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AbstrAct
Intelligent human detection based on WiFi is a tech-

nique that has recently attracted a significant amount 
of interest from research communities. The use of 
ubiquitous WiFi to detect the number of queuing per-
sons can facilitate dynamic planning and appropriate 
service provisioning. In this article, we propose HFD, 
one of the first schemes to leverage WiFi signals to 
estimate the number of queuing persons by employ-
ing classifiers from machine learning in a device-free 
manner. In the proposed HFD scheme, we first utilize 
the sliding window method to filter and remove the 
outliers. We extract two characteristics, skewness and 
kurtosis, as the identification features. Then, we use the 
support vector machine (SVM) to classify these two 
features to estimate the number of people in the cur-
rent queue. Finally, we combine our scheme with the 
latest Fresnel Zone model theory to determine wheth-
er someone is in or out, and thus dynamically adjust 
the detected value. We implement a proof-of-concept 
prototype upon commercial WiFi devices and evaluate 
it in both conference room and corridor scenarios. The 
experimental results show that the accuracy of our pro-
posed HFD detection can be maintained at about 90 
percent with high robustness.

IntroductIon
With the rapid development of wireless tech-
nology and vast deployment of WiFi networks, 
a great deal of device-free sensing applications 
have emerged in recent years, including indoor 
positioning, activity identification, respiration 
detection, and line-of-sight recognition. These 
interactive applications are changing our lives, 
improving our quality of experience (QoE), and 
leading us into a new era.

Since human movement has a strong random-
ness, technically it is not an easy task to realize exact 
crowd counting. However, the corresponding people 
counting applications have remarkable business val-
ues. For example, we can provide recommendation 
services dynamically based on the current number 
of people in the queue. Similarly, the number of cus-
tomers in a store can be indicative of the peak sales 
in a store. The above applications reveal good busi-
ness prospects of head count detection. Therefore, 
many human recognition applications have emerged 
and gained popularity. These applications are imple-
mented mainly based on two types of techniques: 
video-based recognition and signal-based recognition.

Video-based recognition (e.g., [1]) has several 
shortcomings. The method needs dedicated cam-
era equipment. Moreover, the captured area is lim-

ited and a tremendous amount of storage space is 
required. Signal-based identification methods nor-
mally function upon radio frequency identification 
(RFID) tags [2], mobile phone or sensor nodes, 
which requires dedicated sensing equipment, and 
these are not easy to deploy either.

At present, a promising method for detecting 
the number of people is to utilize the widespread 
WiFi signal to extract the received signal strength 
(RSS) or channel state information (CSI). The 
advantage of using RSS-based detection schemes 
(e.g., [3]) is that it is easier to extract RSS. But 
compared to CSI, RSS offers low sensitivity and no 
ability to reflect real-time characteristics. CSI is the 
fine-grained value derived from the physical layer 
and refers to the known channel attribute of the 
communication link. It consists of the attenuation 
and phase shift experienced by each spatial stream 
on every subcarrier in the frequency domain. CSI is 
therefore more sensitive to environmental change 
and is more efficient compared to RSS.

In practice, the detection of the number of peo-
ple suffers from numerous factors, for example, a 
change in the environment and human interaction. 
Most of these factors are random. In our model, 
we detect the number of persons along the line-
of-sight path from the receiver to the WiFi access 
point (AP). For scenarios with people standing in 
a line, we propose a human flow detection (HFD) 
scheme that can be applied to detect the number 
of queuing people in dynamic scenarios, such as 
queues of withdrawals in a bank and queues of 
payments in a mall, which can then be utilized to 
provide appropriate recommendation services.

HFD is a complete number detection scheme. 
First, we use a denoising method based on slid-
ing window to remove the outliers. Then following 
the analysis of CSI amplitude, we can determine 
whether someone is in the current scene. When 
someone is present, the relationship between the 
feature and the number is analyzed from CSI, and 
the support vector machine with good classifica-
tion effect is used to identify the number of peo-
ple in the current queue. Finally, combined with 
the Fresnel model proposed in [4], our scheme 
reveals the change of CSI when a person enters 
and leaves the detection area, so as to dynamically 
correct the number of people in the current scene.

In summary, our main contributions are as fol-
lows:
• We propose HFD, an integral scheme for 

device-free queuing head count detection 
using commodity WiFi devices. As far as we 
know, this is the first scheme that uses the 
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CSI signal of commercial wireless devices for 
robust human flow detection.

• Different from other related schemes, HFD 
is a complete solution that can dynamical-
ly identify the number of people in current 
queues. We extract the lightweight kurtosis 
and skewness characteristics of the denoised 
CSI signal with different numbers, and quick-
ly estimate the number of people in current 
queues. Then we combine with the Fresnel 
Zone model to dynamically correct the cur-
rent number of persons.

• We prototype the HFD on commodity WiFi 
devices and verify its performance from mul-
tiple dimensions, which include the different 
sampling times, the different kernel functions 
and for two different scenarios (conference 
room and corridor). The experimental results 
show that HFD can achieve a detection rate 
of about 90 percent.
The rest of this article is organized as follows. 

We first review the related work. Then we present 
an overview of the system architecture, while the 
detailed design of each component is provided. 
Following that we present the performance evalu-
ation. Finally, we conclude the article.

relAted Works
The design of HFD is closely related to the follow-
ing categories of research.

devIce-Free detectIon bAsed on csI
A number of human detection schemes based on CSI 
have been proposed in recent years. In [5], Wu et al. 
exploited the advantages of both amplitude and phase 
information of CSI to detect moving targets, and imple-
mented a non-intrusive detection scheme for a moving 
and stationary person on a commercial WiFi device. 
R-TTWD [6] is a scheme that leverages the CSI of com-
modity devices for device-free through-the-wall human 
detection. WiFinger [7] uses CSI to achieve number 
text input by recognizing a set of finger-grained ges-
tures. LiFi [8] extracts different CSI characteristics to 
carry out the detection of line of sight. These works 
based on CSI perception can provide a theoretical 
reference for our proposed scheme.

Fresnel Zone
In [4], the authors proposed the concept of a Fres-
nel Zone model. Fresnel Zone is a series of con-
centric ellipsoidal regions of alternating reinforced 
strength and weakened strength of a wave’s propa-
gation, as shown in Fig. 1. The ellipses in black solid 
and red dashed lines indicate the most reinforced 
and degraded locations of the reflector, respec-
tively. When people walk in different directions, 
the reflection of their signal is different. Based on 
this theory, the authors combined the model of the 
Fresnel domain with the WiFi signal to estimate the 
walking direction. Wang [9] introduced the Fres-
nel Zone model to indoor environments, and then 
used commodity WiFi devices to detect people’s 
breathing depth, location and orientation.

HumAn FloW detectIon scHemes  
bAsed on WIreless sIgnAls

The existing schemes for human flow detection 
by wireless signals can be divided into two cat-
egories: RSS-based and CSI-based. Most of the 

schemes are based on RSS. For example, SCPL 
[10] utilizes RSS to count and localize multiple 
objects in indoor environments. Yuan [11] divided 
the crowd density into different levels according 
to the RSS data from WSNs using the K-means 
algorithm. Wang [12] proposed a multi-target 
location method based on compression percep-
tion of RSS signals. Compared to RSS, the phys-
ical-layer CSI data are more granular and more 
sensitive to changes in the environment. At pres-
ent many researchers have turned their attention 
to CSI. Electronic Frog Eye [13] is a program for 
counting the number of people by using CSI. It 
uses non-zero element percentages (PEMs) in 
the expanded CSI matrix to detect the number 
of people. However, if applied in a queuing sce-
nario, the detection rate of this scheme is rela-
tively low, and its calculation complexity is high. 
In contrast, our scheme HFD is more lightweight 
and has strong robustness, which is described in 
following chapters.

system model
In this section, we introduce the overall archi-
tecture of our HFD scheme. As shown in Fig. 
2, HFD initializes by collecting CSI with a com-
modity off-the-shelf WiFi network interface card 
(NIC) such as the Intel 5300 network card. As 
the original CSI measurements contain unknown 
noise, we first process them through a data pre-
processing module. The sliding window filter-
ing method is used to filter the original signal, 
making the CSI change in a consistent manner, 
and then some special outliers are removed. 
Although the noise filtering component can 
eliminate most of the irrelevant noise, in the 
experiment we can still observe the noise of the 
processed CSI, which is caused by the chang-
es in the internal state of the WiFi device. This 
noise can be ignored, as we discovered that it 
does not affect the performance in our exper-
iment. Then we have to determine whether 
there are any people along the line-of-sight path. 
There may be other obstacles along the line-of-
sight path and they can also interfere the CSI. 
But for simplicity, the obstacle case is not con-
sidered in this article. We extract the variance of 
CSI to determine whether humans exist. Next, 
based on the correlation between different sub-
carriers, we extract the skewness and kurtosis 
values between subcarriers as a two-dimensional 
recognition feature, input this feature set into 
the SVM classification model, and determine 
how many people are currently queuing.

FIGURE 1. The Fresnel Zone model.
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metHodology
In this section, we present the methodology of 
the HFD as well as the experiment setup.

dAtA PreProcessIng
Sliding Window Noise Filtering: We denoise the 
original signal using the traditional sliding window 
method, to reduce the differences between subcar-
riers and to make the change more consistent. We 
collect 1000 CSI packets in four scenarios and extract 
from these packets the original amplitude data. Then 
we use the sliding window averaging method to filter 
the data. The size of the window is the packet rate, 
which is set to 50 packets per second.

According to the sliding window noise filtering, 
the variation trends of the CSI amplitude of all subcar-
riers can be filtered for consistency. As shown in Fig. 
3, we plot six of these subcarriers (i.e., the 5th, 10th, 
15th, 20th, 25th and 30th subcarrier). We observe 
that the CSI amplitude change of these six subcarriers 
throughout the transmission process is consistent.

Outlier Removal: After sliding window fil-
tering, the CSI amplitudes of the 30 subcarriers 
trend consistently during the transmission, but 
some abnormalities may still exist. The reason for 
this situation is the small number of samples at 
the beginning when the sliding window is used. 
Hence, we need to use the outlier removal meth-
od to drop the beginning outlier value.

HumAn detectIon
We extract the CSI amplitude values in the 
presence of people as well as in the scenario 
of no persons. When someone is present in 
the LOS path, the difference of CSI amplitudes 
between the main path and the edge path will 
be reduced. Therefore, we only need to extract 
the variance between subcarriers as a feature. 
Then we can identify whether someone is pres-
ent in that area. In our experiments, we used 
the variance value 5 as a threshold, as shown 
in Fig. 4.

cHArActerIstIcs extrActIon
After noise filtering, the CSI amplitude of the 
subcarriers has a significant right-deviation as the 
number of subcarriers increases, and the peak of 
the subcarriers has a significant increase. There-
fore, based on statistical theory, we extract the 
following two related characteristics.

Skewness Feature: The skewness is a statis-
tic about the shape of data distribution, which 
describes the symmetry of a data distribution. 
Mathematically, skewness S is defined as:

S = E{x −µ}3

σ3
where x, m, and s denote the measurement, mean, 
and standard deviation, respectively. The value of 
skewness greater than 0 indicates that the data 
distribution is positive or right; a skewness less 
than 0 indicates that the data distribution is neg-
ative or left.

Kurtosis Feature: The kurtosis is a statistic 
about the steep degree of data distribution. Math-
ematically, kurtosis k is defined as:

k = E{x −µ}4

σ4
.

 

FIGURE 2. System architecture of HFD.

FIGURE 3. Performance comparison: a) amplitude measurements of six subcarriers in 30 before using the sliding window filter method; 
b) amplitude measurements of six subcarriers in 30 after using the sliding window filter method.
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Normal distribution is the benchmark. A kurtosis 
of 3 indicates the data distribution has the same 
steepness as the normal distribution. If the kurto-
sis is greater than 3, the overall data distribution 
is steeper than normal distribution; if less than 3, 
the distribution is flatter compared to the normal 
distribution.

mAcHIne leArnIng emPoWered HFd
After obtaining the shewness and kurtosis char-
acteristics from the denoised signal, we use these 
two characteristics as a two-dimensional vector 
to identify the current number of queuing per-
sons. In the field of artificial intelligence, many 
classifiers can produce good classification results, 
such as neural network used by AlphaGo, naive 
bayes, decision tree, support vector machine, and 
so on. Some deep learning algorithms [14, 15] 
bring ideas to our algorithm. In our experimental 
environment, in order to achieve good supervised 
classification and good visualization effect, we 
choose the support vector machine with the ker-
nel as radial basis function.

The data compression process is executed 
before the support vector machine classification. 
Since our packet rate is 50 packets per second, 
we compress the original data and take the aver-
age of every 10 packets as one value, then gener-
ate the feature graph. If extracting characteristics 
from each packet directly, the error would be 
greatly reduced. If data from packets are com-
pressed, although there may still exist some 
abnormal values, this has no significant effect 
on the accuracy of recognition. Since we take a 
mean value from each 10 packets, we can get 
five markings per second and obtain a result per 
0.2 second. Hence, the scheme is still efficient 
and precise.

To choose the kernel function for the SVM 
classifier, we made a detailed comparison about 
different kernels of the SVM classifier earlier. The 
classification in the experiment is shown in Fig. 6a, 
where the black line represents the SVM classifi-
cation plane. From the experimental results, we 
can see that the radial basis function (RBF) has 
a better effect. It divides our data set into four 
sub-planes, each plane representing a different 
number of persons in the queue. Then, we build 
the SVM classification model by the training data 
in our environment. In the experimental evalua-
tion section, we will utilize the test set to observe 
whether different numbers fall within their corre-
sponding regions, thus estimating the robustness 
of the pattern.

dynAmIc lIstenIng
In previous sections, we presented the process of 
detecting the number of queuing persons. How-
ever, this non-stop detection may not be efficient 
in terms of the use of computing resources. To 
reduce the computation complexity, based on 
the Fresnel Zone Model introduced previously, 
we add the entry and exit detection method to 
our scheme. Assume that people enter(Mov1, 2, 
3) and leave(Mov4, 5, 6) the Fresnel Zone from 
three directions, as shown in Fig. 1. Mov1, 4 are 
close to the receiver, mov2, 5 are vertically enter-
ing and leaving, and mov3, 6 are close to the WiFi 
transmitter. When people enter or leave the Fres-
nel field from these three directions, the amplitude 
of the CSI changes as shown in Fig. 5. We can 
see that when someone enters or leaves the Fres-
nel field, the CSI signal will produce a big jump. 
According to this result, our scheme can have an 
additional function as follows. When the ampli-
tude of CSI has a jumping change, we can imme-
diately detect that someone is entering or leaving 
the current queue, and then we start the process 
of detecting the number of queuing people. By 
this method, we can generate a dynamic num-
ber detection scheme, saving a lot of computing 
resources and improving the detection rate.

ImPlementAtIon And evAluAtIon
ImPlementAtIon

We prototype HFD with commodity WiFi devic-
es and we collect data in two types of experi-
mental environment, that is, a typical conference 

FIGURE 4. The variance characteristic of CSI ampli-
tudes to detect whether someone exists in LOS.

FIGURE 5. The amplitude changes when people enter or leave the Fresnel Zone in Fig. 1: a) mov 1,4; b) mov 2,5; c) mov3,6.
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room whose area is 8.7 m  5.8 m and a corri-
dor. To obtain the measurements, we use a mini 
PC (physical size 170 mm  170 mm) with three 
external antennas to receive pinging packets from 
the transmitter. The mini PC is equipped with an 
Intel 5300 NIC and Ubuntu 10.0 OS, and we 
can use the Matlab installed on the terminal to 
implement our algorithm. A TP-LINK wireless 
router with a single antenna is employed as the 
transmitter, operating in IEEE 802.11n AP mode 
at 2.4 GHz. The receiver gets ping packets from 
the router at a rate of 50 packets per second and 
records the CSI from each packet. In our experi-
mental environment, we set the distance between 
the receiver and the first person in our queue as 
1 m, and to make people feel comfortable we 
set the distance between people as 0.6 m. We 
discuss the effect of distance in the following sec-
tions. Due to the experimental space constraints, 
the maximum number of persons in our queue is 
4. If we have a larger area, the maximum number 
of people can be increased.

evAluAtIon metrIcs
We mainly focus on two metrics to evaluate our 
HFD scheme:
• Detection Rate Pd–The case in which the 

number of people detected by the receiver is 
the same as the corresponding real number.

• False Alarm Rate Pf–The case in which the 
number of people detected by the receiver is 
different from the corresponding real number.

PerFormAnce evAluAtIon

Impact of Sample Time: In order to test the stability 
of our proposed model, first we investigate wheth-
er the accuracy of the test can remain consistent 
in the same environment, so we need to compare 
the detection accuracies in different time periods. 
We consider three periods of time in one day, that 
is, morning, noon and evening, and we keep the 
packet rates and peoples’ position unchanged in 
each time period. Figure 6b shows the accuracies 
with a different number of people in different peri-
ods. We can observe that the three periods have 
a similar trend of the accuracy variance, that is, 
with the increase in the number of persons, the 
accuracy trends to have a slight decline. This is due 
to the fact that the maximum number of queuing 
persons in our experiment is 4, and the queue is 
slightly overcrowded when the number increases, 
which will affect our accuracy. In the three time 
periods, the detection rate is about 90 percent and 
the false alarm rate is about 10 percent. Therefore, 
our experiment design is stable at different times in 
the same environment.

The Impact of the SVM Classifier Kernel 
Function: There are three kinds of kernel func-
tions in a support vector machine, that is, the radi-
al basis function, linear function and polynomial 
function. We test these three kernel functions to 
select the most suitable one for our environment. 
The results of SVM classification which respective-
ly use a linear function and a polynomial function 

FIGURE 6. The experimental results: a) the SVM classification ; b) the test results at different time ; c) the sam-
ple number of errors by using three kinds of kernel; d) detection rate of different environment.
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as the kernel is different; Fig. 6c shows the num-
ber of sample errors which presents the number 
of samples falling in areas that different form their 
own color. We can observe that the performance 
difference when using different kernel functions 
is small, and most error difference is about 1 or 
2 people. In general, the radial basis function has 
the best performance, so we chose it as the ker-
nel function for SVM classifier in this experiment. 
When the environment changes, the feature set 
values may also change. If the feature set can-
not be directly separated in the linear function, or 
there is no polynomial function matching the clas-
sification, we recommend implementing the SVM 
classifier with radial basis function as the kernel.

The Impact of Different Environments: 
Although our HFD scheme shows good perfor-
mance in the conference scenario, in order to 
verify the robustness of the scheme, we have also 
tested it in the corridor scenario. In the corridor, 
we also keep the distance between the first per-
son and the receiver as 1 m, the distance between 
persons as 0.6m, and the maximum number of 
queuing people as 4. Figure 6d shows the results 
of the SVM classification based on the feature 
data in the corridor, suggesting that the skewness 
has an obvious left-leaning and becomes smaller 
with the increase of the number of persons while 
the kurtosis is gradually increasing. Compared 
with the detection rate in two typical scenarios, 
we find that the detection rates in both scenari-
os are about 90 percent, which proves that our 
detection scheme has a strong universality.

conclusIon
With the development of wireless networks, device-
free human detection has drawn great attention. 
In this article, we have proposed HFD, a complete 
human flow detection scheme. This scheme denois-
es the original signal through the sliding window 
filter, extracts the features, then uses the support 
vector machine to estimate the current number 
of queuing people, and finally combines the Fres-
nel Zone model to dynamically adjust the result. 
We have prototyped HFD in two typical environ-
ments and we sample a large amount of data with 
different time periods, distances and classifier ker-
nel functions. Experimental results demonstrate the 
robustness of HFD in various environments, with the 
average recognition accuracy of about 90 percent. 
We therefore expect this work to be an important 
and  a solid step toward prospective device-free 
human detection.
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