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Abstract—It is expected that the Internet of Things (IoT)
provides the foundational infrastructure for smart cities, and
making ICT an enabling technology to meet major challenges
associated with climate change, energy efficiency, mobility and
future services. On the other hand a smart city with these
requirements is usually evolving through incremental automation
and integration of new components, that are digital or physical
components or smart devices. To handle the growing scale and
complexity of a system, an adaptive modelling method is needed
for dynamic analysis and verification and/or validation, and
integration. In this paper, we consider the case study of a
Demand Response (DR) Programme that is to be realized by the
deployment of a network of smart meters. Through this case
study, we propose a component-based modelling approach and
demonstrate how it deals with the growing complex architecture.

I. INTRODUCTION

A. Properties for a Sustainable Energy Value Chain

The recently introduced concepts of smart metering and
Advance Metering Infrastructure (AMI) provide intriguing op-
portunities to embrace new sustainable services for the whole
energy value chain [1], [2]. Around the world, electric meters
are leading the way in smart meter deployments. Success of
these opportunities relies on three key imperatives, as follows.

Firstly, novel technologies envisioned as part of the energy
value chain aim at enabling two-way flow of information to
help consumers contribute to achieving broader energy goals
[3]. Indeed, within the IoT, interoperability of devices across
a variety of industries, manufacturers and utility providers
will enable more information and connectivity throughout the
infrastructure and to homes, and ultimately consumers. More-
over, context-aware analytical computation using the different
network resources is an indispensable part of IoT and will help
new energy services develop [4].

Secondly, current smart meters provide real-time pricing for
all types of users and so, in some way, encourage consumers to
reduce their power consumption at peak times individually [5].
Thus, consumers can adjust their own individual load according
to the time-differentiated prices (and also taking into account
their own willingness to pay for their preferred quality of
service) [6]. However, these approaches to user adaptation like
some others [7], [8] mainly meet individual requirements on the
resource sharing and allocation, and may not always achieve
the best solution to the energy consumption problem. It is in
this context that demand-side management (DSM), demand
response (DR) and Direct Load Control (DLC) programmes
(e.g., residential load management) emerge mainly focused

on the following two objectives: reducing consumption and
shifting consumption [9], [10]. In our work, consumers are
required to cooperate aiming at achieving energy-aware con-
sumption patterns. For illustration, imagine a smart community
that autonomously adapts its energy consumption by means
of enabling a limited amount of household smart meters
to share real-time neighbourhood information cooperatively.
Users therefore cooperate with other users or with data col-
lectors, thus facilitating the integration of energy consumption
information into a common view. Note that the interactions
between users do not have to be manual, but can be automated
through the IoT and two-way communication.

Finally, a smarter energy system should aim at inducing
sustainable behaviours, from the generation and supply of re-
newable energy to its efficient consumption. Our proposal em-
braces consumers cooperation in response to supply conditions,
in particular targeting renewable sources [11]. Utilities through
the AMI are allowed to perform real-time billing, profiling
and fault detection as well as to create incentives for users
consuming renewable sources (e.g., guaranteeing the lowest
price if the load demand does not exceed a certain threshold).
On the other hand, consumers, empowered to have better access
to their consumption and appliance interconnection [10], are
provided with sufficient incentives to coordinate their energy
demands, thus distributing the total daily load of the commu-
nity to avoid overloading the utility companies. Proportional
share scheduling, dispatching, fair resource allocation, and
bargaining algorithms [12], [13], [14] appear to be the common
approach to reach an optimal energy consumption agreement
within a community in an automatic and dynamic way. The
application of distributed algorithms will be even more decisive
once plug-in hybrid electric vehicles become widespread [15],
[16].

B. Component-based Architectural Modelling

All the above three key imperatives determine the evolving
nature of the development of smart meters, their deployment,
and incremental integration into larger networks [17]. For
example, future smarter meters will be integrated into the
smartphone networks for people to plan and control their
appliances at home remotely. One of the greatest changes that
arises from this dynamically developing situation is to deal with
growing scale and functional/architectural complexity. This
challenge becomes profound with the growing demand on the
trustworthiness of the platforms and processes, access control,
security protocols for safe transfer of large datasets over the
Internet, data anonymization, privacy-preservation during data
mining, and also ensuring that the entire infrastructure is



resilient to cyber attacks, are of primary importance when
designing such novel services [18], [19], [20]. We propose
a model-driven integrated engineering approach to tackle this
challenge. In this approach, abstract evolving modelling of
system architectures is essential for development and the appli-
cation of techniques/tools to support design and deployment of
integration of new components, and for analysis, verification,
simulation and testing to ensure trustworthiness. This paper
presents initial findings and its main contribution is twofold:

• We describe a cooperative DR framework designed to
create more sustainable energy systems. The frame-
work is envisioned to promote behavioural changes in
small or large communities with common interests that
create the need for involved entities to reach binding
agreements and coordinated behaviour. A fair resource
allocation process, initially conceived in a centralized
way by means of a Data Collector, will provide the
community with the appropriate scheduling of its total
demand taking into account both the renewable and
fossil supply from the utility providers.

• A cyber-physical component-based modelling method
is introduced to support the development of the frame-
work described. This methodology captures the evolv-
ing nature of the system architecture and will help
in dealing with the dynamically growing functional
complexity of our framework, which comprises a num-
ber of distributed, dynamic components deployed over
large networks of heterogeneous platforms. Thus, the
interoperability of the distributed components becomes
important as well as the aspects concerning organi-
zational structure (i.e., system topology), distribution,
interactions, security, fault-tolerance and real-time. To
deal with these attributes of complexity, we show
the importance of abstraction in reusing models and
showing equivalence between different designs (e.g.,
distributed and centralized design).

The rest of the paper is organized as follows. Section II
describes our cooperative DR framework, including roles and
main phases. We introduce cyber-physical component-based
modelling in Section III. Finally, we discuss future directions
for this work and conclude in Section IV.

II. SYSTEM DESCRIPTION

The system in our case study defines three possible roles
for participant nodes:

• Consumer: A user (or household) equipped with a
smart meter (or equivalent retrofitted electricity meter,
normally with an energy consumption scheduler or
home energy manager) that is connected to not only
the power line, but also to a communication network.

• Data Collector: Also treated as a consumer, but in
charge of the data aggregation process. According to
the resource allocation algorithm used for DSM, this
process has a centralized form. This role will, however,
rotate amongst the community members. A distributed
approach can be implemented securely and privately as
shown in [21].

• Utility: A set of energy suppliers shared by customers.
We assume utilities implement distributed generation

that allows collection of energy from many sources,
primarily renewable, aimed at giving lower environ-
mental impacts and improved security of supply.

Furthermore, the framework comprises three different
phases, demand commitment, supply commitment, and fair
reallocation of demand.

A. Demand Commitment

Let N denote an ordered set of Consumers that are willing
to cooperate in the pursuit of global community targets (i.e.,
become greener), sending their data to the Data Collector.

Assumption 1 (Data Aggregation). Each Consumer within the
community will carry out aggregation tasks in turns and order.

Each consumer i ∈ N has a set of household appliances
Ai = {washer, dryer, coffee makers, cooker, alarm, light con-
troller, water heating,. . .}.

Assumption 2 (Consumer’s Habits). Consumer’s habits, be-
haviours and use of appliances commonly demand a fixed en-
ergy load (e.g., refrigerator, alarm-controller, meters, standby
televisions, water heater, etc.) as well as a variable load
resulting from the utilization of such appliances and other
equipment or facilities.

Assumption 3 (Home Energy Scheduler). We assume that
an energy consumption scheduler (or home energy manager)
connects via a home area network (HAN) and lower power
wireless such as ZigBee, connecting all the appliances in the
home. This scheduler is further connected to the grid, the
Utility and other Consumers within the community via either
wired or wireless links.

The scheduler also provides the user with an interface to
control, monitor and program the functioning of appliances.

Definition 1 (Fixed/Variable Energy Demand). We define
a fixed energy demand for Consumer i as fDt

i at a time
t ∈ {0, . . . , 23} as the aggregated load of non-shiftable local
consumption of their appliances and regarding frequent be-
haviours. Similarly, a variable energy demand for Consumer
i is denoted by vDt

i and represents the aggregated load of
shiftable consumption at a time t ∈ {0, . . . , 23}.

We consider a discrete time slot system. Without loss of
generality, we assume that time granularity is one hour of
the day. Each consumer then pre-allocates a certain amount
of fixed demand as well as variable consumption planned for
the upcoming 24 hours [22].

Assumption 4 (Appliance’s Consumption). For each i’s ap-
pliance a ∈ Ai, we assume both daily fixed and variable
energy consumption scheduling vectors, at each time slot
t ∈ {0, . . . , 23}, to control its non-shiftable and shiftable con-
sumption. Hence, fxt

i,a and vxt
i,a denote the corresponding

one-hour fixed and variable energy consumptions, respectively,
that are scheduled for appliance a by user i at hour t.

The daily fixed and variable demand for consumer i ∈ N
is denoted by the aggregated demand fDi =

∑23
t=0

∑
a∈A fxt

i,a

and vDi =
∑23

t=0

∑
a∈A vxt

i,a, respectively. Thus, the daily
load/demand for the whole community at a time t is then given
by Dt =

∑N
i (fDt

i + vDt
i).



B. Supply Commitment

Now, aiming at making the best use of renewable sources,
thus replacing carbon-intensive energy sources, the Utility
makes essential information available to the consumers about
both the reliable renewable and fossil, energy supply planned
for the upcoming 24 hours.

Definition 2 (Renewable and Fossil Energy Supply). We denote
by rU t the energy supply generated from a set of renewable
sources at a time slot t ∈ {0, . . . , 23}. Similarly, fU t represents
the energy supply at time t generated from a set of fossil
sources.

The Utility centralizes the distribution of the energy, the
notification to the Data Collector, and the billing process.

On a daily basis, the Data Collector verifies that the total
energy consumed by all appliances in the system fulfil the daily
utility service provided by the Utility. In particular, it is critical
that the community reaches the point such that:

∀t ∈ {0, . . . , 23},
N∑
i

fDt
i ≪ rU t

In the best case, the inequality below should apply:
N∑
i

23∑
t=0

(fDt
i + vDt

i) ≤
23∑
t=0

rU t

C. Fair Reallocation of Demand

In this phase, a fair-share re-scheduling of the requested
demand per hour is executed by the Data Collector. If,
however, the aforementioned best case applies such that
∀t ∈ {0, . . . , 23},

∑N
i (fDt

i + vDt
i) ≤ rU t, the Data Collector

will notify the Consumers that an agreement has been reached
without the need of reallocation.

At worst,
∑23

t=0 D
t >

∑23
t=0(rU

t + fU t), so the Data Col-
lector will have to inform the Utility for the appropriate
contingency plan.

Otherwise, the Data Collector is in charge of performing a
reallocation of the community’s total demand, which is fair
to all the consumers while at the same time targeting the
renewable supply available for each time slot. In this regard,
several optimization Pareto-efficient approaches to the resource
allocation problem have been the focus of much attention in
wireless sensor networks [13], broadband networks [7], and
smart grids [15]. For a comprehensive description of the many
algorithms that can be used to solve the resource allocation
problem (see [12]).

In this paper, we restrict ourselves to the description
of the global centralized optimization problem to which
there exists a unique Nash bargaining solution such that:
∀i ∈ {1 . . .N},∀i ∈ {1 . . .N}, µt

i = fDt
i +min{F(vDt

i)} ≤ rU t,
where F(·) is in charge of the shifting for the variable demand
according to the time interval for which appliance can be
scheduled. Perhaps the simplest way to give each consumer
an equal chance against all other is to recursively apply a
round-robin strategy in the allocation of each Consumer’s
needs. This is both possible and simple, due to 1) the number
of participants is known and fixed, and 2) the reallocation
process is centralized by the Data Collector who, starting on

their own, will satisfy the demand of other Consumers demand
in the appropriate order. As a result, the Data Collector will
send the reallocated vector ∀i ∈ N ,−→µ i.

Note that, if the consumers were to misbehave, e.g., by
deviating from the reallocated vectors or switching off the
home scheduler, the Data Collector may still have a way of
isolating the misbehaving user from the coalition formed for
upcoming days. Cooperative game theoretic frameworks and
proofs such as in [23] can be applied to the validation of the
incentives that encourage users to behave in a desired way
when there is a shared objective.

III. CYBER-PHYSICAL COMPONENT-BASED MODELLING

This section shows how an extension of the rCOS
component-based modelling method [24], [25] can be used to
support the development of the system in different ways1.

A. Cyber-Physical Components Modelling – rCPCS

The models of software components in rCOS are extended
with physical components, that may be controlled by digital
controllers. We call the extended version of rCOS “Refinement
of Cyber-Physical Component Systems”, rCPCS for short. In
general, cyber-physical component, or simply “component”
when there is no confusion, has discrete state variables that
are directly changed by control programs, and continuous
state variables whose changes follow differential equations,
depending on states of the discrete variables.

a) State variables: The state variables of a component
C, denoted by αC, called the alphabet of C, is divided into two
subsets, αC = ⟨βC, γC⟩ of private discrete state variables and
continuous state variables. For example, an appliance A ∈ A of
the appliances of a household is a component. Its state variables
can be αA = ⟨{s : {on, off}}, {rate : Real}⟩, where rate is the
rate in which energy is consumed by the appliance when it in
operation.

b) Interfaces: A component model specifies the inter-
faces through which the component interact with its environ-
ment (i.e., other possible cyber-physical components including
human actors). A component C can have a provided interface
(or input interface), C.pIF, and or a required interface (or output
interface), C.rIF; but a component must have an interface.
Each of the interfaces contains two sets, C.pIF = ⟨pO, pW⟩
of provided operations and provided signals or wires, or
C.rIF = ⟨rO, rW⟩ of required operations and required signals.
It is required that the set of provided signals is a subset of
the set continuous variables of the component (i.e., pW ⊆ γC).
The variables γC − pW are the private continuous variables of
C. For example, the appliance A in the above paragraph can
have a provided interface A.IF = ⟨{switch()}, {rate}⟩ (i.e., one
provided operation switch()).

The interfaces provide the means for the component to
interact with its environment. Interactions can be with other
digital or physical components. For example, a digital con-
troller can be designed to interact with A to switch “on”
and “off” of the appliance, and a meter to record the energy
consumption by using the rate. On the other hand, interactions
A can be with human actors, for example the householder

1The modelling method supports different implementations of coordination
and control of components on different hardware platforms.



can “observe” or use the rate to “calculate” the energy con-
sumption, and “switch” the appliance “on” and “off”. One
can imagine the evolution from interactions of the appliance
with human operators to interactions of digital controllers and
meters would be one step of increase in automation, but the
model of the functionality, behaviour, including interactions
behaviour, of the appliance remains unchanged.

c) Local functionality and behaviour: The local func-
tionality of a component is defined by the change of the state
of the discrete variables when an operation in the interfaces is
performed. This is specified as a design in Unifying Theories
of Programming (UTP) [26], [25]. A design of a component is
a predicate of the discrete state variables and their primed ver-
sions in the form p(v) ⊢ R(v, v′). For example, the functionality
of switch() of appliance a is defined as:

(state = on ∨ state = off) ⊢
(state = on ∧ state′ = off) ∨ (state = off ∧ state′ = on)

The informal meaning is that if the current state of A is either
“on” or “off” (i.e., working normally), the performing switch()
will change the state from “on” to “off” or from “off” to “on”.
The predicate p before “⊢” is called the precondition of the
design and the predicate R after “⊢” is called the postcondition
of the design. When the operation is performed in a state in
which the precondition does not hold, the execution is not
specified (i.e., it can be chaos). Therefore, the formal meaning
of a design p ⊢ R is defined as the implication p ⇒ R for
program partial correctness (i.e., if the precondition holds and
the execution terminates), the final state is related to the initial
state by R. Thus, the initial state is represented by variables
and the post-state of the execution is represented by the primed
versions of the variables. The total correctness semantics of
designs is defined in the definitive UTP book [26].

Besides discrete functionality, cyber-physical system (CPS)
components can also have continuous evolution for its con-
tinuous variables, defined in time-dependent functions, often
differential equations. For example, the continuous evolution
for the appliance A can be defined by rate as the rate in which
energy is consumed by the appliance when it is on, and the
rate is assumed to 0 when the appliance is off. We believe the
definition of rate is usually provided by the manufacture of the
appliance. Thus, the behaviour of A is that the rate evolves
along with the switches on and off of the component A.

Now we can consider an electronic meter M that records
the accumulated consumption of energy of appliance A. Its
provided interface M.pIF provides a signal read and its required
interface M.rIF consists of a single signal rate. The behaviour
of M (i.e., the evolution of read) is a timed function of
the required signal rate. For example, it can be defined as
read(t) =

∫ t

0
rate. Therefore, in general, the behaviour of the

continuous variables are defined by timed functions of the
discrete variables and the required signals. In general, the
continuous behaviour (or the trajectories) of the continuous
variables of a component C is specified as timed functions of
the following form, where feedbacks loops are possible

γC = F (βC, γC, rW)

The above model of the meter does not include a sensor in
the meter; a sensor is implicitly modelled by the observer
of read. If a sensor is modelled, read would be discretized
and represented as a step function. Also, a sensor can be
modelled as a separate component S that “senses” rate through

its required signal and translate it into a step function that
feeds in the meter M ′, accumulatig the energy consumption.
We can prove that the meter M modelled is equivalent to the
composition S ∥ M ′.

The extension of the rCOS interfaces to include signals is
significant for the composition of physical components. For
example, consider the design of an energy-aware building or
renovation of a building for energy saving. A room Room in
the building can be divided into a number of sections, Seci,
i = 1, . . . , n, as components. Each is interfaced, say through
a “window”, or a “wall”, that connects the temperature sTi

in a section Seci to the temperature T outside the building
by a function sTi = fi(T ). Notice that different windows or
walls hae varying heat transmission. Different sections are then
interfaced through ‘airflow’, such that temperature of the whole
room can be defined in terms of the sections. Then the room
can be modelled as Room =∥ni=1 Sec1, which interacts with
the outside environment of the building. The analysis of the
sections, windows, and walls, together with the simulation of
the model will be useful in deciding if a energy saving target is
feasible, and will provide a design or renovation plan to reach
the energy-saving target if feasible.

This example shows another significance of the notion
of interfaces. That is they also interface the interdisciplinary
collaborations among modelling in material science, electron-
ics, control engineering, and software engineering. Therefore,
interfaces also bridge different technologies.

B. Component Composition

Components are composed through their interfaces. When
composing two or more components, it is often necessary to
design connector components, modelled in the same notation,
for linking the components together. Different ways of com-
posing components represent different design approaches (see
Fig. 1).

d) Household with distributed meters: Compose the al-
liance A and meter M , we a composite component C = A ∥ M ,
that can be written in more readable format such as:

Component C {
attributes state: {on,off};
signals rate, read: Real;
provided interface: switch(), read;

functionality: switch(){/**as defined};
behaviour: rate = .../*as defined;

read = .../*as defined }

e) Household with decentralized meters: Consider an
arbitrary number m of appliances in a household, each mod-
elled by Ai with meter Mi for i = 1, . . . ,m. Then, for each i,
we can obtain Ci = Ai ∥ Mi, with a different switchi, ratei,
and readi. Then a household is modelled by the compos-
ite component H =∥mi=1 Ci. It only has a provided interface
consisting of operations {switchi | i = 1, . . . ,m} and signals
{readi | i = 1, . . . ,m}. In this design, we assume the house-
holder reads the meters, plans their daily use of energy, and
operates the appliance with the switches.

f) Household with a centralized meter: In a more
general household, there is usually a centralised meter installed.
In this there is a main switch connector, denoted by G. This
G has a continuous variable rate as its provided interface and



{ratei | i = 1, . . . ,m} as provided interfaces. The behaviour of
G is rate =

∑m
i=1 ratei. Then the household can be modelled

by H1 = ((∥mi=1 Ai) ∥ G) ∥ M .

The difference between H1 and H from an external ob-
server’s perspective is that H1 has only one provided signal
read while H has m provided signals readi, i = 1, . . . ,m.
However, we can add the connector G1 to the whole H, which
receives input signals readi and outputs signal read, so that
H ∥ G1 = H1.

C. Making the Home Smarter – System Evolution

Both designs H and H1 of the household assume that
the householder does the planning and control. Either can be
made smarter by increasing automation in planning, scheduling
and control on the operations of the appliances. For exam-
ple, with the distributed meters in H, Assumption 4 can be
realized with a scheduler that reads readi to decide when
appliance Ai can be switched on to operation according to
the energy combustion budget fxi and vxi. We can have a
separated scheduling/managing component HM that controls
all the appliances in a centralized manner. Component HM
allows the householder to set up the budgets fxi and vxi for each
appliance Ai; it then controls the operations of the appliance
to meet the budgets of the appliances. It is also possible to
have a distributed scheduling solution in which the control on
Ai according to fxi and vxi cam be embedded in meter Mi to
make Mi smarter. In this case Mi needs to provide an operation
(to a control panel) for setting the daily budgets. From the
external point of view, a new household with “smarter” meters
that operate the appliances (possibly through wireless control
or any other networking mechanisms) behaves exactly the same
as the “simple” meters. But the latter is with dedicated planning
and control by the householder (who is seen as a component
of the household).

Consider the solution with a centralized meter M . The
amounts of consumption for individual appliances cannot be
directly observed or read. Therefore, the home manager HM
has to be design to calculate the consumption readi of an
appliance Ai from its ratei. After that, the control strategy
would be same as in the previous case. Obviously, HM can be
embedded into the centralized meter, M , and in this case M
becomes a smarter meter.

D. Energy Reallocation

The designs of a household in subsections III-C and III-B
are all equivalent to the following component:

Component H {
attributes: fD, vD: Real;
signal: read: Real;
provided interface:
Rf(;x:Real), Rv(;y:Real);
Wf(x:Real), Wv(y:Real);

/** x, y - return parameters
setUp() /** set up budget and policy

/** by householder;
read;

functionality:
Rf(;x){x:=fD}; Rv(; y){y:=vD};
Wf(x){fD:=x}; Wv(y){vD:=y}

----
}
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Fig. 1. Different ways of composing components represent different design
approaches.

Operations Rf(), Rv(), Wf() and Wv() are called by the
component Collector. The operation setUp() in this example
is an abstraction of the setup operations that the householder
perform to set up the budget and scheduling constraints. The
signal read can be read by the Collector and the billing
component that is not considered in this paper.

Now let N = {Hi | i = 1, . . . , k} of k households, with
their modelling elements indicated by I = {i | i = 1, . . . , k}.
The model of the utility by a component U is simple. It
only provides an operation request(x : Real, y : Real; z : Real)
for supply of energy. When it is called, it will provide the
amount of committed supply for the day through the return
parameter. The Collector component has an interface (i.e., an
active process), through which it periodically call the interface
operations Rfi() and Rvi() and make a request to utility U
through request(). After it receives notification from U about
the committed supply, it “negotiates” with the households
(through communication interfaces that we omit in this paper)
and reallocates budgets to the house holds through Wfi() and
Wvi(). Then each household Hi is managed by themselves.
This gives us the system (∥ki=1 Hi) ∥ Collector ∥ U . The re-
quirements for energy allocation for the energy supply can
be matched by allocation and supply algorithms of Collector
and U after coordination of the consumers is completed. rCOS
supports the design and verification of these algorithms.

Notice that, except for the “negotiation” of the collector
with individual households, the composition ∥ki=1 Hi of the
households behaves exactly the same as one household in a
“black box” if a connector is added to summate the fixed and
variable demands of the individual households. This shows how
abstract modelling deals with complexity. Similarly, we can
imagine that a network of utilities works in collaboration to
provide a power supply. Once they reach an agreement among
themselves on how they share the supply to the request from the
collector, they interface with the collector in the same manner
as a single utility. Furthermore, the centralized collector can
be transformed into a distributed implementation so that the
“negotiation” can be performed among households themselves.



In addition to reasoning about equivalent interface be-
haviour of different designs, the architectural model is also im-
portant for identifying and analysing vulnerabilities and weak-
ness in different components due to interaction mechanisms,
communication protocols, hardware quality or software bugs.
Based on this hazard and risk analysis, architectural decisions
can be made for different concerns, such as distribution, use
of redundancy, specially designed secure protocols, etc., to
improve safety, security, integrity, and availability.

Here, our aim is to show the power, the effectiveness, and
the scalability of the modelling method. This extension to rCOS
with CPS components is at its early stage. The notation and its
formal semantics are still yet to fully developed. Tool support,
such as simulation and verification, would be important for its
practical adoption.

IV. CONCLUSION

Within the Internet of Things (IoT) infrastructure, some
services are envisioned to be more efficient as users gain
autonomy and self-organization. Smart communities, capable
of identifying patterns in energy consumption will be able to
reduce or shift their use of the resource, making the overall
consumption more sustainable and efficient. In this paper, we
have used a novel demand response (DR) framework that relies
on the cooperation of the consumers targeting the available
renewable energy supply to motivate the need of a component-
based method for the development of a smart community.
Unlike most previous DR strategies that have focussed on
pricing and aimed at reducing the energy cost and the peak-
to-average ratio, the new DR solution tends to promote a
transformation of the whole energy value chain.

Moreover, the rCPCS modelling method provides power
means of abstraction so that large and complex composite
subsystems, such as the composition of all household, can
be treated as as simple component. Future work includes the
full development of the modelling notation and its formal
semantics. Tools to support analysis and verification are also
important for putting the method into practice. Another area
of work is to use the model of the system to identify safety
weakness and vulnerability components, and points of security
threads in order to make architectural decisions to strengthen
the system [27]. Furthermore, introduction of intelligent com-
ponents with learning capabilities is of interest for utilities and
storage purposes.
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