
LC-RTP (Loss Collection RTP): Reliability for Video Caching in the Internet

Michael Zink', Alex Jonas*, Carsten Griwodz', Ralf Steinmetzl y 2
'KOM - Industrial Process and System Communications

Darmstadt University of Technology
Merckstrasse 25

64283 Darmstadt, Germany
0049-6151-166151

The increasing amount of audio-visual (AV) content that is
oflered by web sites leads to a network bandwidth and stor-
age capacity problem. Caching is one of the techniques
that can ease this problem. But even in a caching system
the distribution of data (i.e. the AV content) should be
bandwidth-eficient. Furthermore the delivery to the end-
user must regard the restrictions implied by real-time data.
This paper describes LC-RTe an eficient and simple reli-
able multicast protocol that complies with RTP ([l]). Its
deployment would require neither changes to the network
infrastructure nor to existing end-user presentation soft-
ware. I t provides lossless transmission of AV content into
cache servers and concurrently, lossy real-time delivery to
end-users using multicast. It achieves reliability by retrans-
mission. The trafic increase is minimal because the trans-
mission of the AV content and any caching will take place
while the end-user is served. Support for multicast in the
distribution system ensures that all cache servers of a mul-
ticast group can cache an AV content while transmitting it
to a consumel: Finally we present the results of long dis-
tanceJile transmissions in order to show that LC-RTP per-
forms well and meets the requirements for lossless
transmission of AV content.

1. Introduction

The increasing interest in transmitting audio-visual data
over the Internet shows that streaming is becoming an
important application. The huge amount of data in stream-
ing media systems leads to network bandwidth and storage
capacity problems. Another problem is the response time,
which should be minimal in order to preserve its attractive-
ness. Considering these restrictions and problems it would
be advantageous to support such streaming operations with
a generic distributed infrastructure [2]. A new and popular
content can be cached by nodes close to the customer and
can be served to the end-users with low latency, avoiding
the use of network resources upstream from the cache
server.

Since network bandwidth is a scarce resource (and we
follow the assumption that it will always become scarce

*IPSI, German National Research Center for
Information Technology

Dolivostrasse 15
4293 Darmstadt, Germany

0049-615 1-869869

again soon after an infrastructure enhancement) dedicated
cache server update transmissions should be avoided.
Instead cache servers should receive the content by listen-
ing to streams that serve end-users as well. While this can
be implemented by multicast, the reliable transfer into the
cache must be guaranteed, while the data is also transmit-
ted to the end-user in real-time. The latter implies that an
end-user can not wait for any resent packets instead of dis-
playing the current data, so the normal data flow must per-
sist and any retransmission must happen aside of the
normal data flow.

This paper describes our protocol set that fulfils these
combined requirements in the current Internet infrastruc-
ture. One of its basic design goal was a protocol set that
requires neither costly changes to the network infrastruc-
ture nor the replacement of end-user software.

It focuses on LC-RTP, an RFC-compliant extension to
RTP for reliable file transfer that requires no infrastructure
modifications except on the servers and caches. It provides
lossless transfer of real-time data by using loss collection
(LC). The sender sends RTP-packets via multicast to all
receivers (clients and cache servers) in the multicast group.
If a cache server detects a packet loss during the transmis-
sion it will be memorized in a list. At the end of the session
servers that are caching the video from this multicast trans-
mission request the missing parts from the sender. The
sender retransmits all missing blocks and waits until no
more packets are requested.

Based on our own implementation of LC-RTP we did
some tests to show that LC-RTP works reliably and per-
forms as least as well as TCP-based transportation proto-
cols.

2. Protocol Set for Streaming Media

In the Internet, one set of protocols is currently adopted
-partially or completely- by companies in their products for
streaming media (Apple, Real Networks, SUN, IBM,
Cisco, FVC.com, ...). These protocols are the combination
of RTSP/SDP for stream control and RTPRTCP for
streaming .

0-7695-0571-6/00 $10.00 0 2000 IEEE
281

http://FVC.com

2.1. RTSP/SDP

The Real Time Streaming Protocol (RTSP, [3]) is an
IETF RFC that is supposed to be used in conjunction with
various other protocols. Its functionality is not generic but
rather concentrated on stream control. It references ele-
ments of HTTP to which it is weakly related. It can be used
with either TCP or UDP as an underlying transport proto-
col. The data transfer protocol that is mentioned in the RFC
and that interacts most closely with RTSP, is the Real-Time
Transfer Protocol (RTP, [l]), The same approach applies
for the session description protocols; although no fixed ses-
sion protocol is defined, the RFC specifies the interaction
with the Session Description Protocol (SDP, [4]).

SDP is originally considered as a companion protocol
for SAP, the Session Announcement Protocol. However,
besides this mode of distribution for session information,
others like download from the web or E-mail distribution
are also compatible with this kind of information.

reliable file transfer & real-time streaming

LC-RTP
RTP-compatible
until RTCP BYE message
use RTP header extensions
continuous byte count
retransmission after recep-
tion
of loss lists

LC-RTCP
RTCP-compatible
user application-defined
RTCP packets

8 loss-list report receiver
to sender
retransmission request
after random waiting
time

stream control & sequencing

standard protocol
specifies play range
different sources for
data segments

Table 1: Protocol set

2.2.RTPmTCP

RTP (Real-time Transport Protocol) was created to
transport real-time data over the Internet. VoD, Internet
telephony, MBone-conferences and all video- and audio
conferences make specific time restrictions on how the data
is delivered. RTP provides payload type identification,
sequence numbering, time-stamping, delivery monitoring
and supports multicast if the underlying protocol provides
this service.

Usually it is used over UDP, as UDP allows multiplex-
ing and does not have any retransmission schemes like
TCP. RTP is used together with RTCP (RTP Control Proto-
col [I]) which allows a quality monitoring of the network
connection and has minimal control over the session. Fur-
thermore RTCP can be used to identify the sender. The
main task of RTCP is to send periodic control packets to all
members of the session using the same distribution mecha-
nisms as the data packets.

We have decided to build on these protocols. The result-
ing protocol set is listed in Table 1, including the tasks that
are handled by each protocol.

2.3.LC-RTP

RTP with Loss Collections (LC-RTP) implements our
idea of a unified protocol for stream transmission that is
compatible with RTP, and reliable transfer of content into
the cache servers. It solves these problems by making RTP
reliable, while the ability is maintained that non LC-RTP
capable clients (standard RTP clients) can receive an LC-
RTP stream as well. The functionality of LC-RTP is
described in Section 4.

2.4. LC-RTCP

Just as RTP has a companion protocol RTCP for the
exchange of information about the data transfer, LC-RTP
requires a companion protocol LC-RTCP, which is RTCP-
compliant. In application-defined RTCP packets, the
receivers inform the sender about their losses after the
reception of a BYE packet, unless all of its missing packets
have earlier been reported by another receiver.

3. Reliable Multicast

The design of a reliable multicast protocol is deter-
mined by the requirements of a specific application or area
of applications that the protocol is built for. Real-time
applications will accept a lossy data flow but they will not
accept a significant delay. This implies that data recovery
should not interrupt the flow.

Some examples for reliable multicast protocols are
SRM (Scalable Reliable Multicast, [5]) , TRM (Transport
Protocol for Reliable Multicast, [6]) , RMTP (Reliable
Multicast Transport Protocol, [7]) and LRMP (Light-
weight Reliable Multicast Protocol as an Extension to RTP,
[SI). TRM and LRMP make similar assumptions about loss
detection and repair requests as SRM, so SRM can be dis-
cussed as an example for all three protocols. RMTP pro-
vides sequenced lossless delivery of bulk data (e.g.
Multicast FTP), without regard to any real-time delivery
restrictions. It is not applicable for streaming applications,

282

because the retransmission of the missing data is done
immediately after the loss detection.

SRM is a reliable multicast framework for light-weight
sessions and application level framing. It’s main objective
is to create a reliable multicast framework for various
applications with similar needs of the underlying protocol.
Each member of a multicast group is responsible for loss
detection and repair requests. The repair requests are multi-
cast after waiting a random amount of time, in order to sup-
press requests from other members sharing that loss. As it
is possible that the last packet of a session is dropped,
every member multicasts a periodic, low rate, session mes-
sage including the highest sequence number. It must be
mentioned that SRM needs a specific distribution infra-
structure which is not widely available in the Internet at the
moment.

A third class of reliable multicast protocols are the ones
which include FEC (forward error correction) as a tech-
nique to achieve reliability [9]. Reliable multicast achieved
through FEC is also applicable for streaming systems,
since usually no retransmissions are necessary during the
multicast transmission. The major drawback of this
approach is that error correction information appropriate
for the client with the worst connection must be included in
each multicast packet. This will lead to a higher use of
bandwidth thus leading to a reduced connection quality for
the clients. In addition a completely new protocol must be
built in the case of layered FEC since this model is not
compatible with already existing protocols.

With LC-RTP we present a reliable multicast protocol
that is applicable for real-time streaming which does not
require changes to the infrastructure and which is compati-
ble to standard Internet protocols. It uses an approach that
allows a weighted retransmission (sections of the content
that are missed by multiple receivers are handled before
sections that are reported missing from one receiver only).

4. LC-RTP Design

In an environment for AV-caching it is absolutely neces-
sary that the cached version of the content in the proxy
cache is stored 100% correctly to avoid error propagation
towards the client. With the use of standard RTP, informa-
tion that gets lost during transmission is also lost to the
caches. The problem is that these errors would be transmit-
ted with every stream that is forwarded from the cache
server to a client. In any case that should be avoided since
it has to be regarded as a degradation of the service quality.
During each transmission data can get lost and thus lead to
a higher error rate in stored copies.

LC-RTP solves these problems by making RTP reliable,
while the ability is maintained that non LC-RTP capable

clients (standard RTP clients) can receive an LC-RTP
stream as well.

To describe LC-RTP the transmission process is divided
into two parts. The first part works like a regular RTP
transmission and ends after the transmission of the original
content following by the transmission of a BYE message.
The second part follows this BYE message and is used to
retransmit all lost data. In this scenario the receiver is a
cache server that has received a request from a client but
that has recognized that the requested content is not stored
locally and therefore a request forwarding to the original or
to a cache server located upstream towards the original
server is performed. Figure 1 gives a general overview of
the different steps that are executed during a LC-RTP ses-
sion.

Sender

Time

i;ata transmission arid
trarsmission erid iridicatior

I - d’’’

...
LC-RTP Communication

Receiver

4.1. Actions during the content transmission

The sender streams the content that is requested by a
client as a multicast stream to all receivers of a multicast
group including that client. In order to give the receiver the
possibility to reserve exactly the required disk space in
case of data loss, it is necessary to send information
beyond the regular information of an RTP packet. In our
case this consists of a byte count which is included in each
RTP packet. This mechanism facilitates the synchroniza-
tion between byte count and the data which are represented
by it. If the byte count were sent in an extra packet, e.g. via
RTCP, the sequence of the byte count and data packet can
be interchanged, or the byte count packet can get lost.

The receiver stores the data and detects a loss by check-
ing the byte count with the last memorized byte count. If a
packet loss is detected, the difference between the two byte

283

counts and the length of the actual packet is computed and
this computed size can be reserved on the disk for a later
insertion of the retransmitted data (see Figure 2). The
received payload of the packet is then stored after this
reserved gap. Furthermore the loss must be written to a loss
list. If no loss is detected the received data is stored on the
disk immediately.

Each cache server implementation has to transform the
byte count value into its own file indexing information. As
a consequence it is possible to have different file layouts on
the sender- and receiver side. For example one cache server
implementation stores the file as raw data and another
stores some header information with it.

byte count
I I 1 file at the sender
I I I I I payload for LC-RTP pkt.

f -Packet loss
File at the receiver

Left empty for insertion of
missing data at retransmission

Figure 2: LC-RTP byte count supports retransmission

As a consequence of including the byte count in the data
packet, and the requirement of serving regular RTP clients,
only an RFC-conforming protocol extension was an option
for us; including the byte count in the payload of the packet
would cause problems for standard receivers (see Section

At the end of the transmission, an end packet is sent
including the last byte count, in order to inform the receiv-
ers of the normal end of the transmission including infor-
mation to check whether data preceding the end packet was
lost.

Reserving the computed space in the file in case of a
loss detection has advantages for several reasons. Our solu-
tion of reserving the correct amount of space on the hard
disk is very simple and efficient, because it preserves the
sequential nature of the stored data. And this property is
essential for an efficient use of a hard disk, as seeking on a
disk importantly diminishes its throughput. Furthermore,
this allows LC-RTP to be compatible with multimedia file
systems ([IO], [ll]) which are penalized by inserting or do
not support it at all.

5.).

4.2. Actions after the content transmission

After sending the end packet the sender starts a timer.
This timer should be a multiple of the worst case R l T
(Round Trip Time) between the sender and the known
receivers. This RTT can be computed with the periodic
RTCP packets that are sent for calculations of the network
quality. During this timer period at least one loss list has to

be received from a receiver that has detected packet losses,
or the session ends.

With the reception of the end packet the receiver fin-
ishes the normal procedure of the transmission of the con-
tent and starts the procedure for initiating retransmissions.
To avoid a possible overload of the sender, loss lists are
sent from the receivers after a random amount of time. The
loss list includes all ranges of the detected data losses. If
ranges are direct neighbors, they are combined into one
range, in order to keep the size of the list small.

If a loss list arrives at the server, the requested data
ranges are stored in a schedule list. This list includes a
counter for each range to indicate the number of requesting
clients. This allows the use of a strategy for building a
retransmission schedule (e.g. most frequently lost first).

Resent packets are of the same size as the packets that
were sent during the first transmission to simplify storing
at the receiver. The resent data range is deleted from this
list. The client saves each requested, retransmitted packet
at the position that is indicated by the byte count. Concur-
rently, the loss list is updated. If the byte count is not
included in the loss list the packet is discarded.

When the last entry of the list is processed and deleted,
the sender resends the end packet in order to inform the
receivers that this retransmission cycle is over. This proce-
dure is repeated until an application-specific retransmis-
sion counter has reached its threshold value or until no
more loss lists are sent.

To avoid the blocking of a receiver a timer is necessary
that terminates the session if no end packet or other resent
packets are received after a considerable period.

5. Use and Integration of Protocols

The design of LC-RTP was made within the constraints
of an RFC-conforming RTP implementation. This section
describes how the standard RTP protocol is extended to
meet the goal described above.

5.1. LC-RTP as an RTP Extension

The main problem in mapping LC-RTP into RTP is the
byte count, as it has to be included into the header of RTP
(see Section 4.). This is necessary in order to keep content
of LC-RTP packages compatible with RTP-related packag-
ing RFCs and therefore to make it possible for standard
RTP clients to receive LC-RTP streams. A legal way of
inserting the byte count into the RTP header and not into
the payload is the use of the extension header of RTP
(Figure 3). By setting the x-bit a variable-length header
extension to the RTP header is appended. LC-RTP defines
two kinds of header extensions. They are defined to easily
distinguish whether a packet is sent as part of the regular

284

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
.
1 defined by profile I length I

I byte count (64 bit) I

I byte count I

.

.

.

Figure 3: RTP header extension
stream or during a retransmission phase. The only differ-
ence between them is the value in the identifier field. Each
extension header has, in addition to the two RTP dependent
extension fields, the byte count field. For a current video
streaming application this field should be 64 bit long, as a
cyclic byte count must be prevented.

During the usual transmission, the RTP transmission is
made as usual, except for the byte count which is included
in the RTP header. At the end of the transmission an end
packet is sent. An appropriate way to do this is by sending
an RTCP packet. This packet should not be the normal
RTCP BYE packet, as this is used for other meanings.
Thus, an application-dependent extension RTCP packet
must be created. An application defined RTCP packet is
shown in figure 4.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
.
IV=21P(subtype 1 PT=APP=204 1 length I

I SSRC/CSRC I

I name (ASCII1 (set to LRTPI I
I application-dependent data . _ _ I

Figure 4: Application defined RTCP packet

LC-RTP defines two application defined RTCP packets.
The first one is the end packet and the second one is the
loss list packet. The only additional data transmitted in the
end packet is the last byte count of the session. The name
of the packet itself is of enough information for the
receiver to interpret this as the end of the normal transmis-
sion. The list appended into the loss list packet should be
appended as a list of byte count ranges.

The extension to RTP is minimal and should be ignored
by other applications. This is very important, because it
ensures that a cache server update can be made in parallel
to a customer request.

During LC-RTP tests we detected that vic and vat do not
accept any extension to RTP, because all packets with the
x-bit set are rejected, After examination of the source code
we realized that both implementations are not 100% RFC
compliant.

We believe that for the intended application class, the
header extension is sufficiently cheap with an overhead of
8 to 12 bytes per packet. Furthermore this type of extension
is defined in the original RTP RFC ([I]) and should -theo-
retically- be implemented by all RTP implementations.

.

.

.

.

BW
[kBidsl

1000

2000

6. Tests

Max. B W Duration
File Size [Bids] [SI

[MByte]
NIST Ottawa NIST Ottawa

6 1047552 1022800 41 42
20 1024048 1024000 160 160
6 2147480 2045216 20 21

We finally implemented RTP and LC-RTP in C++.This
implementation was used for the tests we performed and
which are described in detail in the following.

4000

8000k

12000

6.1. Test Scenario

20 2048104 2048000 80 80
6 4294968 3904512 10 11

20 1561080 4096000 105 40
6 8593216 1169880 5 37
20 8192008 1058392 20 151
6 8589936 1213296 5 36
20 5461336 487968 30 337

Our goal for these tests was to show that LC-RTP per-
forms as well and reliably as other data distribution proto-
cols (e.g. FTP) and can be used for the reliable distribution
of AV content.

We transmitted two files (6MB and 20MB of MPEG-I
Movie) from locations in Germany, the US and Canada to a
receiver located at our institute. We show results from the
US (National Institute of Standards and Technology) and
Canada (University of Ottawa). The tests were performed 5
times for each file from both locations each time with a dif-
ferent transmission bandwidth. We decided to perform the
tests over a larger distance since we expected to have a
higher possibility of losses than it might be in a LAN or at
connections in Germany.

For each test information about the retransmission was
logged at the receiver and the original file and the transmit-
ted file were compared to assure that the transmission com-
pleted successful. The comparison for all tests was
positive, proving that all transmissions were error-free. We
observed that an optimal bandwidth can be found, which
results in a mininum transmission time. We observe also
that below this optimum, the total number of lost packets
per transmission remains the same, i.e. we did not gain reli-
ability from a reduced bandwidth.

~ ~ ~ ~ ~~~~~~~~

TABLE 2 Test Results (Bandwidth, Duration)

285

6.2. Test results

Max. BW Duration
File Size [Bit/s] [SI
[MByteI

NIST Ottawa NIST Ottawa

6 576000 328000 71 126
20 568000 304000 273 512

-

The results we obtained from the logging we performed
during the LC-RTP sessions showed us that retransmis-
sions had to be made in almost all of the tests. The logging
information also confirmed that the number of retransmis-
sions increases with the size of the bandwidth we tried to
send the files. If the bandwidth is set much higher than the
actual bandwidth of the link between sender and receiver
multiple retransmissions for one packet are more likely.
But also in these cases the files were transmitted without
any errors.

During the tests it also became clear that the quality of
the link between the US and Darmstadt is of a higher qual-
ity than the one between Canada and Darmstadt. We also
transmitted both files via FTP from both locations to
Darmstadt to obtain some information about the perfor-
mance of a traditional file transfer protocol.

7. Conclusions

Caching and prefetching of AV content is a powerful
method to increase overall performance in the Internet.
LC-RTP is designed for this environment. LC-RTP is a
simple and efficient reliable multicast protocol compatible
with the original RTP, which is stated by the tests we per-
formed. It needs to be implemented only in servers and
caches, other tools are not affected. During the tests we
realized that LC-RTP did perform well in point-to-point
tests which leads us to the conclusion that LC-RTP must
not be used in multicast scenarios only.

All resources are used carefully and the extension per-
mits an implementation to use a simple method to keep the
sequential nature of the stored data without buffering. This
method considers hard disk performance and possible net-
work structures without wasting resources (like main mem-
ory and CPU power). Its intention is to allow a maximum
number of concurrent streams handled by the cache serv-
ers. As no additional packets are sent during the regular
session and the packet sizes are hardly bigger than those of
an standard RTP sender, all access control mechanisms and
network quality computations can remain unmodified. The
only difference to a normal transmission is the fact that
after the session, a retransmission of the lost packets to

receivers with LC-RTP extensions is performed. A con-
forming, standard RTP receiver would recognize this as a
normal session termination, and would not be affected.

Multicast ensures a minimum load increase on the net-
work, because the packets are sent only to members of the
multicast group, during a transmission to a regular cus-
tomer. LC-RTP also supports late joins and early ends of
the transmission. The full value of the LC-RTP extension
in combination with a special cache server is not yet
achieved by simple caching mechanisms. We have already
planned a combination of the enhanced Patching technique
([12], [13], [14]) with LC-RTP to achieve a relevant
decrease in the number of redundant transfers. Loss pat-
terns indicate that the technique would work well as a com-
plement of the FEC [9] proposed by Biersack et. al.

References
H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP:
A Transport Protocol for Real-Time Applications, Request
for Comments: 1889, Network Working Group, 1996.
C. Griwodz, M. Zink, M. Liepert, G.On, R. Steinmetz, Mul-
ticast for Savings in Cache-based Video Disrribution, to ap-
pear in MMCN 2000, San Jose, January 2000.
H. Schulzrinne, A. Rao, R. Lanphier, Real Time Streaming
Protocol (RTSP), RFC 2326, IETF, April 1998
M. Handley, V. Jacobson, SDP: Session Description Proto-
col, RFC 2327, IEW, April 1998.
Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven Mc-
Canne, and Lixia Zhang, A Reliable Multicast Framework
for Light-weight Sessions and Application Level Framing,
ACM Transactions on Networking, 1997.
Bikash Sabata, Michael J. Brown, and Barbara A. Denny,
Transport Protocol for Reliable Multicast: TRM, IASTED
International Conference on Networks, 1996
John C. Lin, Sanjoy Paul, RMTP: A Reliable Multicast
Transport Protocol, INFOCOM 1996
Tie Liao. Light-weight Reliable Multicast Protocol, Techni-
cal Report, INRIA, Le Chesnay Cedex, France, 1998
J.Nonnenmacher, E.Biersack, D. Towsley, Parity-Based
Loss Recovery for Reliable Multicast Transmission, ACM
SIGCOM 1997, Cannes, France, September 1997
R. Haskin and E Schmuck, The Tiger Shark File System,
Proceedings of IEEE 1996 Spring COMPCON, Santa
Clara, CA, USA, February 1996.
Martin, P. S. Narayan, B. Ozden, R. Rastogi and A. Silber-
schatz, The Fellini Multimedia Storage Server, in Chung:
Multimedia Information Storage and Management, Kluwer
Academic Publishers, 1994.
K.A. Hua, Y. Cai, S. Sheu, Patching: A Multicast Technique
for True Video-on-Demand Services, Proc. of ACM Multi-
media 1998, pp. 191-200, 1998.
C. Griwodz, M. Liepert, M. Zink, and R. Steinmetz, Tune to
Lambda Patching, In 2nd Workshop on Intemet Server Per-
formance (WISP 99). at ACM Sigmetrics '99, May 1999.
S. W. Carter, D. Long, Improving Video-on-Demand Server
EfJiciency through Stream Tapping, Proc. of ICCCN'97,
Las Vegas, NV, USA, September 1997.

286

