Empir Software Eng (2018) 23:2362-2397 @ CrossMark
https://doi.org/10.1007/s10664-017-9588-z

What are the effects of history length and age on mining
software change impact?

Leon Moonen! © . Thomas Rolfsnes! - Dave Binkley? -

Stefano Di Alesiol

Published online: 6 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract The goal of Software Change Impact Analysis is to identify artifacts (typically
source-code files or individual methods therein) potentially affected by a change. Recently,
there has been increased interest in mining software change impact based on evolution-
ary coupling. A particularly promising approach uses association rule mining to uncover
potentially affected artifacts from patterns in the system’s change history. Two main consid-
erations when using this approach are the history length, the number of transactions from
the change history used to identify the impact of a change, and history age, the number of
transactions that have occurred since patterns were last mined from the history. Although
history length and age can significantly affect the quality of mining results, few guidelines
exist on how to best select appropriate values for these two parameters. In this paper, we
empirically investigate the effects of history length and age on the quality of change impact
analysis using mined evolutionary coupling. Specifically, we report on a series of systematic
experiments using three state-of-the-art mining algorithms that involve the change histories
of two large industrial systems and 17 large open source systems. In these experiments, we
vary the length and age of the history used to mine software change impact, and assess how

Communicated by: Gabriele Bavota and Michaela Greiler

P< Leon Moonen
leon.moonen @computer.org

Thomas Rolfsnes
thomgrol @simula.no

Dave Binkley
binkley @cs.loyola.edu

Stefano Di Alesio
stefano@simula.no

Simula Research Laboratory, Oslo, Norway

2 Loyola University Maryland, Baltimore, MD, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9588-z&domain=pdf
http://orcid.org/0000-0002-1761-6771
mailto:leon.moonen@computer.org
mailto:thomgrol@simula.no
mailto:binkley@cs.loyola.edu
mailto:stefano@simula.no

Empir Software Eng (2018) 23:2362-2397 2363

this affects precision and applicability. Results from the study are used to derive practical
guidelines for choosing history length and age when applying association rule mining to
conduct software change impact analysis.

Keywords Change impact analysis - Evolutionary coupling - Association rule mining -
Parameter tuning

1 Introduction

When software systems evolve, the interactions in the source code grow in number and com-
plexity. As a result, it becomes increasingly challenging for developers to predict the overall
effect of making a change to the system. Aimed at identifying software artifacts (e.g., files,
methods, classes) affected by a given change, Change Impact Analysis (Bohner and Arnold
1996) has been proposed as a solution to this problem. Traditionally, techniques for change
impact analysis use static or dynamic analysis to identify dependencies, for example, meth-
ods calling or called by a changed method (Law and Rothermel 2003; Ren et al. 2004; Jashki
et al. 2008). However, static and dynamic analysis are generally language-specific, making
them hard to apply to modern heterogeneous software systems (Yazdanshenas and Moonen
2011). In addition, dynamic analysis can involve considerable overhead (e.g., from code
instrumentation), while static analysis tends to over-approximate the impact of a change
(Podgurski and Clarke 1990).

To address these challenges, alternative techniques have been proposed that identify
dependencies through evolutionary coupling (Hassan and Holt 2004; Canfora and Cerulo
2005; Zanjani et al. 2014; Rolfsnes et al. 2016a). In essence, evolutionary coupling exploits
a developer’s inherent knowledge of the dependencies in the system, which manifest them-
selves through commit comments, bug reports, context switches in IDEs, and so on (Canfora
and Cerulo 2005). These couplings differ from those found through static and dynamic anal-
ysis, because they are based on how the software system has evolved over time, rather than
how system components are interconnected.

This paper considers historical co-change between artifacts as the basis for uncover-
ing evolutionary coupling. Known techniques (Zimmermann et al. 2005; Ying et al. 2004;
Kagdi et al. 2006; Rolfsnes et al. 2016a) for mining evolutionary couplings from artifact
co-changes build on association rule mining (or association rule learning) (Agrawal et al.
1993), and differ in the way in which association rules are generated from the history. Nev-
ertheless, key to all such techniques is the history learned from. There are two main factors
related to the history that impact the mined rules: (1) the history length, the number of
transactions in the history considered while mining co-change patterns, and (2) the history
age, the number of transactions that have occurred since these patterns were mined. Thus
with history length we explore how much history is considered, while with history age we
explore how “out of date” the selected history has become. The resulting rules directly affect
the quality of any change impact analysis based on mined evolutionary coupling. However,
while reviewing the literature, we found that the effects of history length and age on mined
association rules have not been systematically studied. We address this shortcoming.

Contributions This paper builds upon our previous work that explored the extent to which
history length and age affect the quality of software change impact analysis via association
rule mining (Moonen et al. 2016a). We present a series of systematic experiments using

@ Springer

2364 Empir Software Eng (2018) 23:2362-2397

the change histories of two large industrial systems and 17 large open source systems. In
particular, this paper extends our previous work in the following key respects: (1) We extend
our analysis to include two more state-of-the-art software change mining techniques, CO-
CHANGE and ROSE, in addition to the TARMAQ technique covered in our previous work. (2)
We refine the change histories used in the analysis from a coarse-grained file-level to a more
practical fine-grained level consisting of method-level change information for all parseable
source-code, and file-level change information for any remaining un-parseable files. (3)
We include an additional longitudinal study that considers change histories covering the
complete evolution history of seven open source systems selected because their histories are
significantly longer (up to 540000 transactions) than the histories considered earlier. (4)
We include a new research question that investigates the stability of impact analysis quality
throughout the evolution history given a particular history length and history age. (5) We
strengthen the power of the statistical analysis used to address all our research questions.
(6) Finally, we extend our discussion of background material, threats to validity, and related
work. We use the results from these investigations to derive practical guidelines for selecting
an appropriate system-specific value for history length and for determining at what age
a model has sufficiently deteriorated to benefit from rebuilding. The guidelines enable a
team of engineers to best exploit association rule mining for change impact analysis in their
specific context.

Overview Section 2 provides background on mining evolutionary coupling. Section 3
presents our research questions. Section 4 describes the setup of our empirical investigation,
whose results are presented in Section 5. Finally, Section 6 discusses the threats to validity,
Section 7 presents related work, and Section 8 provides some concluding remarks.

2 Mining Software Change Impact

We use historical co-change between artifacts to uncover evolutionary coupling. Such co-
change data can, for example, be found as revisions in a project’s version control system
(Eick et al. 2001), as fixes to a bug in an issue tracking system (Gethers et al. 2011), or
by instrumenting the development environment (Robbes et al. 2008). Most techniques that
uncover evolutionary coupling from co-change data build on association rule mining, an
unsupervised learning technique that discovers relations between artifacts (referred to as
items in the more general context) of a dataset (Agrawal et al. 1993).

Association rules are implications of the form A — B, where A is referred to as the
antecedent, B as the consequent, and A and B are disjoint sets. For example, consider the
classic application of analyzing shopping cart data: if multiple transactions include bread
and butter then a potential association rule is bread — butter, which can be read as “if you
buy bread, then you are likely to buy butter.”

While mining evolutionary coupling from historical co-change data we consider two
artifacts: first, the files and methods of a system1 and, second, the sequence (history) of
transactions, 7. This history is made up of commits to the versioning system, where a

INote that various granularity choices are possible since the algorithms are granularity agnostic; if fine-
grained co-change data is available (or computable), the same algorithms will relate methods or variables
just as well as more coarse-grained files. In this paper we consider a practical fine-grained level that uses
method-level information where possible (i.e., for source files that can be parsed, as discussed later in the
paper), and file-level information otherwise (e.g., for test plans, build files, and configuration files).

@ Springer

Empir Software Eng (2018) 23:2362-2397 2365

transaction T € .7 is the set of artifacts that were either changed or added while addressing
a given bug fix or feature addition, hence creating a logical dependence between them (Gall
et al. 1998).

As originally defined (Agrawal et al. 1993), association rule mining generates rules that
express patterns in a complete data set. However, some applications can exploit a more
focused set of rules. Targeted association rule mining (Srikant et al. 1997) focuses the gen-
eration of rules by applying a constraint. An example constraint specifies that the antecedent
of all mined rules belongs to a particular set of files, which effectively reduces the number
of rules that need to be created. This reduction drastically improves the execution time of
rule generation (Srikant et al. 1997).

When performing change impact analysis, rule generation is constrained based on a
change set, also known as a query. For example, the set of modified artifacts since the last
commit. In this case, only rules with at least one changed artifact in the antecedent are cre-
ated. The resulting impacted artifacts are those found in the rule consequents. Thus, the
output of change impact analysis (the impact set) is the set of artifacts that are historically
changed alongside the elements of the change set.

Only a few targeted association rule mining algorithms have been considered in the
context of change impact analysis: the ROSE algorithm by Zimmermann et al. (2005), the
FP-TREE algorithm by Ying et al. (2004), the CO-CHANGE algorithm by Kagdi et al. (2006),
and the TARMAQ algorithm introduced in our earlier work (Rolfsnes et al. 2016a). These
algorithms differ in terms of constraints on how the query is matched against the trans-
actions of the history. For example, given a change set {a, b, c}, ROSE and FP-TREE only
uncover those artifacts that ever change in the history together with all artifacts in the query
{a, b, c}. This strict matching constraint is aimed at obtaining a more precise impact set,
but an analysis of the algorithm’s applicability showed that the constraint also prevents the
algorithms from producing an answer more often than not (Rolfsnes et al. 2016a). In con-
trast, CO-CHANGE uncovers artifacts that ever change in the history together with any of a,
or b, or c. This more lenient constraint is aimed at giving more answers, which are, however,
potentially noisy; since the answers are only based on one matching element, they can have
little relation to the full query. Finally, TARMAQ reports the artifacts that have co-changed
with largest possible subset of the query, a constraint aimed at dynamically balancing the
precision of a complete match with improved applicability (Rolfsnes et al. 2016a). In cases
where a match of the complete query is possible, ROSE, FP-TREE, and TARMAQ will give
the exact same result. In cases where only a subset of the query can be matched, ROSE and
FP-TREE fail to produce an impact set, while TARMAQ provides the impact set that results
from the largest possible match between the query and the change history.

3 Research Questions

It is regularly surmised in the mining literature (Graves et al. 2000; Zimmermann et al. 2005;
Hassan 2008) that learning from too short or too long a history (in our case to few or two
many commits) results in a suboptimal outcome, respectively because not enough knowl-
edge about the system is uncovered, or because outdated information introduces noise. We
aim to better understand the influence of history length via the following research question:

RQ 1 What influence does history length have on impact analysis quality?

We refine RQ 1 using the following sub-questions:

@ Springer

2366 Empir Software Eng (2018) 23:2362-2397

RQ 1.1 Can we identify a lower bound on the history length that is needed to learn enough
about the system to produce acceptable impact analysis results?

RQ 1.2 Do we see a diminishing return in impact analysis quality as history length
increases?

RQ 1.3 Can we identify an upper bound on history length where outdated knowl-
edge starts to negatively affect our analysis causing quality to decrease below
acceptable levels?

A closely related aspect is history age, which we define as the number of transactions that
have occurred since the most recent transaction of the history used to conduct the analysis.
History age basically tells us how long a model can successfully be used to make predictions
regarding a system. Knowledge about the quality of impact analysis based on older histories
gives valuable input regarding the feasibility of an incremental approach that reuses older
association rules.

RQ 2 What influence does history age have on impact analysis quality?
We refine RQ 2 using the following sub-questions:

RQ 2.1 Can we identify an upper bound on the history age beyond which the generated
model has grown too old and can no longer produce acceptable impact analysis
results?

RQ 2.2 s there a point at which impact analysis quality ceases to deteriorate as history
age increases?

Next, we investigate the possibility of providing project-specific advise for setting the values
of history length and history age:

RQ 3 Can we predict good values for history length and age for a given software-system
based on characteristics of its change-history (such as the average transaction size
and the number of developers)?

Finally, we investigate stability by considering the sensitivity of the algorithms using a
common history length and history age at different points in the system’s evolution history:

RQ4 How is impact analysis quality throughout the evolution history affected by
choosing a fixed history length and history age?

Scope of Investigation To ensure a complete understanding, we will initially investigate
the effects of history length and age at a coarse level, and progressively zoom in at finer
levels of granularity for areas of interest indicated by the coarse study. Moreover, based on
our initial results (Moonen et al. 2016a) with respect to RQ 1.3, this paper includes an addi-
tional longitudinal study that considers the complete evolution history of seven open source
systems. These systems were selected because their available change history is significantly
longer than the histories available for other systems. This combination allows us to cover
both the width of a substantial set of systems and the depth of a long evolution history.

4 Empirical Study

We perform a comprehensive empirical study to assess the effects of history length and age
on the quality of change impact analysis through mined evolutionary coupling. To consider

@ Springer

Empir Software Eng (2018) 23:2362-2397 2367

the influence that the mining algorithm has on the study, we experiment with three of the
four algorithms introduced in Section 2 (we omit FP-TREE because it produces the same
impact sets as ROSE). The goal of our study is to answer the research questions introduced
in Section 3 by controlling the history length and age while mining change impact on several
large software systems.

The remainder of this section details the design of our empirical study and is organized
as follows: Section 4.1 introduces the software systems included in the study. Section 4.2
describes the strategy we use to systematically vary history length and age. Sections 4.3 to
4.5 describe how we use targeted association rule mining to generate change impact sets
for a change set (i.e., a query) of artifacts. Finally, Section 4.6 introduces the two measures
used to evaluate the quality of the generated change impact sets.

4.1 Subject Systems

To assess targeted association rule mining in a variety of conditions, we selected 19 large
systems having varying characteristics, such as size and frequency of transactions, num-
ber of artifacts, and number of developers. Two of these systems come from our industry
partners, Cisco Norway and Kongsberg Maritime (KM). Cisco Norway is the Norwegian
division of Cisco Systems, a worldwide leader in the production of networking equipment.
We consider their software product line for professional video conferencing systems. KM is
a leader in the production of systems for positioning, surveying, navigation, and automation
of merchant vessels and offshore installations. We consider a common software platform
KM uses across various systems in the maritime and energy domain. The other 17 systems
are all well known open-source projects.

Table 1 shows an overview of the systems, which includes various characteristics illus-
trating their diversity and a summary of the programming languages used as an indication of
heterogeneity. For each system, we extracted the 50 000 most recent transactions (commits).
This extraction covers vastly different time spans across the systems, ranging from almost
20 years in the case of HTTPD, to a little over 10 months in the case of the Linux kernel.

The table shows that the systems vary from medium to large size, with almost 300 000
different files for one system, nearly 768 000 artifacts in another, and almost 3 500 develop-
ers contributing to a third. For each system we extracted the following seven demographic
characteristics that we expect to be useful for answering RQ 3:

1. Number of (unique) artifacts appearing in the history of a system;
Average Commit Size: the average number of artifacts appearing in a transaction in the
history of a system;

3. Number of Developers who committed at least one transaction in the history of a
system;

4. Mode and Median Inter-Commit Time: the inter-commit time is the time between two
commits by the same developer, measured as a number of commits;

5. Average and Median Commit Streaks: a commit streak is the number of consecutive
commits by the same developer in the history of a system.

4.2 History Length and Age
Given that the time span covered by 50 000 commits varies considerably across the systems
in our study, we choose to express history length and age as a number of transactions, rather

than using calendar time. This sets the same baseline for each system, enabling a meaningful
comparison of the effects of history length and age across systems.

@ Springer

2368

Empir Software Eng (2018) 23:2362-2397

Table 1 Characteristics of the evaluated software systems (based on our extraction of the most recent 50 000

transactions for each)

Software system History Unique Languages used*

(in yrs) # files
CPython 12.05 7725 Python (53%), C (36%), 16 other (11%)
Mozilla Gecko 1.08 86650 C++ (37%), C (17%), JavaScript (21%), 34 other (25%)
Git 11.02 3753 C (45%), shell script (35%), Perl (9%), 14 other (11%)
Apache Hadoop 6.91 24607 Java (65%), XML (31%), 10 other (4%)
HTTPD 19.78 10019 XML (56%), C (32%), Forth (8%), 19 other (4%)
IntelliJ IDEA 2.61 62692 Java (71%), Python (17%), XML (5%), 26 other (7%)
Liferay Portal 0.87 144792 Java (71%), XML (23%), 12 other (4%)
Linux Kernel 0.77 26412 C (94%), 16 other (6%)
LLVM 4.54 25600 C++ (71%), Assembly (15%), C (10%), 16 other (6%)
MediaWiki 11.69 12252 PHP (78%), JavaScript (17%), 11 other (5%)
MySQL 10.68 42589 C++ (57%), C (18%), JavaScript (16%), 24 other (9%)
PHP 10.82 21295 C (59%), PHP (13%), XML (8%), 24 other (20%)
Ruby on Rails 11.42 10631 Ruby (98%), 6 other (2%)
RavenDB 8.59 29245 C# (52%), JavaScript (27%), XML (16%), 12 other (5%)
Subversion 14.03 6559 C (61%), Python (19%), C++ (7%), 15 other (13%)
WebKit 333 281898 HTML (29%), JavaScript (30%), C++ (26%),

23 other (15%)

Wine 6.60 8234 C (97%), 16 other (3%)
Cisco Norway 243 64974 C++, C, C#, Python, Java, XML, other build/config
Kongsberg Maritime 15.97 35111 C++, C, XML, other build/config
Software system Unique Avg. # artifacts Nr. of Mode Median Avg. Median

artifacts per commit Devs Inter- Inter- Commit Commit

Commit Commit Streak Streak

CPython 30090 4.52 159 0 0 5.97 4
Mozilla Gecko 231850 12.28 1047 0 11 2.66 1
Git 17716 3.13 1404 0 0 2.22 1
Apache Hadoop 272902 47.79 126 0 5 2.63 2
HTTPD 29216 6.99 119 0 1 7.85 5
IntelliJ IDEA 343613 12.60 194 0 4 2.58 1
Liferay Portal 767955 29.90 212 0 2 6.26 2
Linux Kernel 161022 5.50 3256 0 0 3.10 1
LLVM 66604 591 530 0 6 3.18 2
MediaWiki 12267 3.31 541 0 1 1.65 1
MySQL 136925 10.66 274 0 0 36.90 2
PHP 53510 6.74 471 0 0 3.33 2
Ruby on Rails 10631 2.56 3497 0 1 0.99 0
RavenDB 139415 18.18 259 0 0 2.84 1
Subversion 46136 6.36 91 0 1 5.95 4

@ Springer

Empir Software Eng (2018) 23:2362-2397 2369

Table 1 (continued)

Software system Unique Avg. # artifacts Nr.of Mode Median Avg. Median
artifacts per commit Devs Inter- Inter- Commit Commit
Commit Commit Streak Streak
WebKit 397850 18.12 393 0 12 2.68 2
Wine 126177 6.68 517 0 0 3.15
Cisco Norway 251321 13.62 - - - - -
Kongsberg Maritime 35111 5.08 - - - - -

* languages used by open source systems are from http://www.openhub.net

percentages and demographics for the industrial systems are not disclosed.

We refer to a fixed combination of history length and age as a scenario. In our coarse-
grained study, we examine 24 scenarios pairing history lengths of 5000, 15 000, 25 000, and
35000 commits with ages of zero (no age), 1 000, 2 000, 3 000, 4 000 and 5 000 commits.

Preliminary results of the coarse-grained study highlighted large variations in change
impact analysis quality for small length and age values, finding that the quality rapidly
decreases with history aging, while increasing with longer histories. To zoom in on these
areas, we conduct two additional fine-grained studies in which we respectively investigate
small history lengths (for a fixed age of zero) and small ages (for a fixed history length of
35000 commits). In each of the studies, we examine three intervals of progressively finer
granularity for the variable of interest: (a) from O to 2000 commits, in steps of 100 com-
mits; (b) from 0 to 200 commits, in steps of 10 commits; (c) from O to 20 commits, in
steps of 1 commit. Note that we omit history length zero because, trivially, no association
rules can be mined from an empty history. Thus, we consider 60 scenarios for small history
lengths and age zero, and 63 scenarios for small ages and a history of 35000 commits. We
refer to the fine-grained collections of scenarios characterized by each of these ranges as
lengthX and ageX, where length and age specify the context where the range is used, and
X specifies the upper bound of the range. For example, age20 represents the fine-grained
collection containing the scenarios with history length 35000 and age in [0, 1, 2, ...20].
To investigate fine-grained variations on a larger scale, we also consider the collection
length35k, which varies history length from 0 to 20 in steps of 1 commit, from 20 to 200
commits in steps of 10 commits, and then from 200 to 35000 commits in steps of 100
commits.

We do not consider a similar large interval for history age, as the preliminary coarse-
grained study did not show significant variations in change impact analysis quality for age
values larger than about 2 000 commits.

Finally, based on our initial findings (Moonen et al. 2016a), this paper adds a longitudi-
nal study to get a more conclusive answer to RQ 1.3. In this study we analyze the complete
evolution history of seven systems to better understand if there is an upper-bound on history
length where outdated knowledge starts to negatively affect impact analysis quality. Table 2
gives an overview of the characteristics of the seven systems that were used in this inves-
tigation, which were selected because of their significantly longer evolution histories. The
scenarios considered in the longitudinal study fix age at zero and consider history lengths
from 10000 up to the maximum available history for each system (column two of Table 2)
in steps of 10 000 commits.

@ Springer

http://www.openhub.net

2370 Empir Software Eng (2018) 23:2362-2397

Table 2 Characteristics of the seven software systems selected for the longitudinal study (ordered by
increasing number of available transactions for each)

Software system Available History Unique # Avg. # artifacts
commits (in yrs) of artifacts per commit
Wine 110950 22.81 227223 8.02
LLVM 118967 14.88 106185 5.07
IntelliJ] IDEA 159020 11.47 1083032 17.23
Liferay Portal 171507 10.01 1581784 26.95
‘WebKit 171604 14.64 808437 17.34
Mozilla Gecko 430127 18.07 1016343 10.87
Linux Kernel 542098 10.99 953194 6.50

4.3 History Filtering

One challenge faced by association rule mining is that large transactions lead to a combina-
torial explosion in number of association rules (Agrawal et al. 1993). Fortunately, as seen in
Fig. 1, which provides violin plots of transaction size for the individual systems, transaction
sizes are heavily skewed toward smaller transactions. Unfortunately, as also seen in the vio-
lin plots, there exist outlier transactions containing 10 000 or more artifacts. To combat the
combinatorial explosion challenge raised by such large commits, it is common to filter the
history by removing transactions larger than a certain size (Ying et al. 2004; Zimmermann
et al. 2005; Alali 2008; Kagdi et al. 2013). Filtering reduces noise by removing large trans-
actions that are likely not relevant for evolutionary coupling, such as mass license updates
or version bumps.

In an attempt to reflect most change impact analysis scenarios, we employ a quite liberal
filtering and remove only those transactions larger than 300 artifacts. The rational behind
choosing this cutoff is that for each program at least 99% of all transactions are smaller then
300 artifacts. In most cases, the percentage is well above 99% of the available data.

10000 o

1000 4
3004
100 1

[$)]
o
1

104
5
2
14

Transaction size distribution (log10)

[

<«

Fig. 1 An overview of the distributions of transactions sizes for each subject system

@ Springer

Empir Software Eng (2018) 23:2362-2397 2371

4.4 Query Generation and Execution

Conceptually, a query Q represents a set of artifacts that a developer changed since the last
synchronization with the version control system. Recall that the main assumption behind
evolutionary coupling is that artifacts that frequently change together are likely to depend
on each other. The key idea behind our evaluation is to sample a transaction 7 from the
history, and then randomly partition it into a non-empty query Q and a non-empty expected

outcome EE' T \ Q. This allows us to evaluate to what extent our change impact analysis
technique is able to estimate E from Q.

From each filtered history we take a sample of 1100 recent transactions,? with the con-
straint that the transaction must contain at least two artifacts. This constraint ensures that, at
the minimum, a transaction can be split into a query of at least one artifact and an expected
outcome of at least one. Each of these transactions is randomly split into a non-empty query
and a non-empty expected outcome. The resulting 1100 queries are executed using each of
the three algorithms and each of (a) the 24 scenarios in the coarse-grained study, (b) the 123
scenarios in the fine-grained studies, and (c) the 385 scenarios in the length35k study. This
setup yields a total of 1100-3 - (24 4+ 123 +386) = 1758 900 data points for each of the 19
systems, where each data point is the estimated impact set for a given query (33.42 million
data points in total). The longitudinal study adds another 151 scenarios for the seven sys-
tems considered, yielding an additional 1100 - 3 - 151 = 498 300 data points which brings
the total close to 34 million. Note that in each of the scenarios, we only mine from transac-
tions that are older than the transaction T used to generate the query. This is done to respect
the historical time-line for the query and the transactions used to address that query.

4.5 Estimating the Impact of a Change

All queries are executed using each of the three rule mining algorithms. Recall from Section 2
that, in the context of targeted association rule mining, executing a query Q entails the
generation of a set of association rules. The impact set of Q is the list of consequents of the
rules generated for Q, where such rules are ranked according to their interestingness. While
a number of interestingness measures have been defined over the years, in our study we
rank association rules based on support and confidence (Agrawal et al. 1993). The support
of a rule is the percentage of transactions in the history containing both the antecedent and
the consequent of a rule. Intuitively, high support suggests that a rule is more likely to hold
because there is more historical evidence for it. On the other hand, the confidence of a rule
is the number of historical transactions containing both the antecedent and the consequent
divided by the number of transactions that contain only the antecedent. Intuitively, the higher
the confidence, the higher the chance that when items in the antecedent of a rule change,
the items in the consequent also change. We configure each mining algorithm to rank rules
using support, breaking ties based on confidence. This strategy has been applied in several

2For a normally distributed population of 50000, a minimum of 657 samples is required to attain 99%
confidence with a 5% confidence interval that the sampled transactions are representative of the population.
Since we do not know the distribution of transactions, we correct the sample size to the number needed for
a non-parametric test to have the same ability to reject the null hypothesis. This correction is done using
the Asymptotic Relative Efficiency (ARE). As AREs differ for various non-parametric tests, we choose the
lowest coefficient, 0.637, yielding a conservative minimum sample size of 657/0.637 = 1032 transactions.
Hence, a sample size of 1100 is more than sufficient to attain 99% confidence with a 5% confidence interval
that the samples are representative of the population.

@ Springer

2372 Empir Software Eng (2018) 23:2362-2397

association rule mining approaches for software change impact analysis (Ying et al. 2004;
Zimmermann et al. 2005; Alali 2008; Kagdi et al. 2013). Note that we consider only the
largest interestingness score for each consequent. This means that, for the purpose of this
study, we do not consider rule aggregation strategies (Rolfsnes et al. 2016b).

4.6 Quality Measures

We empirically assess the quality of the change impact sets generated using two measures,
Average Precision (AP) and Applicability.

Definition 4.1 (Average Precision) Given a query Q, its impact set /o, and expected
outcome E, the average precision AP of I is given by

ol
> Pk x Ark))

k=1

AP(Ip) &

where P (k) is the precision calculated on the first k items in the list (i.e., the fraction of
correct artifacts in the top k artifacts), and Ar (k) is the change in recall calculated only on
the k — 1th and kth artifacts (i.e., the number of additional correct items predicted compared
to the previous rank) (Baeza-Yates and Ribeiro-Neto 1999).

As an overall performance measure for a scenario (i.e., for a given history length and age)
across a system, we use the Mean Average Precision (MAP) computed over all the queries
executed for the given scenario.

Average Precision is a standard measure commonly used in Information Retrieval to
assess the extent to which a list of retrieved documents includes the relevant documents for
a query. However, when using association rule mining, it is not always possible to generate
such a list. This can happen, for example, when there are no transactions in the history
whose items changed at least once with an item in the query. While this scenario is unlikely
for long histories, the chance of finding a previous transaction involving an artifact from
the query decreases as the history length shortens. Therefore, we define Applicability as
the percentage of queries for which an impact set can be generated (i.e., where the history
contains transactions involving items from the query).

4.7 Bootstrapping Procedure

The distribution of AP values is unsurprisingly highly left skewed because these values drop
quickly when there is no correct artifact in the first few positions. For example, consider
three ranked lists for a query whose expected outcome includes a single artifact. In the first
list the correct artifact is first, in the second it is second, and in the third it is third. In this
case the AP values are 1.00, 0.50 and 0.33 respectively. AP values can drop even faster if
there is more than one relevant artifact. Thus most AP values reside to the left (are closer to
0.0 than to 1.0). However, recommendations also frequently are of very high quality mean-
ing that many true positives are found in the very first positions in the recommendation,
this results in a right skew in the AP values as well. An investigation of the residuals fol-
lowing an ANOVA fit proved that residuals were not normally distributed. The nature of
our study also requires looking at various 2-way interactions, which is infeasible in certain
cases when using non-parametric methods. In particular, as weights are replaced by ranks in
non-parametric methods, it is not possible to investigate interactions which do not involve

@ Springer

Empir Software Eng (2018) 23:2362-2397 2373

sign changes. For example, in relation to our experiment an interaction where a change in
history age has a larger negative effect on one subject system with regards to another can
not be studied non-parametrically.

For these reasons we apply bootstrapping to approximate the sampling distribution.
Doing so preserves centrality (i.e., the mean does not change), but yields an approximately
normal distribution of both the AP values and more importantly of the residuals following
an ANOVA.

In order to generate the sampling distribution we sample 100 AP values with replacement
and calculate their mean, we do this 1000 times for each unique combination of factors. We
found that a sample size of 100 best approximated a normal distribution, where lower sam-
ple sizes produced mostly unchanged AP distribution, while higher sample sizes produced a
distribution only consisting of the approximate mean of the total population (resulting from
the large amount of available data).

4.8 Data Set for Replication Studies

A data set consisting of both the unprocessed results and measures and their bootstrapped
counterparts, for all open source systems analyzed in our study, has been archived on
Zenodo with DOI: https://doi.org/10.5281/zenodo.1083964.

5 Results and Discussion

This section first presents the results of the coarse-grained and then the fine-grained analysis
of history length and age as described in Section 4. In particular, the results of the coarse-
grained study motivate the two fine-grained studies: (1) the impact of various history lengths
at the fixed age zero and (2) the impact of various history ages for the fixed history length
35000.

Note that one challenge that shorter history lengths bring is a higher likelihood that for
a given query no other commit from the history includes any artifacts from the query. In
such cases TARMAQ, CO-CHANGE, and ROSE are each not applicable as they are unable to
generate an impact set. While it is possible to assign an AP of zero to such cases, doing so
is harsh because the algorithm can correctly inform the user that it is not applicable. From
a user perspective, this is substantially better than an incorrect impact set (where AP is
truly zero). To account for this, we report three things: applicability, MAP when applicable
(the value of MAP computed using only applicable queries), and overall MAP (the value of
MAP computed using all queries where AP is assumed to be zero when the algorithm is not
applicable).

5.1 Coarse-Grained Study

Table 3 presents the results of an ANOVA explaining AP using the data of the coarse-grained
study. For this initial look we include all scenarios, i.e., not only the applicable scenarios
which will be explored later. In addition to history length and age, which are the main
variables of interest, we include subject system and algorithm as explanatory variables to
allow the statistical model to account for system or algorithm specific variations. We also
include all two-way interactions to account for possible interaction effects.

With extremely small p-values and F-Values substantially larger than one, all four pri-
mary explanatory variables are highly statistically significant. This is also reflected by the

@ Springer

https://doi.org/10.5281/zenodo.1083964

2374 Empir Software Eng (2018) 23:2362-2397

Table 3 ANOVA results for the coarse-grained study

Explanatory variable Partial eta? Sum Sq Df F-value p-value

subject system 0.76 2973.47 18 206196.51 <0.00001
algorithm 0.36 536.86 2 335061.64 <0.00001
history length 0.20 236.63 3 98453.51 <0.00001
age 0.63 1574.33 5 393022.32 <0.00001
subject system : algorithm 0.05 49.12 36 1703.01 <0.00001
subject system : history length 0.06 58.89 43 1709.41 <0.00001
subject system : age 0.18 204.58 90 2837.39 <0.00001
algorithm : history length 0.00 3.63 6 755.55 <0.00001
algorithm : age 0.01 9.79 10 1221.59 <0.00001
history length : age 0.01 5.80 15 482.59 <0.00001

effect sizes (shown as partial eta?). A QQ-plot of the residuals (not shown) shows minimal
deviation from the diagonal, indicating a near normal distribution.

While statistically significant, in general the interactions have only a minor impact, as
shown by their relatively small F-values and effect sizes. In particular, there is only a very
small interaction between the main variables of interest, history length and age, which is
just visible in the different slopes of the lines in the interaction plots shown in Fig. 2. These
graphs also show that the MAP values for age zero are considerably higher than those of
the other ages, which are bunched relatively close together. The gap going from age zero to
age 1000 is the motivation for the fine-grained study zooming in on the smaller ages. One
interaction that is a bit larger is the one between subject system and age, indicating that
the impact of history age on impact analysis quality is to some extent system dependent, in
contrast the impact of history length on algorithm boarders on negligible.

Table 4 reports Tukey’s Honest Significant Difference (HSD) test for the ANOVA of
Table 3 applied to history length and age. Tukey’s test partitions values of history length and
age in groups in such a way that values belonging to the same group do not yield statistically

A 0 —=- 2000 4000
e
9 1000 - —= 3000 5000
Co-Change ROSE TARMAQ
0.25 1
0.20 4
% ________
S 0.151 /;:‘——" - SerzTom
%7 PR 7
IO B N B Pt T iy = =] z7
0.10 e o T

5000 15000 25000 35000 5000 15000 25000 35000 5000 15000 25000 35000
History Length

Fig. 2 Interaction plots of Age by History Length for the various algorithms

@ Springer

Empir Software Eng (2018) 23:2362-2397 2375

Table 4 Tukey’s HSD for History Length and History Age (each sorted on decreasing overall MAP values)

History length History age

Length MAP Group Age MAP Group

35000 0.1567 a 0 0.2185 a

25000 0.1530 b 1000 0.1430 b

15000 0.1423 [2000 0.1312 c

5000 0.1155 d 3000 0.1225 d
4000 0.1155 e
5000 0.1096 f

significantly different overall MAP values. The test suggests three main conclusions: First,
there are significant differences between all levels of each variable. Second, for history
length, the best performance is attained by the largest length value of 35 000. We will use
this particular length value later in the fine-grained study of history age (Section 5.2.2).
Finally, for history age, the best performance is attained by age zero, which we hence use in
the fine-grained study of history length (Section 5.2.1). Both the graphs and Tukey’s HSDs
indicate that very recent commits have a strong influence on the ability to predict change
impacts. This observation motivated our fine-grained study of small history length and age.
In addition, we consider history lengths longer than 35 000 commits in Section 5.4.

Focusing on the age zero data only, Fig. 3 shows the applicability of TARMAQ, Co-
CHANGE, and ROSE, along with the overall MAP and the MAP when applicable. The
applicability of all three follows the expected trend: the algorithm grows more applicable
as the history length increases. The results of the coarse-grained study also suggest that the
overall MAP and the MAP when applicable are very similar. However, the graphs do hint
that the difference between the two increases as the history length shortens.

Applicability MAP when applicable Overall MAP
Co-Change ROSE TARMAQ
100% 4
75%
50% 4
25% A
0%
10000 20000 30000 10000 20000 30000 10000 20000 30000

History Length

Fig. 3 Trends in the coarse-level study of history length (with age = 0) for the various algorithms

@ Springer

2376

Empir Software Eng (2018) 23:2362-2397

Table 5 ANOVA results for the fine-grained study of length35k (with age = 0)

Explanatory variable Partial eta’ Sum Sq Df F value p-value
Subject System 0.68 5641.18 18 418709.25 <0.0001
Algorithm 0.24 854.90 2 571083.84 <0.0001
History Length 0.72 6879.40 55 167110.18 <0.0001
Subject System: Algorithm 0.04 113.01 36 4194.01 <0.0001
Subject System:History Length 0.31 1212.13 990 1635.79 <0.0001
Algorithm:History Length 0.03 93.80 110 1139.22 <0.0001

5.2 Fine-Grained Studies

The coarse-grained analysis motivates the study of small history lengths and small his-
tory ages. The results of these studies are presented and discussed in the following two
subsections.

Table 6 Tukey’s HSD for overall MAP achieved on the fine-grained length2000, length200, and length20
collections (each sorted by decreasing MAP values)

length 2000 length200 length20

Length MAP Group Length MAP Group Length MAP Group
2000 0.1857 a 200 0.1329 a 20 0.0829 a

1900 0.1844 b 190 0.1319 b 19 0.0818 b

1800 0.1832 c 180 0.1314 b 18 0.0805 c

1700 0.1814 d 170 0.1298 c 17 0.0798 d

1600 0.1799 e 160 0.1289 d 16 0.0783 e

1500 0.1786 f 150 0.1271 e 15 0.0769 f

1400 0.1773 g 140 0.1261 f 14 0.0756 g

1300 0.1751 130 0.1241 g 13 0.0742 h

1200 0.1737 120 0.1224 h 12 0.0727 i

1100 0.1719 110 0.1200 i 11 0.0708 j
1000 0.1691 k 100 0.1181 j 10 0.0692 k
900 0.1670 90 0.1155 k 9 0.0675 1
800 0.1648 m 80 0.1124 1 8 0.0657 m
700 0.1614 n 70 0.1097 m 7 0.0635 n
600 0.1583 o 60 0.1059 n [§ 0.0609 o
500 0.1538 p 50 0.1019 o 5 0.0576 p
400 0.1486 q 40 0.0968 p 4 0.0539 q
300 0.1422 r 30 0.0913 q 3 0.0493 r
200 0.1343 s 20 0.0834 r 2 0.0427 S
100 0.1185 10 0.0696 s 1 0.0321 t

@ Springer

Empir Software Eng (2018) 23:2362-2397 2377

5.2.1 History Length

An ANOVA for the fine-grained study of history lengths using age zero, shown in Table 5,
finds largely the same patterns as the coarse-grained analysis. However, with the effects of
age factored out, the effects of history length become more prominent (e.g., compare the two
F-values). Furthermore, from history length’s interactions we also see that the differences
between individual systems has grown more prominent. Tables 6 and 7 show the results of
Tukey’s HSD for length2000, length200, and length20 for respectively overall MAP and
MAP when applicable. The results show that for overall MAP, statistically significantly
higher MAP values are produced by long histories, while for MAP when applicable the
reverse is true. Note that because each column represents a separate sample of commits,
the MAP values should not be directly compared between columns. Only the trends are
comparable.

Thus, the data suggests two contrasting trends: on the one hand the overlap between the
artifacts contained in the history and those of the query progressively increases as history
length increases, which leads to longer histories yielding better overall MAP values. On
the other hand the relatedness of the artifacts contained in the history and those of a query
progressively decreases as history length increases, which leads to short histories yielding
better values for MAP when applicable. An explanation for these contrasting trends is found

Table 7 Tukey’s HSD for MAP when applicable achieved on the fine-grained length2000, length200, and
length20 collections (each sorted by decreasing MAP values)

length 2000 length200 length20

Length MAP Group Length MAP Group Length MAP Group

100 03383 a 10 03765 a 1 04017 a

200 03298 b 20 0.3667 b 2 03989 b

300 0.3224 c 30 0.3602 c 3 0.3949 c

400 0.3196 d 40 0.3513 d 4 0.3929 d

500 0.3165 e 50 0.3488 e 5 0.3886 e

600 0.3138 f 60 0.3449 f 6 0.3870 f

700 0.3118 g 70 0.3426 g 7 0.3850 g

800 0.3106 h 80 0.3397 h 8 0.3832 h

900 0.3086 i 90 0.3385 i 9 0.3801 i

1000 0.3078 j 100 0.3369 j 11 0.3788 j
1100 0.3074 j 110 0.3350 k 10 0.3787 j
1200 0.3060 k 120 0.3335 1 12 0.3780 j
1400 0.3058 kl 130 0.3321 m 13 0.3758

1300 0.3051 Im 140 0.3312 n 14 0.3749 k
1500 0.3047 mn 150 0.3299 o 15 0.3740 1
1800 0.3045 mn 160 0.3292 o 17 0.3733 Im
1600 0.3044 mno 170 0.3277 p 16 0.3730 m
1700 0.3043 no 180 0.3272 Pq 18 0.3718 n
1900 0.3041 no 190 0.3265 q 19 0.3716 no
2000 0.3037 o 200 0.3254 r 20 0.3709 o

@ Springer

2378 Empir Software Eng (2018) 23:2362-2397

in the considerably lower applicability of the algorithms as the history length shortens. This
trade-off can be seen in Fig. 4, which shows the applicability, overall MAP, and MAP when
applicable for the three fine-grained history length datasets. In particular, across all gran-
ularities, applicability and overall MAP show an increasing trend, while the MAP when
applicable shows a decreasing trend. A potential explanation for this trend is found in the
observation that with longer histories there is a higher chance that at least one past trans-
action contains artifacts related to the query, which raises applicability and consequently
overall MAP.

These trends continue with even longer history lengths as shown in Fig. 5, which shows
the data for the length35k collection. The analysis of this figure, combined with the results
of Tukey’s HSD (not shown), allow us to answer RQ 1 as follows.

RQ 1 What influence does history length have on impact analysis quality?

RQ 1.1 Can we identify a lower bound on the history length that is needed to learn enough
about the system to produce acceptable impact analysis results?

Given the leveling off of applicability as history length grows, our analysis suggests
that 25 000 commits is the point at which there is sufficient history to learn enough about

Applicability MAP when applicable Overall MAP
Length 2000 Length 200 Length 20
100% 4
75% g)
|
50% Q
-
25% @
0% 4
100% 4
75%
2
50% - %
25% A
0% 4
100% 4
75% 4 4
. 2
50%)§>
3]
25% A
O% L T T T T T T T T T T T T
500 1000 1500 2000 50 100 150 200 5 10 15 20

History Length

Fig. 4 The fine-grained study’s three history-length scenario collections showing the inverse relation
between MAP and applicability

@ Springer

Empir Software Eng (2018) 23:2362-2397 2379

the system to produce acceptable impact analysis results. To double-check this value, we
computed the set of lengths that produced a MAP value within 1% of the highest MAP value
and then selected the minimum length from this set. The value produced is 24700, which
we round to 25000. Of course those willing to tolerate lower applicability, could consider
shorter histories.

RQ 1.2 Do we see a diminishing return in impact analysis quality as history length
increases?

In short, yes. Overall, the trend for the three algorithms is that the performance increases
up to around 15000 commits where, at seen in Fig. 5, it levels off and remains stable for
longer histories. Therefore, we set the point of diminishing return as 15 000 commits.

RQ 1.3 Can we identify an upper bound on history length where outdated knowl-
edge starts to negatively affect our analysis causing quality to decrease below
acceptable levels?

In short, no. Our analysis of histories up to 35000 transactions does not show any evi-
dence of performance degrading because of older outdated commits. In Section 5.4 we will
revisit this question using even longer histories.

Applicability MAP when applicable Overall MAP

100% o

75%

50%

abueyp-09

25%

0% 4
100% 4

75%

50%

3Sod

25% A

0%
100% 4

75%

50% o

OVINYYL

25% A

0% 4

0 10000 20000 30000
History Length

Fig. 5 Results from the large-scale fine-grained investigation of length35k

@ Springer

2380 Empir Software Eng (2018) 23:2362-2397

5.2.2 History Age

Parallel to Table 3, the ANOVA for the three age collections (not shown), finds age and
subject system to be highly statistically significant. Tables 8 and 9 show the results for
Tukey’s HSD on the collections age2000, age200, and age20 for respectively overall MAP
and MAP when applicable. In both cases, the scenarios all appear in age order, showing
only a few overlapping groups. In all three collections, for both overall MAP and MAP when
applicable, the scenario with age zero performs significantly better than the next greater
age. While the gap in MAP values gets smaller as age grows, the differences is significant
even when going from an age of one to an age of two.

Figure 6 shows the trends for applicability, overall MAP, and MAP when applicable
for the three algorithms. Across the collections, the drop off from age zero is visually evi-
dent. However, it gets progressively less prominent from age2000 to age200, and finally to
age20. Moreover, we see that even though individual values differ, the trends are very simi-
lar across the three algorithms. Based on the fast deterioration of impact analysis quality as
age increases, we do not consider the study of ages larger than 2000 to be relevant (i.e., we
do not include a study comparable to length35k).

Similar to RQ 1, the plots in Fig. 6 and Tukey’s HSD in Tables 8 and 9 enable us to answer RQ 2.

Table 8 Tukey’s HSD for overall MAP achieved on the age2000, age200, and age20 collections (each sorted
by decreasing MAP values)

length 2000 length200 length20

Length MAP Group Length MAP Group Length MAP Group

0 0.2301 a 0 0.2330 a 0 0.2290 a

100 0.1857 b 10 02093 b 1 02204 b

200 0.1798 ¢ 20 02029 ¢ 2 02168 ¢

300 0.1769 d 30 0.1994 d 3 0.2140 d

400 0.1733 e 40 0.1969 e 4 0.2124 e

500 0.1703 f 50 0.1946 f 5 0.2107 f

600 0.1686 g 60 0.1927 g 6 0.2092 g

700 0.1668 h 70 0.1907 h 7 0.2082 h

800 0.1647 i 80 0.1894 i 8 0.2074 i

900 0.1636 j 90 0.1880 j 9 0.2065 j

1000 0.1619 k 100 0.1875 j 10 0.2053 k

1100 0.1605 1 110 0.1865 k 11 0.2047 k

1200 0.1591 m 120 0.1856 1 12 0.2034 1

1300 0.1580 n 130 0.1850 Im 13 0.2033 Im
1400 0.1565 o 140 0.1844 mn 14 0.2026 mn
1500 0.1554 p 150 0.1838 no 15 0.2021 no
1600 0.1542 q 160 0.1832 op 16 0.2014 o
1700 0.1531 r 170 0.1828 p 17 0.2004 p
1800 0.1521 s 190 0.1817 q 18 0.2000 Pq
1900 0.1511 t 180 0.1817 q 19 0.1995 qr
2000 0.1503 u 200 0.1810 q 20 0.1989 r

@ Springer

Empir Software Eng (2018) 23:2362-2397 2381

Table 9 Tukey’s HSD for MAP when applicable achieved on the age2000, age200, and age20 collections
(each sorted by decreasing MAP values)

length 2000 length200 length20

Length MAP Group Length MAP Group Length MAP Group

0 0.2994 a 0 03052 a 0 0.2990 a

100 02650 b 10 02857 b 1 02917 b

200 0.2607 c 20 0.2805 c 2 0.2882 c

300 0.2582 d 30 0.2779 d 3 0.2862 d

400 0.2548 e 40 0.2758 e 4 0.2849 e

500 0.2525 f 50 0.2743 f 5 0.2836 f

600 0.2516 g 60 0.2728 g 6 0.2823 g

700 0.2509 g 70 0.2715 h 7 0.2816 gh

800 0.2488 h 80 0.2703 i 8 0.2809 hi

900 0.2485 h 90 0.2699 i 9 0.2801 ij

1000 0.2474 i 100 0.2687 j 10 0.2794 j

1100 0.2467 ij 110 0.2679 jk 11 0.2794 j

1200 0.2462 jk 120 0.2676 k 12 0.2780 k
1300 0.2456 k 130 0.2666 1 13 0.2776 kl
1400 0.2438 1 140 0.2664 1 14 0.2774 kl
1500 0.2438 1 160 0.2662 1 15 0.2771 Im
1600 0.2425 m 170 0.2659 1 16 0.2763 m
1700 0.2423 m 150 0.2659 1 17 0.2754 n
1800 0.2407 n 180 0.2647 m 18 0.2754 n
1900 0.2400 no 190 0.2644 m 19 0.2750 no
2000 0.2398 o 200 0.2641 m 20 0.2744 0

RQ 2 What influence does history age have on impact analysis quality?

RQ 2.1 Canwe identify an upper bound on the history age beyond which the generated model
has grown too old and can no longer produce acceptable impact analysis results?

Such a bound is a function of one’s tolerance for lost precision, which depends on the use
that the change impact analysis is put to. Similar to the history length analysis, the falloff
in precision is initially quite steep and then tends to gradually narrow. For example, for the
age2000 collection in Table 9, the difference between MAP values for age=0 and age=100
is 12.9%, 1.6% between age=100 and age=200, 0.28% between age=1000 and age=1100,
and only 0.08% between age=1900 and age=2000. Similar trends can be observed in the
other two collections. Starting with the highest achieved MAP when applicable value and
using a 10% tolerance cutoff as an arbitrary maximal acceptable loss, the upper bound for
history age is 40 commits when using the age200 collection. In summary, we conclude there
is a bound on age for RQ 2.1, where the actual value for this bound is a function of the
user’s tolerance and experience.

RQ 2.2 s there a point at which impact analysis quality ceases to deteriorate as history
age increases?

Similar to RQ 2.1, the point of diminishing deterioration is subjective, as it depends on the
cutoff for the MAP values. Following RQ 2.1, we again use a 10% cutoff. The lowest value

@ Springer

2382 Empir Software Eng (2018) 23:2362-2397

Applicability MAP when applicable Overall MAP

Age 2000 Age 200 Age 20

100%

75%

50%

abueyp-0p

25% 4

0% 4
100%

75%

50%

3S0d

25% A

0%
100%

75%

50% A

OVINYVL

25% 4

0% A
0 500 1000 1500 2000 0 50 100 150 200 O 5 10 15 20
Age

Fig. 6 The fine-grained study’s three history-age ranges shown from coarsest to finest

for MAP when applicable in Table 9 is 0.2398 for age 2000. Using this value, the target
value for MAP when applicable is 0.2398 + 10% = 0.2638, which is crossed between age
100 and age 200 in the age2000 collection.? Thus, while the performance is monotonically
decreasing as age increases, it quickly reaches the point beyond which the remaining dete-
rioration is below our practically acceptable tolerance for deterioration. Said another way,
it is possible to find a point beyond which impact analysis quality ceases to deteriorate in a
practically significant way as history age increases.

5.3 Project Characteristics
RQ 3 Can we predict good values for history length and age for a given softwaresystem

based on characteristics of its change-history (such as the average transaction size
and the number of developers)?

30bserve that the MAP values in the three subtables of Table 9 were obtained from three different ran-
domly sampled collections, which explains the variation in MAPs for ages repeated in different collections.
Although these values are within the 5% confidence interval targeted by our sampling approach, it still means
that cutoff values obtained from one collection cannot be used to look up corresponding ages in another
collection, as also shown by the values for age2000 and age200 in Table 9.

@ Springer

Empir Software Eng (2018) 23:2362-2397 2383

RQ 3 aims to support a team of developers working on a specific system by providing
practical guidelines for selecting an appropriate value for history length and for predicting
at what age a model has sufficiently deteriorated to need rebuilding. Thus in contrast to
the previous two research questions, which aim to understand patterns across a wide range
of systems, this question considers predicting values for a specific system. To answer this
question, we build six separate linear regression models, three that predict the value of
history length for TARMAQ, CO-CHANGE, and ROSE, and three that consider age. In both
cases, the set of explanatory variables includes the following system demographics (see
Table 1), which capture aspects of the development history, team, and process: (1) number
of unique artifacts in the change history, (2) average number of artifacts in a commit, (3)
number of developers throughout the change history, (4) mode and median inter-commit
time between two commits by the same developer, (5) average and median length of commit
streak (a streak is a number of consecutive commits by the same developer). The values of
these demographics were obtained by analyzing the change histories for the various systems.

In this analysis, we omit Cisco and KM for which we cannot disclose the demographics.
Also, similar to the analysis in Section 5.1, the regression analysis for history length is
performed using an age of zero, while the regression analysis for age is performed using a
history length of 35 000.

We begin with the three linear regression models for history length. Each requires deter-
mining a target history length for each system. A simple selection would be the history
length that produced the highest overall MAP value. Unfortunately, from the statistical
analysis this value is not unique. Thus, from the set of top-performing history lengths, we
selected the smallest value under the assumption that requiring less history is preferable
(e.g., leads to more efficient impact analysis). In summary, the target value for history length
for each system is determined by applying Tukey’s HSD test and then selecting from the
top group (the ‘a’ group) the smallest history length.

We then fit a linear model to the data using R’s /m function starting with all the explana-
tory variables and then applying backward elimination. The elimination phase removes the
least statistically significant variable and then regenerates a new model. For example, in
TARMAQ’s initial model the variable median inter-commit streak has the highest p-value of
0.74. The elimination step removes this variable and then rebuilds the model. This process
is repeated until only significant explanatory variables remain.

It is also possible to consider interactions between the explanatory variables. Preliminary
work with the demographics made it quite evident that there were interactions among the
explanatory variables. Unfortunately, with only 17 systems there is insufficient data to build
a model that includes all pair-wise interactions. As a compromise an initial model was
generated without any interactions and then interactions were added for each variable having
a p-value less then 0.33. The elimination process is then applied to produce the final model.
Note that in order to maintain a well-formed model variables with p-values greater than
0.05 are retained when they are part of a significant interaction.

The remainder of this investigation first considers TARMAQ before turning to Co-
CHANGE and then finally ROSE. The final model for TARMAQ, shown in Table 10, is
statistically significant having a p-value of 0.000934. The model includes three signifi-
cant explanatory variables and three significant interactions, which makes it challenging
to understand the effects of the variables. One standard approach to doing so looks at the
pair-wise interactions when the third variable takes its mean value. The resulting interac-
tion graphs, shown in Fig. 7, were generated from the model shown in Table 10 using the
following values:

@ Springer

2384 Empir Software Eng (2018) 23:2362-2397

Table 10 Regression model predicting history length for TARMAQ

Explanatory variable Estimate Std. Error t-value p-value
(Intercept) 8859.2 2356.20 3.76 0.00372
Median Inter Commit Time (MICT) 1342.3 740.50 1.81 0.09995
Number of Unique Artifacts (NUA, in 1000’s) 141.5 23.80 5.93 0.00014
Average Number of Artifacts per Commit (ANAC) —673.8 342.20 —1.97 0.07769
MICT : NUA —14.9 3.67 —4.21 0.00180
MICT : ANAC 192.3 75.60 2.54 0.02925
NUA : ANAC -3.1 0.67 —4.59 0.00099
Variable First Quartile ~ Mean Third Quartile
Average Number of Artifacts per Commit (ANAC) 5.5 11.8 12.6

Median Inter Commit Time (MICT) 0.0 2.6 4.0

Number of Unique Artifacts (NUA, in 1000’s) 30.0 167.0 232.0

In addition to providing an affirmative answer to the first half of RQ 3, it is interesting to
consider the parameter estimates found in the model and discuss possible explanations for
the relations between the explanatory variables and the response variable, history length.
Starting with the three explanatory variables, the analysis shows that as median inter-commit
time (MICT) increases a longer history length is needed. A potential explanation of this
relation is working context: it is likely that a developer works on a sequence of related mod-
ifications, yielding a sequence of commits from that developer that contain related artifacts.
When MICT is zero, the commits of the developer tend to follow each other directly in the
history and short history lengths suffice to achieve high-precision impact analysis. As the
value of MICT grows there are an increasing number of interleaved commits from other
developers who have different working contexts, which means that longer history lengths
are needed to include the relevant artifacts and achieve high-precision impact analysis.

The model also shows that as the number of unique artifacts (NUA) increases, so does
the predicted history length. Indeed, the more artifacts contained in a system, the further
apart commits containing artifacts relevant to a query are likely to be, and hence a larger
history is required.

NUA : ANAC (w. MICT at its mean) MICT : NUA (ANAC fixed at its mean) MICT : ANAC (w. NUA at its mean)

30000

25000 — \
20000 /

15000

tory Length

is

Hi

10000

5000

50 100 150 200 0 1 2 3 4 7 9 1
Number of Unique Artifacts Median Inter-Commit Time Average Changes per Commit

Average Changes per Commit —5.5 —11.8 —12.6 Number of Unique Artifacts — 30 —167 —232 Median Inter-Commit Time 0.0 —2.6 —4.0

Fig. 7 Interaction plots for the three interaction terms of the regression model shown in Table 10

@ Springer

Empir Software Eng (2018) 23:2362-2397 2385

Finally, the coefficient associated with average number of artifacts per commit, is neg-
ative, indicating an inverse relationship. In other words, as the average “size” of a commit
increases, the required history length decreases. One explanation for this relation is that
larger commits contain more information per commit. For example, to conclude that chang-
ing a impacts b and ¢ can be derived from the single size-three commit {a, b, c}, but requires
two size-two commits: {a, b} and {a, c}. Another possible explanation is the combination
of working context and commit practices: developers who tend to create large commits are
likely to commit on a task-by-task basis, creating a transaction that contain all the arti-
facts related to a modification task at once. This behavior makes it less likely that there is
information with respect to related artifacts contained in a short history length. Conversely,
developers who split a task in several smaller commits effectively decrease the number of
artifacts per commit and thus spread out artifacts related to their working context over a
larger number of commits, thereby increasing the history length required to achieve high
precision impact analysis.

Figure 7 plots the three interactions. The first shows how the impact of the number of
unique artifacts decreases as the average number of changes per commit increases. The
relative slopes of the lines indicates that this effect is not large, which is also evident from
its small parameter estimate (see the last line of Table 10). Looking at the middle graph,
the relative impact of the number of unique artifacts is more pronounced as evidenced by
the greater difference in the line’s slopes. In this case it is interesting that as this value
increases, the impact of the median inter-commit time approaches zero. Conversely, for
smaller systems the median inter-commit time has a greater influence. Finally, from the third
chart, the average number of changes per commit has a greater impact for smaller median
inter-commit times. While a higher average number of changes per commit brings a need
for less history the reduction is greater them the median inter-commit time is small. The
smallest history requirement comes from larger commits without any intervening commits
from other developers.

While statistically significant with a p-value of 0.0345, the model for CO-CHANGE
omits the median inter-commit time. Perhaps because of its simpler rules, it also includes
smaller parameter estimates (for example the coefficient for the number of unique artifacts
is 141.5 with TARMAQ, but only 60.7 for CO-CHANGE. Like the TARMAQ model the sign
of the average changes per commit and the interaction of the two is negative but again both
have smaller magnitudes (—6.6 and —1.7, respectively). Thus overall, the influences of the
explanatory variables in the CO-CHANGE model are muted relative to the TARMAQ model.

Finally, the ROSE model, which has a p-value of 0.00114, is similar to the TARMAQ
model in that it includes the same explanatory variables and interactions. Furthermore, the
coefficients are very similar (for example, consider the average number of changes per
commit, which is —673.8 in the TARMAQ model and —673.3 in the ROSE model. The largest
difference is the coefficient of median inter-commit time, which in the ROSE model is 1708
compared to 1342 in the TARMAQ model. This difference indicates that ROSE is more
susceptible to changes in the median inter-commit time than TARMAQ: while ROSE needs
less history when commits are clumped by relevance, as commits become more intermixed,
ROSE’s need grows to exceed those of TARMAQ. Finally, taken together with more complex
rules, their appears to be a greater dependence on median inter-commit time.

The second part of RQ 3 looks at predicting how old the history can grow before it needs
to be updated with the latest commits. In order to do so, we first define a set of MAP lev-
els indicating that the history is too old. Specifically, we use the three MAP target levels of

@ Springer

2386 Empir Software Eng (2018) 23:2362-2397

95%, 90% and 80% of the maximum overall MAP value that can be achieved over the dif-
ferent history ages. We again perform linear regression with backward elimination, using
each of these percentages separately as the response variables and the demographic infor-
mation as explanatory variables. For all three response variables and all three algorithms,
the elimination process removes all the explanatory variables, failing to produce a regres-
sion model. This indicates that variations in the demographic variables is not an effective
predictor of the rate at which a model deteriorates.

In summary, this analysis allows us to answer RQ 3 as follows: good values for history
length can be predicted. Indeed, a team of developers using TARMAQ can use the regression
model found in Table 10, to predict the amount of system’s history that should be used.
In contrast, no similar correlation exists for predicting the deterioration of change impact
analysis quality based on history age.

5.4 Longitudinal Study

This section revisits RQ 1.3, which is repeated here for convenience:

RQ 1.3 Can we identify an upper bound on history length where outdated knowl-
edge starts to negatively affect our analysis causing quality to decrease below
acceptable levels?

When considering RQ 1.3 in Section 5.2, we studied change histories of up to 35000
transactions. We found no evidence that older transactions degraded precision. While 35 000
is a reasonably large change history, software systems which have been built over many years
by a plethora of developers see much larger histories. In this section, we explore the effects
of such long histories, reaching over 540 000 transactions in the case of the Linux Kernel.

We begin the analysis visually by plotting applicability, MAP when applicable, and over-
all MAP. When considering the complete development histories for various systems, we see
that they are no longer of all of equal length, which affects the legibility of the plots. To
address this, we cluster the seven software systems analyzed in this study in three groups,
based on their available history lengths: Fig. 8, shows LLVM and Wine, which have histo-
ries of around 100 000 transactions, Fig. 9 shows IntelliJ IDEA, Liferay Portal, and WebKit,
which have histories of around 150 000 transactions, and Fig. 10 shows Mozilla Gecko and
the Linux Kernel, which have histories of just over 400 000 and 500 000 transactions.

Visually, the trends seen in Fig. 5 resurface: initially there is a steady rise in applicability
and overall MAP, and a steady decline in MAP when applicable. These eventually level off
as history length increases. However, in the case of IntelliJ IDEA and the Linux Kernel the
leveling off seems to take longer.

To analytically investigate whether long histories deteriorate precision, we first pose the
myth hypothesis, which assumes that they do. As such we compare the AP values pro-
duced by TARMAQ when given a relatively short history, against the AP values it produces
when given the maximal available history. Throughout our study we have found that his-
tory lengths in the neighborhood of 25 000 to 35 000 transactions consistently perform well,
we therefore consider 30 000 for the length for our “short histories”. While not shown, we
collected data for length from 10000 through 540000 in increments of 10000. As a con-
firmation step, we repeated the analysis presented in this section using 20 000 and 40 000
transactions. The results are virtually identical and in both cases lead to the exact same
conclusion.

@ Springer

Empir Software Eng (2018) 23:2362-2397 2387

~—— Applicability MAP when applicable Overall MAP
Co-Change ROSE TARMAQ
100%
75%
=
50% - P
= <
25%
0% 4
100%
/_’_ /_’_
75%
50% A §
/f_’—_ ®
25%
0% 4

T T T T T T T T T T T T T T T T T T
Q Q Q Q Q Q O Q Q Q Q Q O Q Q Q Q Q
LS LSFLFLEFTLSFSLSLS LTI LSS
NPt QT AV 7 (WTNYT a7 AT NN T gAY o N
History Length

Fig. 8 LLVM and Wine

Formally, the myth hypothesis is

Hy : The mean AP value produced by TARMAQ when given the maximal history is not
less than the mean produced when using a history length of 30 000.

H; : The mean AP value produced by TARMAQ when given the maximal history is less
than the mean produced when using a history length of 30 000.

—— Applicability MAP when applicable Overall MAP
Co-Change ROSE TARMAQ

100% —
=)

75%4 — ~ 3
50% - =
25% o bt ey E

0%

100% 4 [l
75% g
50% ;
25% %

0% =

100% 4
75% %
50% + 2
25% -

0% - T T T T T T T T T T T T
Q Q Q Q \) Q Q Q Q Q)
& & & $ S & &S & & & &
O & » \,50 QO & » \,-,)Q QO S » \,.DQ

History Length

Fig. 9 IntelliJ IDEA, Liferay Portal and WebKit

@ Springer

2388 Empir Software Eng (2018) 23:2362-2397

Applicability MAP when applicable Overall MAP
Co-Change ROSE TARMAQ

100%

75% 4 s

.

50% - o

8

25% 3
0%
100%

75% =

=

x

50% A z

5

25% = 2
0%

Q \} Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
O R P S S R I A R R RO
NS oS S NS NS S

History Length

Fig. 10 Mozilla Gecko and Linux Kernel

Perhaps unsurprisingly given our findings so far, we do not obtain significant results for
any of the systems (i.e., the mean AP for the maximal length is not significantly less than
that for a length of 30 000). On the contrary, based on the figures it seems more likely that
maximal histories actually improve precision compared to the shorter 30 000. We therefore
ask the opposite question and apply a t-test to the following hypothesis:

Hy : The mean AP value produced by TARMAQ when given the maximal history is not
greater than the mean produced when using a history length of 30 000.

H; :The mean AP value produced by TARMAQ when given the maximal history is greater
than the mean produced when using a history length of 30 000.

As we here perform a second t-test there is an increased chance that our conclusions become
erroneous, to counteract this we apply the Bonferroni correction to reduce the alpha level for
what is considered a significant result. Thus we set « = 0.05/2 = 0.025. With the adjusted
alpha level we still obtain significant results for all software systems except LLVM, as shown
in Table 11. Furthermore, the effect size of the difference as exhibited through Cliff’s delta
supports our earlier visual observation that the Linux Kernel and IntelliJ IDEA continue to
see precision gains beyond 30 000 transactions. Cliff’s delta also picks up a small effect for
Wine. For the remaining systems the effect is negligible.

Combining the evidence of both t-tests with the negligible effect size, we conclude that
there is no practical difference between the two history lengths. In summary, even for
extremely long history lengths we find no evidence that there is an upper-bound to his-
tory length beyond which outdated information negatively affects the precision of impact
analysis. Therefore, we are confident to answer RQ 1.3 negatively.

5.5 Stability Study

As a software system evolves passed the point of initial maturity one might expect the quality
of change impact analysis to stabilize. For our final analysis we consider this question:

@ Springer

Empir Software Eng (2018) 23:2362-2397 2389

Table 11 Results for second
t-test with alternative hypothesis: ~ Subject system p-value Cliff’s delta Magnitude of effect

“The mean AP value produced

by TARMAQ when given the Mozilla Gecko 0.00 0.14 Negligible

maximal history is greater than IntelliJ IDEA 0.00 0.48 Large

Lfi‘:t(‘i‘;a; ggﬁ’f‘;@%gﬁgf} usinga ey Portal 0.0l 0.05 Negligible
Linux Kernel 0.00 0.92 Large
LLVM 0.10 0.03 Negligible
WebKit 0.00 0.08 Negligible
Wine 0.00 0.21 Small

RQ4 How is impact analysis quality throughout the evolution history affected by
choosing a fixed history length and history age?

To answer RQ 4 we compare the performance of TARMAQ when applied to two data sets:
a set of recent queries and a set of older queries. While not presented in this section, we
repeated the stability analysis using CO-CHANGE and ROSE and obtained the same results
in each case. The design of the stability study is visualized in Fig. 11 where the two periods
in time are labeled #y and #;.

It is important to note that in answering RQ 4 we are not concerned with varying history
length/age as was done when considering our previous research questions. Instead we focus
solely on time as an explanatory variable. However, we must still set history age and history
length. For history age we use the value zero because earlier findings in this paper show
that non-zero ages significantly degrade TARMAQ’s precision. In terms of history length,
we set this to 75 000 for both #¢ and ¢;. This value strikes a balance between applicability
(see Fig. 5) and having sufficient space between fy and 1. For example, if a longer history
length were chosen then 7o would have to be closer to ¢ in order to guarantee that all queries
had sufficient previous transactions. The further apart #p and #; are the stronger we can state
that precision has stabilized.

It is unreasonable to expect two samples to have exactly the same mean. Therefore equiv-
alence tests employ a threshold value. Naturally, this threshold should be anchored in the
variation expressed in the data. We therefore set the threshold for sufficiently similar using
the standard deviation. Concretely, we first calculate the standard deviation when TARMAQ
is applied to the sample queries from #y and 1, and then set the threshold to the minimum
of these two values. This process resulted in a threshold of ¢ = 0.034008. Thus if the dif-
ference between the means for 7y and #; differs by less than 0.034008, then we assert that
the two are not different.

———————————————————— software system matures = —---——-————————— p
early evolution
‘"'"v }= - - 15000 - - =] = - - 15000 - - =]
o o] I
start of change history most recent transactions -*

Fig. 11 The stability study compares two separate time periods 7y and f1, both outside the early evolution
stage, and selected so that queries within each period have access to at least 15000 previous transactions

@ Springer

2390 Empir Software Eng (2018) 23:2362-2397

Compared to what one might call “standard” hypothesis testing, tests for equivalence
reverse the sense of the null hypothesis, we therefore state our hypothesis as follows:

Hy : The mean AP value computed using the transactions of 7y and #; are different with
respect to &

H; :The mean AP value computed using the transactions of #p and #; are equivalent with
respect to

We use Schuirmann and Westlake’s two one-sided t-test for equivalence (Schuirmann 1981;
Westlake 1981) as implemented in the R package equivalence. In particular, we apply the
function tost() to TARMAQ’s output for queries randomly chosen from #y and #; using the
equivalence threshold €.

The resulting p-value, which is <0.0001, captures that the threshold of 0.034008 is well
outside the 99% confidence interval of [0.01669, 0.02191]. Thus there is a 1% chance that
our confidence interval does not contain the true difference given the population sample.
Based on this data, we reject Hy and accept that the mean AP value computed using the
transactions of 7p and #; are equivalent with respect to €. In summary, for RQ 4 we con-
clude that after a software system reaches maturity, the precision of change impact analysis
remains consistent.

6 Threats to Validity

Realism of Scenarios used in Evaluation We evaluate mining-based change impact
analysis by establishing a ground truth from historical transactions, randomly splitting them
into a query and an expected outcome of a certain size. However, this approach does not
account for the actual order in which changes were made before they were committed
together to the versioning system. As a result, it is possible that our queries contain ele-
ments that were actually changed later in time than elements of the expected outcome. This
cannot be avoided when mining co-change data from a versioning system, because the tim-
ing of individual changes is lost in that data. It can be addressed by using another source of
co-change data, such as a developer interactions with an IDE, but the invasiveness of this
kind of data collection means that there are only a limited number of such data-sets avail-
able. This lack of aviailibility prevents a study as comprehensive as the one presented here.
Moreover, since the evolutionary couplings that are at the basis of our change impact anal-
ysis form a bi-directional relation, the actual order in which changes were made before they
were committed has no impact on the result. Our goal is not to re-enact the actual timeline
of changes, but rather to establish a ground truth w.r.t. related artifacts.

Variation in Software Systems We evaluated the impact of history length and age on
mined change impact by studying two industrial systems and 17 large open source systems.
These systems vary considerably in size and frequency of transactions (commits), which
should provide an comprehensive picture of performance. However, despite our careful
choice, we are likely not to have captured all variations.

Commits as Basis for Evolutionary Coupling The evaluation in this paper is grounded
in predictions based on the analysis of patterns found in the change histories. The trans-
actions that make up the change histories are however not in any way guaranteed to
be “correct” or “complete”, in the sense that they represent a coherent unit of work.

@ Springer

Empir Software Eng (2018) 23:2362-2397 2391

Non-related artifacts may be present in the transactions, and related artifacts may be missing
from the transactions. However, the included software-systems in our evaluation all (except
KM) use Git for version control. As Git provides developers with tools for history-rewriting,
we believe that this should lead to more coherent transactions.

Equal Weight for All Commits In our experiment, all transactions from change history
are given equal weight while mining change impact. A compelling alternative viewpoint is
that more recent transactions are more relevant for current developments and should there-
fore be given higher weight than older transactions. Similarly, one could argue that, because
of their knowledge about the system, transactions committed by code developers should be
given higher weight than transactions committed by occasional contributors. For the study
described in this paper, we do not include such orthogonal weighing scenarios in our exper-
iments because of their interaction with several of our research questions, such as the length
at which considering a longer history would no longer benefit impact analysis quality, or the
length at which considering a longer history would start decreasing impact analysis quality
due to the inclusion of outdated information. Moreover, the systems considered in this study
use a contribution process that includes code reviewing based on pull requests before taking
in changes from occasional contributors. We believe this process largely removes the dif-
ferences between transactions committed by core developers and transactions that originate
from occasional contributors but were accepted after review.

Implementation We implemented and thoroughly tested all algorithms studied in this
paper in Ruby. However, we can not guarantee the absence of implementation errors which
may have affected our evaluation.

7 Related Work

The software repository mining literature (Graves and et al 2000; Zimmermann and et al
2005; Hassan 2008) frequently alludes to the notion that learning from a too short, or an
overly long history harms the outcome, either because not enough knowledge can be uncov-
ered, or because outdated information introduces noise. However, except for some smaller
experiments by Zimmermann and et al (2005), the impact of these effects has not been
systematically investigated.

Similarly, authors in the field of association rule mining have stated the need to
investigate sensitivity to algorithm parameters (e.g., transaction filter size and choice of
interestingness measure) (Zheng et al. 2001; Lin et al. 2002; Jiang and Gruenwald 2006;
Maimon and Rokach 1383), but we have not found work that discusses sensitivity to the
number of transactions used for mining (i.e., our history length), or to aging of transactions.

Parameters in Mining Change Impact In the context of software change impact anal-
ysis, several studies remark on the importance of discarding from the history large change
sets which are likely to contain unrelated artifacts. For example, Kagdi et al. (2013), Zim-
mermann and et al (2005) and Ying et al. 2004 propose to filter out transactions larger than
10, 30, and 100 items, respectively. However, none of this work reports how the thresh-
old was chosen nor does it discuss the impact of different values on mined impact analysis
quality. In previous work (Moonen et al. 2016b), we systematically explored the effect of
filtering size on the quality of change impact analysis and found that filtering transactions
larger than eight items yields the best result for similar systems as considered in this paper.

@ Springer

2392 Empir Software Eng (2018) 23:2362-2397

Characteristics of the Change History Over the years, several studies proposed strate-
gies to group transactions in the revision history of software projects (Jaafar et al. 2014;
Zimmermann et al. 2005; Kagdi et al. 2006). The reason for doing so is that a developer
might accidentally commit an incomplete transaction, and modify the remaining files related
to the same change in a subsequent transaction. As a consequence, a single change set might
be scattered across several transactions in the change history. Nevertheless, in modern ver-
sion control systems, transactions are stashed in the user local repository and finalized at a
later stage, reducing the risk of committing incomplete transactions.

In contrast, whether properties such as average commit size and frequency affect the
quality of software recommendations is a relatively less studied subject. In this direction,
German carried out an empirical study on several open source projects, finding that the
revision history of most systems contains mostly small commits (German 2006). Alali et
al. also investigated the total number of lines modified in the files, and the total number
of hunks with line changes (Alali et al. 2008). Kolassa et al. performed a similar study on
commit frequency, reporting an average inter-commit time of around three days (Kolassa
et al. 2013). However, none of these studies investigates how characteristics of the change
history affect the quality of change impact analysis.

Characteristics of the Change Set Targeted association rule mining approaches drive
the generation of rules by a query supplied by the user (Srikant et al. 1997). In general,
characteristics of the query can effect the precision of mined impact analysis. For example,
Rolfsnes et al. found a particular class of queries, strongly related to query size, for which
the most common targeted association rule mining approaches cannot generate recommen-
dations (Rolfsnes et al. 2016a). In other work, Hassan and Holt investigated the effectiveness
of evolutionary coupling in predicting change propagation effects resulting from source
code changes, but did not evaluate whether the size of transactions in the history affects the
quality of the predictions generated (Hassan and Holt 2004).

Aged Histories in Evaluation For the purpose of evaluating change impact analysis or
change recommendation techniques, it is common practice to split the change history into
training and test sets. The training set can either be treated as a static prediction model (Ying
et al. 2004), or be continuously updated with respect to the chosen transaction from the test
set (Zimmermann and et al 2005). If treated as a static model this means that the model
will be aged differently with respect to each transactions in the test set, and, as we have
seen in RQ2, aging affects impact analysis quality. Therefore, any study involving history
splitting should take aging into consideration. Since we have seen that aging can only lead to
deterioration of impact analysis quality, we suggest evaluation setups where the prediction
model is updated for every transaction in the test set (i.e., an age of zero).

8 Concluding Remarks

This paper presents a systematic study of the effects of history length and age on 19 dif-
ferent software systems. Key findings include that as history length increases, the overall
MAP value also increases, although this increase diminishes starting around 15000 com-
mits. Moreover, the applicability also increases with increased history length, but seems to
top out around 25 000 commits. We found that the impact of age on both overall MAP and
MAP when applicable is very significant, as even very little aging yields a strong, basically

@ Springer

Empir Software Eng (2018) 23:2362-2397 2393

exponential decrease. Thus, we find that recent commits are of great value to determine
change impact.

Even in our longest studies of up to 540000 commits, we found no evidence for the
commonly held belief that there is an upper-bound to the history that can be used for mining
evolutionary coupling before outdated knowledge starts to negatively affect impact analysis
quality.

In addition to these studies, to provide a better understanding of the impact of history
length and age on the quality of change impact analysis, we also consider prediction models
for each algorithm that predict the length of the history that should be used for a given
system. These prediction models are functions of system demographics, such as the average
number of artifacts in a commit, the median inter-commit time, and the number of unique
artifacts in the history. We found no corresponding prediction models for system age, which
likely reinforces the rapid detrimental effects of aging.

Finally, we found that the mining algorithms are stable with respect to the effects of
choosing a particular history length and history age on the impact analysis quality through-
out the evolution history. This means that for a system that has matured beyond its chaotic
youth, an optimal history length for that point in time can be computed using our prediction
model. As the system continuous to evolve, that same history length (preferably of at least
15000 commits) can be used to achieve similar results.

8.1 Future Work

Looking forward, an interesting avenue of investigation would be to assess the impact of rule
aggregation (Rolfsnes et al. 2016b) on change impact analysis quality. This analysis was
not considered in the current paper to maintain conceptual integrity, and avoid the inclusion
of too many orthogonal topics.

Moreover, based on our findings related to the impact of very recent transactions and
history age on change impact analysis quality, it would be interesting to experiment with
(a) an alternative targeted association rule mining algorithm that does not consider a fixed
history length but instead uses an adaptive approach, growing the history until (a number
of) applicable transactions are found, and (b) alternative strategies for association rule gen-
eration that take age into account, for instance by assigning higher weight to more recent
transactions.

Finally, it would be interesting to analyze how aspects of the development process affect
the evolutionary coupling and change impacts that are mined from historical co-change data.
For example, should transactions from all contributors to a project be considered equally,
or would it be beneficial to give higher weight to transactions from core team members.
Another aspect to investigate is the relation between the velocity of a development project,
or even the typical time between commits, and good values for history size and age.

Acknowledgments This work is supported by the Research Council of Norway through the EvolvelT
project (#221751/F20) and the Certus SFI (#203461/030). Dr. Binkley was supported by NSF grant ITA-
1360707 and a J. William Fulbright award.

References

Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases.
In: ACM SIGMOD international conference on management of data. ACM, pp 207-216

@ Springer

2394 Empir Software Eng (2018) 23:2362-2397

Alali A (2008) An empirical characterization of commits in software repositories. Ms.c. Kent State
University, 53

Alali A, Kagdi H, Maletic JI (2008) What’s a typical commit? A characterization of open source software
repositories. In: International conference on program comprehension (ICPC). IEEE, pp 182-191

Baeza-Yates R, Ribeiro-Neto B (1999) Modern information retrieval. ACM, p 513

Bohner S, Arnold R (1996) Software change impact analysis. IEEE, USA

Canfora G, Cerulo L (2005) Impact analysis by mining software and change request repositories. In:
International software metrics symposium (METRICS). IEEE, pp 29-37

Eick S et al (2001) Does code decay? Assessing the evidence from change management data. IEEE Trans
Softw Eng 27(1):1-12

Gall H, Hajek K, Jazayeri M (1998) Detection of logical coupling based on product release history. In: IEEE
international conference on software maintenance (ICSM). IEEE, pp 190-198

German DM (2006) An empirical study of fine-grained software modifications. Empir Softw Eng 11(3):369—
393

Gethers M et al (2011) An adaptive approach to impact analysis from change requests to source code. In:
IEEE/ACM international conference on automated software engineering (ASE). IEEE, pp 540-543

Graves TL et al (2000) Predicting fault incidence using software change history. IEEE Trans Softw Eng
26(7):653-661

Hassan AE (2008) The road ahead for Mining Software Repositories. In: Frontiers of software maintenance.
IEEE, pp 48-57

Hassan AE, Holt R (2004) Predicting change propagation in software systems. In: IEEE international
conference on software maintenance (ICSM). IEEE, pp 284-293

Jaafar F et al (2014) Detecting asynchrony and dephase change patterns by mining software repositories. J
Softw: Evol Process 26(1):77-106

Jashki M-A, Zafarani R, Bagheri E (2008) Towards a more efficient static software change impact anal-
ysis method. In: ACM SIGPLAN-SIGSOFT workshop on program analysis for software tools and
engineering (PASTE). ACM, pp 84-90

Jiang N, Gruenwald L (2006) Research issues in data stream association rule mining. ACM SIGMOD Rec
35(1):14-19

Kagdi H, Yusuf S, Maletic JI (2006) Mining sequences of changed-files from version histories. In:
International workshop on mining software repositories (MSR). ACM, pp 47-53

Kagdi H, Gethers M, Poshyvanyk D (2013) Integrating conceptual and logical couplings for change impact
analysis in software. Empir Softw Eng 18(5):933-969

Kolassa C, Riehle D, Salim MA (2013) The empirical commit frequency distribution of open source projects.
In: International Symposium On Open Collaboration (WikiSym). ACM, pp 1-8

Law J, Rothermel G (2003) Whole program path-based dynamic impact analysis. In: International conference
on software engineering (ICSE). IEEE, pp 308-318

Lin W, Alvarez SA, Ruiz C (2002) Efficient adaptive-support association rule mining for recommender
systems. Data Min Knowl Disc 6(1):83-105

Maimon O, Rokach L (1383) In: Maimon O, Rokach L (eds) Data mining and knowledge discovery
handbook. Springer, Berlin

Moonen L et al (2016a) Exploring the effects of history length and age on mining software change impact.
In: IEEE international working conference on source code analysis and manipulation (SCAM), pp 207—
216

Moonen L et al (2016b) Practical guidelines for change recommendation using association rule mining. In:
International conference on automated software engineering (ASE). ACM, pp 732-743

Podgurski A, Clarke L (1990) A formal model of program dependences and its implications for software
testing, debugging, and maintenance. IEEE Trans Softw Eng 16(9):965-979

Ren X et al (2004) Chianti: a tool for change impact analysis of java programs. In: ACM SIGPLAN
conference on object-oriented programming, systems, languages, and applications (OOPSLA), pp
432-448

Robbes R, Pollet D, Lanza M (2008) Logical coupling based on fine- grained change information. In:
Working conference on reverse engineering (WCRE). IEEE, pp 4246

Rolfsnes T et al (2016a) Generalizing the analysis of evolutionary coupling for software change impact anal-
ysis. In: International conference on software analysis, evolution, and reengineering (SANER). IEEE,
pp 201-212

Rolfsnes T et al (2016b) Improving change recommendation using aggregated association rules. In:
International conference on mining software repositories (MSR). ACM, pp 73-84

Schuirmann D (1981) On hypothesis testing to determine if the mean of a normal distribution is contained in
a known interval. Biometrics

@ Springer

Empir Software Eng (2018) 23:2362-2397 2395

Srikant R, Vu Q, Agrawal R (1997) Mining association rules with item constraints. In: International
conference on knowledge discovery and data mining (KDD). AASI, pp 67-73

Westlake W (1981) Response to T.B.L. Kirkwood: bioequivalence testing—a need to rethink. Biometrics
37:589-594

Yazdanshenas AR, Moonen L (2011) Crossing the boundaries while analyzing heterogeneous component-
based software systems. In: IEEE international conference on software maintenance (ICSM). IEEE, pp
193-202

Ying ATT et al (2004) Predicting source code changes by mining change history. IEEE Trans Softw Eng
30(9):574-586

Zanjani MB, Swartzendruber G, Kagdi H (2014) Impact analysis of change requests on source code based on
interaction and commit histories. In: International working conference on mining software repositories
(MSR), pp 162-171

Zheng Z, Kohavi R, Mason L (2001) Real world performance of association rule algorithms. In: SIGKDD
international conference on knowledge discovery and data mining (KDD). ACM, pp 401406

Zimmermann T et al (2005) Mining version histories to guide software changes. IEEE Trans Softw Eng
31(6):429-445

Leon Moonen is chief research scientist in the Software Engineering department at Simula Research Labora-
tory, Norway. His research aims at data-driven techniques and tools to support the understanding, assessment
and evolution of large industrial software systems. Current projects include recommendation systems for
smarter evolution and testing of software-intensive systems, anti-fragile and high integrity software engi-
neering, and software analytics for continuous software quality and maintainability assessments. Dr. Moonen
received his MSc (cum laude, Computer Science, 1996) and PhD (Computer Science, 2002) from the Uni-
versity of Amsterdam. He is a member of ACM, IEEE Computer Society, EAPLS and the ERCIM Working
Group on Software Evolution.

@ Springer

2396 Empir Software Eng (2018) 23:2362-2397

Thomas Rolfsnes received his PhD (Informatics, Sept. 2017) from the University of Oslo. During his PhD,
he has been employed by Simula Research Laboratory where his supervisor, Leon Moonen, is a chief research
scientist. His research focused on improving change-recommendation systems for developers, in particular,
recommendations based on patterns found in change-histories from sources such as Git. His efforts resulted
in the thesis titled “Improving History-Based Change Recommendation Systems for Software Evolution”.
He has published his work in conferences such as SANER, SCAM, MSR and ASE, and was invited for two
EMSE special issues. Dr. Rolfsnes is currently a data scientist at Egmont Publishing.

YRR LUTTY

Dave Binkley is a Professor of Computer Science at Loyola University Maryland where he has worked
since earning his doctorate from the University of Wisconsin in 1991. Dr. Binkley has been a visiting faculty
researcher at the National Institute of Standards and Technology (NIST), worked with Grammatech Inc. on
CodeSurfer development, and was a member of the Crest Centre at Kings’ College London. Dr. Binkley’s
current research, partially funded by NSF, focuses on change recommendation and observational program
analysis. He recently completed a sabbatical year working under Fulbright award with the researchers at
Simula Research, Oslo Norway.

@ Springer

Empir Software Eng (2018) 23:2362-2397 2397

Stefano Di Alesio is a Chief Expert in the Transaction Monitoring Development department in Nordea Bank
AB. He received his Ph.D. (Informatics, March 2015) from the University of Luxembourg. His interests
revolve around leveraging machine learning and statistical analysis in order to provide quantitative insights
that support business-critical decisions. His research explored the areas of model-driven, search-based, and
reverse software engineering. He has published papers on these topics in widely recognized conferences
and journals, including MODELS, ISSRE, ACM TOSEM, SANER and ASE. Dr. Di Alesio has also been a
reviewer of several acknowledged software engineering journals, such as RESS, SoSyM, and EMSE.

@ Springer

	What are the effects of history length and age on mining software change impact?
	Abstract
	Introduction
	Contributions
	Overview

	Mining Software Change Impact
	Research Questions
	Scope of Investigation

	Empirical Study
	Subject Systems
	History Length and Age
	History Filtering
	Query Generation and Execution
	Estimating the Impact of a Change
	Quality Measures
	Bootstrapping Procedure
	Data Set for Replication Studies

	Results and Discussion
	Coarse-Grained Study
	Fine-Grained Studies
	History Length
	History Age

	Project Characteristics
	Longitudinal Study
	Stability Study

	Threats to Validity
	Realism of Scenarios used in Evaluation
	Variation in Software Systems
	Commits as Basis for Evolutionary Coupling
	Equal Weight for All Commits
	Implementation

	Related Work
	Parameters in Mining Change Impact
	Characteristics of the Change History
	Characteristics of the Change Set
	Aged Histories in Evaluation

	Concluding Remarks
	Future Work

	Acknowledgments
	References

