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Abstract—The Internet of things (IoT) platform has played a
significant role in improving road transport safety and efficiency
by ubiquitously connecting intelligent vehicles through wireless
communications. Such an IoT paradigm however, brings in
considerable strain on limited spectrum resources due to the need
of continuous communication and monitoring. Cognitive radio
(CR) is a potential approach to alleviate the spectrum scarcity
problem through opportunistic exploitation of the underutilized
spectrum. However, highly dynamic topology and time-varying
spectrum states in CR-based vehicular networks introduce quite
a few challenges to be addressed. Moreover, a variety of vehicular
communication modes, such as vehicle-to-infrastructure (V2I)
and vehicle-to-vehicle (V2V), as well as data QoS requirements
pose critical issues on efficient transmission scheduling. Based
on this motivation, in this paper, we adopt a deep Q-learning
approach for designing an optimal data transmission scheduling
scheme in cognitive vehicular networks to minimize transmission
costs while also fully utilizing various communication modes
and resources. Furthermore, we investigate the characteristics of
communication modes and spectrum resources chosen by vehicles
in different network states, and propose an efficient learning algo-
rithm for obtaining the optimal scheduling strategies. Numerical
results are presented to illustrate the performance of the proposed
scheduling schemes.

Index Terms—Cognitive radio, vehicular communication, Q-
learning, transmission scheduling.

I. INTRODUCTION

Advancements in information and communication technolo-
gies as well as proliferation of IoT devices have contributed
much in expanding the reach of intelligent transportation sys-
tem (ITS) in modern society. ITS is expected to play a crucial
role in paving a path towards enabling the design, formation
and proper function of coordinated transport networks, provide
comfortable driving experience, improve traffic management
and realize smart vehicular applications [1].

To realize the above ITS service provisioning, vehicles
as well as traffic infrastructures and management systems
need to be connected and informed through wireless vehicular
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communications. However, the exponential proliferation of
radio-equipped vehicles and ubiquitous vehicular applications
significantly increase transmission demands on wireless re-
sources, and may lead to serious spectrum scarcity problem
[2].

Cognitive Radio (CR) is a context-aware intelligent ra-
dio, which may relieve spectrum scarcity while improving
spectrum efficiency through adaptively detecting and reusing
underutilized portion of spectrum [3]. Enabled with the capa-
bilities of exploiting spectrum resources, CR has been widely
implemented in various wireless communication applications,
such as public safety services and wireless sensor networks. In
ITS, although the concept of cooperative wireless communica-
tions among mobile vehicles was proposed to make the driving
experience safer and more comfortable, the existing allocated
short range communication spectrum may not be enough to
deliver data under strict delay constraints. To improve the
performance of vehicular communications, additional available
spectrum outside the dedicated channels should be efficiently
detected and opportunistically utilizing in a CR framework.

Although employing CR technology for vehicular commu-
nications is a promising approach to enable vehicles to op-
portunistically access the underutilized spectrum, the inherent
characteristics of vehicular networks, such as highly dynamic
communication topology and complicated correlation between
vehicular communication pairs, introduce critical challenges
for efficient and reliable data transmission [4].

One of such challenges is time-varying data rate. In CR-
based vehicular networks, highly dynamic topology caused
by the variations in vehicle traffic distributions as well as
the changes in available spectrum lead to intermittency, and
make transmission scheduling in vehicular networks even more
complex. In addition, vehicular networks always have hetero-
geneous transmission modes, such as vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) [5]. Working in V2V mode,
intelligent vehicles can act as mobile transmission relays,
which may help deliver data in a long distance. However, the
correlation among various transmission modes that compete
for limited spectrum resources always causes difficulties in
efficiently utilizing available spectrum on data delivery. Jointly
considering various QoS constraints of vehicular transmis-
sion and dynamic spectrum resource characteristics of the
road sections, where the vehicles are being driven, make
vehicular communication management further complicated.
Nonetheless, recent advances in ITS technologies have greatly
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enhanced the caching capability of vehicles and have made
cache-enabled vehicles a new promising approach to store
and disseminate data [6]. However, utilizing onboard caching
resources and high mobility characteristics of vehicles for
efficient data delivery is still a critical challenge.

New approaches are required to address these challenges in
order to provide reliable and efficient communications in CR-
enabled vehicular networks. However, very few works have
incorporated the mobility of vehicles and the states of spec-
trum resources into vehicular communication management,
while the capability of mobile vehicle caching and multiple
transmission modes also have not been fully exploited in CR
scenarios.

To bridge this gap, in this paper, we focus on data trans-
mission in cognitive vehicular networks. By integrating a
wide range of communication resources and various types
of transmission modes, we propose a learning-based optimal
data scheduling scheme, which minimizes transmission costs
while ensuring delay constraints. The main contributions of
this paper are as follows:
• We formulate a Markov decision process model to ana-

lyze the transmission performance of CR-enabled vehic-
ular networks, by jointly considering cognitive spectrum,
states of vehicular caching, correlation between various
transmission modes, mobility of vehicles as well as QoS
requirements of data.

• We propose an optimal data transmission scheduling
scheme based on a deep Q-learning approach to minimize
costs with certain delay constraints by fully utilizing com-
munication resources and vehicular transmission modes.

• We present an extensive analysis of the relation between
transmission actions, delay constraints and incurred costs
in various network states, and design an efficient learning
algorithm for obtaining the optimal scheduling strategies.

The rest of this paper is organized as follows. Related works
are reviewed in Section II. System model is presented in
Section III. The transmission scheduling problem is formulated
in Section IV. A deep Q-learning based scheduling scheme is
introduced in Section V. Evaluation results are presented in
Section VI and the paper is concluded in Section VII.

II. RELATED WORKS

CR has attracted significant attention over the last few years
as a promising technology to address spectrum scarcity issues
for emerging IoT applications. In [7], the authors focused
on spectrum allocation in CR-based IoT, and proposed an
allocation scheme with efficient spectrum utilization and high
network throughput. In order to fully exploit the advantages of
time efficiency, the authors in [8] investigated the information
delivery dynamics of secondary users in cognitive sensor
networks via epidemic models. In [9], the authors deployed
CR technology in collecting the monitoring data of smart grid,
and designed a traffic scheduling scheme based on binary ex-
ponential backoff algorithm. In [10], the authors studied secu-
rity of communication between CR-enabled IoT devices, and
proposed a probabilistic-based channel assignment mechanism
to deal with jamming attacks. In [11], the authors investigated

a wireless powered cognitive IoT network, and introduced an
efficient information delivery scheme, which jointly optimizes
energy harvesting and data transmission. However, the above
works mainly focused on static communication topology with
homogeneous IoT devices, where dynamic characteristics and
various communication requirements of the devices have not
been taken into consideration.

With the proliferation of smart vehicles, many works have
studied CR-enabled vehicular networks. In [12], the authors
investigated decision fusion techniques of spectrum sensing in
cognitive vehicular communications. In [13], the authors fo-
cused on coexistence between CR-based vehicular and 802.22
networks, and optimized spectrum resource assignment as well
as transmit power. The authors in [14] presented a semi-
Markov decision policy based channel allocation scheme,
which is priority- aware and improves overall system rewards.
In [15], the authors designed energy efficient power allocation
strategies for a cognitive vehicular network under primary user
emulation attacks. The authors in [16] designed an adaptive
double threshold spectrum sensing scheme to address spectrum
scarcity in vehicular environments. However, only a few of
these works have considered the influence of vehicle mobility
and spectrum states of different regions on the design of
data transmission strategies. In addition, joint optimization of
spectrum access and vehicular transmission mode selection
with QoS constraints has not been investigated in these studies.

Being a powerful tool in process control and resource man-
agement, learning has been applied in a wide range of areas. In
[17], the authors designed an integrated resource management
scheme for connected vehicles using a deep reinforcement
learning approach. Recently, various learning techniques have
been applied in the study of CR networks. In [18], the au-
thors compared the performance of different machine learning
approaches in terms of spectrum classification accuracy and
computational time. The authors in [19] proposed a stochastic
learning based spectrum access scheme that maximizes the
throughput of CR networks. In [20], the authors incorporated
reinforcement learning technology with Bayesian approach in
cognitive channel sensing and selection, and designed a two-
stage spectrum access scheme. In [21], by using reinforcement
learning mechanism, the authors improved routing scalability
and stability in the context of cognitive radio. The authors
in [22] introduced a Q-learning based transmission scheme
for CR-based networks, which improves system throughput
through scheduling of cognitive nodes. However, none of the
aforementioned works have incorporated learning techniques
into designing data transmission schemes of cognitive vehic-
ular networks. Different from these studies, in this paper, we
jointly take the spectrum characteristics of different regions
and the mobility of vehicles into account, and propose an
efficient data scheduling scheme with optimal transmission
mode selection and spectrum utilization integrating with a
deep Q-learning approach.

III. SYSTEM MODEL

Fig. 1 shows the architecture of a CR-enabled vehicular
network in a unidirectional road scenario. There are M road-
side units (RSUs) located along the road providing vehicular
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Fig. 1. Data transmission and caching in a CR-enabled vehicular network.

TABLE I
MAIN VARIABLES

Variables Description
M Number of RSUs
KI Number of licensed channels for V2I mode
KV Number of licensed channels for V2V mode
KC Number of CR channels
ρ Traffic density
τ Length of a time frame
N Number of data types
bj Amount of type-j data
Tj Transmission delay constraint of type-j data
ηj Probability of type-j data
G Number of caching queues in a vehicle

xlv,e,ylv,e,zlv,e
Transmission modes for vehicle v running on
road segment e at time frame l

cv ,cc
Costs for using a licensed channel and a CR
channel, respectively

w Timeout penalty
qlv Caching state of vehicle v at frame l
alv Action of vehicle v at frame l

communication services to the vehicles on the road. The diam-
eter of regions covered by these RSUs are {R1, R2, ..., RM},
respectively. We consider that the licensed channels assigned
for vehicular communication can be divided into two parts,
namely KI channels for V2I transmission mode and KV chan-
nels for V2V mode. All the licensed channels are orthogonal,
and the bandwidth of each channel is B. Besides the licensed
channels, the V2I communication can opportunistically utilize
CR spectrum resources. Each RSU is equipped with a CR
device, which is able to detect available channels within
the RSU’s covering area. The number of CR channels is
KC . Birth-death process is a special case of continuous-time
Markov process where the state transitions are of only two
types: ”births”, which increase the state variable by one and
”deaths”, which decrease the state by one. For a given CR
channel, it has two states. A busy state represents the period
used by primary users and an idle state represents the unused
period. These two states alternate with each other. Thus the
state transition of the CR channel can be taken as a birth-death
process. Considering that the primary users in different regions
may have different working patterns on the CR channels, we
model the activity of primary users in region m as a two-
state birth-death process, and the on-time and off-time are
exponentially distributed with rate λonm and λoffm , respectively,

m ∈M = {1, 2, ...,M} [23].
Vehicles arrive at the starting point of the road following

Poisson distribution with average density ρ, and move along
the road at a constant speed V . It is noteworthy that the system
model can be extended to a scenario, where the vehicles run at
various speed. We divide the vehicles into different categories
according to their speed. Each category of vehicles can be
modeled as an independent Poisson arrival process with an
dedicated arrival rate. Merging these Poisson processes can
form a new Poisson process, whose arrival rate is sum of
the rates of the separate process. The road is divided into
E segments and the position of a vehicle is defined as the
index of the road segment that the vehicle is located in.
Each vehicle has a vehicular communication interface, which
enables data transmission between vehicles and the RSUs.
In an ITS system, various types of data are generated from
onboard traffic monitoring and entertainment applications, and
transmitted to the servers located in the Internet.

We focus on the management of uplink data transmission
in the CR-enabled vehicular network. Specifically, as the
RSUs connect to the servers via broadband wirelines whose
transmission cost and delay can be ignored, we mainly inves-
tigate data transmission between vehicles and RSUs. In the
vehicular network, there is a control center, which gathers
traffic and network states from vehicles while scheduling
vehicular transmission through a dedicated control channel.
The transmission scheduling operates in a discrete time model
with fixed length time frames. The length of a frame is denoted
as τ . We consider τ is short and vehicular communication
topology is constant during a time frame. At the end of each
frame, a vehicle may generate some data that needs to be
transmitted to the servers. We classify the generated data into
N types. For each type of data, it is described in two terms as
{bj , Tj}, where bj is the amount of data, Tj is the transmission
delay constraint, and j ∈ N = {1, 2, ..., N}. It is noteworthy
that the unit of delay constraint is time frame. In other words,
Tj indicates the time duration of τTj . The probability that
a vehicle generates type-j data in a time frame is ηj , where∑N
j=1 ηj ≤ 1.
The generated data can be transmitted from vehicles to the

RSUs in V2I and V2V modes. When adopting direct V2I
mode, a vehicle transmits data to the RSU whose communica-
tion range covers it. Moreover, considering that vehicles can
communicate with each other through V2V connections, data
may be delivered to remote RSUs through joint multi-hop V2V
and V2I transmission. In addition, besides V2V transmission,
cache-enabled vehicles can also bring cached data to remote
road segments along with them, and then deliver the data to
the RSUs in V2I mode.

The data caching in a vehicle is modeled as a multiple-
queue system, which is shown in Fig. 2. Each queue consists
of the data with identical remaining transmission time under
its delay constraint. According to the types of the generated
data, there are G caching queues in a vehicle indexed as
{1, 2, ..., G}, respectively. Here G = max{Tj , j ∈ N}. For
caching queue t of a given vehicle v, where 1 ≤ t < G,
its input data can be categorized into three sources. The first
one is the data generated by vehicle v itself, whose total delay
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Fig. 2. Queue model of vehicular caching.

constraint is t. The second one is the data with remaining time
t+1 transmitted from another vehicle, such as v′ through V2V
communication in the last time frame. The last one is the data
cached in queue t+1 of vehicle v in the last time frame, which
has not been transmitted. As time passes, the remaining time
for transmission within the constraint decreases. Thus, the data
needs to be moved to queue t. The output of a queue can be
also divided into three types. Data in a queue of vehicle v
can be transmitted to an RSU through V2I communication or
to vehicle v′′ in V2V mode. Besides these two types, data in
queue t may be moved to queue t− 1 of the same vehicle as
time passes. For queue G, its input data only comes from the
newly generated data of type G. To be able to transmit data
under the specified delay constraints, the data cached in the
queues with smaller index has higher priority to be transmitted
by each vehicle.

IV. DATA TRANSMISSION SCHEDULING: ANALYSIS AND
PROBLEM FORMULATION

In this section, we first investigate the performance of
the CR-based vehicular networks with various transmission
modes. Then we formulate an optimal data transmission
scheduling problem that takes into account both delay con-
straints and transmission costs.

A. Analysis of CR-based Vehicular Communications

In vehicular networks, V2I communication is scheduled by
the control center. When a vehicle needs to transmit data to
an RSU, it sends a request to the control center through the
dedicated control channel at the beginning of a time frame.
Upon the request, the control center randomly chooses an
available channel from the corresponding channel set, and
allocates it to the vehicle. For simplicity, we consider that
each vehicle at most gets one channel in one time frame.

Due to non-overlapping coverage of the RSUs, there is no
interference between V2I transmissions in different coverage
areas. Furthermore, as the channels are orthogonal, the V2I
transmission performance is mainly affected by the distance
between communication pairs and the availability of the spec-
trum resources. When vehicle v transmits data to RSU m on
a licensed V2I channel, the transmission rate is given as

rLv,m = B log(1 +
PI

L0dαv,mPw
), (1)

where dv,m is the distance between vehicle v and RSU m,
L0 is the path loss at a reference unit distance, and α is
path loss exponent. PI and Pw are transmission power of a
vehicle working in V2I mode and the power of additive white
Gaussian noise, respectively. It is noteworthy that the transmis-
sion rate rLv,m can be extended to a scenario with overlapping
RSU coverage. In this scenario, besides path loss and white
Gaussian noise, the interference between V2I communication
pairs working on the same channels of different RSU coverage
also needs to be incorporated in data transmission rates.

To exploit the underutilized CR spectrum resources, at
the beginning of each time frame, the control center may
allocate the detected available channels to the vehicles for V2I
transmission. However, unlike assigned licensed channels to
the vehicles, which is always available during a time frame
for V2I transmission, a CR channel may be occupied by a
primary user at any time. When this is the case, the vehicle
should release the channel to the primary user. The average
data transmission rate from vehicle v to RSU m through a CR
channel is calculated as

rCv,m =

∫ τ

0

$Bcλ
on
m r

L
v,mPr{T offm > $}

τB(λonm + λoffm )
d$, (2)

where Pr{T offm > $} represents the probability that no
primary users arrive on the CR channel during time {0, $},
given by Pr{T offm > $} = exp(−λoffm $). Bc is the
bandwidth of a CR channel.

Vehicles may also deliver data in V2V mode. A vehicle can
transmit data to another vehicle only under the condition that
the two vehicles are located within the transmission range of
each other, and the sending vehicle chooses V2V transmission
while the receiving one does not take any transmission action
in the same time frame. When there are multiple possible
vehicular communication pairs, the pairs are formed from
highest transmission rate to the lowest one. A control center
in the vehicular network gathers the states of vehicles, and
schedules vehicular transmission through a dedicated control
channel. To make full use of the resources of channel set KV ,
several V2V communication pairs can take place concurrently
on the same channel using space division multiplexing [24]. In
such a case, the data rate for V2V transmission from vehicle
v to v′ can be written as

rv,v′ = B log(1 +
PV /L0d

α
v,v′

Pw +
∑
z∈Z PV /L0dαz,v′

), (3)

where PV is the transmission power of a vehicle in V2V mode.
dv,v′ is the distance between vehicles v and v′. Z denotes the
set of other vehicles that communicate in the same channel
within the interference range.

B. Problem Formulation

In a given time frame, each vehicle can transmit data
through vehicular communication or keep the data in its
cache. Let xlv,e = 1 indicate that vehicle v running on road
segment e at time frame l chooses to transmit data through a
CR channel in V2I mode. Similarly, we use ylv,e = 1 and
zlv,e = 1 to indicate the transmission action taken by the
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vehicle through a licensed channel in V2I and V2V modes,
respectively. Otherwise, these indicators are set to 0. The case
xlv,e = ylv,e = zlv,e = 0 indicates that vehicle v does not
transmit and stores the data in its cache instead.

In our proposed CR-enabled vehicular network framework,
a proper transmission scheduling should consider maintaining
required QoS, specifically the delay constraints. On the other
hand, due to the scarcity of spectrum resources, efficient
spectrum utilization should also be taken into consideration. To
promote the vehicles to transmit data under delay constraints,
we introduce a penalty mechanism. The transmission that does
not meet the delay constraints brings a penalty to the system.
A penalty amount of w is incurred to a vehicle for not meeting
the latency constraint of a unit data. In addition, the costs for
using a licensed channel and a CR channel in a time frame are
cv and cc, respectively. Here the cost means the payment that a
vehicle needs to pay to transmission service providers. Unlike
the communication on CR channels that may be interrupted
by the arrival of primary users, data transmission on licensed
channels always has constant bandwidth during a time frame.
As reliable and fast transmission service always has a higher
benefit for a vehicle, we consider cv > cc. The objective of
transmission scheduling is to minimize the penalty and the
costs together.

Recall that the data cached in a vehicle is stored in multiple
queues according to the remaining number of time frames
for transmission under delay constraints. For the data cached
in queue 1, which has only one time frame remaining for
transmission, if the transmission fails, the deadline can not be
met for the data. This transmission should be in V2I mode,
since V2V mode cannot execute data delivery within one
frame. Let sets V lm,L and V lm,C denote the vehicles in region
m at time frame l, which chooses V2I transmission through a
licensed channel and a CR channel, respectively. The vehicles
in these sets may compete for limited spectrum resources, and
their transmission performance may also be degraded by the
intermittence of CR channels. The amount of data not meeting
the delay constraints in time frame l can be calculated as

hl =
∑

m∈M

∑
e∈Em

∑
v∈Vl

e

(ylv,e max{0, qlv,1 −
rLv,mτKI

|Vl
m,L|

}

+xlv,e max{0, qlv,1 −
rCv,mτKC

|Vl
m,C |

}+ (1− ylv,e)(1− xlv,e)qlv,1)
,

(4)

where Em is the set of road segments within region m and V le
denotes the set of vehicles located in segment e at time frame
l. qlv,t is the length of data cached in queue t of vehicle v in
frame l.

∣∣V lm,L∣∣ is the number of vehicles that belong to set
V lm,L, i.e.,

∣∣V lm,L∣∣ =
∑
e∈Em

∑
v∈Vl

e
ylv,e. Similarly, we have∣∣V lm,C∣∣ =

∑
e∈Em

∑
v∈Vl

e
zlv,e.

Based on the above analysis, the proposed optimal data
transmission scheduling problem, which intends to ensure that
the delay constraints are met, while making full use of various

spectrum resources, is formulated as follows:

min
{x,y,z}

Loss =
∞∑
l=1

{whl +
∑

m∈M
(cv

∑
e∈Em

∑
v∈Vl

e

(ylv,e + zlv,e)

+cc
∑
e∈Em

∑
v∈Vl

e

xlv,e)}

s.t. C1 : xlv,e = {0, 1}, ylv,e = {0, 1}, zlv,e = {0, 1}
C2 : xlv,ey

l
v,e = xlv,ez

l
v,e = ylv,ez

l
v,e = 0

.

(5)

In (5), constraint C1 indicates that a vehicle can either take
one transmission mode or not in time frame l. Constraint C2
shows that no vehicle can choose more than one transmission
mode in the same time frame.

V. LEARNING BASED OPTIMAL TRANSMISSION
SCHEDULING

In this section, we model the data transmission scheduling
problem as a Markov decision process, and design a deep Q-
learning based approach to derive optimal scheduling strate-
gies.

A. Scheduling as a Markov Decision Process

In the proposed scheduling problem, the value of Loss
mainly depends on vehicular caching states and transmission
mode selection. Moreover, vehicular caching operation is mod-
eled as a queuing system and processes with state transitions.
The caching state of next time frame is only related to the
current state and the transmission modes, which are chosen by
the vehicles according to the states as well as characteristics of
the vehicular network in the current frame. Therefore, we can
formulate transmission scheduling problem (5) as a Markov
decision process (MDP).

The state of the MDP at time frame l can be defined as
Sl = {Ql1, Ql2, ..., Ql|V|,Θ

l}, where V is the set of vehicles in
the system. Qlv is the caching state of vehicle v at frame l,
and it can be shown as {qlv,1, qlv,2, ..., qlv,G}, v ∈ V . Θl is the
set of vehicle positions in time frame l, which are valued by
the index of the road segments where the vehicles are located
in. The action taken by the vehicles at frame l is given as Al.
Specifically, for a vehicle located in road segment e, Al can
be written as Ale = {al1,e, al2,e, ..., al|V|,e}. a

l
v,e is the action of

vehicle v, which consists of the possible transmission modes
and can be further expressed as alv,e = {xlv,e, ylv,e, zlv,e}.

The MDP state transition between two consecutive time
frames is a transition combination of both vehicle positions
and caching states. The updated position Θl+1 can be obtained
based on the original position Θl and running speed. Now we
focus on the caching state transitions. For a given vehicle v, its
caching state transition can be further divided into transitions
of multiple queue states, i.e., Ql+1

v = {ql+1
v,1 , q

l+1
v,2 , ..., q

l+1
v,G}.

The amount of data cached in a queue between time frames
may be affected by the newly generated data, outgoing or
incoming data through vehicular communications, and the
data from the queue with higher index. To facilitate the
analysis of various factors that affect the transition of caching
queue states, we introduce several variables. Let tlv,min be the
smallest index of the queue with nonempty queuing data of
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vehicle v at time frame l. Then we define the amount of data
that is delivered from v to RSU m in V2I mode and the data
transmitted from vehicles v to v′ in V2V mode at frame l as

Dl,V2I
v,m =

xlv,er
C
v,mτKC∣∣∣V lm,C∣∣∣ +

ylv,er
L
v,mτKI∣∣∣V lm,L∣∣∣ , (6)

and

Dl,V2V
v,v′ = zlv,erv,v′τ/KV , (7)

respectively. The amount of data transmitted from queue t+1
of vehicle u to queue t of vehicle v in V2V mode can be
expressed as

Dl,V2V
u,v,t = (1− xlv,e)(1− ylv,e)(1− zlv,e)ru,vτ

·1(tlu,min == t+ 1)/KV
, (8)

where 1(χ) is an indicator function which equals 1 if χ is true
and 0 otherwise.

Then, given caching state Qlv , the states of queues that form
Ql+1
v can be shown in two parts, namely ql+1

v,tlv,min

and ql+1
v,t

where t 6= tlv,min, as follows

ql+1
v,tlv,min

=


max{0, qlv,2 + η1b1 −Dl,V2I

v,m }, tlv,min = 1

max{0, qlv,tlv,min+1 + ηtbtlv,min
−Dl,V2I

v,m

−Dl,V2V
v,v′ +Dl,V2V

u,v,tlv,min

}, 1 < tlv,min < G

max{0, ηGbG −Dl,V 2I
v,m −Dl,V 2V

v,v′ }, t
l
v,min = G

(9)

ql+1
v,t =

{
qlv,t+1 + ηtbt, t 6= tlv,min, 1 6 t < G

ηtbt, t 6= tlv,min, t = G
(10)

At time frame l, the sum of transmission penalty and cost
from action Al taken by the vehicles on state Sl, is calculated
as

Lossl = whl +
∑

m∈M
(cv

∑
e∈Em

∑
v∈Vl

e

(ylv,e + zlv,e)

+cc
∑
e∈Em

∑
v∈Vl

e

xlv,e)
(11)

The goal of the MDP is to derive an optimal transmission
scheduling policy that minimizes the cumulative value of
Lossl over time frames. The optimal policy, which consists
of data transmission actions for various vehicles at different
time frames, can be written as

π∗ = arg min
π

E(
∞∑
l=1

ξlLossl), (12)

where 0 < ξ < 1 is a discount coefficient that indicates the
effect of future reward on the current actions.

B. Deep Q-Learning Based Scheduling Schemes

As a problem with a large scale of state space, the
formulated MDP is hard to solve directly [25]. To obtain
optimal transmission scheduling strategy π∗ in (12), we adopt
a learning approach. Q-learning is an attractive approach to
guide data transmission scheduling, as it learns from online
information instead of pre-prepared training dataset. Further-
more, in the process of Q-learning, agents continue to take

actions while getting quantitative reward. The action chosen in
the next step is a function of currently learned values, which
is similar to the operation of an MDP. Thus, solving MDP
problem (12) can be formulated as a Q-learning process.

Let Qπ(Sl, Al) = E[(
∑∞
l=1 ξ

lLossl)
∣∣(Sl, Al) ] denote the

average system loss from taken action Al at state Sl ap-
plying the transmission scheduling strategy π. Q functions
Qπ(Sl, Al) and Qπ(Sl+1, Al+1) are related as

Qπ(Sl, Al) = ESl+1

[
Lossl + ξQπ(Sl+1, Al+1)

∣∣(Sl, Al)] .
(13)

Given action Al performed in state Sl, the expected minimum
system loss will be

Q∗(Sl, Al) = ESl+1

[
Lossl + ξ min

Al+1
Q∗(Sl+1, Al+1)

∣∣(Sl, Al)] .
(14)

To obtain Q∗(Sl, Al) and corresponding optimal transmission
actions, we deploy an iterative approach. The updated value
of Q(Sl, Al) in each iteration can be written as

Q(Sl, Al)← (1− ϕ)Q(Sl, Al) + ϕ[Lossl

+ξ min
Al+1

Q∗(Sl+1, Al+1)], (15)

where 0 < ϕ < 1 is the learning rate.
Although applying Q-learning technique can obtain the

optimal scheduling strategies, this learning approach uses a
Q-table to store learned state-action combinations and cor-
responding Q-values. The size of the table is equal to the
dimension of the states multiplied by the dimension of the
actions. Due to the constraint size of computer cache, it is
a critical challenge to store a Q-table especially with high
numbers of states and actions. To compensate the limitation
of Q-learning, we further incorporate deep learning technology
with Q-learning approach, and proposed a deep Q-learning
based vehicular data transmission scheduling scheme [26].

In deep Q-learning, an efficient mapping construction be-
tween states, actions and awards plays a crucial role in learning
optimal scheduling strategies from high-dimensional informa-
tion. As neural networks are suitable for capturing the complex
relationship between a large amount of data, we turn the
representation of our Q-function into a function approximator
formed by a four-layered neural network, with two hidden
layers besides input layer and output layer. The inputs of
the neural network are the system states and actions, and
the outputs are the corresponding Q-function values, which
is shown as Q(Sl, Al) ≈ Q′(Sl, Al; θ) [27]. Here θ denotes
the parameters of the neural network. Based on Q′(Sl, Al; θ),
the optimal action in state Sl is the one that results in the
minimized Q-function value, which can be expressed as

Alopt = arg min
Al

Q′(Sl, Al; θ) (16)

To ensure the function approximation ability of the neural
network, Q′(Sl, Al; θ) should be trained to converge to the real
value of Q(Sl, Al) over iterations. We define the difference
between the value of these two Q-functions at frame l as

∆(θl) = E

[
1

2
(Qltar −Q′(Sl, Al; θl))2

]
, (17)
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where θl is the parameters of the formed neural network at
frame l. Qltar is the updated optimal value of Q(Sl, Al) in time
frame l during the deep learning process, and can be written
as

Qltar = Lossl + ξQ(Sl, arg min
Al+1

Q′(Sl+1, Al+1; θl)). (18)

In each iteration, we deploy a gradient descent approach to
modify θ. The gradient derived by differentiating ∆(θl) will
be

∇θl∆(θl) = E[∂Q′(Sl, Al; θl)/∂θl(Q′(Sl, Al; θl)−Qltar)].
(19)

Then θl is updated according to

θl ← θl − ς∇θl∆(θl), (20)

where ς is a step size coefficient.
In order to improve the learning efficiency while prevent-

ing local minimum Q-values, experience replay technique
is utilized for parameter training. In the learning process,
the experience in each iteration, including the actions, state
transitions and corresponding Q-values, is stored in a replay
memory [28]. When training the neural network, a batch
of experience randomly drawn from the replay memory is
used as samples instead of the most recently learned system
information. This sampling approach breaks the similarity
of subsequent training samples, which may lead to local
optimization results. Moreover, during the learning process, we
adopt ε-greedy policy to balance exploration and exploitation
of action selection, where a random action is chosen with
probability ε, otherwise a greedy action with the minimum
Q-value is taken.

C. Efficient Deep Q-learning Algorithm for Optimal Schedul-
ing

Although deep Q-learning scheme is a promising approach
to find optimal data transmission strategies for the vehicles
through iterative learning, large scale of network states as well
as complex strategies with various communication modes and
different types of spectrum resources may make the learning
process converge slow. To further improve the learning effi-
ciency, we give some criteria for choosing appropriate actions
based on analysis of the transmission performance in different
cases.

First, we focus on the vehicles whose tlv,min = 1, i.e., these
vehicles have data cached in queue 1. Considering the delay
constraint, the data in queue 1 needs to be transmitted to RSUs
within one time frame. Thus, the vehicles should communicate
in V2I mode either through licensed channels or CR channels.
The channel selection criterion is presented in Theorem 1.

Theorem 1. Let Γle = rLv,mτKI/ |Vm,L| and Ψl
e =

rCv,mτKC/ |Vm,C |. For vehicle v that is located in road seg-
ment e at time frame l and having tlv,min = 1, it chooses action
ylv,e = 1 only under the condition that Γle + (cv − cc)/w <
Ψl
e < qlv,1 or Γle < qlv,1 − (cv − cc)/w while Ψ > qlv,1.

Proof. According to (11), in order to deliver the data cached
in queue 1 within the delay constraint while minimizing the

cost in time frame l, vehicle v only chooses a licensed channel
for V2I transmission under the condition that max{0, qlv,1 −
Γle}w+cv < max{0, qlv,1−Ψl

e}w+cc. We consider two cases
as follows. Case 1: Γle > Ψl

e. If Γle 6 qlv,1 and Ψl
e 6 qlv,1, the

condition can be changed to Ψl
e − Γle > (cv − cc)/w, which

contradicts with Γle > Ψl
e due to cv > cc. In addition, if

Γle > qlv,1 and Ψl
e > qlv,1, (cv − cc)/w < 0 that is contrary to

the given condition cv > cc. Moreover, if Γle > qlv,1 and Ψl
e 6

qlv,1, we can get Ψ > (cv − cc)/w + qlv,1, which contradicts
Ψ 6 qlv,1. Case 2: Γle < Ψl

e. In this case, if Γle > qlv,1 and
Ψl
e 6 qlv,1, the condition turns to be (cv−cc)/w < 0. However,

given Γle 6 qlv,1 and Ψl
e 6 qlv,1, the condition equivalents to

Γle + (cv − cc)/w < Ψl
e. (21)

Moreover, if Γle 6 qlv,1 and Ψl
e > qlv,1, we have

Γle < qlv,1 − (cv − cc)/w. (22)

Combining (6(a)), (6(b)) and the given conditions of case 2
proves Theorem 1.

Next, we investigate data transmission of the vehicles that
have empty queue 1 but have data cached in queue 2. These
vehicles can adopt various ways to deliver these data to the
RSUs, e.g., two consecutive V2I mode transmissions, joint
V2V and V2I delivery, and taking cached data to and sending
at the following arrived road segment. To facilitate action
selection in the learning process, we define the following
criteria.

Theorem 2. For vehicle v that is located in road segment e
at time frame l and will arrive at segment e′ at frame l + 1,
if tlv,min = 2, vehicle v takes action xlv,e = ylv,e = zlv,e = 0

under the condition that qlv,2 + η1b1 +Dl,V 2V
u,v,1 < rCv,m′τ .

Proof. Considering the transmission costs, when vehicle v
chooses to deliver data through any mode in time frame l,
it needs to pay at least cc. However, if the vehicle takes no
transmission at l and carries the cached data to the following
road segment, no transmission cost occurs. During its running
in frame l, vehicle v may generate η1b1 data by itself and
receive Dl,V 2V

u,v,1 data from another vehicle. If vehicle v can
transmit the cached data as well as the newly generated and
received data through a CR channel in frame l + 1, i.e.,
qlv,2 + η1b1 + Dl,V 2V

u,v,1 < rCv,m′τ , the vehicle pays the same
transmission cost as cc but delivers more data to an RSU than
it does in frame l. Under this condition, the vehicle prefers no
transmission in frame l.

Theorem 3. Let rv,m = max{rLv,m, rCv,m}. For vehicle v that
is located at road segment e in time frame l and that will arrive
at e′ in frame l + 1, the vehicle can deliver data to vehicle
v′ located at e′′ through a V2V mode. Vehicle v should not
take action zlv,e = 1 at frame l under one of the following
conditions, rv,m > rv,v′ or rv′,m′′ + (cv − cc)/w < rv,m +
rv,m′ < qlv,2 + η1b1 or rv′,m′′ < qlv,2 + η1b1 − (cv − cc)/w
while rv,m + rv,m′ > qlv,2 + η1b1.

Proof. When vehicle v transmits in V2V mode, it should pay
transmission cost cv , which should not be less than the cost
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of V2I transmission either through a licensed channel or a CR
channel. In addition, as V2V transmission is always associated
with V2I transmission to execute complete data delivery, the
transmission step with the slowest rate may be the bottleneck.
Thus, if V2V transmission rate rv,v′ is less than the maximum
V2I rate rv,m, vehicle v chooses to transmit data in direct V2I
mode instead of joint V2V and V2I transmission. Furthermore,
vehicle v should not choose V2V mode in time frame l
if max{0, qlv,2 − (rv,m + rv,m′)τ}w + cv < max{0, qlv,2 −
rv′,m′′τ}w + cc. The discussion and simplification of the
condition is similar as the proof of Theorem 1.

Based on the above action selection criteria, we propose an
efficient deep Q-learning algorithm for deriving the optimal
transmission scheduling strategies, which is shown in Algo-
rithm 1.

Algorithm 1 Deep Q-learning algorithm for optimal schedul-
ing
Initialization:

Initialize Q-network with weights θ, action-value function
Q, and experience replay memory.

1: For a give steady vehicular traffic flow Do
2: Observe the initial state S0;
3: For time frames l = 0, ..., Lmax Do
4: Based on the criteria in Theorems 1, 2 and 3, select

a random action Al with probability ε, otherwise
choose action Al = arg maxAQ(Sl, A; θ);

5: Execute action Al, derive the next state Sl+1 and
obtain utility Lossl according to (9), (10) and (11);

6: Store the experience (Sl, Al, Lossl, Sl+1) into the
experience replay memory;

7: Get a batch of samples from the replay memory, and
calculate difference function ∆(θl) according to (17);

8: Calculate the gradient of ∆(θl) with respect to θl

according to (19);
9: Update θl according to (20);

10: End For
11: End For

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-
posed optimal transmission scheduling scheme. We consider a
scenario where 3 RSUs are randomly located in a 1000-meter
unidirectional road. The generated data of the vehicles running
on the road is classified into 5 types. The amount of each
type of data is randomly distributed in the interval (10, 30),
and the transmission delay constraints for these data types are
1 to 5, respectively. The speed of the running vehicles is 100
km/h. Transmission costs cv and cc are 1 and 0.5, respectively.
Transmission power PI and PV are set as 33 dbm and 30 dbm,
respectively [29].

Fig. 3 shows the average transmission loss of the system
in a time frame with different scheduling schemes. It is clear
that our proposed deep-Q learning scheme has the lowest loss
compared to the results of the other two schemes, especially
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Fig. 3. Average transmission loss with different schemes.
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Fig. 4. Average proportion of data not meeting delay constraints with various
CR channel availability.

with high vehicle density. The reason is that our scheme incor-
porates various transmission modes while fully exploiting CR
spectrum resources that do not only belong to the local road
region but also parts of the remote regions through joint V2V
and V2I transmissions. In contrast to the learning scheme,
when vehicles only take V2I mode, all available spectrum for
transmission are limited to the resources belonging to a road
region that the vehicles are currently located in. For a road
region with poor CR channel availability but high vehicle
density, although the vehicles in this region can utilize the
local spectrum efficiently, constrained by the total amount of
local available resources, high proportion of data transmission
not meeting delay constrains occurs leading to high loss.
When the vehicles adopt the transmission scheme without CR,
they suffer the highest loss among the three schemes. As CR
spectrum helps transmit data with low costs, not utilizing the
CR resources increases the possibility of transmission overtime
and greatly increases the system loss.

Fig. 4 illustrates average proportion of data that does not
meet the delay constraints with various CR channel availabil-
ity. We define the average probability of the CR channels being
idle in road region m as µm = λonm /(λ

on
m + λoffm ). In this

simulation scenario, all the road regions have identical CR
channel characteristic, i.e., µ1 = µ2 = µ3 = µ. As µ increases,
the proportion of data not meeting the delay constraints is



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2872013, IEEE Internet of
Things Journal

9

0.02 0.04 0.06 0.08 0.10 0.12
0

50

100

150

200

Vehicle density ρ

A
ve

ra
ge

 tr
an

sm
is

si
on

 lo
ss

 

 

µ1=0.8,µ2=0.8,µ3=0.2

µ1=0.8,µ2=0.2,µ3=0.8

µ1=0.2,µ2=0.8,µ3=0.8
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reduced. Available CR channels alleviate the spectrum scarcity
of the vehicular network, and help transmit data with fast
rates and low time delay. Thus, µ with higher value indicates
that more CR spectrum resources can be utilized by vehicular
data transmission, and less number of data transmissions
exceed delay constraints. Furthermore, from this figure we
can find that the value of penalty w greatly affects the data
proportion, especially when µ is small. Higher penalty means
more costs need to be paid for data transmission exceeding
delay constraints, and it has a stronger promotion effect for
the vehicles to choose transmission actions that have higher
possibilities to ensure the delay constraints. In contrast, when
w is small, to reduce the total loss value, vehicles are inclined
to exploit the low-cost CR spectrum resources, although data
transmission may be interrupted by the arrival of primary
users.

Fig. 5 presents the effects of the CR characteristics in
different road regions on the average system loss in a time
frame. Compared to the case when the regions with high
possibility of idle CR channels are located near the starting
point of the road, the case when these regions are located
at the farther end of the road has higher average loss. The
reason is that in the former case, the available CR channels
belonging to the starting regions can be utilized directly for
data transmission by the vehicles without or with few V2V
relays. However, in the latter case, the starting region has poor
CR spectrum resources. Spectrum scarcity occurs in this region
especially with high vehicle density. Consequently, to exploit
more available channels, parts of the vehicles may deliver data
to the remote regions with rich CR spectrum resources through
multi-hop V2V transmission. High cost is brought by V2V
data delivery, and thus the average loss is increased.

Fig. 6 shows the comparison of selected transmission modes
of the vehicles located in the first road region with different
CR channel availability in various regions. Here sets {x, y, z}
and {x′, y′, z′} indicate the selected transmission actions with
CR channel availability µ1 = 0.8, µ2 = 0.2, µ3 = 0.8 and
µ1 = 0.2, µ2 = 0.8, µ3 = 0.8, respectively. Fig. 6(a) presents
the performance of the case when the vehicles transmit urgent
data with strict delay constraints. In this case, to promote
vehicular transmission under the delay constraints, the value
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Fig. 6. Average proportion of selected transmission modes with different CR
channel availability in various road regions.

of penalty w is high. In order to avoid being subject to
timeout penalty, the vehicles preferentially select licensed
channels to transmit data. CR V2I transmission only helps
alleviate congested licensed channels when vehicle density is
high. In contrast, for transmitting data with relatively loose
delay constraints, such as entertainment and map update data,
timeout penalty w has low value and transmission cost turns to
be a primary consideration. We show the proportion of selected
transmission modes of this case in Fig. 6(b). With the increase
of vehicle density from 0.02 to 0.08, the proportion of the
vehicles that choose V2I mode with CR channels decreases.
Although vehicles prefer to use CR spectrum with low cost,
when there is a large amount of vehicles running on the
road, the vehicles should turn to utilize licensed channels for
alleviating spectrum scarcity. However, there are significant
differences in the proportion of V2I transmission through
license channels, between the scenarios with different CR
channel availability. The value of y raises up while y′ hardly
changes as ρ increases from 0.02 to 0.06. The reason is
that when the second region has poor CR available spectrum
resources, in order to deal with a large number of vehicle
transmission requirements, the vehicles in the first region have
to take action y = 1 for delivering data. However, when the
available CR resources in the second region are more than that
in the first region, with the increase of vehicle density, a large
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Fig. 7. The convergence of the proposed deep Q-learning based transmission
scheme.

part of newly added data can be transmitted from the first
region to the second one by V2V transmission, and then to be
delivered to an RSU through low-cost CR channels. Thus, the
proportion of action y′ = 1 changes slightly as ρ increases.

Fig. 7 presents the convergence of our proposed deep Q-
learning based transmission scheme. The learning process
takes about 13000 to 20000 time frames to obtain the optimal
transmission strategies with different vehicle density ρ. For
these scenarios, the process of the proposed deep Q-learning
scheme took about 25 minutes on average to execute on a
computer with an i7 CPU and 8 GB RAM.

In this section, numerical results show that our proposed
deep Q-learning based data transmission scheme outperforms
conventional scheduling strategies in terms of reduced aver-
age transmission loss especially with high vehicle density.
In addition, we investigate the issues that may affect the
performance of our scheme. We find that the increase of
timeout penalty incentivizes the vehicles to transmit data in
licensed channels instead of CR channels for keeping delay
constraints, especially in the scenario with poor CR channel
availability. Furthermore, the effects of CR characteristics in
different road regions on the average transmission loss and
transmission modes selection are also demonstrated.

VII. CONCLUSION

In this paper, we have investigated data transmission in a
CR-enabled vehicular network. We formulate an MDP model
to analyze the performance of CR-based vehicular commu-
nications, where the characteristics of the CR channels in
different road regions, the mobility of vehicles as well as
the QoS requirements of data transmission are taken into
account. To minimize transmission costs while ensuring data
delay constraints, we obtain optimal transmission scheduling
strategies in an efficient deep-Q learning approach, which
fully exploits various spectrum resources and the benefits from
proper transmission mode selection. Analytical results illus-
trate that the proposed scheme for vehicular data transmission
efficiently reduces transmission costs and helps data delivery
under delay constraints.

Reliable and delay-constrained data delivery plays an im-
portant role in the implementation of ITS. However, how

to effectively utilize communication, caching and computing
resources as well as various vehicular transmission modes
for data delivery in the context of CR network is still a
fundamental but unexplored question. In addition, traffic safety
related information always requires real-time transmission.
The way to cater for the emergency data delivery through
incorporating road traffic state prediction and CR-enabled
resource management requires future study.
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