input file. In terms
of our hypothesis, we conclude that this phase is not covered.

7.5.4. Fourth phase
The fourth zoomed view in Fig. 10 shows CHECKSTYLE’s fourth

major phase, amounting to a total of 78,000 events. The phase is
initiated by a call with the signature boolean TreeWalk-
er.useRecursiveAlgorithm(), which returns false. The next
call is void TreeWalker.processIter(api.DetailAST). By
highlighting the third event – void TreeWalker.notifyVis-

it(api.DetailAST) – we learn that this particular call frequently
occurs throughout the entire phase.

Another observation is the interleaving of two types of activi-
ties: a recurrent pattern with interactions spreading across a broad
range of classes in the checks package, and an intermitting series
of 16 vertical ‘‘beams”. By highlighting the calls that constitute
these beams and by referring to the circular view, we learn that
these interactions are exclusively concerned with classes in the
checks.javadoc package.

Fig. 12. Focusing on the transition between Checkstyle’s first and second phase. The
tooltips provide information on the call sites.

Fig. 11. Full view of a recurrent sequence in Checkstyle’s first phase, in which the
circular view indicates the receiving classes and the order in which they are
processed.

B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268 2263
Interpretation. Judging by the source code associated with
boolean TreeWalker.useRecursiveAlgorithm(), the deci-
sion of the program to use an iterative algorithm rather than a
recursive algorithm can be attributed to CHECKSTYLE’s configuration
during the execution. Furthermore, the frequent calls to void
TreeWalker.notifyVisit(api.DetailAST) (and the ensuing
interactions involving Check subclasses) lead to believe that the
‘‘Visitor” design pattern (Gamma et al., 1994) is used during the
AST traversal. Finally, we discovered that 16 out of 20 method def-
initions in our input file are preceded by Javadoc entries, which we
presume accounts for the 16 Javadoc call sequences that we
encountered.

Based on our observations in this phase, we conclude that this
phase maps to the ‘‘AST traversal” phase in our hypothesis.

7.5.5. Fifth phase
The fifth and final phase as seen in the last zoomed view in

Fig. 10 contains nearly 15,000 events and actually starts with a
main subphase and finishes with a small endphase.

First subphase. The initiating call here is void TreeWalk-

er.fireErrors(java.lang.String), with the actual parameter
being ‘‘Game.java”, our input Java file. Since a brief glance through
the ensuing interactions does not prove very meaningful, we dou-
ble-click on the initial call to view the source code at this call site
(Fig. 13), in which the Javadoc entry states ‘‘Notify all listeners
about the errors in a file”.

Second subphase. CHECKSTYLE’s final phase starts off with Checker

invoking the void api.FileSetCheck.destroy() method on
TreeWalker. What follows is a series of api.Check.destroy()
calls toward each of the Check subclasses; near the end, the most
noteworthy event is DefaultLogger.closeStreams() as it pre-
cedes the writing of CHECKSTYLE’s output to the shell.

Interpretation. The source code associated with void Tree-

Walker.fireErrors(java.lang.String) leads us to believe
that the first subphase is responsible for presenting the accumu-
lated errors to the user, whereas the second subphase handles
the program’s termination. This phase maps perfectly onto the ‘‘re-
port generation” phase in our hypothesis.

7.6. Discussion

In this case study we have focused on a medium-sized software
system that, while being unknown to us in advance, has a function-
ality that we are familiar with. We have used this domain knowledge
to formulate a hypothesis that specifies a set of conceptual phases in
a typical execution scenario. Table 1 summarizes the results.

The experiment was quite successful: with the exception of
CHECKSTYLE’s third phase, each of the five phases that we discerned
through the use of Extravis could be mapped onto a conceptual
phase. In particular, the massive sequence view allows to rapidly
identify the essential events, i.e., calls that are responsible for
phase transitions. The circular bundle view is an aid when a more
detailed visualizations of certain call sequences are required, and
offers an easy link to the system’s source code. While the third
phase came unexpected, in retrospect it is perfectly understand-
able that certain aspects of an input file’s source code are treated
differently since the associated checkers have no need of ASTs.

The experiment took only a few hours, and illustrates how do-
main knowledge and a top-down approach can lead to a significant
level of understanding of the system under study. Moreover, addi-
tional (sub-)phases can be observed by means of zooming, which
in turn can be used to refine initial hypotheses in an iterative fash-
ion (cf. Reflexion models Murphy et al., 1995) until a sufficient le-
vel of understanding has been obtained for the task at hand.
8. Discussion

The case studies in Sections 5–7 have pointed out a series of po-
tential applications of our approach in the context of understand-
ing large execution traces and, by extension, understanding

Fig. 13. Looking up associated source code fragments.

Table 1
Results of the Checkstyle experiment

Phase #Calls
(K)

Notable calls Prominent classes Description Maps to

1 6.4 – ConfigurationLoader

DefaultConfiguration

checks.*

Interactions between various
configuration classes and checks

Initialization

2 91 TreeWalker.parse() grammars.

GeneratedJavaLexer TreeWalker

Local activity in the grammars package,
presumably involving external libraries

AST
construction

3 18 TreeWalker.walk()

TreeWalker.notifyBegin()

TreeWalker

FileContents 4 Check-subclasses
Non-AST related activities involving
four specific check subclasses

–

4 60 TreeWalker.processIter()

TreeWalker.notifyVisit()

TreeWalker

api.DetailAST remaining
Checks subclasses

Interleaving between various check-
related events
and Javadoc processing

AST
traversal

5 8 TreeWalker.fireErrors()

TreeWalker.destroy()

TreeWalker

checks.*

Processing of errors and
termination of the program

Report
generation

2264 B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268
software systems. This section lists a number of important charac-
teristics of our techniques and discusses both the advantages and
limitations.

8.1. Advantages

Common trace visualization tools use UML sequence diagrams
(or variants thereof) to display a system’s structure and the de-
tailed interactions between its components (e.g., De Pauw et al.,
1993; Jerding et al., 1997). Although sequence diagrams are very
intuitive, they typically become difficult to navigate when the
number of components or the time period under consideration be-
come too large: situations where two-dimensional scrolling is nec-
essary to grasp even relatively simple functionalities can rapidly
occur, which easily disorients and confuses the user. Extravis, on
the other hand, uses a scalable circular view that fits on a single
screen. All of the system’s components are hierarchically projected
on a circle, and entities that are of no immediate interest can be
collapsed, which improves readability and ensures that the user
is not overwhelmed by too much information.
Moreover, the calling relationships between elements are visu-
alized using bundling, which greatly improves the overall readabil-
ity in case of many simultaneous relations. Through the use of
colors, there is the ability to either (1) show these relationships
in a chronological order or (2) indicate the fan-in and fan-out
behavior of the various entities.

The massive sequence view, which provides a concise overview
of an entire execution trace, allows the user to easily zoom in on
parts of the trace. This reduces the time period under consideration
in both views and eases the navigation. Another benefit of this view
is that it is easy to recognize patterns and phases on the macro-
scopic level and, by use of zooming, on the fine-grained level as
well.

Finally, our techniques are aimed at the optimal use of screen
real estate. The observation that a circular representation does
not fit on a standard (rectangular) screen is valid; however, it is
a matter of positioning the tool controls and settings in the unused
space for the screen to be optimally used. Such improvements
could be included in future versions of Extravis.

B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268 2265
8.2. Limitations

While our techniques effectively visualize large execution
traces that are normally too difficult to understand, the size of
the input trace is limited in terms of our prototype tool. The reason
for this is twofold: not only does Extravis require a substantial
amount of computational resources – i.e., memory to keep track
of all elements and relations, and CPU cycles to perform calcula-
tions, counts, etc. – but visualizing large systems also requires a
considerable amount of screen real estate. The latter problem exists
because not all events can be visualized in the massive sequence
view in a non-ambiguous fashion in case there are more events
than there are horizontal pixel lines. It must be noted, however,
that Extravis is not necessarily a stand-alone tool; it could well
be used as part of a tool-chain, e.g., after some abstraction phase.

Moreover, while the circular bundle view is a useful means to
display certain characteristics of a program without the need for
scrolling, it can be fairly difficult to grasp the temporal aspect.
When considering a small time frame (e.g., 50 calls), the circular
approach’s temporal mode does not make for a visualization that
is as readable and intuitive as a sequence diagram, since it requires
the interpretation of colors rather than a top-to-bottom reading. In
other words, while the display of the system’s entire structure is
useful in such applications as fan-in and fan-out analysis, this
information is not always needed.

Furthermore, threads are currently not supported. Although our
tracer does register thread information, we do not yet have an
effective technique to show the interactions between these
threads. In the context of multithreaded systems it may prove use-
ful to effectively visualize these interactions, as threads typically
convey important information on the (interleaving of) distinct pro-
cesses within these systems.

8.3. Shneiderman criteria

Shneiderman introduced seven criteria for assessing the graph-
ical user interfaces of information visualizations (Shneiderman,
1996). Table 2 outlines how the two synchronized views of Extrav-
is satisfy each of these seven criteria.

8.4. Threats to validity

The case studies that we have presented are representative for
real-life situations that software developers encounter on a daily
basis. The trace exploration, feature location, and top-down analy-
sis scenarios that we used to study and understand the subject
software systems are realistic and, as was mentioned in the moti-
vational sections of the studies, occur in various contexts. Never-
theless, there are a number of aspects in which our experiments
may differ from real-world situations. We now address those fac-
tors that we feel are the most influential.

First, in our experiments we have occasionally relied on identi-
fiers having meaningful names. In CHECKSTYLE, for example, we often
used the method’s signatures to get an indication of the intended
functionality. It must be noted that the presence of meaningful
Table 2
Shneiderman’s GUI criteria

Criterion Extravis implementation

Overview Massive sequence view
Zooming Zooming in the massive sequence view
Filtering Collapsing of elements
Details-on-demand Highlighting of elements/relations
Relate Circular view (with bundling)
History Forward/back buttons
Extract Save/load current state
identifier names is by no means a guarantee in everyday software
systems.

Secondly, with respect to our feature location study, we have
stated that our definition of a feature is a user-triggerable unit of
functionality. While this is a common assumption in this problem
area (e.g., Eisenbarth et al., 2003), our visual form of feature loca-
tion is more difficult if the features at hand can not be invoked di-
rectly. When considering CROMOD, for example, it is hard to control
the execution of its distinct features because it concerns a batch
execution based on a set of complex input files. In other words,
the applicability of our techniques in feature location tasks de-
pends on the nature of the system’s execution.

Finally, the initial traces in two of the case studies were inexpli-
cably huge. Closer inspection revealed that these traces contained
massive amounts of events that can be attributed to non-func-
tional requirements, such as logging (e.g., the CROMOD case) or reg-
istering mouse events (e.g., in JHOTDRAW). Assuming that mouse
movements and logging are not particularly interesting in grasping
a system’s general functionality, we carefully filtered out these
particular events in a preprocessing step, so as to prevent the
traces and the resulting visualizations from becoming unnecessar-
ily complex. It should be noted that this task is rather delicate, and
in performing similar experiments one must be careful not to acci-
dentally filter any events that pertain to functionalities that the
user considers to be relevant.
9. Related work

Research into trace visualization has resulted in various tech-
niques and tools over the years. Most related articles are concerned
with explaining the visualization tools and techniques by example;
in contrast, we have reported on the use of our techniques in sev-
eral real-world scenarios.

De Pauw et al. (1993) are known for their work on IBM’s Jin-
sight, a tool for visually exploring a program’s run-time behavior.
Many features of this prototype tool have since found their way
into Eclipse as plug-ins, more specifically, the Test & Performance
Tools Platform (TPTP). Though being useful for program compre-
hension purposes, scalability remains worrisome. To this end, the
authors have introduced the execution pattern notation (De Pauw
et al., 1998), which unfolds the graph from a typical sequence dia-
gram (or any variant of a Jacobson interaction diagram Jacobson,
1992) into tree structures. This layout emphasizes the progression
of time and not so much the thread of control.

Lange and Nakamura (1997) report on Program Explorer, a trace
visualization tool targeted at C++ software. Several views are avail-
able, of which the class graph plays a central role. Through such
abstractions as merging, pruning, and slicing, the tool attempts
to reduce the search space when studying execution traces; how-
ever, the degree of automation of these abstractions is unclear. Fur-
thermore, the tool does not offer a comprehensive view of all the
packages and classes that are involved, and selecting a trace inter-
val for detailed viewing does not seem feasible.

Jerding et al. (1997) present ISVis, a tool that features two
simultaneous views of a trace: a continuous sequence diagram,
and a mural view that is similar to our massive sequence view. IS-
Vis’ main strength lies in automatic pattern detection, which al-
lows to summarize common execution patterns, and reduces the
size of the trace considerably. Our approach differs from ISVis in
that the latter deals from the perspective of sequence diagrams
(which cannot contain a large number of structural elements),
whereas our tool is centered around a scalable circular view.

AVID, a visualization tool by Walker et al. (1998) and Chan et al.
(2003), aims at exploring a system’s behavior by manually defining
a high-level model of a system and then enriching it with trace

2266 B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268
data collected during the system’s execution. This is a manual step
that involves multiple iterations, thus incrementally improving the
user’s comprehension of the system. At the basis of this operation
lies the Reflexion process (Murphy et al., 1995). Although there is
support for the (sampling-based) selection of a scenario fragment,
the tool faces a significant scalability issue as scenarios still induce
a potentially large amount of trace data that cannot be directly
visualized.

Reiss and Renieris (2001) note that execution traces are typi-
cally too large to visualize directly and therefore propose to select,
compact, and encode the trace data.

Jive, also by Reiss (2003), is a Java front-end that visualizes a
program’s behavior while it is running, rather than analyzing its
traces in a postmortem fashion. While the run-time visualization
and relatively small overheads render it an attractive tool, it is hard
to visualize entire executions. It does, however, provide a view on
the classes that are active during a specific phase of the software’s
execution, and it also allows to perform a rudimentary perfor-
mance analysis.

Systä et al. (2001) present Shimba, an environment that uses se-
quence diagrams to visualize interactions between user-specified
components. Pattern recognition is applied to cope with the scala-
bility problems that are often associated with these diagrams.
However, only the interactions between elements that were man-
ually specified by the user are shown, as viewing all components of
a large system in a sequence diagram is not feasible due to scala-
bility issues.

Richner and Ducasse (2002) propose to use their Collaboration
Browser to reconstruct the various object collaborations and roles
in software systems. This is achieved by selecting a class and then
specifying queries to learn more about the interactions in which
this class is involved. Iteratively studying the results of these que-
ries and refining or adding new queries leads to a deeper under-
standing of the subject software system.

Ducasse et al. (2004) use polymetric views to visualize certain
metrics that are collected at run-time, resulting in a significant
reduction of information. Their approach is mainly aimed at recog-
nizing those entities in a system that are actively allocating new
objects, or that are frequently calling other classes. Although their
approach works offline, there are similarities with the way in which
Reiss projects dynamic metrics in his Jive-tool (Reiss, 2003).

Kuhn et al. correlate feature traces with the help of ‘‘signals in
time”: they visualize traces as signals, of which the amplitude is
determined on the basis of the stack depth at points during the
execution (Kuhn and Greevy, 2006). The idea is that similar traces
exhibit comparable sequences of amplitude values, and that these
similarities can be visually detected. Their work focuses solely on
feature location and not so much on more general program com-
prehension. Similar work by Zaidman and Demeyer (2004) uses
the relative frequency of method executions to compare regions
in traces, as opposed to using stack depths.

Greevy et al. (2006) present a 3D visualization of a software sys-
tem’s execution. The visualization metaphor that they use to dis-
play large amounts of dynamic information is that of growing
towers, with towers becoming taller as more instances of a type
are created. The authors aim to (1) determine which parts of the
system are actively involved in a particular (feature) scenario exe-
cution and (2) identify patterns of activity that are shared among
different features of the system.

Hamou-Lhadj et al. (2005) report on a technique to recover
behavioral design models from execution traces. Starting with a
complete trace, they determine which classes are utility classes,
or classes having a high level of fan-in and low (or non-existent)
fan-out. Once these classes are removed from the trace, the result-
ing trace is visualized in the Use Case Map (UCM) notation. UCMs
provide a compact and hierarchical view of the main responsibili-
ties per class combined with architectural components. However,
UCMs do not provide a global overview of the application, are
not easily navigable, and are more targeted toward understanding
very specific parts of a system.
10. Conclusions

Dynamic analysis is generally acknowledged to be a useful
means to gain insight about a system’s inner workings. A major
drawback of dynamic analysis is the huge amounts of trace data
that are collected and need to be analyzed. As such, designing an
effective trace visualization that (1) is able to cope with these huge
amounts of data and (2) does not confuse the viewer, remains a
challenge.

The solution that we propose to tackle this scalability issue is
centered around two synchronized views of an execution trace.
The first view, which we call the circular bundle view, shows all
the system’s structural elements (e.g., classes and packages) and
their dynamic calling relationships in a bundled fashion. The sec-
ond view, the massive sequence view, shows a large-scale message
sequence chart that uses a new anti-aliasing technique and that
provides an interactive overview of an entire trace. The linking of
the two views creates a synergy that ensures the easy navigation
and analysis of large execution traces. Our approach is imple-
mented in a publicly available tool called Extravis.

To illustrate the broad range of potential usage contexts of our
approach, we conducted three typical usage scenarios on three dif-
ferent software systems. More specifically, we performed (1) trace
exploration, (2) feature location, and (3) top-down program com-
prehension with domain knowledge. For each of these scenarios,
we have presented anecdotal evidence on how our approach
helped us to gain different levels of understanding of the software
systems under study. Finally, we have reported on the strengths
and limitations of our tool, discussed the threats to validity in
our case studies, and outlined the added value over related work.

To summarize, our contributions in this paper are:

� A novel approach to visualizing execution traces that employs
two synchronized views, namely (1) a circular bundle view for
displaying the structural elements and bundling their call rela-
tionships and (2) a massive sequence view that provides an
interactive overview.

� The application of our tool, based on this approach, on three dis-
tinct software systems in three program comprehension con-
texts: trace exploration, feature detection, and top-down
analysis.

10.1. Future work

There are many potential directions for future work, primarily
in terms of improving our techniques and subjecting them to more
thorough evaluations.

Among the improvements is to facilitate the comparison of exe-
cution traces: for example, observing two traces side by side (and
thereby detecting correlations) might make feature location con-
siderably easier.

Furthermore, we want to investigate the role of threads in our
visualization, and come up with techniques to effectively display
both the threads and their interactions.

Future applications include not only the visualization of larger
execution traces, but also the detection of outliers. Outlier detec-
tion concerns the revelation of call relationships that are not al-
lowed to exist for some reason, e.g., because the elements at
hand belong to non-contiguous layers. The circular view, with its

B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268 2267
ability to show relations from entire traces in a bundled fashion,
provides an excellent basis for the detection of such relationships.

With respect to further evaluations, we plan to assess the useful-
ness of our techniques through empirical studies. Specifically, in
the context of a software system with large traces, one could think
of a controlled experiment that involves Extravis, a series of main-
tenance tasks, and several test users who are not familiar with the
system. These tasks would have to be performed by the subjects,
part of whom have access to our tool whereas others have not.
The results of such an experiment will provide valuable informa-
tion with respect to the practical applicability of our techniques.
Furthermore, we could provide part of the users with access to dif-
ferent tools, such as the ones discussed in Section 9, as this allows
to determine the effectiveness of our approach with respect to
those of others. Finally, the proposed techniques are subject to
evaluations of their own. Such experiments, e.g., an empirical
study of Importance-Based Anti-Aliasing, could focus on the user’s
perception of events that are normally difficult to discern.

Acknowledgement

This research is sponsored by NWO via the Jacquard Recon-
structor project. We would also like to thank West Consulting8

for their input concerning the CROMOD case.

References

AspectJ: The AspectJ project at Eclipse.org, http://www.eclipse.org/aspectj/.
Basili, V.R., 1997. Evolving and packaging reading technologies. J. Syst. Software 38

(1), 3–12.
Briand, L.C., Labiche, Y., Leduc, J., 2006. Toward the reverse engineering of UML

sequence diagrams for distributed Java software. IEEE Trans. Software Eng. 32
(9), 642–663.

Chan, A., Holmes, R., Murphy, G.C., Ying, A.T.T., 2003. Scaling an object-oriented
system execution visualizer through sampling. In: Proceedings of the 11th
International Workshop on Program Comprehension (IWPC). IEEE, pp. 237–244.

Cornelissen, B., van Deursen, A., Moonen, L., Zaidman, A., 2007. Visualizing
testsuites to aid in software understanding. In: Proceedings of the 11th
European Conference on Software Maintenance and Reengineering (CSMR).
IEEE, pp. 213–222.

Cornelissen, B., Holten, D., Zaidman, A., Moonen, L., van Wijk, J.J., van Deursen, A.,
2007. Understanding execution traces using massive sequence and circular
bundle views. In: Proceedings of the 15th International Conference on Program
Comprehension (ICPC). IEEE, pp. 49–58.

De Pauw, W., Helm, R., Kimelman, D., Vlissides, J.M., 1993. Visualizing the behavior
of object-oriented systems. In: Proceedings of the Eighth Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA). ACM,
pp. 326–337.

De Pauw, W., Lorenz, D., Vlissides, J., Wegman, M., 1998. Execution patterns in
object-oriented visualization. In: Proceedings of the Fourth USENIX Conference
on Object-Oriented Technologies and Systems (COOTS), USENIX, pp. 219–234.

Ducasse, S., Lanza, M., Bertuli, R., 2004. High-level polymetric views of condensed
run-time information. In: Proceedings of the Eighth European Conference on
Software Maintenance and Reengineering (CSMR). IEEE, pp. 309–318.

Eisenbarth, T., Koschke, R., Simon, D., 2001. Feature-driven program understanding
using concept analysis of execution traces. In: Proceedings of the Ninth
International Workshop on Program Comprehension (IWPC). IEEE, pp. 300–309.

Eisenbarth, T., Koschke, R., Simon, D., 2003. Locating features in source code. IEEE
Trans. Software Eng. 29 (3), 210–224.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994. Design Patterns Elements of
Reusable Object-Oriented Software. Addison-Wesley.

Greevy, O., Lanza, M., Wysseier, C., 2006. Visualizing live software systems in 3D. In:
Proceedings of Symposium on Software Visualization (SOFTVIS). ACM, pp. 47–
56.

Hamou-Lhadj, A., Braun, E., Amyot, D., Lethbridge, T.C., 2005. Recovering behavioral
design models from execution traces. In: Proceedings of the Ninth European
Conference on Software Maintenance and Reengineering (CSMR). IEEE, pp. 112–
121.

Holten, D., 2006. Hierarchical edge bundles: visualization of adjacency relations in
hierarchical data. IEEE Trans. Visual. Comput. Graph. 12 (5), 741–748.

Holten, D., Cornelissen, B., van Wijk, J.J., 2007. Visualizing execution traces using
hierarchical edge bundles. In: Proceedings of the Fourth International
Workshop on Visualizing Software for Understanding and Analysis (VISSOFT).
IEEE, pp. 47–54.

Jacobson, I., 1992. Object-Oriented Software Engineering: A Use Case Driven
8 http://www.west.nl/.
Approach. Addison-Wesley.
Jerding, D.F., Stasko, J.T., 1998. The information mural: a technique for displaying

and navigating large information spaces. IEEE Trans. Visual. Comput. Graph. 4
(3), 257–271.

Jerding, D.F., Stasko, J.T., Ball, T., 1997. Visualizing interactions in program
executions. In: Proceedings of the 19th International Conference on Software
Engineering (ICSE). ACM, pp. 360–370.

Kuhn, A., Greevy, O., 2006. Exploiting the analogy between traces and signal
processing. In: Proceedings of the 22nd International Conference on Software
Maintenance (ICSM). IEEE, pp. 320–329.

Lange, D.B., Nakamura, Y., 1997. Object-oriented program tracing and visualization.
IEEE Comput. 30 (5), 63–70.

LaToza, T.D., Venolia, G., DeLine, R., 2006. Maintaining mental models: a study of
developer work habits. In: Proceedings of the 28th International Conference on
Software Engineering (ICSE). ACM, pp. 492–501.

Maletic, J.I., Marcus, A., Collard, M.L., 2002. A task oriented view of software
visualization. In: Proceedings of the First International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT). IEEE, pp. 32–40.

Murphy, G.C., Notkin, D., Sullivan, K., 1995. Software reflexion models: bridging the
gap between source and high-level models. In: Proceedings of the Third
SIGSOFT symposium on Foundations of Software Engineering (FSE). Springer,
pp. 18–28.

Poshyvanyk, D., Guéhéneuc, Y-.G., Marcus, A., Antoniol, G., Rajlich, V., 2007. Feature
location using probabilistic ranking of methods based on execution scenarios
and information retrieval. IEEE Trans. Software Eng. 33 (6), 420–432.

Reiss, S.P., 2003. Visualizing Java in action. In: Proceedings of Symposium on
Software Visualization (SOFTVIS). ACM, pp. 57–65.

Reiss, S.P., Renieris, M., 2001. Encoding program executions. In: Proceedings of the
23rd International Conference on Software Engineering (ICSE). ACM, pp. 221–
230.

Renieris, M., Reiss, S.P., 1999. ALMOST: exploring program traces. In: Proceedings of
Workshop on New Paradigms in Information Visualization and Manipulation.
ACM, pp. 70–77.

Richner, T., Ducasse, S., 2002. Using dynamic information for the iterative recovery
of collaborations and roles. In: Proceedings of the 18th International Conference
on Software Maintenance (ICSM). IEEE, pp. 34–43.

Shneiderman, B., 1996. The eyes have it: a task by data type taxonomy for
information visualizations. In: Proceedings of Symposium on Visual Languages
(VL). IEEE, pp. 336–343.

Systä, T., Koskimies, K., Müller, H., 2001. Shimba – an environment for reverse
engineering Java software systems. Software – Practice Exp. 31 (4), 371–
394.

von Mayrhauser, A., Vans, A.M., 1995. Program comprehension during software
maintenance and evolution. IEEE Comput. 28 (8), 44–55.

Walker, R.J., Murphy, G.C., Freeman-Benson, B.N., Wright, D., Swanson, D., Isaak, J.,
1998. Visualizing dynamic software system information through high-level
models. In: Proceedings of the 13th Conference on Object-Oriented
Programming Systems, Languages & Applications (OOPSLA). ACM, pp. 271–
283.

Wilde, N., Gomez, J.A., Gust, T., and Strasburg, D., 1992. Locating user functionality
in old code. In: Proceedings of the Eighth International Conference on Software
Maintenance (ICSM), IEEE, pp. 200–205.

Yang, S., Burnett, M.M., DeKoven, E., Zloof, M., 1997. Representation design
benchmarks: a design-time aid for VPL navigable static representations. J.
Visual Lang. Comput. 8 (5-6), 563–599.

Zaidman, A., 2006. Scalability solutions for program comprehension through
dynamic analysis. PhD thesis, University of Antwerp.

Zaidman, A., Calders, T., Demeyer, S., Paredaens, J., 2005. Applying webmining
techniques to execution traces to support the program comprehension process.
In: Proceedings of the Ninth Conference on Software Maintenance and
Reengineering (CSMR), IEEE, pp. 134–142.

Zaidman, A., Demeyer, S. Managing trace data volume through a heuristical
clustering process based on event execution frequency. In: Proceedings of the
Eighth European Conference on Software Maintenance and Reengineering
(CSMR), IEEE, pp. 329–338.

Bas Cornelissen received the MSc degree in computer science from the University
of Amsterdam in 2005. Starting in June 2005, he has been working as a graduate
student at Delft University of Technology. His research interests include reverse
engineering and program comprehension, with a strong emphasis on the use of
dynamic analysis. He is a student member of the IEEE Computer Society.
Andy Zaidman obtained his MSc (2002) and PhD degree (2006) from the University
of Antwerp. Currently, he is a post-doctoral researcher at the Delft University of
Technology working on reverse engineering with the help of dynamic analysis,
program comprehension, repository mining and software testing. He is the orga-
nizer of the International Workshop on Program Comprehension through Dynamic
Analysis (PCODA) series and has recently been appointed general chair of the 15th

Working Conference on Reverse Engineering (WCRE 2008).

http://www.eclipse.org/aspectj
http://www.west.nl/

2268 B. Cornelissen et al. / The Journal of Systems and Software 81 (2008) 2252–2268
Danny Holten received the MSc degree (with honors) in computer science from the
Eindhoven University of Technology (TU/e), the Netherlands, in 2005. He is cur-
rently working toward the PhD degree in computer science at Eindhoven University
of Technology. His research interests include information visualization, scientific
visualization, and computer graphics.
Leon Moonen received an MSc (cum laude, Computer Science, 1996) and PhD
(Computer Science, 2002) degree from the University of Amsterdam. He is assistant
professor of software engineering at Delft University of Technology. His research
aims at supporting the development and evolution of large software systems.
Concrete topics include the reverse engineering and exploration of views on soft-
ware systems and their use for understanding and assessing software quality

attributes such as evolvability, reliability and security. He publishes regularly at,
and serves on organizing-, steering- and program committees of, international
conferences and workshops on reverse engineering, source code analysis, software
maintenance, program understanding, aspect mining and software security. He is a
member of the IEEE Computer Society and the ACM.

Arie van Deursen is a full professor at Delft University of Technology, where he is
heading the Software Engineering Research Group. He obtained his MSc degree in
computer science in 1990 from the Vrije Universiteit, Amsterdam, and his PhD
degree from the University of Amsterdam in 1994. From 1996 until 2006 he was a
research leader at CWI, the Dutch National Institute for Research in Mathematics in
Computer Science. His research interests include reverse engineering, program
comprehension, and software architecture. He was program chair of the Working
Conference on Reverse Engineering (WCRE) in 2002 and 2003, and served on
numerous program committees in the areas of software evolution, maintenance,
and software engineering in general. He is a member of the editorial board of the
Empirical Software Engineering journal.

Jarke J. van Wijk received a MSc degree in industrial design engineering in 1982
and a PhD degree in computer science in 1986, both from Delft University of
Technology. He worked at a software company and at the Netherlands Energy
Research Foundation ECN before he joined the Technische Universiteit Eindhoven in
1998, where he became a full professor of visualization in 2001. His main research
interests are information visualization and flow visualization, focusing on the

development of new visual representations. He has been a paper cochair for IEEE
Visualization (2003, 2004) and for IEEE InfoVis (2006, 2007), and is chair of IEEE
InfoVis for 2008. He received the IEEE Visualization Technical Achievement Award
in 2007 for his work on flow visualization.

	Execution trace analysis through massive sequence and circular bundle views
	Introduction
	Dynamic analysis
	Challenges and goal
	Visualization approach
	Contributions
	Structure of the paper

	Existing work
	Circle approach
	Hierarchical edge bundles

	Message sequence charts
	Information murals

	Visualization criteria
	Accessibility of related information
	Use of screen real estate

	Our approach
	Meta-model
	Structural information
	Basic call relations
	Detailed call relations

	Circular bundle view
	Massive sequence view
	Importance-Based Anti-Aliasing

	View interaction
	Implementation

	Case studies
	Case study 1: trace exploration
	Motivation
	Cromod
	Obtaining the trace
	Analyzing the trace
	Studying fan-in and fan-out behavior
	Identifying phases

	Discussion

	Case study 2: feature location
	Motivation
	JHotDraw
	Obtaining the trace
	Analyzing the trace
	Locating the " new drawing " feature
	Locating the " insert figure " feature

	Discussion

	Case study 3: top-down program comprehension with domain knowledge
	Motivation
	Checkstyle
	Obtaining the trace
	Comprehension hypothesis
	Analyzing the trace
	First phase
	Second phase
	Third phase
	Fourth phase
	Fifth phase

	Discussion

	Discussion
	Advantages
	Limitations
	Shneiderman criteria
	Threats to validity

	Related work
	Conclusions
	Future work

	Acknowledgement
	References

