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Abstract—The drastically increasing volume and the growing
trend on the types of data have brought in the possibility
of realizing advanced applications such as enhanced driving
safety, and have enriched existing vehicular services through
data sharing among vehicles and data analysis. Due to limited
resource of vehicles, mobile edge computing integrated with
vehicular networks gives rise to Vehicular Edge COmputing
and Networks (VECONs) for providing powerful computing and
massive storage resources. However, vehicular edge computing
servers consisted of roadside units cannot be fully trusted,
which may result in serious security and privacy challenges. We
exploit consortium blockchain and smart contract technologies
to achieve secure data storage and sharing in vehicular edge
networks. These technologies efficiently prevent data sharing
without authorization. In addition, we propose a reputation based
data sharing scheme to ensure high-quality data sharing among
vehicles. A three-weight subjective logic model is utilized for
precisely managing reputation of the vehicles. Numerical results
based on a real dataset show that our schemes achieve reasonable
efficiency and high-level security for data sharing in VECONSs.

Index Terms—Vehicular edge computing, blockchain, smart
contracts, security and privacy, reputation management.

I. INTRODUCTION

ITH rapid development of vehicular telematics and

applications, vehicles generate a huge amount and
several different types of data. For example, a self-driving
vehicle can create 1 GB data per second from cameras, radar,
GPS, etc [1]. Moreover, vehicles can cooperatively collect and
share data of common interest [2], [3]. Data collected by the
vehicles consists of objective and subjective information. The
objective information mainly includes traffic-related data, such
as road and weather conditions, and parking lot occupancy.
The subjective information includes things such as rating of
a hotel and quality of vehicular services [4]. Sharing of data
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has made it possible to realize goals such as improved driving
safety, and to obtain higher service quality during travelling.

Due to resource constraints, vehicles cannot support massive
data storage and large-scale data sharing. Vehicle-generated
data becomes increasingly fine-grained and complex, which
increases the burden on data transmission. Meanwhile, the
data more locally relevant for vehicles has spatial scope and
explicit lifetime of utility, such as current traffic information
at an intersection, which requires low latency and location
awareness for vehicular data sharing [2]. To address these
challenges, mobile edge computing is a promising paradigm
that can be embedded at the network edge infrastructures,
e.g., Roadside Units (RSUs), to support massive data storage,
computing and sharing close to the vehicles [2], [5]. Vehicular
networks integrated with mobile edge computing are evolving
towards Vehicular Edge COmputing and Networks (VECONSs)
[6].

Although VECONs pave the way for high performance
networks at the edge, security and privacy issues are critical
challenges for VECONs. RSUs in VECONSs play an important
role to temporally store and manage vehicular data. But the
RSUs are semi-trusted because that they are usually distributed
along the road without strong security protection, which are
vulnerable to being compromised by attackers [2], [7], [8].
Vehicles therefore may not be willing to upload their data
to the RSUs because of privacy concerns. Likewise, Peer to
Peer (P2P) data sharing among vehicles raises the issues such
as data access without authorization and the need of ensuring
security in a decentralized manner. These challenges influence
the sharing of vehicular data, and thus hinder the pace for
development of VECONSs [9].

Recently, blockchain technology has attracted growing at-
tention and research work in the context of vehicular networks
because of its characteristics of decentralization, anonymity
and trust. Blockchain can facilitate establishing a secure,
trusted and decentralized intelligent transport ecosystem, to
address data sharing problems thus contributing in creating
better usage of the transport infrastructures and resources [9],
[10], [11]. The authors in [12] present an intelligent vehicle-
trust point mechanism using blockchain to support secure
communications among vehicles. However, due to high cost
to establish a public blockchain in resource-limited vehicles,
the existing methods do not work well in P2P data sharing
among vehicles in VECONSs.

Motivated by these developments, we exploit the consortium
blockchain technology to develop a secure P2P data sharing
system for vehicular data named vehicular blockchain in this
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paper. Consortium blockchain is a specific blockchain with
multiple pre-selected nodes to establish the distributed shared
database with moderate cost [13], [14]. Here, the pre-selected
nodes are RSUs. Vehicular blockchain is established on RSUs
to publicly audit and store shared data and records of data
sharing. The authors in [8] propose a public blockchain-based
trust management system, wherein vehicles validate received
messages from neighboring vehicles using bayesian inference
model. Unlike that in [8], we also utilize smart contracts to
design vehicular data storage and sharing schemes, which are
self-executing scripts residing on blockchains and allow for
distributed automation of multi-step processes. These smart
contract-based schemes enable data management automation
with high efficiency, and defend against second-hand data
sharing without authorization as well. Moreover, data qual-
ity is a core element of the development of vehicular data
sharing [9]. Vehicles as data sources may provide irrelevant
or incorrect information to other vehicles due to defective
sensors, compromised firmware, or even selfish purpose [4],
[8], [15]. Previous researches have indicated that the quality
of data depends on the vehicles’ reputation [16]. It is essential
to design a mechanism to quantify vehicles’ reputation based
on the interactions among vehicles [4], [8]. Vehicles choose
the best data provider according to reputation.

The main contributions of this paper are summarized as
follows.

o We propose to utilize consortium blockchain to establish
a secure and distributed vehicular blockchain for data
management in VECONS.

o We deploy smart contracts on the vehicular blockchain to
achieve secure and efficient data storage on RSUs, and
data sharing among vehicles.

e We develop a reputation based data sharing scheme
with three-weight subjective logic model to choose more
reliable data source to improve data credibility.

The rest of this paper is organized as follows. We introduce
the core system components of secure P2P data sharing system
using blockchain in Section II. We illustrate secure and effi-
cient data storage and sharing schemes running on vehicular
blockchain in Section III. We propose a reputation based
data sharing scheme with subjective logic model for high-
quality sharing in Section IV. We provide security analysis
and numerical results in Section V. Section VI concludes the

paper.

II. CORE SYSTEM COMPONENTS FOR DISTRIBUTED DATA
STORAGE AND DECENTRALIZED DATA SHARING

A. Vehicular Edge Computing and Networks (VECONs)

VECONs are composed of a user layer, an edge layer,
and a cloud layer as shown in Fig. 1. In the user layer,
vehicles equipped with onboard units can access services
by communicating with RSUs. The onboard units perform
simple computations, collect local data from sensing devices,
and upload data to the edge layer [2]. In the edge layer,
several nearby RSUs (edge nodes) deployed along the road can
be combined to form a vehicular edge cluster. Each vehicle
communicates with the nearest RSU to access a local vehicular

Information Sharing Smart Contract
(ISSC)

e

Data Storage Smart Contract
(DSSC)

Vehicle ! Vehicle _|information
777777777777777777 L e e e e e
Vehicular blockchain
Core
Cloud Layer
Edge Layer
Data records Datarecords [User Layer
Edge
Smart contract
w © Ronde - -
[§ e § Rostiae ) Comuine 5 S G ot autorty

Fig. 1: Secure peer to peer data sharing system using
consortium blockchains

edge cluster. Vehicular edge clusters temporarily store the
data from vehicles and deliver the data to a central cloud
through wired connections if necessary. The central cloud
in the cloud layer manages all vehicular edge clusters. This
central cloud can be a data center of the ITS, which can
store massive data permanently and carry out complicated
and delay-tolerant computing tasks for vehicles. While the
frequently used data and time-sensitive tasks from vehicles
can be stored and executed at the edge of vehicular networks,
e.g., local vehicular edge clusters.

B. Vehicular Blockchain and Smart Contracts

To decrease cost of establishing a blockchain, unlike tradi-
tional public blockchains [11], [17], [18], we utilize consor-
tium blockchain technology to form a vehicular blockchain,
which performs distributed data storage and secure data shar-
ing. A consortium blockchain is a special blockchain in which
the consensus process is executed on pre-selected edge nodes,
e.g., RSUs. Here, the consensus process is an important data
audit stage before adding the data into vehicular blockchain.
Some RSUs are chosen and authorized to carry out the
consensus process in the vehicular blockchain. For distributed
data storage and secure P2P sharing among vehicles, we also
design a model of vehicular blockchain using smart contract
technologies in VECONSs. This model includes data requestors,
data providers, edge nodes, a Data Storage Smart Contract
(DSSC) and an Information Sharing Smart Contract (ISSC)
running on the vehicular blockchain.

1) Data requestors and data providers: Vehicles play dif-
ferent roles in P2P vehicular data storage and sharing: data
requestors and data providers. The data requestors apply for
shared data from the data providers. The data providers collect
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traffic-related information, and share their data stored in edge
nodes for getting rewards based on their contributions [16].
Each vehicle chooses its own role according to data demands
and driving plan.

2) Edge nodes: We consider RSUs at the edge of VECONSs
are the edge devices (nodes). The RSUs are upgraded to have
computational capabilities and storage space for computing
and storage services. A certain number of RSUs in the same
area form a vehicular edge cluster. There are a local controller
and a storage pool in each vehicular edge cluster as shown in
Fig. 2. The local controller works as a data broker to manage
data requests from local data requestors. A storage pool stores
local data uploaded by vehicles. Each data requestor sends a
request about data demand to the nearest RSU after finding
the best local data provider by ISSC. The data providers will
make decisions about data sharing authorization. The RSUs
act as not only data aggregators in DSSC, but also miners in
ISSC.

3) Data storage smart contract for distributed data storage:
DSSC for distributed data storage mainly consists of the
following components.

o« Raw data: Due to limited storage resource of data
providers, a variety of raw data, such as information about
ice on road, traffic conditions, parking lot occupancy, and
rating of a restaurant, are stored in edge nodes. These
data can be used for various types of researches, e.g.,
data analysis. For security and privacy protection, the
raw data should be anonymous, and should be encrypted
and attached with digital signatures of data providers.
The data providers use different pseudonyms to encrypt
different raw data for decreasing the relevance of raw data
generated by the same data provider [19], [20].

« Data blocks: As shown in Fig. 2, edge nodes (i.e., RSUs)
working as data aggregators will periodically integrate
received raw data into a data block, and broadcast the
data block to other edge nodes for verification. Before
a new data block is inserted into immutable vehicular
blockchain, a consensus should be reached among the
edge nodes through a mechanism named proof-of-storage
in DSSC. A local controller generates a storage address
list of raw data for each data provider. The data provider
searches and reads its raw data according to the corre-
sponding storage address list.

o Proof-of-storage about storage resource contributions:
The edge node with the most contribution on storage
space in every vehicular edge cluster is rewarded by
vehicle coins over a period of time, which is an incentive
to encourage edge nodes to provide enough storage space
for local storage. Here, the vehicle coin is a specific
crypto-currency for VECONSs. The total amount of con-
tributed storage is recorded by a local controller, which
is the proof-of-storage for edge nodes about storage
resource contributions.

4) Information sharing smart contract for decentralized
data sharing: There are three components in ISSC as follows.

e Metadata: A data provider first generates an index of
its raw data as a metadata before uploading to vehicular
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Fig. 2: Secure data storage and sharing using blockchain in
vehicular edge networks

blockchain using DSSC. The metadata generally contains
a pseudonym of the data provider, storage address of
raw data in vehicular edge clusters, data description (e.g.,
type, accuracy, size, sampling frequency, collection time,
and sharing permission, etc.), reputation opinions of vehi-
cles, and digital signature for verification. A data sharing
record includes entity information of data sharing, sharing
range and so on. The metadata and sharing records are
integrated into a block and uploaded to an edge node for
verification among edge nodes. More details are provided
in Section III-B and IV.

o Proof-of-work about data audit for edge nodes: Each edge
node collects and verifies local metadata in its coverage.
All edge nodes broadcast their local metadata to other
edge nodes in the vehicular blockchain. Every edge node
periodically structures newly received metadata into a
local data block, and competes to find an available hash
value based on parameters of the local data block. Similar
to traditional proof-of-work in Bitcoin [18], this hash
value should meet a preset difficulty controlled by the
whole blockchain system to adjust generation speed of
new data blocks. The fastest edge node adds its local
data block to the vehicular blockchain using DSSC after
verification by other edge nodes, and thus it gets a certain
amount of vehicle coins as rewards. Edge nodes can use
received vehicle coins to further upgrade their storage and
computation resources.

III. SECURE AND EFFICIENT DATA STORAGE AND
SHARING SCHEMES IN THE VEHICULAR BLOCKCHAIN

A. An Overview of Our Proposed Schemes

In this paper, smart contracts are exploited to achieve secure,
reliable, and efficient data sharing. A smart contract is a script
resided on blockchains to enable automation of multi-step
processes, which cannot be modified or interrupted because
of the distributed nature. For this reason, the usage of smart
contracts could improve the reliability, efficiency and security
of the vehicular blockchain. Two smart contracts, i.e., DSSC
and ISSC, are deployed on vehicular blockchain to enable
secure and decentralized data sharing.

Fig. 2 shows that vehicles driving along the road generate
and upload raw data and their corresponding metadata to
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TABLE I: MAIN SYMBOLS USED IN THIS PAPER

Notation Description
v; The " vehicle in VECONS.
PIDk The kt" pseudonymkof v;. Each vehicle has v
i pseudonyms, { PID; }Zzl ={PID;}.
DAG; The 5" local data aggregator in VECONS.
] The entity ¢ sends a message to the entity j.
||y Element x concatenates to y.
RSU, The k'* RSU in VECONS.

Public and private key pair of the entity ¢, and

PK;,SK;, Certi | e corresponding certificate.

Encryption of message m with public key of

Epk,(m) entry .

Encryption of message m with private key of

Bsk, (m) entry .

Digital signature on message m with private key

Signsk, (m) of entry z.

timestamp Time record of the current event.

nearby RSUs by DSSC. The raw data will be securely stored
in the vehicular blockchain using proof-of-storage. Meanwhile,
for efficiently decentralized data sharing, data requestors first
search data through ISSC, then find out related information
of data of interest. The data requestors communicate with the
data providers to apply for access authorization. After that,
the data requestors pay the data providers using vehicle coins.
With the help of proof-of-work about data audit, raw data and
sharing records are audited and verified by RSUs, then added
into vehicular blockchain. More details about the proposed
schemes are given as follows.

B. Secure Data Storage Scheme using DSSC

1) Raw data storage in the vehicular blockchain:

o Step 1: System initialization and key generation. In the
vehicular blockchain, elliptic curve digital signature algo-
rithm and asymmetric cryptography are used for system
initialization. Every vehicle becomes a legitimate vehicle
after passing identity authentication by a trusted central
authority, e.g., a government department of transporta-
tion. A legitimate vehicle v; with the true identity I .D; ob-
tains its public & private keys and the corresponding cer-
tificates (i.e., {PKprpr, SKprpr,Certprprty_;) for
encrypting sensing data. When v; carries out system
initialization, v; downloads the latest data information
from storage pools of nearby edge nodes in the vehicular
blockchain.

o Step 2: Uploading shared data. A vehicle v; first sends
an upload request to a local RSU of vehicular edge
cluster. Here, the RSU acts as a local data aggregator
(denoted as DAG;). This request includes the current
pseudonym being used (PIDF), and the corresponding
signature SngIDk and certificate CeTtPIDk to ensure
reliability and truthfulness of the request. After receiving
the request, DAG; verifies the request and sends a
response back to v;. If v; is allowed to upload data,
v; will send its shared data (Data) as a record after
encryption with the public key PKp; Dk of PIDE to
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Fig. 3: The consensus process for ISSC.

DAG;, namely,

v; = DAG; : Record = Eprp aq, (Data_1||Certp;pr
|ISigprpr|[timestamp),

. (Datal|timestamp),
Di

. (Data_1).

where Data_1 = Eme

SWPID;c = SlQnSKPID

o Step 3: Generating data blocks. Each DAG in the
same vehicular edge cluster periodically gathers uploaded
Records from local vehicles. A DAG j generates a new
data block with a timestamp and broadcasts them to other
DAGs on vehicular blockchain for audit and verification.
During a period of time, the DAG with the most con-
tribution of storage resource in a vehicular edge cluster,
that is recorded by the local controller in the vehicular
edge cluster, can work as the leader of block generation
in this round. This leader collects all received Records
and generates a Merkle hash value of the Records linked
to the prior block in the vehicular blockchain [18]. After
that, the new block is broadcasted to all DAGs, and then
added into the vehicular blockchain.

2) Metadata and sharing record storage in the vehicular
blockchain: Both metadata of raw data (as information index)
and sharing records are stored in RSUs, and are shared among
vehicles using proof-of-work for data audit. More details of
metadata and sharing record storage are shown as follows.

o Step 1: Generating information index. Before v; upload-
ing its Record, the vehicle generates a data information

index about the Record as follows,
timestamp Record 1D

Description Data owner
Reputation opinions | Storage address
Information indexes and sharing records

o Step 2: Building information blocks and finding proof-
of-work. v; sends its data information index to a nearby
DAG (e.g., DAG;). DAG) collects all local information
(e.g., indexes) during a certain period, and then encrypts
and digitally signs these indexes to guarantee authenticity
and accuracy. Fig. 1 shows that the index records are
structured into blocks. For traceability and verification,
each block contains a cryptographic hash to the prior
blocks in the vehicular blockchain. Similar to that in
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Bitcoin, the DAGs try to find their own valid proof-
of-work about data audit (i.e., a hash value meeting a
certain level of difficulty). Each DAG calculates the hash
value of its block based on a random nonce value ¢, the
previous block hash value, timestamp, and data blocks’
merkel root and so on (denoted as previouSgatq) [21].
Namely, Hash(p + previousgatq) < Dif ficulty. Here,
Dif ficulty can be adjusted by the system to control
the speed of finding out the specific . After finding
a valid proof-of-work (i.e., ), the fastest miner (DAG)
broadcasts the block and the specific ¢ to other DAGs in
the vehicular blockchain. Other DAGs audit and verify
the records in the block and . If other DAGs agree on
the block, data information in this block will be added to
the vehicular blockchain by a linear, chronological order,
and the fastest miner (DAG) is awarded by vehicle coins.
Step 3: Carrying out a consensus process. The con-
sensus process is carried out by authorized DAGs and
a leader acted by the fastest DAG with a valid proof-
of-work. Fig. 3 shows that the leader broadcasts block
data Block_data with timestamp and its proof-of-work
to other authorized DAGs for verification and audit. For
mutual supervision and verification, these DAGs audit the
block data and broadcast their audit results with their
signatures to each other. After receiving the audit results,
each DAG compares its result with others and sends a
reply (Reply) back to the leader. This reply consists
of the DAG’s audit result my_result, comparison result
Comparison, signatures, and records of received audit
results Rece_results. The leader analyzes the received
replies from DAGs. If all the DAGs agree on the block da-
ta, the leader will send records including current audited
block data and a corresponding signature to all authorized
DAGs for storage. After that, this block is stored in
the vehicular blockchain, and the leader is awarded by
vehicle coins. More details about the consensus process
are given in Protocol 1. If some DAGs don’t agree on
the block data, the leader will analyze the audit results,
and send the block data to these DAGs once again for
audit if necessary [13].

Protocol 1: Distributed Consensus Protocol for DAGs

1. The leader broadcasts block data to all DAGs in the vehicular

blockchain for verification and audit.

DAG; — All : Record = (Block_datal|Block_hash

[|Certps;||Sigpac, ||timestamp,

where Block_hash = Hash(Block_Datal|timestamp),
Sigpag; = SignSKDch (Block_datal|Block_hash).

2. The DAGs broadcast their own audit results to each other

for mutual supervision and verification, and then send their

replies back to the leader.

DAG, — DAG; : Reply = Epkpac, (Data_2

||Certpaa,||Sigpag, ||[timestamp),

where Data_2 = (my_result||Rece_results||Comparison),
Sigpac, = Signskpag, (Data_2).

3. The leader adds new block data into vehicular blockchain

after verifying by DAGs, and broadcasts the block data to all

DAGs for storage.

DAG; — All : Data_block = (Data_3||Sigpag; ||

5

timestamp),
where Data_3 = (Block_data||Block_hash||{Certpac}||
timestamp),

Sigpac, = SignSKDAGj (Data_3).

C. Secure and Efficient Data Sharing Scheme using ISSC

The P2P data sharing process among vehicles using ISSC
consists of the following steps.

1) Step 1: Uploading data sharing requests. Data re-
questors first download the latest data blocks in the vehicular
blockchain from DAGs, and search their data of interest by
information indexes. The data requestors choose their optimal
data providers according to reputation of providers. More
details about the reputation calculation are given in Section IV.
For example, a data requestor v,,, sends a data sharing request
(Req) to a data provider v;. This request includes time, the
usage of requested data, and sharing times, etc.

vm — v; : Req = Epk, (Request||Cert,,, ||timestamp).

2) Step 2: Data sharing authorization. After receiving the
request Regq, v; verifies the identity of v,,, and defines the
data access constraints based on the request from v,,. After
that, v; sends the access constraints, pseudonyms’ private keys
of uploaded data, public key of the data requestor and so on
to a nearby RSU, e.g., RSU;.

v; = RSU; : Message = Epr gy, (Constraints||SKp;pr
|PK.,,

timestamp||Cert,, ).

The ISSC is triggered by Message from v;. RSUs first verify
the certificate of v;, and check the shared data information of
v; in the vehicular blockchain. The RSUs obtain and integrate
the shared data stored in the vehicular blockchain according
to the given pseudonyms’ private keys of shared data. The
shared data is encrypted with the public key of data requestor
U If v; and vy, are at the same coverage of a local DAG, the
shared data will be sent to v,, directly. Otherwise, the shared
data will be sent to a DAG nearby v,,.

RSU; — RSUj44 : Shared_data = EPKRSU7.+1 (Data_2
|[timestamp||Certrsu,),
Data_2 = Epg,, (Data||Cert,,||Certrsu,||timestamp).

3) Step 3: Recording and generating data sharing events
in the vehicular blockchain. After obtaining the shared data,
the data requestor pays for the the provider using vehicle
coins, and generates a record of the data sharing event, and
adds this record as a data block into vehicular blockchain
similar to the steps in Section III-B. Moreover, similar to
[14], each vehicle has a wallet account to store and manage
personal vehicle coins. During a payment process, for privacy
protection, we use random pseudonyms as public keys of a
vehicle’s wallet account, named wallet addresses, to replace
the true address of the wallet account for privacy protection.
The mapping relationships between the wallet account and
the corresponding wallet addresses are recorded in the trusted
authority.
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IV. SUBJECTIVE LOGIC FOR REPUTATION MANAGEMENT
IN VECONSs

In VECON:Ss, vehicles may provide irrelevant data (infor-
mation) to each other although the vehicles have similar
“genomes” [4]. The vehicles may share false information
because of faulty sensors, infection from computer viruses, or
even selfish purpose [8], [15]. If a positive sharing interaction
occurs between two vehicles, namely, v, believes that the
data shared by wv; is relevant and useful, the relationship from
U, to v; is strengthened and the reputation of v; is enhanced.
Besides, previous researches have also indicated that the higher
reputation of nodes brings higher data quality in mobile crowd
sensing [16]. Vehicles choose the best data provider according
to reputation values [8]. It is essential to design a mechanism
to quantify vehicles’ reputation based on their interactions
[4]. We therefore propose to make use of a reputation based
sharing scheme with three-weight subjective logic model for
high-quality data sharing in this section.

Subjective logic is utilized to formulate the individual
evaluation of reputation based on occurring interactions, which
is a framework for probabilistic information fusion operated on
subjective beliefs about the world. The subjective logic utilizes
the term opinion to denote the representation of a subjective
belief, and models positive statements, negative statements and
uncertainty. It also offers a wide range of logical operators to
combine and relate different opinions [6].

A. Local Opinions for Subjective Logic

Considering two vehicles v; and v, the trustworthiness (i.e.,
local opinion) of the data requestor v; to the data provider
v; in subjective logic can be formally described as a local
opinion vector w;_,j, i.e., wi—; = {bi—;, di—j, ui—;}, where
bi—j,d;—j,u;—; represent the belief, distrust, and uncertainty,
respectively. bi_ﬁ,di_).j,ui_)j S [O, 1] and bi_)j + di_>j +
u;—; = 1. Here,

bisj = (1 = uisj) 555,
dimj = (1— Uiaj)%iﬁy 6]
Uj—j = 1- Si—js

where « is the number of positive events, while 3 is the
number of negative events. The uncertainty of local opinion
vector u;_, ; depends on the quality of communication between
vehicles ¢ and j. The quality of communication s;_,; refers to
the probability that data packets of data sharing requests are
transmitted successfully during communication. According to
w;—s;, the reputation value T;_, ; represents the expected belief
of v; that v; provides true and relevant data, which can be
expressed as

Tisj = bisj + yuissj. ()

Here, v is a given constant given by vehicles, which indicates
the uncertainty effect level on reputation for vehicles. This
constant can be set as 0.5 by default [6].

B. Three-weight Local Opinions for Subjective Logic

Traditional subjective logic is evolved toward multi-weight
subjective logic when considering weighting operations. In

VECONSs, we consider different weights to formulate local
opinions. Compared with traditional subjective logic models,
the advantages of the three-weight subjective logic model can
obtain more accurate and reliable reputation when taking the
following weights into consideration.

o Interaction Frequency: It is known that the higher interac-
tion frequency means that the data requestor (v;) has more
prior knowledge about the data provider (v;) leading to
more accurate and reliable reputation calculation. The
interaction frequency is the ratio of interaction times
between the data requestor and the data provider to
average interaction number of the data requestor with
other data Broviders during a time window 7', namely,
IF;,; = ]‘Tﬂ, where N;_,; = (a; + (i), and N; =
ﬁ > Ni—ym. M is the total number of vehicle m that

e

interacts with vehicle ¢ (i.e., the data requestor) during
a time window. The higher interaction frequency brings
higher reputation.

e Event Timeliness: In VECONSs, a vehicle is not always
trustable and reliable. Both the trustfulness between the
data provider and requestor, i.e., the reputation of v; to v;
are changing over time. The recent events have a larger
impact on the local opinion of v; to v;, while the past
events have less impact on this local opinion for more ac-
curate and reliable reputation calculation. The time scale
of recent events and past events 1S trecents e.g., a week.
Moreover, the negative events have higher weight on the
local opinions of vehicles than that of the positive events.
Here, the weight of positive events is 6, and the weight
of negative events is 7. 0 +7 = 1,0 < 7. ( represents the
weight of recent events, o is the weight of past events.
(+ o0 =1, > 0. The weights of event-timeliness and
negative/positive events are combined together to form a
new interaction frequency as follows.

{ a; = Ceoﬂi + 0(90(%7
Bi = (11 + 075,

where the numbers of recent positive events and negative
events are of and i when the current time ¢ satisfies
t < trecent, respectively. When ¢ > t,.ccent, the numbers
of positive and negative past events are ab and [,
respectively. Therefore, the interaction frequency between
the data requestor and the data provider is updated as,

3)

IF, ,; = Nivj _ 0(Cal + aad) + T(¢B +aﬁ§).
J N; ﬁ ZMNi—m
me

“)

e Trajectory Similarity: Data collected by vehicles is lo-
cally relevant for vehicles, and has spatial scope. To
enable location awareness and improve data relevance,
trajectory similarity is taken into consideration on rep-
utation calculation during data sharing among vehicles.
The higher trajectory similarity means the sharing data
from the data provider is more relevant leading to high-
quality, more accurate and reliable data sharing [20].
The trajectory coefficients of vehicles are represented
by v = {speed,location,direction}. The weights of
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corresponding coefficients in v are ¥, Y2, Y3, and ¥y +
19 + 3 = 1. The similarity degree of two trajectory
segments (denoted as L; and L) for vehicle 4 and vehicle
j is SIM(L;, L;), which is calculated as
SIM (L;,Lj) =1— DISS(L;, L;). 5)
Here DISS(L;,L;) is the normalized dissimilarity of
two trajectory segments L; and L;, and is defined as,

DISS(L;, Lj) = v1speed(L;, L) + bolocation(L;, Lj)
+ sdirection(L;, L;).
(6)
We consider that DISS(L;, L;) depends on differences
of speed, location, and direction for two trajectory seg-
ments. The speed difference of two trajectory segments
can be expressed as,

_ |Vave(Li) - Vave(Lj)|
max([V(L;), V(L;)]

speed(L;, L) @)

where V(L;) and V(L;) are the speeds of vehicles
¢ and j during their trajectory segments, respectively.
Vave(Li) and Vg, (L;) are the average speeds of these
two vehicles.

We use location(L;,L;) to describe the location dif-
ference of trajectory segments. The numbers of sam-
ple points of L; and L; are respectively denoted as e
and k during a time window 7. The sets of sample
points in chronological order are {P;, P, ..., P;.} and
{Pj1,Pj2,...,Pjr}. We measure the similarity of the
trajectory segments by the longest common subsequence
(LCS) that has been widely used in time series trajectory
clustering. The LCS is utilized to match two sequences by
allowing them to stretch without rearranging the sequence
of the elements [22]. For trajectory segments L; and
L;, the LCS is described as les(L;, L;) = {Pe =
Pjile = k}, here, e € {1,2,...,E}, k € {1,2,...,K}.
Hence, the location difference of trajectory segments
location(L;, L;) is given by

max(e, k) — num[les(L;, L;)]
max(e, k)

location(L;, L) =

®)
where num(les(L;, L;)] is the number of points in LCS
for trajectory segments L; and L;.

The directory difference of two trajectory segments is the
angle between two trajectory segments. Here, we use ¢ as
the angle of two trajectories L; and L;. More specifically,

e 0<p<3,

1 [sinet5)]|

direction(L;, L;) = {
2 2

5 <@ <

©))
Therefore, the overall weight of reputation for local
opinions is

5i—>j = plIFi—>j + PQSIM (Ll,L]) s (10)

where p1 + po=l,and 0 < p; <1, 0 < py < 1.

C. Combining Recommended Opinions

After calculating the weights, the opinions are com-
bined into a common opinion in the form w!®

T—]
rec rec rec
{ T3 dw—)j’“‘w—)j}’ where
rec __ 1 . .
z—j Z 57_}] Z 51*}]b$%]7
reEX rzeX
rec __ 1 . .
=7 T Y deoy Z 590*>Jd90*>]7 (11)
z€X reX
rec __ 1 . .
Upj = 5= FI Z 51*}]’“:64)]’
z€EX reX

where x € X is a set of recommended vehicles that have
interacted with v;. Thus, the subjective opinions from different
recommenders (neighboring vehicles) are integrated into one
single opinion, which is named as the recommended opinion
according to each opinion’s weights [23].

D. Combining Local Opinions with Recommended Opinions

After obtaining shared data from data providers, a data
requestor has a subjective opinion (i.e., local opinion) for each
data provider based on interaction histories. This local opinion
should still be considered while forming the final opinion to
avoid cheating [23]. The final opinion of v; to v; is formed

final | final ;final  final final  ;final
as ‘_’J-rl—m' = {0,005 Ay uy S}, where b 1T, di 7T and
u{f]a are respectively calculated as:
bfinal b ufS b U
)T Wi FupSS —uncS ui )
d_finql _ diqju;e;]l--i'd;?]:uiﬁj (12)
1] Wi j Jl’u%‘;‘jfuée_ﬁjuiﬂj ’
ufinal - Uy 5 Ui g
=7 T Ui tulS —ulS Ui
Similar to Eqn. (2), the final reputation of v; to v; is
final __ ;3 final final
T =bi +yui; . (13)

E. Choosing the Optimal Data Provider for Data Sharing

For a data requestor, it chooses an optimal data provider
by comparing the final reputation values of data provider
candidates. There exists a candidate with the highest reputation
value for each data requestor during a period of time. The
optimal data provider can be found by
(14)

* final
vi = argmax(7T:.").
J ngJW( 1—] )

As shown in Fig. 4, the operations of finding the optimal
data provider consist of the following steps.

e Step I: A data requestor v; first downloads the latest
data blocks on the vehicular blockchain. v; searches
data provider candidates through information indexes of
shared data. Next, v; finds candidates’ local opinions
given by other vehicles (denoted as v,,) that had interacted
with the candidates. The local opinion of v, for a certain
candidate (e.g., v;) includes local opinion vector and the
corresponding overall weight of reputation for its local
opinion, i.e., wWy—; 1= {by—sj, dg—sj, Uy} and 05, ;.

o Step 2: v; combines these local opinions from v, to
calculate a common recommended opinion w;; :=
{0555, disS 5 uyss ; }- For vy, it generates its local opinion

for v; according to its interaction history and received
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Fig. 4: The operations of finding the optimal data provider.

safety messages during driving. For driving safety, ve-
hicles are required to periodically broadcast safety mes-
sages (consisting of current positions, speeds, directions
and so on) to neighboring vehicles. These safety messages
increase the awareness of vehicles about their neighbors’
whereabouts and warn drivers of dangerous situations
[24]. The local opinions of vehicles can be calculated
based on the received safety messages during a period
of time. Thus, v; obtains the final reputation values for
candidates using Eqn. (13) in a time window.

o Step 3: v; compares the final reputation values of can-
didates and uses Eqn. (14) to find out the optimal data
provider. v; interacts with the data provider to request
authorization of data sharing.

o Step 4: After verification, the data provider generates
a smart contract for v;. More details about secure data
sharing using ISSC are given in Section III.

e Step 5: v; uploads its local opinion as a new reputation
opinion for its optimal data provider (e.g., v;). Similar
to the data sharing events in Section III-C, this updated
local opinion will be formed as a data block of vehicular
blockchain.

V. SECURITY ANALYSIS AND NUMERICAL RESULTS
A. Security Analysis for Vehicular Blockchain

Unlike traditional communication security and privacy pro-
tection, our vehicular blockchain uses consortium blockchain
and smart contract technologies to ensure security and pri-
vacy protection during data storage and sharing. Consortium
blockchain ensures data traceability, and the automatic exe-
cution of smart contracts protects data security sharing. For
data providers, the decentralized characteristic of vehicular
blockchain’s architecture defends against data security risks
brought by centralized data storage [9]. The transparency
characteristic of vehicular blockchain during data sharing
avoids second-hand sharing without authentication from data
providers. The anonymous operations using pseudonyms dur-
ing data storage and sharing bring privacy protection for data
providers and data requestors. We provide more details about
the blockchain-related security performances as follows [25].

8

TABLE II: Parameter Setting in the Simulation
Parameter Setting
Interaction frequency among vehicles [50, 200] one week
Communication range between two vehicles [300m, 500m]
Angle between two trajectory segments (0, ]
Speed of vehicles [50 km/h, 150 km/h]
Weight of positive events 6 and negative events 7 | 0.6, 0.4
Weight of recent events ¢ and past events o 0.6, 0.4
Time scale of recent and past events trecent 7 days
Weights of trajectory similarity 1, Y2, 93 0.3,0.4,0.3
Predefined parameters of reputation p1 =0.5, po =0.5
Rate of abnormal vehicles [10%, 90%]
Quality of communication s;—, ; [0, 0.4]

87.781—
37.775 .
37.77 ’.
37.765 ¥ -
3776
87.755 A

37.751"

-122.48-122.47-122.46-122.45-122.44 -122.43-122.42-122.41 -122.4 -122.39

Fig. 5: Spatial distribution of vehicles’ trajectories.

e Get rid of a trusted intermediary: With the help of
the robust and scalable consortium blockchain, vehicles
can share data with others in a P2P manner without
involvement of a globally trusted intermediary [14].

o Sharing record authentication: All sharing records are
publicly audited and authenticated by other entities. It is
impossible to compromise all entities due to overwhelm-
ing cost. So the sharing records with errors can still be
discovered and corrected before structuring into a block.

o Data unforgeability: No adversary can act as vehicles
to corrupt the vehicular blockchain. It is because that
the adversary cannot forge a digital signature of any
vehicle, or gain control over the majority of the network’s
resources [25]. An adversary only controlling a few of
RSUs in the vehicular blockchain cannot learn anything
about the raw data, as it is encrypted with keys of
vehicles.

e Secure self-execution: Data storage smart contract and
information sharing smart contract, that are run on vehic-
ular blockchain, are autonomous, self-executed and self-
maintained in the form of computer codes. These smart
contracts do not need mutual trust, and are completely
automatic. So no human factor is needed, and no human
factor can control these smart contracts once it goes into
effect [9].

B. Numerical Results

We evaluate the performance of the proposed Three-Weight
Subjective Logic (TWSL) scheme based on a real dataset

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2875542, IEEE Internet of

Things Journal

Reputation value

[ TWSL Scheme

Il TSL Scheme
Average value of TWSL

— =Average value of TSL J

—#-Threashold of trust

| Tl T T T

4 5 6 7

Misbehaving vehicle

Fig. 6: The reputation comparison of 10 abnormal vehicles
during 120 minutes.

09 TWSL Scheme
08 —TSL Scheme
© i - = Threshold of trust
3
>07
c
S
]
506
Qo
(0]
o
0.5
0.4
03 ‘ ‘ ‘ ‘
0 10 20 30 40 50

Time (minutes)

Fig. 7: Reputation changes of an abnormal vehicle over time.

from San Francisco Yellow Cabs [26]. This dataset includes
mobility traces of 536 urban taxis over a period of one month
[27]. We take 100 taxis as examples and choose an observation
area, whose latitude is from 37.747 to 37.78, and the longitude
is from -122.48 to -122.385, as shown in Fig. 5. The observed
area is approximately 8.34 x 3.67 km?. The average time gap
between two trace records is 43.34 seconds, i.e., data collection
period of vehicles [27]. We set the update period of reputation
is 15 minutes, and the observation time of our simulation is
240 minutes. In an urban area, the vehicles often take familiar
routes in a specified time period, such as similar trajectories
from home to work in the day time [20]. So the vehicles
would like to share data for obtaining rewards and promoting
vehicular services. More parameters about our simulation are
listed in Table I.

A vehicle sends data requests to data providers with a high
reputation. The quality of communication s;_,; affects the
uncertainty of local opinion vector u;_,;. Vehicles calculate
reputation based on their local opinions and recommended
opinions from other vehicles. Our proposed TWSL scheme
is used to calculate the reputation of vehicles according to
the interaction events between vehicles. We compare TWSL
scheme with a widely accepted Traditional Subjective Logic
(TSL) model using a linear function to calculate reputa-
tion [28]. The linear function is represented as: I';_,; =

1
TWSL Scheme
0.8 —TSL Scheme
08 - = Threshold of trust
5 .
©
> 07
c
S
T
5 06
o
(7]
o
05 = = == = = = m = N = = — ==
0.4+

03 . . . . . .
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Fig. 8: Reputation changes of an abnormal vehicle under
different misbehavior probability.
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Fig. 9: Detection rates under different trust thresholds.

ave las ave __ Jave ave
wllﬂzﬁj +l(1 —w)l%,, lwhere gy, = 032, + 0.5+ u3”$; and
as — as as ave ave
5%, = 0%, + 0.5 % w23, b3¥s, and ugS; are two average

values of b;_,; and u,_,; from recommended opinions of other
vehicles, respectively. b ; and ules ; are the latest parameters
in local opinion of vehicle ¢ for vehicle j. w is the weight and
can be set as 0.5 [6], [28].

We set that all the abnormal vehicles initially pretend to be-
have normally within a short period of time (20 minutes), that
provide high-quality data with high value of w, e.g., @w = 0.8.
Here, w is the probability that an abnormal vehicle behaves
normally in order to hide its malicious intent. Their initialized
reputation values are represented by wy = [0.64,0.16,0.2].
After the camouflage time, they do some misbehaviors and w
becomes 0.2. To detect the misbehavior, the system updates
the reputation values in every time period.

As shown in Fig. 6, we randomly choose 10 abnormal
vehicles for reputation update during the observation time. The
abnormal vehicles randomly interact with normal vehicles [1,
4] times during 60 minutes. All the reputation values of the
abnormal vehicles are lower than the initial reputation value
wg. The reputation values calculated by TWSL scheme are
lower than that of TSL scheme. It is because that all the
reputation opinions are combined and weighted adequately
by considering prior knowledge (interaction frequency, event
timeliness, and trajectory similarity). In this way, we pay more
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attention to reputation opinions with better quality and avoid
being misleading from reputation opinions with lower quality.
As a result, highly accurate reputation computation is achieved
using TWSL scheme, thus ensuring high-quality data sharing
among vehicles.

Fig. 7 shows the reputation changes of an abnormal vehicle
over time. Here, the misbehavior probability of this abnormal
vehicle is 70%. The abnormal vehicle first pretends to provide
high-quality data to other vehicles for winning trust from
a target vehicle. The initial reputation value for the target
vehicle is wy = [0.9,0.05,0.05]. Meanwhile, the abnormal
vehicle randomly interacts with other normal vehicles. Due to
the misbehavior events, the reputation value of the abnormal
vehicle is decreased continuously over time, as illustrated in
Fig. 7. The reputation updated by TWSL scheme is much more
accurate, leading to lower reputation value for the abnormal
vehicle. After 10 minutes, the reputation value is descended
to 0.5, which is below than that of TSL scheme. This means
that the abnormal vehicle has a higher probability for being
detected when the threshold of trust is 0.5 in the TWSL
scheme.

For an abnormal vehicle, its reputation value is affected
by different misbehavior probabilities. Fig. 8 shows the mis-
behavior probability impacts on reputation values. With the
higher misbehavior probability, the average reputation value of
the abnormal vehicles using our TWSL scheme is lower than
that of TSL scheme because of the considered weights. For
example, when the misbehavior probability is 60%, our TWSL
scheme is 38% lower than that of TSL scheme. So our TWSL
scheme is sensitive for the misbehavior, although malicious
vehicles try to camouflage themselves. It is beneficial to detect
and eliminate the misbehaviors timely in VECONS.

We study detection rate of abnormal vehicles using TWSL
scheme and TSL scheme within 60 minutes. Fig. 9 shows the
proposed TWSL scheme can distinguish much more abnormal
vehicles compared to TSL scheme. Note that, with higher
threshold value of trust, more abnormal vehicles will be
distinguished. When the threshold value of trust is 0.35, the
recognition rate of abnormal vehicles in TWSL scheme has
already been more than 100%, while that of TSL scheme
is only 50%. Due to higher detection rate in the proposed
TWSL scheme, potential security threats can be removed more
effectively, which brings a secure VECONS.

VI. CONCLUSION

In this paper, we have presented a secure P2P data sharing
system in vehicular computing and networks. We utilized
consortium blockchain and smart contract technologies to
achieve secure and efficient data storage and data sharing.
These technologies efficiently prevent second-hand data shar-
ing without authorization. In addition, we have proposed a
reputation based data sharing scheme with the three-weight
subjective logic model considering interaction frequency, event
timeliness, and trajectory similarity. This scheme can achieve
accurate reputation management for high-quality data sharing
among vehicles. The vehicles can choose the optimal data
providers with high-quality data during sharing in VECONSs.
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Security analysis shows that our system ensures security of
data storage and data sharing. Numerical results indicate that
the proposed three-weight subjective logic scheme has great
advantages over the traditional reputation schemes in improv-
ing detection rate of abnormal vehicles to ensure security
during data sharing.
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