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Abstract—Crowdsourcing mobile network performance
evaluation is rapidly gaining popularity, with new ap-
plications aiming to deliver more accurate and reliable
results every day. From the perspective of end-users, these
utilities help them estimate the performance of their service
provider in terms of throughput, latency and other key per-
formance indicators of the network. In this paper, we build
ORCA: Operator Classifier, a Machine Learning (ML)
based framework to define and determine the behavior
of Mobile Network Operators (MNOs) from crowdsourced
datasets. We investigate whether one can differentiate
MNOs by using crowdsourced end-to-end network mea-
surements. We consider different performance metrics (e.g.
Download (DL)/Upload (UL) data rate, latency, signal
strength) and study the impact of them individually but
also collectively on differentiating MNOs. We use RTR
Open Data, an open dataset of broadband measurements
provided by the Austrian Regulatory Authority for Broad-
casting and Telecommunications (RTR), to characterize
the three major mobile native operators and two virtual
operators in Austria. Our results show that ORCA can be
used to identify patterns between various mobile systems
and disclose their differences from the end-user perspective.

I. INTRODUCTION AND MOTIVATION

The use of Mobile Broadband (MBB) networks has
exploded over the last few years due to the immense
popularity of mobile devices such as smart phones and
tablets, combined with the availability of high-capacity
3G/4G mobile networks. Therefore, understanding the
underlying mechanisms that dictate user performance
and reliability of MBB networks is of great importance
towards smooth operation and future improvements.

One challenge with understanding MBB networks is
that they consist of several heterogeneous and com-
plex components that are intertwined into a system.
A simplified 4G Long-Term Evolution (LTE) network
architecture has two main building blocks: a Radio
Access Network (RAN) and a Core Network (CN).
RAN is composed of radio base stations whose primary
responsibility is to mediate access to the provisioned
radio channel and transport the data packets to and from
the user’s device. CN connects the radio network to the
public Internet and is responsible for the data routing, ac-
counting, and policy management. Although these same
components exist in every operator’s network, end-users
typically experience considerably disparate performance
due to different deployment of base stations, number of

users, network configurations, and traffic policies across
operators. In addition, the environment is highly dynamic
in terms of physical channel conditions, applications, and
users. The first aim of this paper is to quantify how
visible these differences are to the end-users. Can we
differentiate the operators and characterize their behavior
by just looking into the end-user measurements?

In mobile networks, to assess the quality experienced
by end-users, certain network performance metrics are
collected via end-to-end network measurements [13], [9],
[11], [8]. One popular approach for performing such
measurements in MBB networks is to rely on end-users
to run performance tests by using a measurement appli-
cation. Such a crowdsource approach is accepted as norm
today since it can collect millions of measurements from
different regions, networks and User Equipment (UE).
For example, Okla’s speedtest [3] evaluates operators
performance and provides awards to the fastest in a
country [5]. Such results are then commonly used by
the operators in their marketing announcements. Simi-
larly, regulators use the results of crowdsourced mobile
applications such as RTR Nettest [4] to evaluate whether
the operators fulfill their obligations. In all above appli-
cations, DL data rate is the most popular parameter that
every operator uses to differentiate from other operators.
The second aim of this paper is to determine the funda-
mental network parameters that differentiate operators.
Accordingly, we will investigate parameters, including
DL/UL data rate, latency, and signal strength, to establish
if differentiation is attributed to a single parameter or a
combination of parameters.

The goal of this paper is to understand whether
different parameters can be used to discriminate the
performance of operators using crowdsourced datasets.
To tackle this problem, we propose a methodology that
captures and discloses the unique behavior of operators
by identifying patterns, namely ORCA: Operator Classi-
fier. ORCA is designed to leverage large crowdsourced
datasets composed of features as latency, DL/UL data
rate, wireless signal strength and other network-level
characteristics, collected from a large number of mea-
surement vantage points, networks and UE. However,
crowdsourced datasets are known to be noisy and nat-
urally unbalanced due to experiments running at users’
own will [14]. To eliminate this noise and imbalance,
ORCA introduces a set of pre-processing and filtering978-1-5386-3531-5/17/$31.00 c� 2017 IEEE



steps. Then, it follows a learning process and builds
a classification model by adopting features that are
representative of selected operators. The derived model
is then used to investigate whether one can differentiate
operators using a crowdsourced dataset.

Our results reveal that DL data rate alone is not
enough to differentiate operators. Rather, latency is of-
ten a better differentiating parameter. In all cases, the
combination of various performance parameters allows
to better distinguish operators. More importantly, ORCA
reveals the operating regime in which such differentia-
tion can occur. Therefore, we can answer more detailed
questions of the form: what is the range of the average
latency that is representative of a certain operator? The
end result is that ORCA can differentiate operators who
own the network infrastructure with high accuracy. Fur-
ther analysis illustrates how virtual operators are treated
compared to the infrastructure owners: while native
operators prioritize their own users, they do not discrim-
inate between virtual operators. The basic framework of
ORCA is relevant for many potential applications that
could be explored as part of future work. Improving
the robustness of ORCA, would allow a more accurate
match between pricing and claimed offered Quality of
Service (QoS), hints regarding the different CN and
RAN structures, detection of performance bottlenecks
and network problems.

II. DATASET

There is an increasing amount of attention from both
academia and industry towards crowdsourced approaches
for measuring MBB performance via end-user devices.
Popular approaches include Speedtest [3], OpenSignal
[1], MobiPerf [2], and RTR-Nettest [4]. Among available
platforms, RTR-Nettest is the only one that provides its
source code together with the complete open dataset,
called RTR Open Data. Thus, we have used this dataset
for the analysis and exploration of operators’ character-
istics as captured from the end-user perspective.

RTR-Nettest is a measurement platform launched by
the RTR in 2013. It measures QoS parameters such
as data rate and latency, as well as signal strength,
geolocation, network and device type, with a timestamp
for each measurement. A measurement in the RTR-
Nettest platform consists of six stages: 1) Initialization,
2) Pre-Test Download, 3) Ping Test, 4) Download Test, 5)
Pre-Test Upload and 6) Upload Test. Initialization con-
sists of the client connecting to the Control Server and
undertaking necessary authentication procedures before
making a measurement request, which, when granted,
starts the communication between the client and the
Measurement Server. This exchange is very brief and
consists of an almost-constant number of packets. Once
the client establishes a connection with the server, the
Pre-Test Download phase follows. Both of the Pre-Test
phases are undertaken with the same purpose: to ensure

that the Internet connection is in an "active" state, i.e.
that dedicated radio resources are available. During this
phase, the client requests and the server sends a data
packet in each active thread. While the duration of the
phase has not exceeded its nominal value, the client
requests a data block of double size compared to the
last iteration step. The transfer of the last data block will
be completed even if the duration has already exceeded
the nominal value. The Pre-Test Upload phase works
analogously to the Pre-Test Download phase, but with
the client as the sender and the server as the receiver.

The Ping Test consists of the client sending a certain
number of Transmission Control Protocol (TCP) pings
in short intervals to the server to test the latency of the
connection. This exchange is also very brief and consists
of an almost-constant number of packets. The Download
Test and Upload Test are the main components of the
measurement where multiple TCP threads are opened
and within each of these, the receiver side simultaneously
requests and the sender side continuously sends data
streams consisting of fixed-size packets. After the nomi-
nal duration, the sender stops sending further packets on
all connections, the last packet per each thread is allowed
to transmit completely, and the DL/UL data rate of the
connection is estimated. We refer the reader to the RTR
Open Data Interface Specification for a complete list of
available parameters and their descriptions [4].

RTR Fields: RTR Open Data currently provides up
to 67 features which are grouped in six categories: test,
location, device, network, coverage and performance.
In this paper, we use 11 of these fields. Date and
time (in UTC) is indicated by time_utc. Additional
test-specific parameters, as identifiers of the test and
relative start timers, do not contribute to our model
and therefore are discarded. Moreover, we do not con-
sider geo-location characteristics (e.g LAT and LONG
of user’s position, distance covered, etc), hence, no
location related parameters are used. The device platform
(Android/iOS) is indicated by platform, and model

indicates the device name. For identifying networks, we
use network_type which indicates the technology
(e.g UMTS, GSM, 3G, LTE, etc.), and a combination
of sim_mcc_mnc and network_mcc_mnc which
indicate the Mobile Country Code (MCC) and Mobile
Network Code (MNC) as read from the Subscriber Iden-
tification Module (SIM) card (i.e. home network), and
the network that is currently used (i.e. access network),
respectively. With this information we can identify cases
of roaming. We use LTE signal strength information in
the form of Reference Signal Received Power (RSRP)
(lte_rsrp), and Reference Signal Received Quality
(RSRQ) (lte_rsrq). Similar to several other datasets,
RTR Open Data includes a series of QoS-related param-
eters, namely download_kbit, upload_kbit and
ping_ms. Interface related parameters are out of the



TABLE I: ORCA model features.

Id Feature Description IG
1 ping_ms Latency (ms) 0.21
2 upload_kbit UL data rate (Kbps) 0.18
3 download_kbit DL data rate (Kbps) 0.12
4 lte_rsrp Signal strength (dBm) 0.07
5 lte_rsrq Signal quality (dB) 0.06
6 hour Hour of the day 0.02
7 weekend Weekend indicator 0.01

scope of in this paper.
Table 1 lists the selected model features along with

their description. Features one to five are used directly
from the dataset, where six and seven are derived. We use
time_utc to obtain the hour of the day (hour) and add
a weekend indicator (weekend, 1 if the measurement
conducted during weekend, 0 otherwise) to investigate
temporal effects. Overall, we focus on network related
features that are available in every crowdsourced dataset.

Dataset Statistics: The total number of samples in the
RTR Open Data between 2013 and 2016 is 3.67 millions.
In this paper, we use a part of the dataset corresponding
to six months of measurements (March 2016 - August
2016). During this period, we observe an average of
22568 samples per month in LTE, among which 16186
samples are collected from Android devices. There are
20 distinct SIM networks, including native operators, i.e.
MNOs who manage their own infrastructure, virtual op-
erators, i.e. Mobile Virtual Network Operators (MVNOs)
who rely on others’ infrastructure to operate via national
roaming agreements, and operators who are roaming
internationally in Austria. Measurements are collected
from 378 device models.

Exploration and Filtering: As mentioned before,
crowdsourced datasets are noisy and unbalanced due to
the voluntary participatory initiation of measurements by
users. In the RTR Open Data, for instance, we observed
large variations in the number of samples per operator.
Furthermore, there is a significant imbalance in the
distribution of devices per operator (potentially due to
joint smartphone and subscription deals), which implies
that higher category devices might pull the average data
rate up for a given operator. To overcome this bias,
we first picked a representative distribution of device
categories. Namely, we selected LTE Cat 4, 6, 9, and
12-13. We then randomly selected an equal number of
samples from each operator per device category (see
Table II). We accounted only for Android devices with
LTE support.

TABLE II: Balanced dataset for Austria’s top three MNOs (3
AT, A1, T-Mobile (TMA)) in LTE on Android platform (only
native) collected during March 2016 - August 2016.

3 AT A1 TMA Total
Original Dataset 17137 19338 22788 59263
Balanced Dataset 6, 332 6, 332 6, 332 18, 996

In Figure 1, we illustrate the characteristics of the
balanced dataset in terms of latency, DL/UL data rate,
and LTE signal strength (RSRP and RSRQ). Violin plots
show the range of each parameter per operator. We
observe that the range and the density of the parame-
ters do not vary greatly from one operator to another,
making it hard to find a single parameter that clearly
differentiates operators. In addition, defining thresholds
on statistical descriptors of the parameters’ distributions
does not suffice to capture the interplay of all these
metrics. Hence, they fall short in contrasting operator
behavior across multiple dimensions. This motivates our
decision to consider all available parameters and leverage
ML to build an operator classifier.

III. ORCA: OPERATOR CLASSIFIER

In this section, we expand on the design and method-
ology behind ORCA. The flowchart depicted in Figure 2
contains three main building blocks: Dataset, Study
Design and Decision Tree Induction.

A. Study Design

The learning process is designed with a methodology
that uses sequential training, validation, and testing. In
particular, we first train and refine the classification
model (training and validation) and then we measure
how it behaves on an independent never-before-seen
dataset (testing). This approach implies splitting the
data into known data, which we use for training and
validation, and unknown data, or hold-out test data. For
a robust evaluation, we perform K-Fold cross-validation
for the training and validation phase. Cross-validation
splits the known data into disjoint training and validation
subsets, in order to estimate the average accuracy of the
model. In the following, we explain in detail the data
structure and error metrics we used.

Data Structure: When splitting the dataset into train-
ing, validation and testing, we need to ensure that all
datasets are perfectly disjointed. We first isolate five
months (March 2016 - July 2016) for the known data,
and one month (August 2016) for the hold-out test data.
We then filter the data to ensure a balanced distribution
across the three MNOs. With 10-fold cross-validation,
we train our model and evaluate its performance under
ten different splits of the known data. In this case, the
training set has 90% of the known data while validation
set contains the remaining 10%. At each repetition (i.e.,
fold), we do not reuse the 10% of the known data used
for validation.

Error Measures: To determine the best model, we
evaluate a set of error measures. The accuracy of a
classifier is, by definition, the percentage of instances
that are classified correctly when a set of unknown data
is tested. Accuracy is commonly used as a performance
metric in binary classification problems. However, in a
multi-classification problem, accuracy is not enough to



25

50

75

100

3 AT A1 TMA

(a) Latency (ms)

0
10000
20000
30000
40000
50000

3 AT A1 TMA

(b) UL Data Rate (Kbps)

0e+00

1e+05

2e+05

3 AT A1 TMA

(c) DL Data Rate (Kbps)

-120

-100

-80

-60

-40

3 AT A1 TMA

(d) RSRP (dBm)

-20

-15

-10

-5

3 AT A1 TMA

(e) RSRQ (dB)

Fig. 1: Characteristics of the Training Dataset.
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Fig. 2: ORCA flowchart.
reflect the performance and efficiency of a classifier.
Therefore, we produce a confusion matrix, that maps
predicted operator labels to the rows and ground-truth
operator labels to the columns.

B. Decision Tree Induction

In this section, we discuss the learning and the feature
selection method we adopt for building the decision
model.

Random Forests (RF): We derive and tune a decision
tree model based on the ML method of Classification
and Regression Trees (CART) [6]. Tree-based learning
methods rely on iteratively partitioning the data into
smaller groups of similar elements [12]. The key idea
is to choose the splits which maximize the group homo-
geneity ,or until the small groups are sufficiently pure.
Choosing the right number of splits is a challenge, since
the model can easily overfit by considering splits that are
very specific to the training data, or, contrarily, underfit it
by considering shallow general splits. Finding the correct
balance is conditioned by finding the optimal set of
features used to partition the data.

The next step is to adopt ensemble learning, that is,
generate many classifiers and aggregate their results. For
this purpose the RF algorithm is selected [7]. The used
bagging approach builds independent decision trees us-
ing a bootstrap sample of the training dataset. In the end,
a simple majority vote is taken for finding a prediction.
RF adds randomness to the bagging approach. In RF,
each split uses a subset of features randomly chosen at
each repetition. This algorithm is known to outperform
many other algorithms, including discriminant analysis,
support vector machines and neural networks, and is
robust against overfitting [7].

The number of trees in RF is an important parameter
that dictates the performance and the computational
complexity of a classifier. We need to select a number of
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Fig. 3: (i) Left bottom axes (dotted line): Classifier error as a
function of the number of trees in RF. Based on these results,
we select to use 100 decision trees in the forest. (ii) Top right
axes (solid line): The impact of total number of features used
for model building on the accuracy of the classifier.

trees that provides a good compromise between accuracy,
computational complexity, and probability of overfitting
to a given training dataset [15]. We vary the number
of trees between 2 and 300 and evaluate our classifiers
using 10-fold cross-validation. The bottom left axes of
Figure 3 presents the Out-of-bag mean error of the
classifier as a function of the number of trees used.
Based on these results, we select a forest that consists
of 100 decision trees. Another parameter that dictates
the performance of RF is the number of features that
are randomly sampled in each individual tree. We set
this parameter to its default value that is defined as the
square root of the total number of features.

Feature Selection: Subsequently, we apply feature
selection using Information Gain (IG) as the primary
metric. IG, also known as entropy, is a widely accepted
method for evaluating the contribution of a feature in dis-
tinguishing between instances of different classes [10]. It
varies between 0 and 1 with the latter one representing
maximum information. We use a ranking approach to
sort the features based on the scoring assigned by IG.
The decreasing order of the features and the associated
IG value is being reflected on Table I. We observe that
latency dominates the pool of features along with UL
and DL data rate following close behind. In the contrary,
entropy of weekend is close to zero meaning that it
hardly provides useful information to the classifier.

In order to select the subset of features that ensures
the optimal performance of RF, we adopt a progressive
approach. We first train RF with all available features us-
ing 10-fold cross-validation and estimate its performance
by generating the confusion matrix. Subsequently, we



(a) Native MNO scenario. (b) MVNOs compared to their
native operator.

Fig. 4: Confusion matrices illustrated by heatmaps. The gra-
dient encodes the accuracy for each block of the confusion
matrix. Rows and column direction indicate the ground-truth
and the predicted operator respectively.

eliminate the feature with the lowest IG (i.e., weekend),
re-train the model and calculate yet again the confusion
matrix. With this approach, we further iterate through
the remaining features in an increasing order of IG and,
at each iteration, the feature with the lowest contribution
is eliminated. This helps us estimate whether a subset of
the features confuses RF instead of helping the algorithm
to produce a higher-performance classifier. The top right
axes of Figure 3 depict the accuracy of each classifier as
a function of the number of features used. We observe
that the generated classifier with all seven features is the
best performing one.

IV. PERFORMANCE EVALUATION

Describing the performance of a multi-classification
algorithm with a single number is often not enough to
unveil it’s overall behavior. Next, we evaluate the perfor-
mance of ORCA by leveraging visualization tools such
as heatmaps to better illustrate the confusion matrices.

A. Classification of Native Operators

For the classification of native operators (i.e. no roam-
ing case), we use the balanced training dataset described
in Section III (March 2016 - July 2016) and evaluate
the performance of ORCA on the hold-out test dataset
(August 2016) which consists of 3462 samples. Figure
4a shows the heatmap of the confusion matrix where
the correctly classified instances are located in the main
diagonal of the matrix.

We observe that ORCA can identify MNOs with an
accuracy of 66%, 75% and 63% for 3 AT, A1, and TMA,
respectively. This is a rather good result considering that
a random guess has a 33% probability to be successful.
There exists a slight confusion between 3 AT - A1 and
TMA - A1 while A1 is equally likely to be confused
with either one. It is important to point out that it was
difficult to differentiate the operators by using statistical
representations (violin or box plots) of single features.
However, with ORCA, the operators can be classified
quite accurately indicating that each operator has a
certain pattern that is uniquely identifiable. Note that, the
accuracy of the classifier differs among operators. Given

that we optimize RF to it’s full potential, the classifier
percentages are restricted by the similarities in the data.
The more similarities exist between the MNOs, the less
accurate the classifier is.

To understand the contribution of each feature to the
classification performance of ORCA, we use the forest
floor approach described in [16]. Recall that, by using a
pluralistic vote mechanism, RF serves a probabilistic pre-
diction for each class. The connections between samples
are described by the change in the predicted probability
for each operator and they sum to zero. Therefore,
feature contributions can be defined as the sum of these
changes over trees for each sample. Figure 5 depicts
the change in the predicted probability compared to
the value range of each feature, per operator. Subplots
corresponding to the most important five features are
sorted in a decreasing order of importance according to
IG. We notice that observations with latency higher than
30ms are more likely to be classified as 3 AT. Moreover,
RSRP higher than �90dBm imply a higher possibility
to be labeled as TMA. In addition, we observe that
UL and DL data rates can identify the correct operator
with an adequate likelihood within different intervals.
In summary, operators have different likelihood for the
value range of each feature and ORCA exploits this to
differentiate the operators.

B. Contrasting MNOs Using a Single Feature

In this section, we assume there is only one feature
in the dataset and investigate the dominant one for con-
trasting operators network. Figure 6 depicts the accuracy
per MNO for five features ordered with respect to the
IG ranking presented in Section III. The foreground bars
illustrate the accuracy when only a single feature is used
and the background bars represent the accuracy when all
seven features are available. We observe that for the RTR
dataset, we can identify MNOs with an average accuracy
of 60% by using only latency. Note that this is only 8%
lower than the native MNO scenario and clearly indicates
that latency is the most important feature contributing to
differentiating operators. Furthermore, we observe that
UL and DL data rate are not good for differentiating op-
erators, providing a 42% and 38% accuracy respectively,
which is slightly better than choosing an MNO randomly.
This shows that DL and UL data rates are very similar
for all operators. The same results apply for the LTE
power-related parameters. However, the distribution of
accuracy between the MNOs is different. RSRP identifies
3 AT and TMA with an average accuracy of 43%, while
for A1, this number goes down to 29%. Finally, while
RSRQ is also a good identifier for TMA, it totally
fails when it comes to A1, where accuracy reaches 6%.
In summary, our results show that latency is the most
important feature for operator classification, but using all
available features clearly increases the overall accuracy.
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Fig. 5: Feature contributions for the training dataset, for each feature and each operator. Y’ depicts the change in the predicted
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C. MVNOs Identification using ORCA

We further investigate the roaming scenario, where a
national agreement between MVNOs and a native oper-
ator exists. MVNOs are allowed to utilise the physical
infrastructure of their service provider while applying
different tariffs or QoS to their customers. Our aim is
to understand if the customers of both sides are treated
in the same manner. We use the same datasets, and
consider A1 and two of its MVNOs: bob and yesss!.
Figure 4b shows the heatmap of the confusion matrix for
A1, bob and yesss!. We observe a clear differentiation
between A1 and the MVNOs, most likely due to resource
constraints enforced by A1 to the MVNOs. Moreover,
upload_kbit is among the features with the largest en-
tropy according to the IG analysis, which means that
MVNOs customers are not allowed to exploit all the
available bandwidth when uploading. On the other hand,
ORCA suffers more when it comes to bob and yesss!,
showing an accuracy of 40% for bob and 43% for
yesss! respectively. This results indicates that MVNOs
are treated similarly and ORCA cannot distinguish them.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduced ORCA: Operator Clas-
sifier for identifying patterns and disclosing exclusive
aspects of MNOs under noisy crowdsourced datasets.
Contrary to what is extensively presented in the lit-
erature, in which the focus is centered upon operator
performance with respect to a single parameter, ORCA
leverages the power of the rich set of features commonly
found in crowdsourced datasets and jointly considers
multiple features. In addition, a learning process is used
to build a classifier for identifying operators. RF is used

for capturing this characterization. Results show that,
latency is the most important feature to differentiate
MNOs behavior. However, using all available features
clearly increases the accuracy of the classifier. Moreover,
MVNOs are treated differently compared to their native
operator while they behave similarly among themselves
and are not easily detectable.

The basic framework of ORCA is relevant for many
potential applications. For example, improving the ro-
bustness of ORCA would allow a more accurate match
between pricing and claimed offered QoS, hints regard-
ing the different CN and RAN structures, detection of
performance bottlenecks and network problems. Future
work includes analysis of benchmarking classification
algorithms and exploration of crowdsourced datasets.
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