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Abstract

Modern video coding techniques provide multidimensional adaptation op-
tions for adaptive video streaming over networks. For instance, a video server
can adjust the frame-rate, frame-size or signal-to-noise ratio (SNR) of the video
being requested to cope with the available bandwidth. However, these adap-
tation operations give rise to distinct visual artefacts, so it follows that they
are not perceived in the same manner. Subjective evaluation shows that we
can no longer assume a monotonic rate-distortion function for scalable video.
In fact, the perceived video quality that is expressed as the overall viewing
experience of the video being delivered, is mutually and interactively affected
by many factors ranging from configuration parameters to source material.

Performing subjective evaluation is a tedious task, and to facilitate con-
ducting field experiments of quality assessment, we introduce a practical and
economic method, denoted by Randomized Paired Comparison. The per-
formance of this method has been examined by experimental practice and
simulations. To help formulating optimal adaptation strategies for stream-
ing services, a sequence of field studies have been conducted to evaluate the
perceived video quality, with the focus mainly on mobile streaming scenar-
ios. These studies reveal that dynamic bit-rate variations may bring about
the so-called flicker effects, which have negative influence on the perceived
quality. Furthermore, the perceptual impacts can be controlled by the in-
tensity of bit-rate changes (amplitude) and the number of bit-rate changes
per seconds (frequency). The amplitude of bit-rate fluctuation is the most
dominant factor. Thus, the greater amplitude an adaptation scheme has, the
lower perceived quality will be brought about. Meanwhile, the frequency fac-
tor affects visual quality significantly when the bit-rate changes occurs in the
spatial domain. To ensure stability of the perceived video quality, the spatial
components (pixel values and frame size) of a video should be kept unchanged
for a period more than 2 seconds. Moreover, we have explored the acceptance
thresholds of quality degradations in different scaling dimensions, and the gen-
eral preference order of scaling dimension has been suggested. We made also
some preliminary analyses of the effect of content type in all of these studies.
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Chapter 1

Introduction

We are witnessing a paradigm shift from a technology-centric to a human-centric view
in information science. Over the last decades, technological advances have enabled a
rich exchange of multimedia information among people. YouTube, Skype and IP-TV
broadcast services are only a few popular examples that show the ubiquity of multimedia
communication. With the increased human activities on multimedia information, users’
expectation for the next generation of multimedia communication services have been
set higher from simple content access to the delivery of “best experiences”. In today’s
competitive world of multimedia services, human-centric system designs that focus on
enhancing a user’s experience are winning the market. For designing such a system,
a better understanding of human perception is needed from the beginning. Observing
people in their daily environments and analysing their perceptions constitutes therefore
our work in this thesis.

1.1 Motivation

As network technologies are becoming widely applied in our daily life, multimedia stream-
ing services are gaining increased popularity. For instance, nowadays, video streaming
services already exist both on the Internet and with mobile technologies. Different from
video downloading, streaming stored video to a large number of heterogeneous receivers
over various networks introduces several challenges with respect to delivered rate and
quality.

To cope with the Internet’s varying bandwidth, many video streaming systems use
adaptive and scalable video coding techniques to facilitate transmission. Furthermore,
transfer over TCP is currently the favored commercial approach for on-demand stream-
ing (Adobe, 2010; Move Networks, 2008; Pantos et al., 2010; Zambelli, 2009) where video
is progressively downloaded over HTTP. This approach is not hampered by firewalls, and
it provides TCP fairness in the network as well as ordered, lossless delivery. Adaptation
to the available bandwidth is controlled entirely by the application. Several feasible tech-
nical approaches for performing adaptation exist. One frequently used video adaptation
approach is to structure the compressed video bit stream into layers. The based layer is a
low-quality representation of the original video stream, while additional layers contribute
additional quality. Here, several scalable video codec alternatives exist, including scalable
MPEG (SPEG) (Huang et al., 2003), Multiple Description Coding (MDC) (Goyal, 2001)

1



2 Chapter 1. Introduction

and the Scalable Video Coding (SVC) extension to H.264 (Schwarz et al., 2007). The
other alternative is to use multiple independent versions encoded using, for example, the
advanced video coding (AVC) (ITU-T and ISO/IEC JTC 1, 2003), which supports adap-
tation by switching between streams (Adobe, 2010; Move Networks, 2008; Pantos et al.,
2010; Zambelli, 2009). Thus, video streaming systems can adaptively change the size or
rate of the streamed video (and thus the quality) to maintain continuous playback and
avoid large start-up latency and stalling caused by network congestion.

With the growth of streaming services, a multimedia application will be judged not
only by the function it performs, but also by its easy of use and the user’s experience
in using it. Making adaptation decisions that achieve the best possible user experience
has become an open research field. Current video scaling techniques allow adaptation in
either the spatial or temporal domain (Schwarz et al., 2007). All of the techniques may
lead to visual artefacts every time an adaptation is performed. An algorithm must take
this into account and, in addition, it must choose the time, the number of times, and
the intensity of such adaptations. There arises the question of how to design streaming
algorithms that can dynamically adapts to network conditions in real-time to strive for
the best possible viewing experience of video.

The knowledge of user perception and the evaluation of the Quality of Experience
(QoE) are prerequisites for successful design and improvement of adaptive multimedia
streaming services. As an important measure of the end-to-end performance at the services
level from the user’s perspective, QoE in multimedia streaming can conceptually be seen
as the remaining quality after the distortion introduced during the preparation of the
content and the delivery through the network until it reaches the decoder at the end
device (Wikipedia, 2015b). Being able to measure the QoE in a controlled manner helps
the service provider understand what may be wrong with their services, so that the storage
and network resources can be allocated appropriately and sufficiently to maintain expected
user satisfaction.

QoE can be evaluated by either objective or subjective methods. Both have their
own drawbacks. Objective evaluation methods can provide automatic and fast evaluation
results, but usually not accurate enough to match human perception. Subjective quality
evaluation, on the other hand, is often difficult to manipulate, time-consuming and ex-
pensive due to the human involvement in the evaluation processes. At the beginning of
our study, there was little research available on the subject of QoE measurements. We
therefore research the challenge of understanding the visual perception of scalable video
streaming services.

1.2 Problem statement

Despite the rapid development in the field of video compression, the vast majority of
streaming video is still encoded by lossy compression algorithms. In other words, a certain
degree of video quality is traded for reduced requirements of storage and network resources
in the video compression process. Similar trade-offs can also occur during the video
transmission process. For instance, scalable coding techniques offer the possibility of
reconstructing lower resolution or lower quality signals from partial bitstreams (Ho and
Kim, 2006). Adaptive streaming services delivering scalable video may need to make
trade-offs between quality and bandwidth requirement by removing parts of a bitstream
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along the end-to-end network path. In consequence, compression artefacts associated with
each downscaling operation can be introduced into a video stream after each trade-off is
made, and even more visual artefacts may be caused by inappropriate adaptation schemes,
which all result in various degrees of video quality degradation.

QoE in the context of video streaming services rests mainly in the perceived video
quality, which is a typical subjective measure. Apart from being user dependent, it will
be influenced by many factors such as the packet loss, the end device capabilities, the
viewing environment and the video content characteristics. It is necessary to investigate
the impacts of these (as well as other) factors on QoE, so that an adaptation strategies
can be designed accordingly. Currently, the only reliable method to assess the video
quality perceived by a human observers is to ask human subjects for their opinion, which
is termed subjective video quality assessment (Seshadrinathan et al., 2010). Subjective
quality assessment tests have to be carried out using the scientific methods in order to
ensure reliability of the test results. However, most of the existing subjective quality
assessment methods come with their own limitations. Especially, there was not much
research work done on the methodology for field studies, although field study has the
advantage of capturing people’s real experiences.

How to efficiently estimate the quality of real-life experiences in order to guide the
design of multimedia streaming services becomes our main research question. In this
dissertation, we therefore present our research efforts in the following two areas:

QoE evaluation in the field: A field study is a collection of data that occurs outside
of a laboratory setting. It is often done in natural settings and can therefore deliver
the most representative information about users. However, the high cost of its
organization usually makes field studies hard to implement. How to carefully plan
and prepare a field study in order to ensure accurate and efficient data collection,
is the first research step before starting any QoE related studies.

Human perception of visual distortions related to active bandwidth adaptation:
Unlike offline video encoders, it is probably not feasible to deploy sophisticated al-
gorithms to optimize the on-line trade-offs between bits and distortions. However,
applications should formulate adaptation strategies with the consideration of hu-
man visual perception in order to deliver a viewing experience ever closer to user
expectation. For video with multi-dimensional scalability and mobile streaming sce-
narios under dynamic network conditions, it is a challenge to measure and predict
user perceived quality of video. There are a number of unsolved problems related
to human visual perception of different types of video artefacts, such as whether
service users have a common preference of quality degradations in spatial domain
over temporal domain, how quickly a streaming service should react to the changes
of available bandwidth, and how service users perceive visual artefacts for different
video contents etc.

1.3 Limitations

In the scope of this thesis, we have focused our work on mobile devices, where the resource
availability changes dynamically due to wireless connections and mobility of users. We
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examined only mobile devices with screen resolution up to 480x320 pixels and size up
to 3.5 inch (89 mm) in our experiments. The main reason for this limitation is the
availability of screen technologies when the experiments were performed. We had not the
chance to investigate the perceived video quality on mobile devices with higher screen
resolution or larger screen size such as tablets computers. The quality of high-definition
video was only examined once on a 42 inch computer monitor. Since high-definition video
can be displayed on mobile devices with different screen sizes, we have designed a quality
assessment tool with these aspects in mind, helping future work to expand knowledge to
this filed of study.

1.4 Research methods

The discipline of computer science is divided into three major paradigms as defined by
the ACM Education Board (Comer et al., 1989) in 1989. Each of them have roots in
different areas of science, although all can be applied to computing. The board states
that all paradigms are so intricately intertwined that it is irrational to say that any one
is fundamental in the discipline. The three paradigms or approaches to computer science
are:

• The theory paradigm is rooted in mathematics. It specifies firstly objects of study
and hypothesizes relationships between the objects. Then, the hypothesis is proven
logically.

• The abstraction paradigm is rooted in experimental scientific method. A scientist
forms a hypothesis, constructs a model, makes a prediction before designing an
experiment. Finally data is collected and analyzed.

• The design paradigm is rooted in engineering. A scientist states requirements and
specifications, followed by design and implementation of said system. Finally, the
system is tested to see if the stated requirements and specifications were met.

This thesis follows mainly the abstraction and design paradigm. The development of
the quality assessment method is based on the design paradigm. We first apply some tra-
ditional subjective evaluation methods in some user studies and learn from practices the
drawbacks of existing methods as well as the requirements of a new method for perform-
ing assessment tasks in the field. Then we design the Randomised Pairwise Comparison
method as a cost-efficient tool for field study of multimedia QoE. A prototype imple-
mentation is created on iOs platform. The reliability of the new method is examined by
experiments and simulations.

All the subjective evaluation experiments follow the abstraction paradigm. Hypotheses
about human quality perception are tested by statistical experiments. Before an exper-
iment, the quality impacts of visual artefacts are predicted through the control of the
influential variables. Then we collect users’ perceptual responses and perform statistical
data analysis.
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1.5 Contributions

Inspired by the necessity and wide application of QoE evaluations, we have carried out a
sequence of user studies with the goal to assess the subjective quality of videos. This work
was also motivated by the aforementioned development in scalable coding techniques. We
investigated the quality impacts of various visual artefacts associated with different bit-
rate scaling operations. As the way in which subjective experiments are performed plays
a critical role in the final evaluation results, the methodology for design of experiments is
also the focus of this thesis.

This dissertation presents some research work in the field of audiovisual quality as-
sessment (Ni et al., 2011a; Eichhorn et al., 2010; Eichhorn and Ni, 2009; Ni et al., 2010).
Several issues were addressed that dealt with visual artefact analysis, experimental design,
and subjective evaluation methodology etc. We list our contributions as follows:

Development of a method for audiovisual quality assessment: A field study is the
fundamental means for the exploration of a realistic multimedia experience. How-
ever, the practicality of subjective studies is often threatened by prohibitive require-
ments, in particular by the participant’s time and the budget for recompensation.
We introduced Randomized Paired Comparison (r/pc), i.e., an easy-to-use, flexible,
economic and robust tool for conducting field studies. With the use of r/pc, an
experimenter can easily obtain stable results with an accuracy close to traditional
experiment designs at a much lower cost. We demonstrate the efficiency and prac-
ticality of r/pc by simulations. For the first time, we quantify, in a heuristic study,
the performance difference between r/pc and classical evaluation methods. We
prototyped also a software program on iOS to automate the experimental design.

Gathering of subjective evaluations of perceived video quality: We spent a con-
siderable amount of time conducting experiments of subjective evaluation. A large
amount of reliable subjective evaluation scores were recorded and can be used as
reference when comparing or validating different objective quality metrics. We do
not limit ourselves to a single genre of video content, and we therefore collected a
rich data set that has wide applicability in video streaming systems.

Subjective evaluation of Scalable Video Coding (SVC): The Scalable Video Cod-
ing extension of the H.264-AVC standard provides three different types of scalability
for efficient and flexible video adaptation. However, the increased number of scaling
options increases also the difficulty of visual quality assessment. We conducted the
first study that evaluated the subjective performance of multi-dimensional scalabil-
ity features in SVC. The study reveals that adaptation decisions for SVC bitstreams
should not only be based on bit-rate and layer dependency information alone, as the
perceived quality degradation may be non-monotonic to bit-rate reduction and the
preferred adaptation paths depend on content and user expectations. The exper-
imental results can help improving the design of objective quality models towards
multi-dimensional video scalability, and the evaluation scores from this study can
be used to validate the performance of existing and future objective models.

Subjective evaluation of frequent bit-rate adaptation: Optimal bandwidth adap-
tation is usually achieved via frequent switching between different bit-rate versions
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of video segments. To investigate the visual effects and usefulness of frequent bit-
rate adaptation, we performed several subjective quality assessment experiments in
different scenarios. Our results show that frequent quality variations may create
additional visual artefacts denoted flicker effects and it is not worthwhile making
quality changes unless the negative impact of flicker on visual quality is eliminated.
We associated the clear definition of flicker effect with different types of quality vari-
ations. In addition, we found that people can detect slow or irregular frame-rates
much easier on large HDTV screens than small screens of mobile devices. There-
fore, our suggestions of how to make video adaptation strategies were given with
the consideration of screen size of the end devices.

In-depth study on flicker effect: The perception of flicker effects is jointly influenced
by multiple factors. To get a better understanding of human quality perception of
the flicker effects, we performed a comprehensive set of subjective tests on handheld
devices. From the study, we were able to identify the main influential factors on
the visibility of flicker effects and determine the threshold quantities of these factors
for acceptable visual quality of video. These findings can help improving video
adaptation strategies or bit-rate controllers deployed in video streaming services.
Since our observations were made about the visual artefacts in general terms, the
experimental findings are applicable for both scalable or non-scalable video. This
is especially useful for modern HTTP streaming systems which use segmentation to
achieve dynamic bandwidth adaptation for non-scalable video. Finally, the flicker
effects were explored across different content types of videos. We provided some
preliminary analyses of content effects on human quality perception.

1.6 Thesis organization

The rest of this thesis is organized as follows:

Chapter2 presents the related work in the field of adaptive video streaming. It gives an
overview of several different but related topics, including video coding techniques,
HTTP streaming, audiovisual quality assessments and experimental design.

Chapter3 introduces Randomized Pairwise Comparison (r/pc) as a practical method
for audiovisual quality assessments in field. We first present the detailed design of
r/pc and then explore the usefulness and the limits of r/pc in this chapter.

Chapter4 presents a field study that evaluated the subjective performance of multi-
dimensional scalability supported by H.264-SVC. Quality degradations in spatial
domain were compared with temporal quality degradations under the same bit-rate
constraints. Some objective video quality metrics were also validated against the
subjective evaluations.

Chapter5 first defines flicker effects for visual artefacts caused by frequent bit-rate adap-
tation with scalable video. We then present three field studies that evaluated the
subjective video quality resulting from frequent quality variations in different sce-
narios, in order to understand whether users consider it beneficial to adapt video
quality quickly.
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Chapter6 presents a series of user studies that we performed to further investigate the
flicker effects. We report our analysis that evaluated the influence of the main factors
on the acceptability of frequent bit-rate adaptations.

Chapter7 concludes the thesis by summarising our findings. Finally, it presents ideas
for extending our work in the future.
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Chapter 2

Background

In this chapter we introduce some background knowledge for a better understanding of the
following chapters. The work presented in this thesis touches on several topics in diverse
knowledge domains including multimedia compression, networking and psychophysical
experiment. Herein, we give a brief overview of these related topics.

2.1 Modern video codecs

Getting digital video from its source (like a camera or a stored clip) to its destination (like a
display) involves a chain of processes. Key to this chain are the processes of compression
(encoding) and decompression (decoding), in which bandwidth-intensive “raw” digital
video is reduced to a manageable size for transmission or storage, and then reconstructed
for display. Video compression is necessary since current Internet throughput rates are
insufficient to handle uncompressed video in real time. Video compression is also beneficial
since more video channels can be sent simultaneously due to a more efficient utilization of
bandwidth. From another point of view, the human visual system has its own limitations,
which makes the human eyes and brain incapable to perceive the three-dimensional scene
flow in full details. It is therefore possible to compress video to a large extent by reducing
the requirement imposed on the physical accuracy of the rendered video frames.

Multimedia compression algorithms have been continually developed over the last two
decades. Lossy compression, where one permanently trades off some information details
for reduced bandwidth requirement, is most commonly used to compress video, audio and
image, especially in application such as streaming services. In contrast to lossless compres-
sion, lossy compression achieves significantly higher compression ratios at the expense of
a certain amount of information loss. For any lossy video codecs, the essential question is
then how to achieve the best tradeoff between quality degradation and bit saving. Nowa-
days, video streaming systems cover a wide range of multimedia applications and need to
deliver video in more heterogeneous environments in which the capabilities and working
scenarios of end devices vary widely in terms of for example network bandwidth, comput-
ing power and screen resolution. New features and functionalities have been added in the
development of video codecs in order to address the need for flexibility and customizabil-
ity of video streaming. For instance, bit-rate scalability of the compressed video is one
of the mostly desired features. Modern video codecs have included several compression
techniques to enable bit-rate scalability. Bit-rate reduction by frame dropping techniques

9
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is possible with MPEG-2 encoded video. Then, the most popular video codec H.264-AVC
supports frame-rate scalability by allowing a more flexible temporal dependence in coded
video frames. On the base of layered video coding structure, scalable coding techniques
such as SNR scalability and spatial scalability have been defined in the MPEG-2 and
MPEG-4 standards (Pereira and Ebrahimi, 2002). Then, with the scalable extension of
H.264-AVC, three different types of scalability can be combined so that a multitude of
representations with different spatiotemporal resolutions and bit rates can be supported
within a single scalable bit stream. An alternative to layered coding techniques is known
as multiple description coding, which fragments a single bitstream into several indepen-
dent sub-streams. Since any sub-stream can be used to decode the original stream, the
risk of interrupted playback due to network congestion is reduced. However, none of
these techniques can avoid further fidelity losses of the bit-stream signals. Modern video
codecs face thus a more complex challenge of how to achieve the balance between per-
ceived quality and compression efficiency under various timing and resource constraints.
Currently, H.264-AVC is the most commonly used video coding standard due to its high
coding efficiency. In the next subsections, we go through the H.264-AVC standard and
its scalable extension, and introduce their implicit rate-distortion optimization question
in details.

2.1.1 The H.264-AVC Video Coding standard

H.264/MPEG-4 Advanced Video Coding (H.264-AVC) (ITU-T and ISO/IEC JTC 1, 2003)
is a flexible video coding standard that represents current state-of-the-art in the area of
versatile highly compressed representation of digital video. Scaling from mobile phone us-
age to High-Definition television (HDTV) broadcasts, H.264-AVC has been well received
in a number of industries such as telecommunications, content production and broad-
casting. The dominant factor for the popularity of H.264-AVC is clearly the high rate
distortion performance - the ratio subjective quality/bitrate (J.Sullivan and Wiegand,
1998), which is achieved through advanced spatial and temporal compression techniques.

The coding structure of H.264-AVC is similar to that of all prior major digital video
standards, as shown in figure 2.1. It is based on block-matching prediction (Motion Esti-
mation (ME), Motion Compensation (MC) Intra Prediction) and Discrete Cosine Trans-
form (DCT) coding: Each picture is compressed by partitioning it as one or more groups
of macro-blocks, which are blocks of 16x16 luma samples with corresponding chroma
samples. Adjacent macro-blocks contains often identical or similar sample values. Given
one block as reference, it is possible to predict the other block with its difference to the
reference. The difference data value (residual information) has usually low entropy and
can therefore be encoded to fewer bits after being transformed and reordered. A macro-
block can be predicted by spatially neighboring blocks contained within a video frame
or temporally neighboring blocks in other frames. When temporal prediction is used,
the compressed video frame is denoted as Inter-frame, and its reconstruction replies on
its reference pictures. Otherwise, the frame is self-decodable and is denoted as Intra-
frame. Inter-frame takes advantage of temporal similarities between neighboring frames
allowing more efficient compression, hence it is the most often used frame type in video
streams. According to the reference picture selection, Inter-frames are further classified
into P-frames and B-frames, where P-frames are forward predicted by earlier decoded
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pictures and B-frames are bidirectionally predicted by reference pictures in future or past
in display order.
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Figure 2.1: H.264-AVC Coding structure

With the concepts of P-frame and B-frame, H.264-AVC is capable to maintain rea-
sonably high coding efficiency while providing the ability to have multiple frame rates
for the same video stream. It is supported with a predetermined temporal prediction
structure - hierarchical prediction structure as illustrated in figure 2.2. The hierarchical
prediction structure encodes the pictures at lower prediction layers first such that the
picture at higher layers can refer to the reconstructed picture at the lower layers. The
sequence of firstly encoded pictures are called key pictures which represent the coarsest
supported temporal resolution. Each key picture is coded as either an I-frame that is
self-contained or a P-frame that uses only previous key pictures as references. Pictures
between two key pictures are hierarchically predicted as B-frame and can be included layer
by layer to refine the temporal resolution. Under low bandwidth situations, B-frames can
be dropped to save bandwidth without influencing the decoding of the video frames at
lower prediction layers, but the bit savings are generally very small.

I B B B P B B B P

Figure 2.2: Hierarchical prediction structure, the arrows show coding dependency between
video frames.

Related to prior video coding methods, H.264-AVC suggests several new features to
improve the prediction accuracy. Innovatively, macro-blocks in H.264-AVC can be further
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divided into sub-block partitions with seven different sizes - 16x16, 16x8, 8x16, 8x8, 8x4,
4x8 and 4x4. The larger variety of partition shapes provides greater prediction accuracy by
taking fine details into consideration. Another feature is the enhanced reference picture
selection. In most prior video coding standards like MPEG-2, P-frames use only one
picture as reference. In H.264-AVC, Inter frames can select, for motion compensation
purposes, among a larger number of pictures that have been decoded and stored in the
decoder. This gives the encoder a wider range to search for the best match for the blocks
to be encoded. Similarly, more features such as fractional pixel search and In-the-loop
deblocking filtering etc. are included in the H.264-AVC design (Wiegand et al., 2003).
These features enhance the predicting ability and thereby improve the coding efficiency.
On the other hand, multiple reference pictures may have the drawback of increasing drift-
error propagation among video frames.

As the classical video compression procedure, the residual information after prediction
is transformed and then quantized. Quantized coefficients of the transform are scanned
and compressed later by entropy coding. Compared to prior video coding standards,
integer transform is firstly used in the H.264-AVC instead of a floating point transform,
which prevents completely any mismatch between encoder and decoder. Additionally, the
H.264-AVC design uses a smaller transform block size. This is perceptually beneficial
since it allows the encoder to represent signals in a more locally-adaptive fashion, which
reduces artefacts known colloquially as “ringing” (Wiegand et al., 2003). Quantization is
the main lossy operation in video compression process. Without quantization, information
loss would be very little. But, quantization is still the most efficient way of compressing
data. In H.264-AVC, a total of 52 quantization parameters (QP) are supported. It can
be noticed that an increase of 1 in quantization parameter means roughly a reduction of
bit rate by approximately 12% (Wiegand et al., 2003). In H.264-AVC, the quantization
parameter can be specified at the segment, picture or even transform block level. This
allows the encoder to flexibly tune of the quantization fidelity according to a model of
human sensitivity to different types of error. However, the standard does not include such
a model to optimize the quantization process. In addition, H.264-AVC does not have
enough flexibility to handle varying streaming conditions in heterogenous environment.

2.1.2 Scalable extension of H.264-AVC

In 2007, the scalable extension of the H.264 standard (H.264-SVC) (Schwarz et al.,
2007) was released to support video streaming in more heterogeneous scenarios. Multi-
dimensional scalability is designed in add-on fashion on the basis of H.264-AVC. The term
“scalability” in this context refers to the removal of parts of the video stream in order to
adapt it to varying network conditions or terminal capabilities while still remaining a
valid decodable partial stream. The reconstruction quality of the partial streams may
have lower temporal, spatial resolution or reduced quantization fidelity compared to the
video stream in full scale.

Compared to the video coding structure of H.264-AVC, H.264-SVC encodes the video
into a layered structure. As figure 2.3 shows, a fully scalable bit stream consists of several
enhancement layers as well as a base layer, where the base layer is an H.264-AVC compliant
subset bit stream. H.264-SVC supports combined scalability. Each enhancement layer is
a certain combination of spatial, temporal and SNR layers depending on the supported
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frame-rate, picture size and Signal-Noise-Ratio(SNR) levels. The total number of layers
is thus the number of combinations of the supported spatial, temporal and SNR layers.

Temporal scalability has already been included in H.264-AVC and remains unchanged
in H.264-SVC. H.264-SVC proposes some new coding features for spatial and SNR scala-
bility. In the figure 2.3, each horizontal layer corresponds to a supported spatial resolution
or a SNR level and is referred to as a spatial or SNR layer. Each spatial or SNR layer
is essentially encoded by separate encoders, and the coding process is in principle the
same as single-layer encoding. The original video is spatially down-sampled or cropped to
several spatial resolutions before sending as input videos to the corresponding encoders.
Motion-compensated prediction and intra-prediction are employed to reduce the entropy.
In addition, the predictions can come from spatially up-sampled lower layer pictures.
Since the information of different layers contains correlations, this so-called inter-layer
prediction mechanism reuses the texture, motion and residual information of the lower
layers to improve the coding efficiency at the enhancement layer. After prediction and
entropy encoding, the bitstreams from all spatial or SNR layers are then multiplexed to
form the final SVC bitstream.

Figure 2.3: Layered video structure of scalable video

The SNR layer is considered a special case of spatial layer with the identical pic-
ture sizes for base and enhancement layer. The same inter-layer prediction mechanism is
employed but without up-sampling operations. The purpose of including SNR layers in
scalable bit streams is to provide coarse-grained SNR scalability (CGS). Differentiation
between bit-rates of CGS layers is achieved by quantizing the enhancement layer with a
smaller quantization step size relative to that used for the preceding CGS layer. How-
ever, the number of CGS layers determines the number of operation points1 for bit-rate
downscaling. Just as its name indicates, only a few selected bit rates can be supported by
CGS and the relative rate difference between successive CGS layers can not be sufficiently
small without negative impact to the coding efficiency. In order to increase the flexibility
of bit-rate adaptation, a variation of the CGS approach, which is referred to as medium-
grain quality scalability (MGS), is included in the SVC design (Schwarz et al., 2007).

1A subset of a scalable video stream that is identified by a set of particular values of scaling parameters.
A bitstream corresponding to an operation point can be decoded to offer a representation of the original
video at a certain fidelity in terms of spatial resolution, frame-rate and reconstruction accuracy.
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The MGS coding approach splits the zigzag-ordered transform coefficients of a quality
refinement picture into several fragments corresponding to several MGS layers, as shown
in figure 2.4. Any MGS fragment can be discarded during bit-rate adaptation, and by
this means, MGS is supposed to provide more finely granular SNR scalability than CGS.
The drift propagation due to any loss of an MGS fragment is limited to the neighboring
key pictures, since only base-quality reconstruction is used for decoding key pictures. The
more key pictures are placed in a video sequence, the less quality impact of any possible
drift error. On the other hand, the enhancement layer coding efficiency will be decreased
when encoding more key pictures. There is again a tradeoff between the coding efficiency
and error concealment ability.

Figure 2.4: Zigzag ordered transform coefficients of a picture which is splited into four
fragments to represent four MGS layers.

Compared with previous scalable technologies in MPEG-2 and MPEG-4, H.264-SVC
does not make theoretical advances leading to significant improvements in scalable video
coding. The streaming flexibility provided by SVC comes at the price of decreased rate-
distortion performance. A very complicated encoding controller with multi-layer opti-
mization is required to achieve 10% bit rate increase relative to H.264-AVC single layer
encoding (Schwarz et al., 2007). Such an optimized encoder control is, however, not
feasible for practical encoders because of the computational complexity.

2.2 Dynamic Adaptive Streaming over HTTP

With the development of video coding techniques, the consumption of digital video has
experienced a massive growth. Meanwhile, the popularity of wireless network and mobile
devices is also expanding dramatically. Providing ubiquitous access to multimedia content
through heterogeneous networks and terminals becomes the goal of Internet streaming
services. In recent years, the HTTP protocol has been used extensively for the delivery
of multimedia content over Internet. The popularity of HTTP streaming is mainly due
to its convenience for end users and content providers. First, as HTTP is a widely used
protocol on the Internet, existing low cost Internet infrastructure (HTTP servers, proxies,
and caches, etc) can be reused to efficiently support multimedia streaming for millions
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of users. Additionally, HTTP is stateless. When an HTTP client sends a data request,
the server responds by sending the data, and then the transaction is terminated. In
this way, each HTTP request is handled as an independent transaction that is unrelated
to any previous request. The HTTP server does not need to retain session information
or status about each user for the duration of multiple requests. Therefore, streaming
content to a large number of users does not impose any additional load on the server
beyond standard web use of HTTP. However, current Internet services offer only best-
effort delivery while multimedia streaming is not a best-effort type of traffic. Streaming
video over Internet, especially over wireless networks, has its own challenges for supporting
video streaming due to its fluctuating capacity. There is a demand for adaptation solutions
to improve the robustness and quality of service (QoS) for video transmission. To address
this need, several HTTP based adaptive streaming solutions, such as Microsoft Smooth
Streaming (Zambelli, 2009), Apple HTTP Live Streaming (Pantos et al., 2010) and Adobe
Dynamic Streaming for Flash (Adobe, 2010), have been implemented in the streaming
media industry. Later, Dynamic Adaptive Streaming over HTTP (DASH) (Sodagar,
2011; Stockhammer, 2011), also known as MPEG-DASH, has been developed by MPEG
since 2010 and was published as an international standard in 2012. The standardization of
DASH promotes universal deployment of such an adaptive streaming solution over HTTP.

In DASH, each multimedia content is partitioned into one or more segments. A Media
Presentation description (MPD) is associated with each content and describes media in-
formation such as segment timing, location on the network, resolution and other content
characteristics. Segments contain the actual media data in the form of chunks, stored
in single or multiple files. Typically, more than one version of the media data segment
at different resolutions or bit-rates is available for adaptive streaming. If a DASH client
requests to play a media content, the MPD will first be delivered to the client. Using
the MPD information, the DASH client selects appropriate segment representations by
fetching the segments using HTTP GET requests. The DASH client fully controls the
streaming session, for instance, it can dynamically switch between different media seg-
ments encoded at different bit-rates to cope with the varying network condition. Thus,
non-scalable video can be also streamed in an adaptive manner at some storage cost
for storing multiple representations of video segments at the sever side. In the case
of streaming scalable content, a DASH client decides then on-the-fly when and how to
switch between different layers. Alternatively, highly scalable content is often delivered by
other streaming solution such as priority progress multicast streaming method. However,
considering that the coding overhead increases with the number of SVC layers and the
storage prices have dropped massively in recently years, streaming multiple independent
non-scalable video representation or scalable video that only contains a small number of
layers in a DASH-based system becomes a practical and efficient solution for multimedia
streaming over the Internet.

The DASH specification only defines the MPD and segment formats to let the DASH
client control the streaming session. The delivery of the MPD and the media-encoding
formats containing the segments, as well as the client behavior for fetching, adaptation
heuristics, and playing content, are however outside of DASH’s scope. In fact, multimedia
consumers expect a high-quality viewing experience in terms of visual quality, start-up
time, responsibility and trick-mode support etc. The question that remains for researchers:
how to make the right segment selection to guarantee the quality of experience for video



16 Chapter 2. Background

streaming services over Internet, especially over wireless networks, given fluctuations in
network dynamics and device conditions? First and foremost, the QoS provided by a
DASH client is dynamic as it can be frequently modified over time. For robust and
satisfactory streaming services, it is very important to perform investigations that help to
measure end-user acceptance, compare alternative adaptation options and find optimal
streaming schemas.

2.3 Quality of Experience (QoE)

In the multimedia communities, there are various definitions of the QoE concept. QoE is
defined by International Telecommunications Union (2007, 2008b) as the overall accept-
ability of a product or service, as perceived subjectively by the end-user. A more compre-
hensive definition of QoE is given by Wu et al. (2009) as “a multi-dimensional construct
of perceptions and behaviors of a user, which represents his/her emotional, cognitive, and
behavioral responses, both subjective and objective, while using a system”. It shows that
the QoE metric can be refined into multiple concrete metrics in order to measure different
kinds of cognitive perceptions and the resulting behavioral consequences. For example,
user experience of a streaming service can be characterized from different aspects, using
words such as “Enjoyment”, “Usefulness” and “Easy of use”.

A QoE metric can be related to one or more QoS metrics that measure the quantifi-
able or tunable aspects of service performance in terms of bit-rate, loss and delay etc.
As different applications have their own features and therefore put particular emphasis
on some QoE metrics, it is essential to understand the influences of related QoS metrics
for a well-specified QoE metric. Research activities have been conducted to map the
relationships between different quality metrics. For example, Gottron et al. (2009) per-
formed a study to identify the major factors affecting voice communication. Considering
objective measurement of QoE metrics does not always provide reliable results due to the
difference between individuals’ cognitive abilities, Wu et al. (2009) suggested an empirical
mapping methodology to correlate QoS metrics with QoE. Furthermore, empirical studies
can translate the cognitive abilities of users to the preference or perceptive thresholds on
different dimensions of sensory information. Therefore, user studies are often involved in
the research of QoE optimization. For example, Huang and Nahrstedt (2012) conducted
subjective tests to determine user preferences for different streaming opinions. These
subjective preference results were then used to design an adaptive streaming scheme for
improving QoE. Xu and Wah (2013) performed subjective tests to find the Just-Noticeable
Difference (JND) (Wikipedia, 2015a; Sat and Wah, 2009) of the send-receiver delay on
audio signals. Knowing the JND threshold, the delay can then be increased to an extent
in order to smooth out network congestions, without incurring noticeable degradation in
interactivity.

2.4 Audiovisual quality assessment

For most multimedia streaming services, user-perceived quality of the delivered audio
and video content is the major factor that contributes to the QoE. However, measuring
user perceived audiovisual quality is difficult, because the perceived quality is inherently



2.4. Audiovisual quality assessment 17

subjective and under the influence of many different factors. The final audiovisual quality
encompasses the complete end-to-end system effects (client, terminal, network, service
infrastructure, etc) and may be influenced by user perceptions, expectations, attitude
and context etc.

Currently, objective quality metrics for video are still in the early stage of develop-
ment. Most existing objective metrics fail to estimate the subjective experience of a
human observer watching a video display, especially for scalable video that can vary its
own properties during the streaming sessions. Audiovisual quality assessment relies on
carefully controlled subjective tests to capture the subjectiveness associated with human
perception and understanding.

2.4.1 Objective quality evaluation

Objective video quality metrics are generally classified into full-reference (FR), no-reference
(NR) and reduced-reference (RR) categories according to the availability of the reference
video (Martinez-Rach et al., 2006). FR metrics perform a frame-by-frame comparison be-
tween a reference video and the test video so that they require the entire reference video
to be available. This type of metrics are most suitable for offline video quality evalua-
tion. For example, FR metrics can be used for designing and optimizing video processing
algorithms as replacements of subjective tests. NR and RR metrics evaluate the test
video with none or limited information from the reference video. They are better suited
for in-service quality monitoring where adaptive streaming and transcoding strategies are
needed. When RR metrics are used to provide realtime measurement, a back-channel
is often required to fetch some information about the reference such as the amount of
motion or spatial details.

PSNRdB = 10log10
(MAX)2

MSE
(2.1a)

MAX = 2B − 1 (2.1b)

MSE =
1

mn

m−1∑

i=0

n−1∑

j=0

[I(i, j)−K(i, j)]2 (2.1c)

FR metrics are most intensively studied among the three categories. The Peak Signal
to Noise Ratio (PSNR) (Equation 2.1a) metric is measured on a logarithmic scale and
depends on the mean squared error (MSE) relative to the square of the maximum possible
pixel value of the image (MAX). The equation 2.1b gives the estimation of MAX when
the image samples are represented with B bits per sample. The MSE is the sum over all
m× n squared pixel value differences between an original video frame I and its impaired
approximation K. PSNR can be quickly and easily calculated and is therefore widely used
as a quality metric. However, it does not reflect well the video quality perceived by human
observers since it simply performs byte-by-byte comparison of the pixel values without
considering their actual meaning and spatial relationship (Winkler and Mohandas, 2008).
Huynh-Thu and Ghanbari (2008) have explored the narrow scope in which PSNR is rep-
resentative for video quality assessment. Instead of comparing single pixel values, Wang
et al. (2004) proposed the Structural Similarity (SSIM) index that measures the similar-
ity between images based on the mean, variance and covariance of small patches inside a
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image. Although it is claimed that the SSIM index can provide good estimation of the
overall reaction of the human visual system, it is not a true perceptual quality metric.
Dosselmann and Yang (2011) have shown that SSIM is only a mathematical transfor-
mation of MSE (and PSNR). Objective metrics that perform extraction and analysis of
content features and artefacts in the video data usually have better performance. Pinson
and Wolf (2004) introduced the National Telecommunications and Information Adminis-
tration General Model (NTIA GM) for combining measures of the perceptual effects of
different types of artefacts such as blurring, blockiness, jerkiness, etc. However, despite
some reported superiority of the objective model over PSNR, the evaluations performed by
Martinez-Rach et al. (2006) and Loke et al. (2006) indicate that NTIA GM does not work
well on multimedia video with low bitrates, various frame-rates, and small frames size.
A few objective metrics that use psycho-visual models to predict human visual responses
were validated by International Telecommunications Union (2008a, 2011). Although these
models also significantly outperform PSNR, they are not accurate enough to fully replace
subjective testing.

Most NR and RR metrics focus also on measuring artefacts and use the artefact metric
to predict perceptual quality score. Most existing NR metrics are based on estimating
the most prominent compression artefacts such as blockiness and blurriness (Sheikh et al.,
2002; Wang et al., 2002). Without reference, it is hard to accurately quantify a certain
artefact since there is a high risk of confusing actual content with artefacts. As a com-
promise between FR and NR metrics, RR metrics make use of a set of side information
which is comprised of important features from the reference and/or test video (Gunawan
and Ghanbari, 2008; Callet et al., 2006). To be practical, theses features have usually
much lower data rate than the uncompressed video stream. Examples of features are the
amount of motion or spatial detail (Winkler and Mohandas, 2008).

The scaling options of H.264-SVC increase the perceptual uncertainty dramatically. It
is therefore highly desired to count the quality influence of variations in multi-dimensional
adaptation space into an objective quality metric. An objective metric multiplicatively
combining the SNR distortion and frame loss was proposed by Wu et al. (2006). It was
claimed that SNR scaling worked better than temporal scaling under most circumstances.
Kim et al. (2008) proposed a scalability-aware video quality metric (SVQM), which incor-
porated the spatial resolution together with frame-rate and spatial distortion into a single
quality metric. However, none of these objective metrics have considered the temporal
variation of different impairments.

To determine the accuracy of an objective quality metric, the calculated objective
quality values are usually compared with the evaluation scores from a carefully conducted
subjective test. It is expected that a reliable objective quality metric would provide values
that are strongly correlated with subjective assessments. Therefore, the performance of
the above-mentioned objective metrics PSNR, SSIM, NTIA GM and SVQM have been
validated against subjective assessment scores in this thesis (see chapter 4.7). Again, none
of these metrics provided satisfying estimation of the perceptual quality of scalable video.
As a matter of fact, our work shows negative correlation between subjective studies and
all these objective metrics.
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2.4.2 Subjective quality evaluation

Audiovisual quality assessment fundamentally relies on subjective quality studies to cap-
ture the perceived quality experience of human observers. Such studies are known to be
expensive and difficult to administer. They require time, a detailed knowledge of exper-
imental designs and a level of control which can often only be achieved in a laboratory
setting. Hence, few research efforts have been dedicated to subjective studies.

There are a few published user studies investigating the quality influence of different
scaling options. Cranley et al. (2006) carried out a set of experiments to discover the Op-
timal Adaptation Trajectory that maximizes the user-perceived quality in the adaptation
space defined by frame-rate and spatial resolution. It was shown that a two-dimensional
adaptation strategy outperformed one-dimensional adaptation. The effects of fidelity
degradation and frame-rate downscaling were evaluated by subjective tests (McCarthy
et al., 2004). It was shown that high frame-rate is not always more preferable than high
image fidelity for high motion video. According to results of the user studies introduced
in this thesis (see chapter 5), the impact of frame-rate loss on perceived video quality is
also related to the device being used. The perceived video quality in the course of video
adaptation process is harder to estimate due to the potential large quality changes. Zink
et al. (2003) performed systematically a series of subjective evaluation tests to investi-
gate quality degradation caused by different variations in the transmitted layers during
streaming sessions. One interesting finding of their experiment is that the perceived qual-
ity of streamed video is influenced by the amplitude and the frequency of layer switchings.
Hence, it is recommended to keep the frequency and amplitude as small as possible. How-
ever, more knowledge is required for developing a transparent video adaptation strategy.
To handle sharp bandwidth degradation, the streaming service designer needs often to
determine threshold quantities of different layer adaptation options for the acceptability of
the end QoE. Additionally, only SNR layer variations have been examined in Zink et al.’s
experiment. Modern scalable video coding techniques enable layer switching occurring
in both spatial and temporal dimensions, which have different impact on perceived video
quality. More investigations are needed to explore the entire adaptation space of layer-
structured video. To avoid confounding the effect of scaling dimension with other factors,
(e.g., frequency and amplitude), quality variations in different dimensions should also be
treated separately. Another limitation of Zink et al.’s experiment is that interaction ef-
fects between video content characteristics and layer variations have not been investigated
although human perception are often strongly influenced by the video content.

Codec performance is critical for decoded video quality. Essentially, all video compres-
sion techniques are trade-offs between bit savings and distortions. Subjective evaluation
is often used to compare the rate-distortion performances of different video compression
algorithms. In these experiments, video compressed by different methods should be com-
pared under the same bit-rate constraints. On the other hand, bit-rate is not the only
factor that influences a user’s overall impression of viewing a video. Given the charac-
teristics of the human visual system, there are many other factors that may affect the
perceived video quality. The source of quality impairment is not only limited to the lossy
video compression methods. Subjective evaluation experiments may also have the pur-
pose of factor screening and interaction detection. In these experiments, it is practical
to compare videos with the same coding parameters instead of bit-rates. Using the same
coding parameter, we assume the fidelity losses caused by video compression are the same
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between different videos, thus making the comparison between different content materials
possible. Examples of these experiments are given in chapter 6 in this thesis. Although
we use H.264-SVC encoded video to simulate the visual artefacts caused by online video
adaptation, we believe that the experimental result is also applicable to other coding algo-
rithms such as H.264-AVC due to the use of the same coding parameters and the similar
compression procedures of H.264-AVC and H.264-SVC.

2.5 Experimental design for subjective tests

Subjective tests have to be carried out rigorously in order to ensure reliability of the
test results. This requires the experimenter to design their experiments according to the
scientific method so that appropriate data that can be analyzed by statistical methods will
be collected, resulting in valid and objective conclusions (Montgomery, 2006). The design
of an experiment is a detailed plan of the entire experimental process. It covers many
different issues ranging from the choice of process variables (factors) to the allocation of
experimental units (test stimuli) to observation units (subjects2). A good experimental
design need not only to be robust, but must also be efficient in terms of gathering statistical
information under given time and economic constraints.

To have a comprehensive overview of experimental designs, we go through the basic
steps of the design of a statistical experiment in this section.

2.5.1 Formulation of statistical hypotheses

The starting point of any experimental design is the definition of research question and
statistical hypotheses. The research question is a broad formulation of the problems to
be studied. An example is the general question we had in the ROMUS3 research project:

“How to scale video streams for the best user experience?”.

This question can be further divided into a number of more detailed questions referring
to some specific influential factors that may have impact on the visual quality of a video.
For example,

• “What is the preference order among the available scaling options in scalable video?”

• “Does the perfect utilization of available bandwidth always improve the user expe-
rience?”.

The former question is targeting the comparison of different scaling dimensions, while
in the latter question, the influential factors are aimed at the adaptation pattern and
frequency. To examine the effect of these factors, these questions should be then narrowed
to an experimentally manageable hypotheses. Similar to many scientific experiments,
the so called “hypothetico-deductive” method (Bech and Zacharov, 2006) is applied in

2We use the terms of subject and assessor interchangeably in this thesis.
3The ROMUS project was a four years research effort funded by the Norwegian Research Council
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the design of most perceptual evaluation tests. According to the hypothetico-deductive
method, the experimenters proceed through their investigation by formulating one or
several hypotheses in a form that could be falsified by a test of observed data. These
hypotheses, also known as “null hypotheses”, usually state that there are no treatment
effects in the population from which samples of response data are drawn. If the statements
are found to be false then it is deduced that there may be some effects not to be ignored
and this will lead to refinements of the hypotheses or new research ideas.

Formulating a hypothesis is important for the experiment since the statistical analysis
of the response data depends on its form. An experiment is commonly affected by random
variation, such as observational errors, random sampling etc. The aim and purpose of
data analysis is not only to summarize the features of a sample of responses by some
basic descriptive statistics such as mean, median or standard deviation, but also to infer
statistically that the findings in the experiment are not obtained by chance. For example,
the size of standard deviation must be large enough for a given sample size to demonstrate
a significant treatment effect. To make such a statistical inference, a hypothesis must
be testable and it is often formulated precisely under the premise of some initial test
conditions. For example, a hypothesis related to preference of scaling options can be as
below:

Hypothesis:
Jerky playback (low frame-rate) is more annoying than coarse picture fidelity.

Initial condition:
Videos with temporally and spatially downscaled quality have similar bit rates and
are compared on the same device in the same environment.

Given the hypothesis above, we have a well-defined experimental task that is to exam-
ine whether the Mean Opinion Score (MOS) (International Telecommunications Union,
2006) for the annoyance as reported by the subjects is statistically significantly different
or not. By adhering to the initial conditions, interferences from nuisance or confound-
ing variables can be eliminated as much as possible and this is helpful to achieve real
experimental progress.

2.5.2 Experimental variables

An experimenter usually defines an experiment to examine the correlation between a num-
ber of variables. These variables to be investigated are divided into two groups: dependent
and independent variables. The experimenter deliberately changes the independent vari-
ables to observe the effects the changes have on the dependent variables.

2.5.2.1 Dependent variables

The dependent variables in subjective tests are the response data provided by the subjects.
Subjective audiovisual quality assessment is one specific variant of subjective test. The
typical way of measuring the human perception of a visual signal is to ask them to
quantify their experience. Dependent on the purpose of the experiment, the question
to the subject can be related to the sensorial strength of individual visual attributes of
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the test stimulus such as blurriness and fogginess, text readability, blockiness etc, or an
overall impression of the stimulus expressed as acceptance, annoyance or preference etc.
When asking questions relative to visual sensation, extra attention should be given to
verbalization as people may use different vocabularies to describe their sensation of the
same attribute. Interviews and trainings are often required in order to elicit a list of words
for the subjects to represent an attribute. Comparatively speaking, there is less ambiguity
in formulating questions related to an overall impression compared to one’s sensation to
an individual visual attribute. An overall impression is a single impression that combines
the sensory influence of all visual attributes and personal cognitive factors such as mood,
expectation, previous experience and so on. Based on the single impression, subjects tell
their desire of buying a product, or how happy or annoyed they are. No formal training
or selection criteria are required for the subjects.

2.5.2.2 Independent variables

The independent variables are experimental factors controlled by the experimenter to
affect the dependent variables. There are usually many factors that can influence the
response of subjects. The experimenter has to define the factors that may be of importance
to the research question, the ranges over which these factors will be varied, and how many
levels of each factor to use. To aid the selection of variables, we classify the experimental
factors that may considerably affect humans’ evaluation of visual quality into a small
number of groups.

Signal fidelity Signal fidelity factors are related to the digitalization, compression
and transmission of video source materials. With current multimedia techniques, the
quality loss during the course of video processing is irreversible, but the effects of many
different kinds of artefacts can often be adjusted by the corresponding parameter settings.
For example, the blockiness artefact in a video is highly correlated with the quantized
transformation. Another example is the bit allocation scheme. It may be beneficial to
allocate more bits to some parts of a video program because video artefacts outside the
region of interest could be negligible or less annoying. Much research has been devoted
to seeking optimal encoder/network configuration for better user satisfaction and greater
robustness of streaming services. These studies should be supported and verified by
experiments that take the coding/networking parameters as main factors that affect user
perception. Knowing the correlation between the signal-fidelity related factors and user
perception is particularly useful for a middleware designer.

Content and usage Content and usage related factors belong to the high level de-
sign of a multimedia system and should be taken into consideration earlier during the
experiment design procedure. Video content can be classified into different genres such
as News, Sports, Cartoon and Commercials. Different video genres demonstrate different
characteristics in terms of motion speed, scene complexity, variation etc, which result in
different interaction effects with other types of factors. For example, motion jerkiness due
to the change of frame-rate in a Cartoon movie may not be as noticeable as in Sports
movies. Usage related factors refer to the features and functionalities of a multimedia
application. A single-purpose application usually aims at some specific content character-
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istics. For example, a video surveillance system may often display crowded natural scenes
while a video chatting program typically displays a single object and usually has a pre-
dictable region of interest. In addition, users expectation to video quality may vary when
they use an application for education instead of entertainment. Their perception can also
be influenced by interactive functionalities such as channel switching, quick browsing or
remote communication.

Device and environment With ubiquitous video streaming, a variety of end de-
vices and their surrounding environments compose heterogeneous streaming scenarios.
The end devices range from large HDTV screens to small smart phones and the envi-
ronments range from living rooms to aircraft cabins. Obviously, this brings different
experiences to the user, and the effects of viewing environment and device are worthy of
investigation.

2.5.3 Evaluation method

When the influential factors have been identified and questions to the subject have been
formulated, the next step is to decide how to measure the responses of interest. The task
involves specifying a measurement scale and an evaluation method that the subject can
apply when reporting the visual impression.

A good measurement scale should be reliable, easy to use and provided powerful
discrimination. It is also highly recommended to apply standardized scales when it is
used as general practical measure of human characteristics so that experiments conducted
at different time can be comparable. Figure 2.5 shows several examples of standardized
scales. These scales can be classified into three categories, namely nominal (figures 2.5a,
and 2.5b), ordinal (figure 2.5c) and interval (figures 2.5d, 2.5e, and 2.5f). The selection of
scale type depends on the dependent variables in the experiment plan. On the other hand,
it determines also to a large extent the type and degree of statistical analysis allowed.

International recommendations such as ITU BT.500-11 (International Telecommuni-
cations, 2002) and ITU-T P.910 (International Telecommunications Union, 1999) suggest
several evaluation methods for visual quality assessment. In summary, there are three
recommended basic forms of evaluation, Degradation Category Rating (DCR), Absolute
Category Rating (ACR) and Paired Comparison (PC). Different modified versions of
these evaluation methods exist. In the DCR method, subjects evaluate the quality of
test stimuli related to their unimpaired source reference while the ACR method presents
only the test stimuli and asks subjects to evaluate their absolute quality. Both the DCR
and ACR methods are based on direct scaling. Each subject gives a score to grade the
perceived quality or perceived impairment in a test stimulus. MOS scores are obtained
by averaging the scores from a number of individual subjects for each test stimuli. The
PC method compares pairs of test stimuli with each other. In contrast to DCR and ACR,
the PC method is an indirect scaling method that asks subjects to evaluate their prefer-
ence instead of perception. The evaluation results can be MOS scores or frequency tables
depending on the levels of measurement. The measurement scale used for comparison
can simply contain two points (e.g., “Same”,“Different”) for checking just the existence of
differences, or include multiple points as shown in 2.5c for evaluating the direction and
degree of the differences.
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(a) 5-grade categorical quality scale

(b) 5-grade categorical impairment scale

(c) 7-grade comparison scale

(d) 11-grade quasi-continuous quality scale

(e) Continuous quality scale

(f) Double-stimulus continuous quality scales

Figure 2.5: Standardized rating scales.
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All of the three types of evaluation method have claimed advantages. The fundamental
difference between the DCR and ACR methods is the explicit use of a reference, which
makes the DCR method most suitable for testing the fidelity of transmission or super
quality system evaluation. Relatively, it is easier and quicker to perform subjective tests
based on ACR methods. The presentation of the test stimuli is similar to that of the
common use of the systems, thus, ACR is well-suited for qualification tests. In addition,
continuous quality evaluation is possible via the ACR method. A comparison of the DCR
and ACR method by Pinson and S.Wolf (2003) shows that the ACR method can generate
quality estimates comparable to DCR methods, but humans consider only the last 9 to
15 seconds of video when forming their quality estimate. When the ACR method is used
for continuous quality evaluation, subjects are required to vote at least once every 10
seconds. A handset-voting device should be used to facilitate the rating procedure in this
case.

The PC method is a prominent assessment method due to its high discriminatory
power (International Telecommunications Union, 1999). In addition, the rating proce-
dure of the PC method is simpler than that of DCR and ACR. Making a comparative
judgment based on preference is a commonly encountered practice in our daily life, which
makes the PC method suitable for many unsupervised field studies with untrained sub-
jects. Results obtained with the PC experiments are often robust and known to closely
reflect perceived sensations on a psychological scale (Thurstone, 1994). Another advantage
of the PC methods is that the comparative judgement can be easily verified by examin-
ing the transitivity of the ratings, which makes PC methods well-suited for inspecting
the agreement between different users. However, the PC method recommended in the
standards applies a full-factorial repeated-measures design that includes all possible test
conditions in one experimental run (see section 2.5.4). With this design, the number of
stimuli pairs in a test session grows exponentially with the number of factors and their
levels under investigation. This makes the standardized PC method counterproductive
for audiovisual quality studies that are known to contain a large number of both factors
and levels.

The standardized evaluation methods are mainly targeting the performance of televi-
sion systems in environments where the viewing conditions (room luminance, background
colour, viewing angle and distance etc) are strictly controlled and more critical than realis-
tic situations. Field experiments which examine the system performance in the real world
rather than in the laboratory are gaining the interest of multimedia system designers,
especially when mobile devices are commonly used to display digital media. However,
running subjective tests in a natural environment adds difficulties to the experimental
design. Thus, new thoughts and amendments for the current test methodology are highly
demanded.

2.5.4 Statistical experimental designs

The standard recommendations for subjective quality evaluation focus on common aspects
of subjective assessment such as stimuli presentation, viewing conditions, measurement
scales and basic statistics for data analysis, while the treatment 4 design and allocation
are left to the experimenter. However, the treatment related design determines to a great

4The term of treatment is referred to a specific level of an experimental factor
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extent whether or not an experiment can be performed correctly and efficiently.
Factorial design is an experimental design in which the effects of more than one factor

are investigated simultaneously. With this design, the effect of one factor can be esti-
mated at several levels of the other factors, which yields conclusions that are valid over a
wide range of experimental conditions. Due to the efficiency, factorial design is most com-
monly used for planning audiovisual perception evaluation that involves a large number
of experimental factors.

The simplest factorial experiment is the full factorial design (Montgomery, 2006; Kirk,
1982) based on repeated measures (Coolican, 2004; Bech and Zacharov, 2006). In such
a design, all possible treatment combinations are investigated in each complete run of
the experiment. Observations of the various treatments are made in random order. The
full factorial design is an optimal design from the standpoint of data analysis, as all
treatments are assigned randomly to all subjects and all experimental factors can be
analyzed statistically. The major disadvantage of this design is that a large number of
treatment combinations need to be tested in the same experiment run, which makes the
experiment too long to accomplish for most of subjects.

To stay within time and resource limits, a fractional factorial design or blocking strate-
gies (Lewis and Tuck, 1985; Bech and Zacharov, 2006) may be used, which reduces the
number of treatment combinations systematically. These approaches reduce the statisti-
cal information that can be extracted because relations between treatments in one or the
other partition cannot be determined, but they are repeated-measures designs and retain
all other benefits of these approaches. The opposite approach to reduction is taken by the
independent-measures design (also known as between-subjects design) (Coolican, 2004;
Bech and Zacharov, 2006). Here, each subject is tested under one and only one condition.
This implies large numbers of subjects and complex management, and can lead to very
long experimental periods for the experimenter due to the overhead of interacting with
a huge number of subjects. For many research projects, the time and resources required
can make between-subjects design impractical. Designs that fall neither in the repeated-
measures nor the independent-measures category are not typical. Their drawback is that
they cannot classify and group individuals like repeated-measures designs, and do not
have the protection from misbehaving individuals of independent-measures designs. They
avoid, however, the extensive time required for subjects of repeated-measures designs and
for experimenters of independent-measures designs.

2.5.5 Data processing

Once a test has been carried out, the reliability of subjects should be checked from the
collected rating scores. Outliers whose ratings appear to deviate significantly from the
rest of subjects are usually excluded from the data sample. Then, according to the type
of rating scores (categorical, ordinal or interval), appropriate statistical analysis of the
test results should be reported. The MOS and the standard deviation of the statistical
distribution are commonly used methods of analysis and are often presented in graphics
to summarize the performance of the system under test. When we suspect that we have
detected a real effect, significance tests are used to help us decide whether or not rejecting
the null hypothesis.
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2.6 Summary

Streaming audiovisual content to heterogeneous environments needs to apply adaptable
techniques and policies to handle dynamic resource availability. The latest developments
in video coding techniques and streaming protocols have provided a great variety of adap-
tation options for designing adaptive streaming services. For instance, the H.264-AVC
video coding standard, which is widely accepted by industry, has included the amendment
for scalable video coding (H.264-SVC), allowing bitstream scalability in multiple dimen-
sions. As a more general streaming solution, MPEG-DASH enables HTTP-based adaptive
streaming with even non-scalable videos. To provide a highly qualified multimedia ex-
perience, it has become increasingly important to devise audiovisual quality/distortion
measurements that help to measure end-user acceptance, compare different adaptation
options and find optimal configurations. However, audiovisual quality is a subjective
measure, and none of the current objective quality metrics have the required accuracy for
monitoring the overall quality in video communication. Audiovisual quality assessment
still relies on subjective quality studies, which are known to be expensive, time consuming
and hard to administrate.

In this thesis, we both examine subjective quality assessment procedures and start
looking at gaining knowledge of how to perform useful adaptation. In chapter 3, we
therefore present an approach based on the PC method to facilitate subjective quality
studies in the field. Then, we introduce several user studies that investigate the quality
impacts associated with different types of video adaptation options in chapters 4, 5, and
6.
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Chapter 3

Randomized Pairwise Comparison

Subjective quality perception studies with human observers are essential for multimedia
system design, because objective metrics are still in the early stage of development. Along
with the widespread use of mobile devices and ubiquitous multimedia application, it is
much useful to test realistic multimedia experiences directly and frequently. This requires
a new method for quality assessment in the field.

3.1 Introduction

A field study is often desired for the evaluation of quality of experience (QoE), because it
captures people’s true experience in a real world setting, without artificially creating the
environmental context. This is especially useful for evaluating multimedia experiences on
portable devices, e.g., situations where one streams video to mobile devices located in
public places with complex surroundings that are hard to simulate in laboratories. Typ-
ical designs for subjective studies with non-expert subjects are the full-factorial pairwise
comparison and a variety of randomized block designs (Lewis and Tuck, 1985). However,
compared to laboratory studies, field studies are more difficult to design, and the classi-
cal designs become highly impractical. In the field, extraneous variables such as noise,
interruption and distraction may not be under the control of the experimenter, which
threatens the validity of the experimental findings, although it is perfectly representative
for real-world applications. Moreover, additional problems exist in field studies related to
human perception. Screen-based tasks are especially susceptible to fatigue effects, even
for durations as short as 15 minutes (Chi and Lin, 1998). When assessing video quality
in the field, assessors can easily become tired, bored and uncooperative, or just run out of
available time. Their responses will therefore be increasingly unreliable, leading to greater
unexplained variance. Furthermore, audiovisual quality studies are known to contain a
large number of factors and levels to be investigated. The number of all possible test
stimuli grows exponentially with the number of factors and factor levels under investiga-
tion. It is therefore often impractical for the assessors to evaluate all test stimuli of a field
experiment due to time and location constraints.

This chapter extends my co-authored paper “Randomised Pair Comparison: An Economic and Robust
Method for Audiovisual Quality Assessment”(Eichhorn et al., 2010), included in Appendix B, with more
studies and conclusions.

29
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To resolve the above problems, we introduce Randomised Pairwise Comparison (r/pc)
(Eichhorn et al., 2010) as a convenient and practical method for multimedia QoE evalu-
ations in field. The method is designed with realistic assumptions of the time and effort
that an assessor will have to spend. As in conventional pairwise comparison methods, a
paired preference test is used as the basic form of evaluation because it involves a sim-
ple cognitive task, comparing two stimuli in a pair against each other. The assessors
are only required to make a choice based on their own preference. No formal training
is needed, which makes it possible to recruit random people with different background
and age. The novelty of r/pc is that, in contrast to conventional pairwise comparison
methods that require that every assessor provides responses to all possible paired stimuli
or a pre-defined number of paired stimuli that is identical for all assessors, r/pc selects
small subsets of pairs randomly and creates a unique experiment session for each assessor.
Assessors are therefore not tied up with the entire experiment, which provides the experi-
menter a flexible way to administrate large studies with many test stimuli. This feature is
especially useful for observed field studies and self-controlled web-based studies that are
often conducted among volunteers who participate in the tests during their leisure time.
To facilitate field studies on mobile devices, we prototyped a software tool on the iOS
platform to automate the r/pc experimental design.

In r/pc, the evaluation tasks are shared by assessors. There is a trade-off between
the number of required assessors and the time every assessor needs to contribute. To
get enough response data, r/pc requires more assessors than other repeated-measures
designs. In addition, as the responses to different test conditions are from different groups
of people, individual variability and assignment bias are the most suspected sources of
nuisance factors that may skew the data and make the r/pc experiments unstable. To
verify that the r/pc method is robust and practical, we examine the performance of r/pc
method by experiments and simulations.

3.2 Method design

We designed r/pc with realistic expectations about the time assessors are willing to
spend in a study and practical assumptions about the ability of experimenters to control
environmental and content-related factors. In contrast to the standardized PC method,
r/pc does not request assessors to evaluate all pair stimuli. It allocates subsets of stimuli
to assessors randomly. By this, session duration is separated from factorial complexity
of an experiment, and an experimenter can balance between experiment costs and the
information obtained. A session can have an arbitrary duration (down to a single pair)
and assessors can quit their session anytime, e.g., when they get distracted by phone calls
or have to exit a bus or train. With the aid of software-based randomization, multiple
factors can be investigated together in a flexible and economic manner. This is particularly
efficient for the exploratory quality assessment of multimedia experience.

3.2.1 Independent randomized design

In a typical factorial experiment using the PC method, any two clips in a pair may differ
in one or multiple factors, as defined by the experimenter. We denote such pairs contrast
pairs. They are used for actual exploration and hypothesis testing. An experimenter may,
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for example, base his research hypothesis on assumptions about the visibility and effect
size of contrasting factors. An experimenter should first identify factors, which will be
controlled in the study and the number of levels for each factor. Factors can be discrete
or continuous and the number of levels may differ between factors.

Pair stimuli are created for all treatment combinations in r/pc. However, r/pc
creates only a short list including an unique random subset of pairs for each assessor
and then randomizes the presentation order for these pairs. The size of the subsets is
decided by the experimenter according to the preferred session duration in the target test
scenarios. We restrict all pairs in r/pc experiment to equal duration at 8∼10 seconds
with the consideration of human memory effects, the subset size is thus given by s = ds/dp,
where ds is an estimation of the length of time that most of the assessors can spend on the
test without tiredness and dp is the duration of a pair presentation including an estimated
time for voting.

3.2.2 Quality measurement

r/pc presents test stimuli as pairs of clips. Each clip in a pair is introduced by a 2 seconds
long announcement of the clip name and the letter A or B, displayed as a 50% grey image
with black text. This results in the time pattern as shown in figure 3.1.

After the presentation of one pair, an assessor is expected to compare the overall
quality of the presented pairs and to report their preference using a self-report scale. We
do not impose any time limit that would force a decision for the rating. Instead, we
propose to measure the time it takes an assessor to respond and use this in later data
analysis. The session continues with the next pair immediately after the response has been
entered. With the aid of software-based random selection, the order of pair presentation
is completely randomized.

r/pc experiments do not include training sessions. A brief introduction about the
purpose of their study and the scale to be used may be given at the beginning of a test
session. Assessors can also be reminded to pay close attention, but an experimenter should
avoid specific restrictions or hints which might guide an assessor’s focus.

Assessors report their preference on one of the following comparison scales:

• a binary preference scale which allows to express either a preference for clip A or a
preference for clip B (Equal reference pairs, as defined in section 3.2.3, are not used
together with this scale.)

• a 3-point Likert scale, which contains a neutral element in addition to a preference
for A or B (promotes indecisiveness, but more suitable for the detection of just
noticeable difference (JND) thresholds (Wikipedia, 2015a; Sat and Wah, 2009))

• a 4-point Likert scale which provides items for weak and strong preference for either
clip, but lacks a neutral element (has a higher resolution than the binary scale and
forces preference selection, excluding equal reference pair as well)

• a 5-point Likert scale, which contains a neutral element as well as items to express
weak and strong preference (high resolution, may promote indecisiveness, but fits
better for the detection of JND)
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Figure 3.1: Presentation pattern for a single clip pair.

3.2.3 Consistency Checking

Field studies using randomly selected subjects encounter often erroneous or fraudulent
user responses. To filter out unreliable assessors, r/pc introduces some reference condi-
tions into the test stimuli set.

r/pc uses two types of reference conditions: (1) equal reference pairs that pair up
each single test sequence with itself, and (2) matched contrast pairs that just differ in the
presentation order of all the existing contrast pairs. The equal reference pairs can also
help to understand the perceptual limits of individual assessors. In r/pc, the reference
conditions are randomly distributed and hidden among contrast pairs when presented
to an assessor to avoid their detection. The random pair allocation procedure ensures
that (1) each selected contrast pair is contained in both possible presentation orders
(both matched contrast pairs AB and BA are present), and (2) equal reference pairs are
selected according to treatment options in previously selected contrast pairs.

By packing contrast pairs together with their corresponding reference pairs, the gen-
erated test session possesses self-checking capability whilst remaining independent and
flexible. r/pc checks only the consistency of input scores from each individual assessor.
Errors are counted if the preference scores for a contrast pair and its matched contrast
pair have the same direction, i.e., if the same score is given to paired treatments in both
AB and BA order; or an equal reference pair receives non-neutral or extremely prejudiced
score, dependent on the selected comparison scale. The error rate for each assessor is
calculated according to the counted number of error scores and the size of the playlist.
An assessor is rejected if his/her error rate exceeds a predefined threshold.

3.2.4 Data Analysis

The nature of the binomial and Likert scales suggests non-parametric statistics for data
analysis. The table 3.1 shows some commonly used non-parametric statistical methods.
The choice of statistical test tool is dependent on the type of significance tests, the number
and the nature of experimental variables etc. The Binomial tests or χ2 tests are useful for
majority analysis on frequency tables (to check whether a majority of preference ratings
for one factor-level is significant). As non-parametric counterparts to t-tests and ANOVA
that test differences between two or more conditions, the Mann-Whitney U, Kruskal-
Wallis and Friedman tests (Coolican, 2004) exist. Rank-order analysis for finding total
transitive preference orders between pairs are provided by the zeta method (International
Telecommunications Union, 1990) and Thurstone’s law of comparative judgement (Thur-
stone, 1994). For more thorough investigations on the underlying structure of the data
and to find a linear combination of variables that explains how factors contribute to ef-
fects, an exploratory factor analysis using generalised linear models or logit models should
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Methods Type of relationship tested Data type Measure

Binomial Difference between two conditions Binary / Categorical proportions
χ2 Association between two variables Nominal data / Categorical proportions
Mann-Whitney U Difference between two conditions Ordinal data medians
Kruskal-Wallis Difference between three or more conditions Ordinal data medians
Friedman Difference between two or more conditions Ordinal data medians

Table 3.1: Non-parametric statistical methods for data analysis

be considered.
The random pair allocation in r/pc leads to unbalanced data. Without balance,

common statistical tools like ANOVA or GLMs become unstable (Shaw and Mitchel-Olds,
1993). Thus, although assessors repeatedly give responses to multiple test stimuli in an
r/pc experiment, for analysis we regard these response data as independent. Subject-
specific data such as age, profession, culture background etc are not involved in the
analysis.

3.3 Method Validation

To validate the usability and reliability of our r/pc method, we performed a simple
quality assessment study. The purpose of the study was to obtain two data sets, one
with a conventional pairwise comparison method based on a full factorial experiment
design (f/pc) and a second data set with r/pc. A correlational analysis of the two
data sets shows that r/pc can provide accurate experimental results comparable to the
f/pc design. To prove that the strong correlation between r/pc and f/pc data is not a
coincidence, we implement a software simulator to generate data with distribution similar
to data samples from realistic r/pc experiments. Based on the simulated r/pc samples,
we quantify, in a heuristic study, the performance difference between full factorial and
randomized pairwise comparison.

We first explain the design of our example study and present an initial analysis of our
findings afterwards. Then, we introduce the implementation of the simulator and report
our analysis of the average performance of r/pc experiments based on simulation.

3.3.1 Example Study

As a simple example of an audiovisual study, we examined the visibility of different video
quality reductions in relation to already existing impairments. Our quality impairments
originate in a loss of image fidelity between five different operation points, which have
been created using different fixed quantization parameters (QP) for encoding.

In this study, we focus on three factors that are assumed to have main effects , namely
the original quality level, the amplitude of a quality change and the content type. These
factors can mutually influence the user’s perception. For example, the same amplitude
in quality changes may be perceived differently depending on the original quality and

The effect of a factor on a dependent variable averaging across the levels of any other factors.
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(a) Animation (b) Cartoon

(c) Documentary (d) Movie

(e) News (f) Sports

Figure 3.2: Selected Video Sequences.
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Genre Content Detail Motion Audio Thumbnail

Animation BigBuckBunny HD 3.65 1.83 sound

Cartoon South Park HD 2.75 0.90 speech

Documentary Earth HD 3.64 1.61 sound

Short Movie Dunkler See 1.85 0.58 sound

News BBC Newsnight 2.92 0.69 speech

Sports Free Ride 3.32 1.90 music

Table 3.2: Selected sequences and their properties. Detail is the average of MPEG-7 edge
histogram values over all frames (Park et al., 2000) and Motion is the MPEG-7 Motion
Activity (Jeannin and Divakaran, 2001), i.e., the standard deviation of all motion vector
magnitudes.

the direction of the quality change. Interactions may also exist between the change’s
amplitude and the content.

To test different kinds of content with varying detail and motion, we selected video
materials from six different genres (see table 3.2 and figure 3.2). The length of a test
sequence was restricted to 8 seconds (200 frames), taking human memory effects into
consideration (International Telecommunications Union, 1999). To maintain as far as
possible similar content characteristics throughout a video sequence, all video clips were
extracted from one single video shot and scene cuts were filtered out deliberately. All clips
were downscaled and eventually cropped from their original resolution to 480x320 pixel
in order to fit the screen size of our display devices. We used x264 to encode the original
clip in constant quantiser mode so that the same amount of signal distortion was added
to all frames in a test sequence. Since the visibility of quality impairments is not linearly
related to the size of QP, we selected a set of five QPs with logarithmically distributed
values. In a pilot study, the corresponding QPs (10, 25, 34, 38, and 41) have been verified
to yield perceptual differences. Using the pairwise comparison, quality change can be
presented as a pair of different quality levels. Thus, we do not specifically generate test
sequences for each amplitude level. The experimental design of this study is simplified to
two factors with variations at 5∼6 levels. With five quality levels we can create

(
5
2

)
= 10

unique combinations of contrast pairs that have quality change amplitudes between 1 to
4 and five equal reference pairs per content type. In total, we created 120 contrast pairs
in both orders and 30 (25%) equal reference pairs. In our example study, an f/pc test
session lasted for 60 min while an r/pc test session lasted for only 12 min.

The clip pairs were displayed to assessors on an iPod touch, which has a 3.5-inch wide-
screen display and 480x320 pixel resolution at 163 pixels per inch. Display and voting
were performed on the same device using a custom quality assessment application. The
experiment was carried out in a test room at Oslo university. Overall, 49 participants (45%
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a) Full factorial Pairwise Comparison

Unique Subjects: 34
Unique Pairs: 150
Unique Responses: 5100
Resp/Subj (min/mean/max): 150 / 150 / 150
Resp/Pair (min/mean/max): 34 / 34 / 34

b) Randomised Pairwise Comparison

Unique Subjects: 49
Unique Pairs: 150
Unique Responses: 1470
Resp/Subj (min/mean/max): 30 / 30 / 30
Resp/Pair (min/mean/max): 4 / 9.8 / 19

Table 3.3: Grand totals and statistics for the two data sets in our example study.

female) at an age between 19 and 39 performed the experiment. Among the participants,
34 people (50% female) were paid assessors who performed both the f/pc test and r/pc
test while 15 participants (40% female) were volunteers who performed only the r/pc
test. Half of the participants who did both tests, performed the r/pc method first, while
the other half did the f/pc test first. During all test sessions, the participants were free
to choose a comfortable watching position and to adjust the watching distance. They
were also free to decide when and for how long they needed a break.

Based on the two data sets we gathered using f/pc and r/pc, we did some initial
comparative analysis. We were interested whether an investigator using different statis-
tical procedures on either data set would be able to find similar results. Hence, we first
looked at the correlation between both data sets and second, we tried to fit a linear model
to the data in order to find factors which influence main effects.

For the correlation analysis, we first calculated the arithmetic mean and the median
of all responses per pair. Then, we calculated Pearson, Spearman and Kendall correlation
coefficients as displayed in table 3.4. In statistics, the Pearson coefficient is a measure of
the degree of linear dependence between two variables, while the Spearman and Kendall
coefficients are nonparametric measures of rank correlation between two variables, i.e.,
the similarity of the orderings of the data when ranked by each of the quantities. The
value of these coefficients are always within the range [−1, 1], where 1 and -1 indicate
total positive and negative correlation, and 0 shows that the two variables are totally
independent. In our experiment, we found that all the three correlation coefficients were
significantly different from zero with p < 0.01.

Despite the fact that responses in the r/pc data set are very unbalanced (min = 4,
max = 19 responses for some pairs, see table 3.3) and that the total unique responses
collected with our r/pc method are only < 1/3 of the total f/pc responses, there is
still a very strong correlation between both data sets. This supports the assumption that
random pair selection may become a useful and robust alternative to full factorial designs
for audiovisual quality assessment.

Secondly, we compared the results of fitting a generalized linear model (GLM) to both
data sets. We used a binomial distribution with a logit link function and modeled the
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Metric CC SROCC τ
mean 0.974 0.970 0.857
median 0.961 0.965 0.931

Table 3.4: Correlation between r/pc and f/pc data sets. CC - Pearson Product-Moment
Correlation Coefficient, SROCC - Spearman Rank-Order Correlation Coefficient, τ -
Kendall’s Rank Correlation Coefficient.

main effects of original quality level (Q-max), amplitude of quality change (Q-diff) and
content type (content), but no interaction effects. As table 3.5 shows, all main effects are
significant, although the significance is lower in the r/pc case, which was to be expected.
Again, it is plausible to argue for a sufficient reliability of the r/pc method.

Factor Df Dev R.Df R.Dev P(> χ2)

f/pc Q-diff 4 718.43 5095 3505.5 < 2.2e− 16
Q-max 4 54.31 5091 3451.2 4.525e-11
content 5 34.39 5086 3416.8 1.995e-06

r/pc Q-diff 4 236.18 1465 1085.2 < 2.2e− 16
Q-max 4 20.48 1461 1064.8 0.0004007
content 5 16.94 1456 1047.8 0.0046084

Table 3.5: Deviance analysis for a simple GLM considering main factor effects.

3.3.2 Simulation

From the example study, we obtained the first evidence of the reliability of r/pc, showing
an r/pc experiment that generated data significantly correlated with data from a full
factorial experiment based on repeated pairwise comparison (f/pc). To prove that the
strong correlation between r/pc and f/pc data is not a coincidence, more correlational
studies are needed. Additionally, it is highly desired to find the minimal time and resource
requirements of r/pc in order to know how large experiments one must design.

To examine the general performance of the r/pc method, we built a simulator using
the R language to a simulate test procedures using r/pc. The simulator takes a complete
data matrix as input and draws r/pc data samples from it according to the random pair
selection rules specified in the r/pc method design (3.2.1, 3.2.3). An example of r/pc
data sample is given in table 3.6. Simulations of r/pc data samples are made for various
session durations, which correspond to Dn, the number of randomly selected responses
from subject Sn. For simplicity, we assume that each subject spends an equal amount
of time on an r/pc experiment, thus D1 = D2 = ... = Dn is set in our simulations. A
treatment Cm is a specific test condition referring to a paired test stimuli. To measure
the effect of a treatment, statistic ym is calculated based on all the available responses to
that treatment. Depending on the chosen data analytical tool, ym can be a descriptive
statistic such as mean, median, or a test statistic such as frequency distributions etc.
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Treatments

Subject C1 C2 C3 ... Cm Duration

S1 x x ... x D1

S2 x x ... x D2

... ... ... ... ... ... ...
Sn x x x ... Dn

y1 y2 y3 ... ym

Table 3.6: A r/pc data sample, x - rating available, ym - statistic under a treatment
condition, Dn - the number of ratings provided by subject Sn.

To simulate real life conditions, our simulations are based on real experimental data.
The f/pc data set from the example study introduced in section 3.3.1 is used as the input
data of our simulator. It is also used as the criterion for testing the average performance
of the simulated r/pc data samples.

3.3.3 Reliability

We examine the reliability of r/pc method by comparing simulated r/pc data samples
with the f/pc data. A simulated r/pc data sample is a random subset of a complete
f/pc data set and the parameter D determines its coverage ratio, which also reflects
the experimental time contributed by each subject (session duration). The random pair
allocation in r/pc method may create different variations in an r/pc sample. It is
doubtful that large variations may exists between different r/pc samples and threaten
the validity of the experimental findings of r/pc method. Thus, we did some correlation
analysis to check how close an simulated r/pc data sample is related to its complete
variant.

We first looked at the correlations between each r/pc sample and the f/pc data
set from our earlier experiment. Pearson, Spearman and Kendall correlation coefficients
are calculated based on the arithmetic mean and the median value of all responses per
treatment. We illustrate these relationships in figure 3.3 and report the average coefficients
associated with r/pc data sampled at different coverage ratios in table 3.7. As expected,
positive correlations exists between all r/pc data samples and the f/pc data set and
the strength of correlation increases along with the coverage ratio. Despite the fact that
responses in the r/pc data samples are randomly distributed and unbalanced, very strong
correlations (> 0.9) can already be found for r/pc data samples with 20% coverage ratio.
This indicates that it is possible to predict the variations in the f/pc data set with an
r/pc data sample with more than 20% coverage ratio.

In the next step, we take a closer look at the significance test of the r/pc data
samples. A binomial test is used to analyze this data. For each sample, we compare
the test results with the findings based on f/pc. Table 3.8 summarizes the number
of treatment effects that have been found significant by either r/pc simulation or the
original experiment. Figure 3.4 shows the hit rates of effect findings. It is clear that higher
coverage ratio helps to find more significant effects. Further, more than 50% effects can
be detected successfully by r/pc data samples with only 20%∼30% coverage ratio (each
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Figure 3.3: Correlations between the r/pc and f/pc data sets
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a) Mean scores per treatment

Coverage ratio

Correlations 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CC 0.844 0.931 0.958 0.973 0.984 0.989 0.993 0.995 0.998 1
SROCC 0.840 0.925 0.953 0.968 0.981 0.986 0.990 0.993 0.996 1
τ 0.679 0.782 0.830 0.863 0.896 0.915 0.930 0.945 0.965 1

b) Median scores per treatment

Coverage ratio

Correlations 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CC 0.782 0.872 0.897 0.930 0.945 0.960 0.973 0.978 0.990 1
SROCC 0.778 0.863 0.890 0.922 0.942 0.956 0.967 0.977 0.988 1
τ 0.727 0.827 0.861 0.902 0.924 0.942 0.957 0.967 0.981 1

Table 3.7: Correlations between r/pc and f/pc data sets (averages over 30 samples for
each coverage ratio), all coefficients were significant below the p < 0.01 level. The co-
efficients indicate the strength of a correlation ranging from -1 through 0 to +1. CC -
Pearson Product-Moment Correlation Coefficient, SROCC - Spearman Rank-Order Cor-
relation Coefficient,τ - Kendall’s Rank Correlation Coefficient.

subject spends 12∼18 minutes), meanwhile the number of wrong findings (Type I error)
is in general very low (<1) for all r/pc data samples. However, the type I errors are not
reduced by the use of a higher confidence level at 0.99 for coverage ratios larger than 40%,
as shown in 3.8. We believe this reflects the disturbance of random errors. In audiovisual
quality assessment tests, each subject is an observation unit and individual variation in
perception of quality is the major source of random errors. r/pc relies on randomization
to smooth out the individual variations. With complete randomization, each subject
covers one and only one random test condition to exclude any related factor, which makes
the experimental design a between-subjects design that is often accompanied by a large
number of participants and high administrative cost. On the other hand, large coverage
ratios restrict the randomization, which may result in biased treatment allocation. Thus,
to have a feasible experimental design and sufficiently low random error, a small coverage
ratio should be considered for an r/pc design.

3.3.4 Practicality

So far, the r/pc as well as the f/pc data are obtained from the same number of subjects.
Due to the incompleteness of the r/pc data, the power of r/pc-based testing is lower
than that of f/pc for the same size of subject group. This results in failures to find
some effects that are actually there (Type II error). As an example, see the number of
missed treatment effects in table 3.8. Increasing the sample size is one solution to guard
against such an error. The larger a size of an r/pc sample, the greater is its power to
detect all potential effects. However, specifying the minimum required subject number is
a tricky question. In this section, we try to estimate by simulation the required number
of subjects for detecting all significant treatment effects found in a real f/pc experiment.
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a) 95% Confidence level

Coverage ratio

Count 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Hit 6.1 21.2 28.3 32.6 35.5 36.4 37.9 38.8 39.3 41
Neglect 34.9 19.8 12.7 8.4 5.5 4.6 3.1 2.2 1.7 0
Error 0.17 0.27 0.17 0.27 0.13 0.17 0.03 0 0 0

b) 99% Confidence level

Coverage ratio

Count 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Hit 1.1 9.0 19.3 25.0 29.4 32.3 34.3 34.9 35.5 36
Neglect 34.9 27.0 16.7 11.0 6.6 3.7 1.7 1.1 0.5 0
Error 0 0.13 0.07 0.37 0.37 0.17 0.6 0.8 0.67 0

Table 3.8: Comparison between the significance test results of r/pc and f/pc data sets.
Hits - treatments show significant effects in both r/pc and f/pc data samples, Neglect -
treatments show significant effects only in the f/pc data sample, Error - treatments show
significant effects only in the r/pc data samples, all the counted numbers are averaged
over 30 r/pc samples for each coverage ratio).

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

95% confidence level
99% confidence level

Coverage ratio

H
it 

ra
te

s

Figure 3.4: Hit rates of significance test.
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Session duration per assessor

Confidence level 6m 12m 18m 24m 30m 36m 42m 48m 54m 60m

95% 116 74 56 47 41 38 36 35 33 31
99% 137 78 60 49 41 37 34 31 31 31

Table 3.9: Estimated number of subjects required by r/pc experimental design.

To simulate r/pc data with larger sample size, scores from artificial subjects are
appended to the f/pc data set. The scores of these artificial subjects are randomly
selected scaling options but we assure the original (f/pc) data distribution remains in
the expanded data set. r/pc data samples are then generated by randomly selecting a
small number of scores from each subject. The minimum required number of subjects is
estimated by iteratively increasing the number of subjects until all target effects can be
detected with the r/pc data samples. In table 3.9, we report our estimation. For the
same experiment, a between-subject design will require 60 ∗ 10 = 600 subjects to obtain
at least 10 repeated observation for each treatment condition.

3.4 Conclusion

Field studies have the advantage of discovering user needs in complex environments.
However, successfully conducting an audiovisual field experiment is demanding. In this
chapter, we compared our r/pc approach, which is both a practical and economic as-
sessment method for the design of field experiments, with the classical f/pc approach.
r/pc is designed as a simple preference test, thus it can easily be used to test people with
different background. Reasonable user screening is included in r/pc, which guards it
from spurious user input. More important, r/pc provides the possibility of investigating
numerous factors, while maintaining the freedom of both experimenters and assessors. An
r/pc-based experiment that involved 72 different factor level combinations and recruited
response data from random passengers or passers-by in real life locations such as bus
terminus, can be found in chapter 5. Compared to f/pc, r/pc requires much less time
from the sum of all subjects, and each subject contributes only a small amount of time.
This makes r/pc a feasible and low cost design option for experimenters.

r/pc is an adjustable design, which uses randomization to eliminate bias from subject
selection and treatment allocation. Although it generates unbalanced data, our simula-
tion results still provide evidence that the robustness of r/pc is comparable to other
repeated-measures designs. With r/pc, an experimenter adjusts the test session dura-
tion to balance between the costs and accuracy of an experiment. Small session duration
helps to lower the risk of confounding , but requires more subjects to prevent type II errors.
According to our validation, session durations of 12∼18 minutes that cover 20%∼30% of
all possible pairs achieve the best balance between the cost and accuracy of an exper-
iment. Given the small number of evaluation tasks and reasonable number of subjects
needed, we have reasons to believe that r/pc provides a feasible and easy design option

A confounding variable is an extraneous variable that is statistically related to the independent
variable, which leads to an error in the interpretation of what may be an accurate measurement.
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for many field studies. In addition, due to the larger number of subjects, r/pc has higher
population validity than repeated f/pc designs. However, r/pc was developed mainly
for investigating the influence of non-personal factors on audiovisual quality. Subject-
specific data (age, sex, sociocultural background, capabilities, etc.) is ignored by r/pc.
If a study is aimed at a specific group of subjects, assessors should be selected beforehand
to be representative for that group. Finally, the explanatory power of r/pc suffers from
the requirement to use short clips to avoid memory effects. The future development of
new test methods that are suited for longer durations without increase in memory effects
and fatigue is desirable.
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Chapter 4

Pick your layers wisely

In this chapter, we will present our first study of video quality assessment. By this study,
we investigated how the subjective video quality is influenced by the multi-dimensional
scalability as defined in H.264 Scalable Video Coding (H.264-SVC).

4.1 Introduction

H.264-SVC defines multi-dimensional scalability for efficient and network-friendly oper-
ations. In a multi-dimensional adaptation space, it is also possible to find adaptation
strategies that provide better user-perceived quality than one-dimensional adaptation
space (Cranley et al., 2006). However, the scaling options of H.264-SVC increase the
perceptual uncertainty dramatically. SVC techniques inherently rely on objective video
quality metrics (VQM) (Winkler and Mohandas, 2008) for optimal performance, but cur-
rent objective VQMs fail to estimate human perception at low frame-rates or in mobile
environments (Loke et al., 2006; Martinez-Rach et al., 2006). Therefore, in order to un-
derstand human quality perception of H.264-SVC scalability, we performed a subjective
field study (Eichhorn and Ni, 2009) with a special focus on mobile devices. Our goals were
to (1) identify when quality degradations become noticeable, (2) find optimal adaptation
paths along multiple scaling dimensions and (3) examine whether objective VQMs can
predict subjective observations with reasonable accuracy.

To our knowledge, our study was the first study that investigated the subjective per-
formance of multi-dimensional scalability features in H.264-SVC. Due to the lack of en-
coders capable of full scalability, previous studies could not investigate the influence of
spatial, temporal and SNR scaling on quality perception in the same experiment. Al-
though codec performance is critical for decoded video quality, SVC performance was
only measured using PSNR metric by Wien et al. (2007). Additionally, many existing
subjective tests (Cranley et al., 2006; McCarthy et al., 2004; Zink et al., 2003) were con-
ducted on desktop monitors in a controlled laboratory environment. This differs from our
testing scenario defined for mobile video applications.

Our results reveal that adaptation decisions for SVC bitstreams should not only be
based on bit-rate and layer dependency information alone. We found that quality degra-
dation may be non-monotonic to bit-rate reduction and that preferred adaptation paths
depend on content and user expectations. Confirming previous studies, we also found
that common objective VQM like Peak signal-to-noise ratio (PSNR) and structural sim-
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ilarity (SSIM) index fail for scalable content and even scalability-aware models perform
poor. Our results are supposed to help improving the design of objective quality models
towards multi-dimensional video scalability. Enhanced objective models will be useful for
several applications and network-level mechanisms, such as bandwidth allocation for wire-
less broadcasting networks, streaming servers, packet scheduling, unequal error protection
and packet classification schemes and quality monitoring.

In this chapter, we present this study in more details than our original paper (Eichhorn
and Ni, 2009) included in Appendix C.

4.2 Experimental Design

In this study, we formulated two research questions with regard to the rate distortion
performance of the standardized SVC coding algorithm:

• Can we predict the visual quality of a scalable video solely by its bit-rate?

• If not, how does a human perceive the multi-dimensional scalability features in
H.264-SVC?

To investigate the general subjective performance of H.264-SVC, we applied SVC to
different types of video content in order to find any difference in human quality perception
of H.264-SVC scalability. As the first subjective evaluation of H.264-SVC, this experiment
restricts itself to on-demand and broadcast delivery of pre-encoded content at bit-rates
offered by the available wireless networks in 2008. We focus only on static relations be-
tween SVC scaling dimensions. Dynamic aspects like SVC’s loss resilience or the impact
of layer switching and timing issues on quality perception are not included in this exper-
imental design. In summary, we selected three factors as the independent variables to
be controlled in this experiment: bit-rate reduction, scaling dimension and content type
factors. We let the three factors change between 2, 3 and 6 levels, respectively. This study
was then designed as a full factorial experiment with 36 treatment combinations.

We performed this experiment with the Double Stimulus Continuous Quality Scale
(DSCQS) method as defined by International Telecommunications (2002). DSCQS is a
hidden reference method where the original and a distorted video sequence (one of the
operation points) are displayed twice in A-B-A-B order without disclosing the randomized
position of the original. The assessors are asked to score the quality of both sequences on a
continuous five-grade scale (see figure 2.5f). The differences of scores between a reference
condition and a test condition are used to evaluate the perceived quality. According to
the recommendation of International Telecommunications (2002), each video clip have
the length of 8 seconds. We interspaced the A-B clips with 4 second breaks, displaying
a mid-grey image with black text that announced the following clip or called for voting.
Thus, the presentation time of one test sequence together with its reference is about 40
seconds. With the DSCQS method, a complete test session that covers all 36 treatment
combination lasts for about 24 minutes, which is doable for a within-subjects design.

Because we are interested in realistic QoE perception on mobile devices, this experi-
ment was conducted as a field study in indoor natural environments using iPods (genera-
tion 5.5) as mobile display device. This allows us to study natural user experience under
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familiar viewing conditions rather than quality perception in a single synthetic laboratory
environment.

4.3 Content Selection and Encoding

We selected six sequences from popular genres and with different characteristics (figure 3.2
and table 3.2) to assess effects of motion type (smooth, jerky) and speed (low, high), scene
complexity (low, high) and natural vs. artificial content. All sequences were downscaled
and eventually cropped from their original resolution to QVGA (320x240). From each
sequence, we extracted an 8 second clip (200 frames) without scene cuts.

These video materials were then encoded by an H.264-SVC encoder, the SVC reference
software (JSVM 9.12.2). The encoder was configured to generate bit streams in the
scalable baseline profile with a GOP-size of 4 frames, one I-picture at the beginning of the
sequence, one reference frame, inter-layer prediction and CABAC encoding. Due to the
lack of rate-control for enhancement layers in JSVM, we determined optimal quantisation
parameters (QP) for each layer with the JSVM Fixed-QP encoder.

Since we are interested in quality perception along and between different scaling di-
mensions, we defined a full scalability cube including the following downscaling paths.

• Spatial scaling: QVGA (320x240) �→ QQVGA (160x120)

• Temporal scaling: 25 fps �→ 12.5 fps �→ 6.25 fps

• SNR scaling: 1536 Kbit �→ 1024 Kbps, 256 Kbps �→ 128 Kbps

The target bit-rates were chosen according to standard bit-rates of radio access bearers
in wireless networking technologies such as HSDPA and DVB-H. For SNR scalability, we
used SVC’s mid-grain scalability (MGS) due to its adaptation flexibility that supports
discarding enhancement layer data almost at the packet level (Schwarz et al., 2007).

From the scalable bitstreams, we extracted six scalable operation points (OP) which
cover almost the total bit-rate operation range (see table 4.1). The selection lets us
separately assess (a) the QoE drop for temporal scaling at the highest spatial layer (OP1,
OP3, OP4), (b) the QoE drop of spatial scalability at two extreme quality points with
highest frame-rate (OP1 vs. OP5 and OP2 vs. OP6), and (c) the QoE drop of quality
scalability at two resolutions with highest frame-rate (OP1 vs. OP2 and OP5 vs. OP6).

4.4 Test Procedure

We displayed the test sequences in fullscreen on an iPod classic (80GB model, generation
5.5) as a typical mobile video player. Our iPod models contain a 2.5-inch display with
163 ppi and a QVGA resolution. Low spatial resolutions were upscaled to QVGA using
JSVM normative upsampling and low frame-rates were upscaled by frame copy to the
original 25 fps.

We applied within-subjects design in this study. All assessors received all test se-
quences in random order. The test session lasted for half an hour. Thirty non-expert

Available at http://ip.hhi.de/imagecom_G1/savce/downloads/SVC-Reference-Software.htm.
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Operation Spatial Frame Quality Layer Average Bit-rate
Point Resolution Rate Level ID Bit-rate Percentage

OP1 320x240 25.00 highest 23 1198.7 100%
OP2 320x240 25.00 lowest 14 1099.2 92%
OP3 320x240 12.50 highest 20 991.5 83%
OP4 320x240 6.25 highest 17 804.0 68%
OP5 160x120 25.00 highest 11 247.7 21%
OP6 160x120 25.00 lowest 2 123.1 10%

Table 4.1: Selected Operation Points. Frame-rates are given in frames per second (FPS)
and bit-rates are given in kilobits per second (kbps).

assessors (33% female) in age classes between 18 and 59 with different education partici-
pated in the test. They watched the test sequences in a quiet lounge or office room.

4.5 Results

4.5.1 Data analysis

After carrying out the experiment, we calculated the differential mean opinion scores
(DMOS) per operation point after quantizing the raw scores obtained from each assessor.
The DMOS scores represent the subjective evaluation of the visual distortions in test
sequences. Higher value of DMOS indicates lower perceived quality. To improve the
accuracy of the study, we screened the scores for outliers and inconsistencies as defined
by International Telecommunications (2002) and checked the reliability with Cronbach’s
alpha coefficient (Cronbach, 1951). As normality assumptions for DMOS scores were
violated, we used conservative non-parametric statistics for further processing.

The objective of this analysis is to test the effect of downscaling (bit-rate reduction
in three dimensions) on the perceived video quality, and whether the QoE degradations
depends also on content or scaling dimension. For this purpose, we selectively compare two
operation points and check if their DMOS scores differ significantly. A paired Wilcoxon
test is used to test the significance. When testing the effect of downscaling, the alternative
hypothesis is directional as we expect higher values of DMOS for lower-layer operation
points. For the effect of scaling dimension, a two-tailed hypothesis is assumed.

To provide further confidence in our observations, we also specify Cohen’s statistical
effect size and power (Cohen, 1988). Effect size helps to diagnose validity and discern
consistent from unreliable results, e.g., a small effect size reflects a weak effect caused by
small difference between scores. Power is the probability of not making a type-II error,
that is, with low power, we might find a real existing effect as not significant.

4.5.2 Effect of bit-rate reduction

Bit-rate reduction attendant upon video scalability in any dimension will inevitably impair
the physical quality of a video. To examine the severity of impairment, we connect
any two OPs between which scaling possibility exists, and then we compare the DMOS
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Figure 4.1: QoE degradation along different adaptation paths, the DMOS values were
averaged over six different content genres.
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Dimension Temporal Temporal Temporal Spatial Spatial SNR SNR
from 25 fps 12 fps 25 fps 320H 320L 320H 160H

to 12 fps 6 fps 6 fps 160H 160L 320L 160L
Scaling Option OP1 �→ OP3 OP3 �→ OP4 OP1 �→ OP4 OP1 �→ OP5 OP2 �→ OP6 OP1 �→ OP2 OP5 �→ OP6

Animation +++ +++ +++ +++ +++ +++ +
Cartoon ◦ ◦ ◦ +++ +++ ++ ◦

Documentary ++ +++ +++ +++ +++ ◦ ◦
Short Movie +++ +++ +++ +++ +++ +++ ◦

News +++ +++ +++ +++ +++ ◦ ◦
Sports +++ +++ +++ +++ +++ +++ ◦
Total ++ +++ +++ +++ +++ ++ ◦

Saving(kbps) 207.3 187.5 394.7 951.1 976 99.6 124.5

Legend: ◦ not significant, + small effect, ++ medium effect, +++ large effect

Table 4.2: Effect of bit-rate reductions of available scaling options.

scores between the two OPs. The paired differences of DMOS scores serve as measures of
noticeable QoE degradations.

Table 4.2 summarizes the analytical results. Figure 4.1 further illustrates the QoE
evaluation along all possible adaptation paths enabled by the six operation points. The
results show QoE degradations were noticed with a large effect size and sufficient power
in almost all dimensions for almost all sequences. Although SNR downscaling gives the
lowest bit-rate reduction (≈ 99.6 kbps), the marginal means of DMOS scores at OP1 and
OP2 still differ largely enough to show the significant main effect of bit-rate reduction.
However, we do not find significant main effect on QoE degradation for the scaling option
OP5 �→ OP6. Similarly, as the option OP1 �→ OP2, OP5 �→ OP6 reduces video bit-rate
by the use of SNR scalability. But, in spite of the higher bit-rate reduction of OP5 and
OP6, the DMOS scores of OP6 are not significantly higher than OP5, as demonstrated
by the overlapping confidence intervals of OP5 and OP6 in figure 4.1c. This observation
indicates downscaling may have no effect on the perceived quality if the bit-rate of video
is already below a certain threshold, because people tends to be less sensitive to further
QoE reductions when the quality was already poor.

4.5.3 Effect of scaling dimension

With multi-dimensional scalability, a video adaptation path may have one to several
branches as shown in figure 4.1d. When more than one scaling options are available at
the same time, we would have to answer the question: which scaling dimension gives the
best trade-off between distortion and bit-rates? For this purpose, we compared operation
points of scaling in different dimensions. To block the influence of bit-rate reduction, the
comparison need to be performed among operation points at similar bit-rates. In this
experiment, operation points OP2 and OP3 are two adaptation branches whose average
bit-rates across six content types are at 1099 kbps and 991.5 kbps, respectively. By
comparing their DMOS scores, we want to find out whether there exists a general preferred
scaling order between SNR and temporal scalability.

However, we find no significant evidence for a general preference of SNR scalability
over temporal scalability and vice verse (Wilcoxon T = 1.04, p=0.3). The DMOS scores of
OP2 and OP3 do not differ much, as demonstrated by the overlapping confidence intervals
in figure 4.1d. Counter-intuitively, OP3 received a better QoE score than OP2 although
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it has a lower average bit-rate. This observation tells us that QoE degradations may be
non-monotonic to bit-rate reduction when multi-dimensional scalability is assumed.

4.5.4 Interaction of content type

The third independent variable under investigation is the content related factor. We
want to check the interaction effect of downscaling and content related factor, in other
words, whether the effect of downscaling would differ depending on the video content.
In table 4.2, we have already found the severity of QoE degradations are insignificant
for some video sequences although there is a general main effect of downscaling. These
exceptions of significant downscaling effect are the results of interaction of downscaling
and content related factor. To have an better understanding of the interaction effect, we
illustrate the variations of DMOS scores per content in figure 4.2.

For the SNR scalability shown in figure 4.2a, the QoE degradations are only insignif-
icant for both the Documentary and News sequence. The Documentary sequence has
high complexity in texture details and medium high motion speed. For the same target
bit-rate, the SVC encoder used coarser quantization levels to encode this video material,
which results in larger impairments already in its layer OP1. Meanwhile, the Documen-
tary sequence shows natural scenic textures of monkeys and jumbles of reedy grass. We
think this is why its layer OP2 received relative lower DMOS scores since visual artefacts
caused by quantization process such as blockiness, noise or edge busyness are less visible
in nature and stochastic textures than smooth and homogeneous textures (International
Telecommunications Union, 1996). The high DMOS score of OP1 and low DMOS score
of OP2 demonstrated jointly the insignificant visibility of QoE degradation caused by
SNR downscaling from OP1 to OP2. The same association between texture features and
SNR related artefacts was also confirmed by the observation of the Cartoon sequence
which is characterized by high contrast edges and large areas of monotonic textures. It is
very likely due to these texture features that the Cartoon sequence received the highest
DMOS score for its layer OP2 although relative smaller QPs were used during its encoding
process.

As another exception of insignificant visibility of QoE degradation, the News sequence
has medium complex texture detail and low motion speed. Low motion reduces the
occurrence of the artefact of mosquito noise, but we suspect that other content related
factors may also have their effects on the visibility of QoE degradation. The News sequence
is a series of medium shots on an anchorman standing against the background of universe.
The camera was tracked and zoomed in slowly so that the anchorman stays a constant
size and motionless while the background shows a growing movement. This dynamic
change of background attracts often viewer’s attention and people tend to be less critical
to fine details of objects from long distance or in the background. Therefore, we believe
that the weak impact of SNR downscaling on this sequence may be attributed to people’s
expectations and attentions.

For the temporal downscaling, our observation is that video with high speed and
unidirectional motion is more negatively affected by temporal downscaling. If we classify
the six sequences into two groups of content with high and low amount of motion according
to the calculated motion activities in table 3.2, it shows in figure 4.2b that the former
group has significantly higher DMOS scores than the latter. Among the low motion
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Figure 4.2: Interaction effect of content and scaling
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sequences, Cartoon is particularly unaffected by frame-rate reduction. Even at a very
low frame-rate (6fps at OP4), our assessors seemed to regard the QoE as sufficient. The
reason is that the content already is non-naturally jerky. People do not expect object’s
movement to be as smooth as reality in this content genre. Again, the content related
factors that can interact with quality scaling involve also people’s expectations and daily
practices.

The interaction effects between content related factors and scaling dimensions are
illustrated in figure 4.2c, 4.2d. Obviously, the preferred scaling order of scaling dimensions
varies for different content types. No main effect but interaction effect can be found
when SNR scalability is compared with temporal scalability, as shown in figure 4.2c.
Interestingly, figure 4.2d shows that the DMOS scores for spatial downscaling are higher
than temporal downscaling for the Animation and Sports sequences despite the significant
larger bit-rate difference between OP4 (≈ 800kbps) and OP5 (≈ 256kbps). Again, this
indicates that monotony assumptions about the relation between bit-rate and QoE should
be reconsidered for multi-dimensional scaling.

4.6 Limitations

Field studies generally suffer from less controlled presentation conditions. We there-
fore designed our study carefully by selecting more participants than required by ITU-R
BT.500-11 and strictly removed outliers (6 in total among 30). To alleviate effects of an
audio track which can influence video quality perception (Jumisko-Pyykkö and Häkki-
nen, 2006), we used undistorted, perfectly synchronised and normalised signals for all
sequences. Although we are likely to miss effects that might have been observed in a lab-
oratory, we still found significant results at significance level p < 0.01 of high statistical
power and effect size in all tests. According to the power the number of participants was
also sufficient for obtaining all results presented here.

DSCQS is sensitive to small differences in quality and used as quasi-standard in many
subjective studies. For scalable content, however, it has two drawbacks. First, DSCQS is
impractical to assess large numbers of operation points at several scaling dimension due
to the limited amount of time before assessors become exhausted. Hence, we selected
representative operation points only. Second, the scale used by DSCQS is ambiguous
because QoE perception is not necessarily linear for people and individual participants
may interpret scores differently (Watson and Kreslake, 2001). Hence, assuming DMOS
scores obtained by DSCQS are interval-scaled is statistically incorrect. We address this
by lowering our assumptions to ordinal data and non-parametric statistics. Despite these
facts, we still found significant results and regard unnoticed effects as insignificant for
mobile system design.

To reduce fatigue effects, only six video layers were included in this experiment. We
therefore tested only the combination of SNR and spatial downscaling for the quality
impact of combined scalability, while the temporal downscaling was only examined alone.
In addition, the bit-rate granularity of the spatial layers was fairly coarse due to the
dyadic rescaling method that was used to encode successive spatial layers, which makes it
impossible to compare the quality influence of spatial downscaling with other downscaling
options under the same bit-rate constraint.
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Metric CC SROCC

Y-PSNR (copy) -0.532 -0.562
Y-PSNR (skip) -0.534 -0.555
SSIM (copy) -0.271 -0.390
SSIM (skip) -0.443 -0.451
NTIA GM 0.288 0.365
SVQM -0.661 -0.684

Table 4.3: Correlation Results for Objective Quality Models. The higher the absolute
value of a coefficient, the stronger correlation, namely the better prediction of the subjec-
tive scores. CC - Pearson Product-Moment Correlation Coefficient, SROCC - Spearman
Rank-Order Correlation Coefficient.

4.7 Objective Model Performance

In this section, we analyse the performance of some existing objective video quality assess-
ment models. Among many existing models, we selected three popular ones: Y-PSNR,
SSIM (Wang et al., 2004) and the NTIA General Model (Pinson and Wolf, 2004). In
addition, we implemented a recently proposed model which is specifically designed for
video streams with multi-dimensional scalability (Kim et al., 2008). For simplicity, we
call this model SVQM.

All the four objective models are full-reference quality metrics. For each test sequence,
we compared the quality of all the extracted and decoded OPs with the original video
sequence using these objective models. We omitted temporal and spatial registration
because all decoded OPs are perfectly aligned with the reference video. For those OPs
with lower frame-rate, the missing video frames were either skipped or the available frames
were duplicated to replace the dropped frames. We performed skipping only for PSNR
and SSIM to understand the influence of frame repetition and temporal scalability on
those models. Finally, the video quality of each OP was quantified into a single value
by averaging the quality values of each single or pair of frames. Then, we measured
the objective model performance using Pearson’s and Spearman’s correlation coefficients
between the objective scores and the subjective scores. Correlation was found to be
significant with p < 0.01 at high power.

As table 4.3 reveals, SSIM and NTIA GM perform bad for scalable content on mobile
screens. Although other studies reported good performance at television resolutions, both
models are not tailored to multi-dimensional scalability and small screen sizes. PSNR
performs only slightly better. SVQM achieved the best results of all examined models,
but it is still far from being ideal. Although our version of SVQM is trained for the
sequences used by Kim et al. (2008), it still creates reasonable results for our content. This
indicates that the general idea of considering motion, frame-rate and spatial resolution in
an objective model can yield some benefits. In contrast, a simple extension to traditional
metrics like PSNR or SSIM which skips missing frames at low temporal resolutions does
not create considerably better results.
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4.8 Conclusion

We performed a subjective field study on mobile devices to investigate the effects of
multi-dimensional scalability supported by H.264-SVC on human quality perception. In
this experiment, three types of factor, bit-rate reduction, scaling dimension and content
related factors have been investigated simultaneously. Not surprisingly, the magnitude of
bit-rate reduction resulted from downscaling has been found having significant effect on
the perceived video quality, but the effects differ depending on the content related factor
and the actually scaling dimension. Due to the interaction of scaling and content related
factor, we found no significant evidence for a general preference for one scaling dimension
over the other. Videos with different content characteristics are influenced to various
extent by the multi-dimensional bit-rate adaptation techniques. We observe that QoE
degradation followed by bit-rate downscaling are more evident on videos with smooth
textures and high motion activities. Moreover, a user’s expectation and attention to the
concrete video content play also an important role on human perception of video quality.
Based on our experimental results, we concluded also that adaptation decisions for SVC
bitstreams should not only be based on bit-rate and layer dependency information alone,
as the perceived quality degradation may be non-monotonic to bit-rate reduction.

Despite the MGS encoding mode, the scaling granularity of H.264-SVC video streams
may still be insufficient for efficient bit-rate adaptation. In the experiment introduced in
this chapter, the bit-rate intervals between adjacent video layers were even found to be
uneven. To mind large gaps between the average bit-rates of two video layers, streaming
schedules need to change layers alternatively from high to low quality and vice verse. For
scalable video streams that have multi-dimensional scalability, it is unclear how the per-
ceived quality would be influenced by active layer variations and whether layer variations
in different scaling dimensions would be perceived differently. We investigate these issues
in chapters 5 and 6.
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Chapter 5

Frequent layer switching

Frequent switching between the layers of a scalable video can enable finer grained band-
width adaptation, but also generates additional visual artefacts. In this chapter, we will
present another three subjective quality studies that evaluated the feasibility of switching
techniques.

5.1 Introduction

In the context of scalable video streaming, the term “granularity” describes bit-rate differ-
ence between quality layers in video encoded in layered structure. The finer grained scala-
bility a video has, the more precisely it can adapt to the available bandwidth, because that
fine-grained scalability allows rate to be added or reduced in smaller amount. Therefore,
it is often preferable to stream video with fine grained scalability. However, fine-grained
scalable video suffers from a considerable coding penalty. For instance, the H.264 Scalable
Video Coding (SVC) standard included the medium grain scalability (MGS) feature in
addition to the coarse grain scalability (CGS) method for higher adaptation granularity,
but this comes at the cost of increased signaling overhead, see the comparison of bit-rates
of video with difference scaling granularities in table 5.1. For better bit-rate efficiency,
SVC has to limit the number of supported enhancement layers and the number of MGS
partitions. Furthermore, the bit-rate increments between adjacent quality layers in SVC
encoded videos are not equal. In chapter 4, we reported a user study on material that has
been encoded by the H.264-SVC encoder. From that study, we found that at low bit-rates
less than 200 Kbps, scalable streams with a fixed set of predetermined quality layers have
sufficient granularity; in the higher bit-rate range, the granularity becomes significantly
coarser though. This also results in insufficient adaption granularity, either wasting re-
sources or decreasing the quality of experience (QoE) more than necessary. The question
arises as to whether more or less frequent switching between the layers of a coarse-grained
scalable video could yield similar bandwidth adaptation while providing better perceived
quality.

This chapter summarizes and extends our previous work (Ni et al., 2009, 2010) with
more analyses and conclusions about the technique of frequent layer switching (FLS), a
method for fine-grained bit-rate adaptation of scalable bitstreams with few scaling options.
This technique is an alternative to static downscaling, which is the selection of a single,
lower-quality operation point for an entire video sequence. In contrast to downscaling,
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frequent layer switching alternates between two or multiple operation points in order to
meet a given bit-rate constraint over a short time-window. FLS brings about repeated
quality fluctuation due to frequent layer variation. Different FLS schedules can create
different layer variation patterns, which may cause different impacts on perceived visual
quality. In addition, H.264-SVC increases perceptual uncertainty dramatically because of
its multi-dimensional scaling possibility. Layer variations that occur in different scaling
dimension may not be perceived in the same way, either. To examine these issues, we
conducted a FLS study that investigated the perceptual effects and usefulness of FLS.
In this thesis, we consolidate the findings of this study by more analyses than our original
paper included in Appendix D. Our aim was to provide recommendations on how to best
incorporate FLS into practical streaming systems. In general, we were interested in two
central questions:

• Is FLS a useful alternative to downscaling in streaming scenarios with limited and
fluctuating bandwidth?

• How do switching schedules and streaming environments influence the subjective
quality perception of human observers?

Layer switching can achieve a bandwidth consumption different from the long-term
average of any operation point of a coarse-grained scalable video without the extra costs
of MGS. This ability makes FLS suitable in several streaming scenarios:

• FLS can be used to achieve a long-term average target bit-rate that differs from
average bit-rates of available operation points in coarse-grained scalable videos. This
works even for variable-bit-rate SVC streams. Every average target bit-rate above
the base layer’s bandwidth demand can be achieved by switching enhancement layers
on and off repeatedly, if necessary at different on and off durations.

• FLS can be used as an alternative means to exploit the temporary availability of
bandwidth that exceeds the demands of the base layer, but does not suffice for the
bandwidth demands of an enhancement layer. Through variations of the retrieval
speed (implicitly in pull mode, explicitly in push mode), receivers can use the excess
bandwidth during a period of base-layer playout to prefetch data for a period of
enhanced-quality playout. The period duration depends on the available space for
a prefetching buffer, but it also depends on the perceived playout quality which
forbids an arbitrary choice.

• FLS can be used for bandwidth sharing in fixed-rate channels, in particular, for
multiplexing multiple scalable bitstreams over Digital Video Broadcasting channels.
With FLS, a channel scheduler gains more selection options to satisfy quality and
bit-rate constraints. In addition to coarse operation point bit-rates, FLS can offer
intermediate bit-rates at a similar quality of experience.

In all the above scenarios, the choice of switching pattern and switching frequency
are of central importance because they may considerably impact the perceived quality.
To identify the feasibility of switching techniques and advice design constraints, our FLS
study includes several subjective quality assessment experiments collecting human ob-
servers’ preferences when watching video clip pairs impaired with different switching and
scaling patterns.
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The experiments were performed in three different scenarios, i.e., mobile displays in
private spaces, mobile displays in public spaces and HTDV displays in private spaces. Due
to the differences of the scenario environments, we used multiple assessment methods to
carry out these experiments in the FLS study.

The visual effects of quality impairment in temporal and SNR dimensions are sig-
nificant different. McCarthy et al. (2004) performed several subjective tests to compare
the effects of image fidelity and frame-rate downscaling. It was shown that high frame-
rate is not always more preferable than high image fidelity, even for high motion video.
Probably closest to our FLS study, Zink et al. (2003) investigated quality degradation
caused by layer variations. In contrast to our work, they did not treat the layer switching
and its related impairment in different dimensions separately, although different types
of layer variation deserve an in-depth study. In our FLS study, we identified the noise
flicker, motion flicker and blur flicker as three specific effects caused by FLS in separate di-
mensions. Our work compared the two-dimensional video impairment systematically and
investigated how the visual effects are related to content, device and adaptation strategy.

Our results indicate that the perceived quality of different switching patterns may
differ largely, depending on scaling dimensions, content and display device. In some
cases, there are clear preferences for one technique while in other cases both, switching and
downscaling, are liked or disliked equally. In several cases, FLS is a practical alternative
for achieving fine-grained scalable streaming from coarse-grained videos, specifically, if
the switching period is long enough to avoid flicker effect, then layer switching is even
preferred over downscaling to a lower SVC quality layer.

5.2 Frequent layer switching study

One of the main goals of this study is to see if the FLS technique can be used to achieve
a more efficient fine-grained streaming solution considering the high overheads of MGS
coding schemes. In this section, we identify the factors under investigation and describe
the choice of factor levels and ranges.

5.2.1 FLS

In contrast to adaptation approaches that downscale a SVC bitstream to a particular
operation point among many MGS or CGS quality levels that was predetermined at
encoding time, FLS alternates between a few fixed operation points in order to meet a
given bit-rate constraint over a short time-window without the extra overhead of defining
additional operation points. For video with multi-dimensional scalability, layer switching
is not limited to one single dimension. For instance, figures 5.1b –5.1c show two different
approaches for downscaling; while figures 5.1d–5.1f illustrate three different switching
patterns, two that perform switching in a single dimension (temporal or SNR) and one
pattern that combines layer switching in the two multi-dimensions.

Thus, FLS introduces intermediate scaling options, but it also causes three perceptible
effects on the users QoE:

• Noise flicker is a result of varying the signal-to-noise-ratio (SNR) in the pictures.
It is evident as a recurring transient change in noise, ringing, blockiness or other
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(a) Global Bitstream (b) SNR layer downscaling (Low SNR)

(c) Temporal layer downscaling (Low FPS) (d) SNR layer switching (Noise flicker)

(e) Temporal layer switching (Motion flicker) (f) Multi-dimensional switching

Figure 5.1: Bitstream layout for downscaling and layer switching options used in the
experiments. Typical associated visual effects are given in parenthesis.

still-image artefacts in a video sequence.

• Blur flicker is caused by repeated changes of spatial resolution. It appears as a
recurring transient blur that sharpens and unsharpens the overall details of some
frames in a video sequence.

• Motion flicker comes from repeated changes in the video frame-rate (FPS). The
effect is a recurring transient judder or jerkiness of naturally moving objects in a
video sequence.

The choice of switching pattern and switching frequency are therefore of central impor-
tance due to the possible high impact on the perceived quality. Questions such as “under
which conditions (e.g., viewing context, display size and switching frequency) these ef-
fects become noticeable” and “how they influence the perceived quality impression” are
therefore important research issues. Furthermore, to identify the feasibility of switching
techniques and advice design constraints, we were interested in answering the following
questions:

• Do people perceive a difference in quality between scaling and switching techniques?

• Is there a general preference of one technique over the other?
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Genre Content Detail Motion Audio CGS Bitrate MGS Bitrate

Max Min Max Min

Animation BigBuckBunny 3.65 1.83 sound 530.8 136.1 823.6 175.5
Cartoon South Park 2.75 0.90 speech 533.8 158.8 767.5 199.7
Docu Monkeys & River 3.64 1.61 sound 1,156.1 192.1 1,244.3 208.7
Movie Dunkler See 1.85 0.58 sound 255.2 67.9 419.9 92.4
News BBC News 2.92 0.69 speech 268.6 74.0 453.1 101.0
Sports Free Ride 3.32 1.90 music 734.8 121.1 745.9 129.1
HD-Animation BigBuckBunny 2.88 4.13 sound 10,457.0 10,32.4 14,210.0 1,021.7
HD-Docu Canyon 3.09 3.33 sound 25,480.0 24,07.0 28,940.0 2,394.0

Table 5.1: Expanded test sequences for the experiments on both mobile device and HDTV
monitor. The video source material were the same as used in a previous study, illustrated
in table 3.2 and figure 3.2. Detail is the average of MPEG-7 edge histogram values over
all frames (Park et al., 2000) and Motion is the MPEG-7 Motion Activity (Jeannin and
Divakaran, 2001), i.e., the standard deviation of all motion vector magnitudes. Bit-rates
are given in Kilobits per second (Kbps) for the SVC bitstream at the highest enhancement
layer (max) and the base layer (min).

• Does a preference depend on genre, switching frequency or the scaling dimension?

• Are there frequencies and dimensions that are perceived as less disturbing?

• How general are our observations, i.e., do location, device type, display size and
viewing distance influence the results?

5.2.2 Subjective quality evaluation

From the above questions, we defined several factors that may affect the perceived quality
of video. Frequent switching and static downscaling are two different adaptation strate-
gies. Combined with different scaling dimensions, it creates multiple streaming options.
We use categorical variables to represent these options. In addition to streaming strategy
and scaling dimension, content and switching frequency are also factors of interest. The
switching frequency is determined by the playback duration of the scalable video layers.
Since we examine periodic and symmetric layer switching pattern shown in figures 5.1d
and 5.1e in this study, the term period, the playback duration of each layer, is used as the
equivalent measure of the switching frequency. Finally, we use a single variable defined
as streaming scenario to cover all the device and environment related factors. Subjective
video quality can only be evaluated separately in different streaming scenarios. Thus this
study was performed as a set of independent experiments. We deliberately controlled the
variations of the other four factors in each experiment.

In this study, as more factors were involved in the evaluation, the test workload was
increased considerably. To reduce the complexity of evaluation tasks, the Pairwise Com-
parison method was used as the main form of quality assessment instead of the DSCQS
method. As mentioned earlier, with the PC method, our assessors need simply make a
choice based on preference when watching video clip pairs.

To test different kinds of content with varying detail and motion, we selected eight
sequences from different genres (see table 5.1), i.e., 6 for the small mobile devices and 2
for the HDTV. We obtained the content from previous user studies (see chapters 3, 4)
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which allowed for a comparison with earlier results. From each sequence, we extracted
an 8 second clip without scene cuts. After extraction, the texture complexity and motion
activity are measured according to MPEG-7 specification.

We encoded the SVC bitstreams with version 9.16 of the JSVM reference software.
The encoder was configured to generate streams in the scalable high profile with one base
layer and one CGS enhancement layer, a GOP-size of 4 frames with hierarchical B-frames,
an intra period of 12 frames, inter-layer prediction and CABAC encoding. Note, SVC
defines the set of pictures anchored by two successive key pictures together with the first
key picture as a group of picture, where key pictures are usually encoded as P-frames
within an intra period (Schwarz et al., 2007). Due to the lack of rate-control for quality
enhancement layers in JSVM, we used fixed quantization parameters (QP). Based on our
previous experience and in order to obtain a perceivable quality difference, we selected
QP36 and Q28 for encoding the base-layer and the enhancement layer respectively.

From the encoded SVC bitstreams, we extracted three scalable operation points with
high variability in the bit-rates (see figures 5.1a–5.1b). The full bitstream (figure 5.1a) is
the operation point containing the base-layer (Q0) and the SNR enhancement layer (Q1)
at the original frame-rate, while the two other operation points are each downscaled in a
single dimension to the lower SNR layer at full temporal resolution or a lower temporal
resolution T1 (12fps), but with SNR enhancement. These operation points were then
used to generate streams with different switching patterns and to compare the switched
streams’ quality. Note that we only focused on SNR scalability and temporal scalability
in this study. We did not consider spatial scalability, because it is undesirable for FLS
due to the large decrease in perceived quality as shown in chapter 4.

Next, we have performed experiments in three different scenarios: mobile displays
in both private and public spaces and HDTV displays in private spaces trying to find
suitable switching patterns from the downscaling operation points (figures 5.1c–5.1b)
resulting in patters like the ones shown in figures 5.1d–5.1f, i.e., better and more efficiently
matching the available bit-rates between the downscaling operation points giving better
video quality than the lower base layer only.

5.3 Mobile scenario - Field study 1

In our first experiment, we were interested in how user perception over FLS compared to
static layer downscaling. The experiment is performed in a private, in-door environment
(lab), and each participant evaluated all the video content.

5.3.1 Experimental design

The first experiment was designed based on the standardized Full factorial PC method
(f/pc). Since the comparison between the two streaming strategies, frequent switching
and static downscaling is of primary interest, we only paired up the switching pattern with
one static operation point. The dimension varied between two levels, the temporal and
SNR dimension. Then, we decided to use 3 and 6 levels of the factor switching frequency
and content genre. In total, the f/pc design included 2 ∗ 2 ∗ 3 ∗ 6 = 72 treatment
combinations.
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In order to assess the reliability of votes from each participant and detect inconsistent
ratings, each pairwise comparison was repeated twice during a test session, once in each
possible presentation order of a pair of video clips. The overall presentation order of all
clip pairs was a random permutation. Between subsequent pairs, there was a 6-second
break, displaying a mid-grey image with black text that called for voting and announced
the following clip pair.

For each clip pair, we obtained a single measure about which clip a participant pre-
ferred to watch. A three categorical scale was used for reporting the preferences. The
participants were asked to judge whether they preferred the first or the second video clip
in a clip pair or whether they had no preference if undecided. All ratings from both
clip-pair orders (AB, BA) were used in our analysis. For statistical analysis, we first
ran Binomial tests to see if a significant majority of ratings for one of the three rating
categories existed. A significant majority was defined as the number of ratings that have
occurred more frequently than the summed frequency of the other two kinds of ratings.
The hypothetical probability of obtaining such a majority is 1/3 assuming there is no
effect of the independent variables. In the case that a group of data did not pass the
significance test, we further examined whether the independent variables still have some
weaker effects on people’s preference. The ratings for no preference were then divided
into halves and regarded as ratings for either A or B clip. The second Binomial test was
called to examine if the number of ratings for A clip differs significantly than the ratings
for B clip. If none of the two significance tests can identify a clear preference between the
pair of clips, it indicates a lack of consensus of people’s perception, which is in practice
equivalent to an undecided preference for the given test conditions.

5.3.1.1 Material

In this experiment, we again (as used in chapters 4, 3) tested video from all the six
different genres listed in the top of table 5.1. The selected six sequences were downscaled
and eventually cropped from their original resolution to QVGA (320x240) in order to fit
the screen size of our display devices. We simulated layer switching in the SNR dimension
and the temporal dimension according to the patterns illustrated in figures 5.1d and 5.1e.
The switching periods that were chosen for this experiment were 2, 24 and 48 frames,
which correspond to about 0.08, 1 and 2 seconds for a 25 fps playback rate.

5.3.1.2 Participants

Twenty-eight payed participants (25% female) at mean age of 28 participated in the
test. Among the participants, 90% are at an age between 18-34 while 10% are at an
age between 35-39. All of the participants are college students with different education
but no one has majored in multimedia technologies. All of the them are familiar with
concepts like digital TV and Internet video streaming while 75% of them claimed that
media consumption is part of their daily life. We obtained a total of 2016 preference
ratings of which 44% indicated a clear preference (consistent ratings on both clip orders),
31% a tendency (one undecided rating) and 10% no difference (two undecided ratings).
We observed 15% conflicting ratings, where participants gave opposite answers to a test
pattern and its hidden check pattern. Participants with more than 1.5 times the inter-
quartile range of conflicting ratings above the average were regarded as outliers. In total,
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we removed two outliers from our data set. Regardless of remaining conflicts we found
statistically significant results.

5.3.1.3 Procedure

As mobile display devices, we again used the iPod classic and the iPod touch from 2008.
The two iPod models contain respectively a 2.5-inch and 3.5-inch display and have pixel
resolutions of 320x240 and 480x320 at 163 pixel per inch. The selected display size is
sufficient for depicting content at QVGA resolution according to Knoche and Sasse (2008).
All videos had an undistorted audio track to decrease the exhaustion of test participants.

Although quite a few of assessors have previous experience in watching video on hand-
held devices like iPod, a brief introduction about how to operate the iPods during the
experiments was given to the assessors prior to a test session. A whole test session lasted
for about one hour, including two short breaks. Each participant completed the entire
test session. During the session the assessors were free to choose a comfortable watching
position and to adjust the watching distance. For example, they could choose to sit on
sofas or in front of a desk. They were also free to decide when they wanted to continue
the test after a break.

5.3.2 Results

Results are reported as preference for layer switching or layer scaling with 0.01 confidence
intervals. If a preference was verified by only one Binomial test, we reported it as weak
preference. Table 5.2 displays preferences between switching and scaling across different
content genres and period lengths. The ‘all’ line in the table contains general results
averaged over all periods and all genres.

Motion flicker Noise flicker

Group Low FPS Low SNR Low FPS Low SNR

Animation ◦ + − ◦
Cartoon ◦ + − (+)
Documentary ◦ + − (−)
Short Movie ◦ + − ◦
News ◦ + − ◦
Sports ◦ + − ◦
2f − −
24f ◦ + − (+)
48f ◦ + − +

All ◦ + − (+)

Legend: + switching preferred, − downscaling preferred
◦ no preference, (*) weak tendency

Table 5.2: Private space mobile - quality preference for layer switching vs. downscaling,
Empty cells are not covered by this study.



5.3. Mobile scenario - Field study 1 65

5.3.2.1 Temporal layer switching

Participant ratings indicate no clear preference when layer switching is compared to layer
downscaling in temporal dimension. One possible reason for this observation is that
temporal resolution changes between 25 fps and 12 fps have a minor impact on quality
perception. This confirms results of previous studies reported in section 4. Using more
bandwidth for a temporally switched stream (92%) compared to a temporal downscaled
stream (85%) is thus not justified by a significant increase in quality perception. It may
be interesting to further investigate whether this observation also applies to switching to
lower temporal resolutions (below 10 fps).

When layer switching in the temporal or SNR dimension is compared to downscaling
in the other dimension (Motion flicker vs. Low SNR and Noise flicker vs. Low FPS,
respectively), the results indicate a clear preference towards decreasing the temporal res-
olution rather than the fine details of a video. With high significance, our results are
consistent across all genres and independent of the switching period. The result again
confirms previous findings reported by McCarthy et al. (2004). People seem to be more
sensitive to reductions in picture quality than to changes in frame-rates when watching
video on mobile devices, i.e., lowing the temporal resolution will, however, be much more
visible on larger screens like HDTV monitor (see section 5.5). This clearly indicates that
switching is a viable option for frequent temporal resolution changes on mobile devices.
Although temporal base-layers consume the main bit-rate and potential savings are small,
switching can still yield fine-grained adaptation in the upper bit-rate range of a stream.
For a fair comparison, it is noteworthy that the temporal layer switching scheme in the
FLS study made the bit-rate considerably higher than the static SNR downscaling option
(92% vs. 28%). However, the comparison between the SNR layer switching pattern and
the Low FPS option (89% vs. 85%) shows, that a lower bit-rate stream can yield a higher
subjective quality regardless of the content.

5.3.2.2 SNR layer switching

When the visual artefact associated with SNR layer switching (Noise flicker) is compared
to Low SNR effect associated with SNR downscaling, the combined results over all period
sizes shows only a weak tendency of preference for Noise flicker. There is also no general
preference towards a single adaptation technique that can be attributed to content char-
acteristics alone. However, we observed a significant preference for SNR layer switching at
long periods (48f) while for shorter periods (2f) a preference for static SNR downscaling
exists.

Noise flicker is caused by fast switching between high- and low-quality encodings which
leads to rapid iteration of high and low frequency textures. It was perceived as disturbing
by almost all participants. At longer switching periods, this effect becomes less annoying
and disappears eventually. We call the limit at which flicker effect disappears the flicker
threshold. Only above the flicker threshold, people can pay enough attention to the fine
details of a video. Interestingly, it seems that the flicker threshold is within the range
of the selected period levels in this study, and long switching period above the flicker
threshold makes the fluctuant visual quality more preferable than a constant low quality.

We just conducted tests with equally long intervals of high and low quality. Hence,
the bit-rate demand of a SNR layer switching scheme is still much higher than that of
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the Low-SNR downscaling option (89% vs. 28%). Asymmetric patterns with longer low-
quality intervals will have a much lower bit-rate consumption and offer a wider range of
bit-rate adaptation. We will investigate whether such patterns can also yield a better
visual quality. We assume, however, that the flicker threshold plays an important role for
asymmetric patterns as well.

5.4 Mobile scenario - Field study 2

The first FLS study was conducted in an indoor environment, but it is also interesting
to see if the environment also influence the results. Therefore, the second FLS study was
conducted in a more bustling public space environment. The purpose of this experiment
was to verify whether the conclusion drawn in section 5.3 applies to people with a more
varied background in a different streaming scenario.

5.4.1 Experimental design

The primary concern that had arisen from the first FLS study (section 5.3) was the long
duration of each assessor’s viewing time; about one hour. Although assessors had been
allowed to take breaks, they were generally annoyed with the test itself, and we were
concerned that this can have had unpredictable effects on the quality of their evaluation.
Furthermore, the video quality tests in our first FLS study were mostly performed at
Simula and on the university classrooms. In public spaces, it is not realistic to recruit
volunteers to a test that lasts for an hour.

With this consideration, we designed our second field study based on the Randomized
Pairwise Comparison method (r/pc). As described in chapter 3, r/pc is a flexible and
economic extension to traditional pairwise comparison (PC) designs. Conventionally, it
presents stimuli as pairs of clips. In contrast to traditional full factorial PC design that
collects a full data sample for all pairs from every assessor, r/pc uses random sampling to
select small subsets of pairs and thus creates a shorter but unique experiment session for
each assessor. With this method, our assessors were allowed to stop at anytime, viewing
and evaluation was better integrated, so that this study contained the same number of
treatment combinations as the first FLS study.

5.4.1.1 Material

In this field study, we used the same video material to generate our test sequences as in
section 5.3. We used iPod touch devices from 2008 to perform the tests and used encoding
settings that were similar to those of the first field study, except that the resolution was
changed. Instead of scaling the video on the devices itself, all sequences were downscaled
and cropped from their original resolution to 480x272 pixels in order to fit the 3.2-inch
screen size of iPod touch and keep the 16:9 format.

From the first field study, we already found out that quality changes at a very high
frequency can make FLS significantly worse than static downscaling in terms of visual
quality. In this study, the selected period levels were prolonged correspondingly. This level
selection enabled the exploration of more values of switching periods, but it also made
the comparison between the two studies not straightforward. The switching periods that
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were chosen for this experiment were 12, 36 and 72 frames, which correspond to about
0.5, 1.5 and 3 seconds for a 25 fps playback rate.

5.4.1.2 Participants

The field study was performed under conditions that differ from the first one in several
ways. Participants were approached by students in public locations in Oslo in the summer
and autumn. They were approached in situations that we considered realistic public
areas for the use of a mobile video system. We had 84 participants who had mostly been
approached when they were idle, e.g., waiting for or sitting on a bus. They were asked
for 15 minutes of their time.

Among the participants, 74% are between the age of 18-34, 20% are between the age
of 35-59 and 6% are at an age under 18. 96% of the participants have normal visual acuity
with or without glasses while 4% have limited visual acuity in spite of glasses. The field
study was mostly conducted indoors (95%) in different locations (restaurant, bus station,
cafeteria), while 3 participants were en-route and 1 person was outdoors. We gathered
in total 2405 ratings of which 30% indicated a clear preference (consistent ratings on
both clip orders), 36.3% a tendency (one undecided rating), 24.4% no preference (two
undecided ratings) and 8% conflicting ratings. Using the same criterion introduced in
section 5.3, we filtered out 3 unreliable participants.

5.4.1.3 Procedure

Consistently with an experiment that was as close to the real world, we did not control
lighting or sitting conditions. Assessors were not protected from disturbances that are
consistent with those that a user of a mobile video service would experience. They expe-
rienced distractions by passerbys, or the urge to check departure times or the station for
the next stop. In case of such a short-term disturbances, they were allowed to continue
watching clips pairs in the same test sessions.

Assessors were not shown training sequences, but they received a brief introduction by
the student, explaining that clips might look identical. The suggested number of clips to
be watched by an assessor was 30, but considering the experience of fatigue and annoyance
with the first experimental design and the situation of the assessors, they could terminate
the experiment at any time. The downside of this possibility was that the consistency
of an individual assessor’s answers could not be checked, and that every vote for a clip
pair needed to be considered an independent sample. Lacking the control mechanism, we
required 20 or more votes for each clip pair. Following this method, the test participants
were asked to assess the quality of two sequentially presented clips. A subset of clip pairs
was randomly chosen for each assessor from a base of 216 clip pairs (including reference
pairs, equal reference and matched contrast pairs).

The evaluation procedure was changed from the paper questionnaire approach taken
in section 5.3. This field study integrated both testing and evaluation into the iPod.
Thus, users were given the opportunity to first decide whether they had seen a difference
between the clips after each pair of clips that they had watched. If the answer was yes,
they were asked to indicate the clip with higher quality.
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5.4.2 Results

The results of the second field study are processed in the same way as those for the first
FLS study. Confidence intervals are reported as 0.01. Table 5.3 presents preferences
between switching and scaling across different content genres and period lengths. The
‘all’ line contains general results for all periods and all genres.

Motion flicker Noise flicker

Group Low FPS Low SNR Low FPS Low SNR

Animation ◦ + − +

Cartoon ◦ + (−) (+)
Documentary ◦ + ◦ (+)
Short Movie ◦ + ◦ ◦
News ◦ + − (+)
Sports ◦ + ◦ ◦
12f ◦ + (−) (+)
36f ◦ + (−) (+)
72f ◦ + (−) ◦
All ◦ + (−) (+)

Legend: + switching preferred, − downscaling preferred
◦ no preference, (*) weak tendency

Table 5.3: Public space mobile - quality preference for layer switching vs. downscaling.

5.4.2.1 Temporal layer switching

Two series of ratings provided by the assessors yielded results that were identical inde-
pendent of genre. In the comparison of temporal switching (Motion flicker) and temporal
downscaling (Low FPS) in table 5.3, our random, untrained assessors did not favor either
option for any type of content independent of motion speed in the clip. This makes it
very clear that a frame-rate difference of 25 fps versus 12 fps on a mobile device has
minimal impact to the casual viewer. Additionally, temporal layer switching is given a
clear preference over SNR downscaling (Low SNR) for all types of content. This repeats
the equally clear findings of the first field study. Both of these comparisons stay the same
when different switching periods are considered.

5.4.2.2 SNR layer switching

The general observation about SNR layer switching (Noise flicker) shows people still tend
to prefer Low FPS rather than Noise flicker in public space. However, the preference is
detected much less clearly in the second field study than in the first. Similar to the first
study, a tendency of preference for Noise flicker over Low SNR was also found in table 5.3
for the entire data sample. As the result of extended period levels, no clear preference
for Low SNR or Noise flicker was found in table 5.3 though. A remarkable new finding is
that assessors did not prefer Noise flicker or Low SNR when the switching period reached
72 frames. One possible reason for this indecisiveness is that people are able to separate
the Noise flicker and Low SNR as two different kinds of artefacts at this longer time-scale,
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they prefer neither the constant low picture quality nor the instability associated with
quality changes.

Content related factor has also demonstrated some influences on user’s preferences
in this study. Significant preference for Noise flicker over Low SNR has been detected
for some content genre and people’s preference for Low FPS over Noise flicker was not
completely independent on video content.

5.4.2.3 Comparison between studies

The effect of content related factor was hidden in the first FLS study because of the
different period level selection. To reduce the confounding and suppression effects from
the period factor, we further analyzed the experimental data from the first study by
excluding the exceptional period level at 2f. Correspondingly, the period level at 72f was
filtered out from the second FLS study. This helps us to make a side-by-side comparison
between the two studies, as the differences between the remaining period levels become
relatively small and all the period levels have been verified to have similar effects on
people’s preference. We report the analytical results in table 5.4.

Noise flicker vs. Low FPS Noise flicker vs. Low SNR

Environment Private Public Private Public

Animation − − + +

Cartoon − (−) + +

Documentary ◦ ◦ (+) ◦
Short Movie − ◦ ◦ ◦
News − − (+) (+)
Sports (−) ◦ (+) ◦
All − (−) (+) (+)

Legend: + switching preferred, − downscaling preferred
◦ no preference, (*) weak tendency

Table 5.4: The perceived mobile video quality in private and public spaces - quality
preference for layer switching vs. downscaling.

Table 5.4 shows that the experimental findings of FLS study 1 and FLS study 2 are
in substantial agreement. But, people’s preference seems to be less clear in public spaces.
For instance, the general observation shows only a weaker tendency of preference for Low
FPS in the second FLS study, while Low FPS was clearly preferred in the first study. We
attribute this uncertainty to the environmental disturbance. The effect of content related
factor was revealed in the private spaces by this analysis. Based on the observations of two
field studies, we found that video with non-natural texture are less influenced by flicker
artefacts. The Animation and Cartoon clips are typical examples for artificial texture that
appears sharper than natural texture due to higher edge contrast. In our experiments,
clear preference for Noise flicker over Low SNR are found repeatedly only for the two
clips. Similarly, people may not expect the movements of computer generated figures to
be as smooth as natural movements. Therefore, despite of high motion activities, the
frame-rate loss seems to be less severe in the Animation clip than the other high motion
clips such as Document and Sports.
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Finally, it can be mentioned that the SNR layer downscaling strategy never got more
ratings than SNR layer switching in the experiments, which indicates that our asses-
sors, untrained and randomly chosen, can differentiate the amount of normal compression
artefacts in a video (8 QP differences) even in a noisy viewing environment.

5.5 HDTV scenario - Field study 3

With respect to both environment and device, there are large differences between small
mobile devices like iPods and large, high-resolution devices like a 42-inch HDTV. The
goal of our third experiment was to validate whether the results obtained in the mobile
scenarios are general observations or whether the results depend on the screen size and
viewing distance.

5.5.1 Experiment design

As we did in the first experiment described in section 5.3, the standardized Full factorial
PC method was applied to test whether either the downscaling or the switching video
adaptation options did significantly affect whether a user perceived the one or the other
as better. The assessors could select if they preferred layer switching or layer downscaling,
or if they had no preference. After gathering enough votes, we ran binomial tests to see
if a significant majority of the ratings exist among the three rating categories.

5.5.1.1 Material

We prepared the test sequences in a similar way to our previous experiments. We encoded
one base layer and one CGS enhancement layer using fixed quantization parameters of 36
and 28, respectively. The original spatial resolution of 1920x1080 was preserved.

Two HD video sequences (see table 5.1) were selected to represent video with natural
and non-natural textures. The HD-Animation test sequence had the same content as the
animation movie in the mobile tests. The HD-Docu sequence was extracted from the
same Documentary movie accordingly, but another part to fit the visual characteristics
and potential to HDTV presentation.

5.5.1.2 Participants

The study was conducted with 30 non-expert participants in a test room at Oslo uni-
versity. All of them were colleagues or students between the age of 18 and 34. Three of
them claimed to have limited visual acuity even with glasses. In total, we gathered 720
preference ratings of which 49% indicated clear preference, 29% a tendency and 12% no
preference. In the results, there were 10% conflicting ratings. We removed three outliers
from our data set using the same criterion as that introduced in section 5.3.1.2.

5.5.1.3 Procedure

The visual setup was a 32-inch, 1080p HDTV monitor. Our assessors were seated directly
in line with the center of the monitor with a distance of about three monitor screen
heights (3H distance). Since we conducted the test as a field study, we did not measure
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Motion flicker Noise flicker

Low FPS Low SNR Low FPS Low SNR

Animation (+) + (+) +

Canyon ◦ − + ◦
12f ◦ (−) + ◦
36f (+) (−) + (+)

72f (+) (−) + (+)

All (+) (−) + (+)

Legend: + switching preferred, − downscaling preferred
◦ no preference, (*) weak tendency

Table 5.5: HDTV scenario - quality preference for layer switching vs. downscaling.

the environmental lighting in the test room, but the lighting condition was adjusted to
avoid incident light being reflected from the screen. We displayed the video clip pairs in
two different randomized orders. The duration of a whole continuous test session was 20
minutes and none of the accessors requested break during the test.

5.5.2 Results

In the same way as in the two previous sections, the results of this study are reported
with 0.01 confidence intervals. We demonstrate the correlations between the preferences,
content genres and switching period lengths in table 5.5.

5.5.2.1 Temporal layer switching

The results found in HDTV test scenario differs significantly from what we found out in
mobile test scenarios. The general observation shows a weak tendency towards SNR layer
downscaling (Low SNR) than temporal layer switching (Motion flicker), in spite of the
significant larger bit-rate reduction given by SNR layer downscaling. There is also a weak
tendency of preference for layer switching than downscaling in temporal dimension. A
possible conclusion is that people detect frame-rate loss easier and disapprove clearly of
low frame-rate when watching HD video.

The effect of the period is weak as there is no significant variations in the data samples
between different period levels. However, we noticed that shorter switching period seems
to makes the impact of Motion flicker more pronounced than how longer period does.
Temporal layer switching got less ratings at shorter period levels no matter whether it
was compared to layer downscaling in SNR or temporal dimension. At 12f, it seems that
our assessor did not differentiate the motion jerkiness caused by the Motion flicker and
Low FPS.

Significant effect was found for the content related factor. When Motion flicker is
compared with Low SNR, preferences differ between genres. The majority of our assessors
preferred temporal switching over SNR downscaling when watching the Animation video.
Watching the Canyon clip, on the other hand, they indicated the opposite preference,
which contradicts also all the results from the two mobile FLS studies.
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5.5.2.2 SNR layer switching

The observation of layer switching in SNR dimension repeats what we found in tempo-
ral dimension. In the HDTV scenario, people seem to be more sensitive to frame-rate
changes than quality loss at the picture level. When SNR layer switching (Noise flicker) is
compared to temporal downscaling (Low FPS), participant ratings indicate a clear pref-
erence towards Noise flicker instead of Low FPS, which is again different than the test
results obtained from mobile scenarios. The results are consistent across genres and the
preference for Noise flicker applies for different switching periods.

When layer switching is compared with downscaling in the single SNR dimension
(Noise flicker against Low SNR), we do not find any significant results except for the
animation clip. This confirms previous finding that non-natural texture with high contrast
edges are less influenced by flicker effect.

According to the actual number of ratings, we believe the length of switching period
affects the perceived video quality in a similar way both in HDTV and mobile scenarios.
Namely, if the switching period is below a certain level (flicker threshold), the flicker effect
would appear distinctly and impair severely user’s visual experience. In this experiment,
although the statistic does not indicate any preference at 12f, the Low SNR streaming
solution received actually the most number of ratings. Compared to mobile scenarios, the
flicker threshold seems to be higher in HDTV scenario.

5.6 Discussion

In this section, we provided an analysis of the perceived quality of FLS and its usefulness
to adapt to a given average bandwidth. We also took a critical look at the assessment
methods itself.

5.6.1 Range of experiments

We performed three field studies in order to understand whether people who watch video
consider it beneficial to adaptively change video quality frequently, and whether the an-
swer to this question changes with the switching frequency. That it is beneficial to exploit
available bandwidth to its fullest and adapt video quality quickly to use it, is an assump-
tion that has frequently been made in the past. Through prefetching or buffering on the
client side, even coarse- and medium-grained scalable video codecs would be able to come
close to exploiting all available bandwidth in the long-term average.

Our investigations considered only options that are available in the toolset of SVC as
implemented by the reference encoder. We considered bandwidth changes through tem-
poral scalability and through SNR scalability separately. We investigated only switching
patterns where half of the frames belong to an upper and half to a lower operation point.
A finer adaptation granularity can be achieved by adaptively tuning this ratio, but the
8-second clip length used in our tests in accordance with the PC approach prevent an
exploration of other ratios. When analyzing the results from all three studies, we found
that preference indicators depend highly on the scenario.
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5.6.2 Mobile devices

In our two field studies that examined mobile devices, we found that temporal switching
and also temporal downscaling down to 12 fps result in better subjective quality than any
type of SNR layer adaptation. When directly comparing switching versus downscaling in
the temporal domain alone, no preference became apparent. Hence, temporal adaptation
could be employed at any desired ratio in the observed range between 25 and 12 fps. The
reason for this is that human observers regard all frame-rates above a margin of 10 fps as
sufficiently smooth, when they watch videos on small devices at typical viewing distances.
This observations has been reported by McCarthy et al. (2004) and our earlier study in
chapter 4, and was confirmed by the FLS study. Our suggestion from this observation is
to use a lower frame rate than 12 fps for the base-layer when encoding videos for mobile
devices.

For SNR layer switching, the period length is a crucial design criteria. Very short
periods (less than 12f or 0.5 sec) should be avoided, because they introduce annoying flicker
effect especially for natural textures. Reluctant quality adaptation such as switching layer
every 2 seconds, on the other hand, decreases the bandwidth utilization and is either
unacceptable for users.

5.6.3 Applicability of findings

The layer switching pattern must be supported by the SVC encoding structure and syn-
chronized to the decoder operation to avoid prediction errors. The switching patterns
used in our study assumed short GOP sizes and frequent intra-updates to allow for short
switching periods. Due to inter-frame prediction, switching may not be possible at every
frame boundary. Frequent layer switching points are usually in conflict with practical
encoder setups that use multiple reference pictures, long GOPs and rare intra-updates for
increased coding efficiency. This requires a trade-off at encoding time.

The results of our studies are not limited to layer switching in the coarse-grain encoded
versions of H.264-SVC streams alone. Any adaptation strategy in streaming servers,
relaying proxies and playout software that can alternate between different quality versions
of a video may benefit from our findings.

5.7 Conclusion

We have investigated whether we can achieve fine-grained video scalability using coarse-
grained H.264 SVC without introducing the high overhead of MGS in different streaming
scenarios including mobile TV and HDTV. This was tested by switching enhancement
layers on and off to achieve the target bit-rate between CGS operation points. According
to the scaling dimensions, we have identified three types of visual artefacts caused by fre-
quent layer variations, i.e., the noise, blur and motion flicker effects. We tested different
switching patterns against different downscaling patterns. The flicker artefacts associ-
ated with these switching patterns were compared with regular compression artefacts in
downscaled video. Our subjective tests indicate:

• Switching patterns with sufficient perceptual quality exist.
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• Human perception of quality impairment in FLS is content and context specific.

At first, the screen size of display devices has significant influence on perceived video
quality in FLS. The mobile test scenarios reveal a clear preference of temporal switching
over SNR scaling regardless of content and switching period. In our investigation of
HD screens, we found nearly the opposite picture. There, people prefer a regular SNR
reduction over motion flicker which becomes apparent on large screens even when the
frame rate is reduced from 25 fps to 12 fps. The explanation for this can be found in the
human visual system. Visual acuity in human’s foveal field-of-vision decreases from the
center towards the outside while sensitivity to motion activities increases (Rix et al., 1999;
Beeharee et al., 2003; Nadenau et al., 2000). The part of vision outside the center of gaze,
referred to as peripheral vision, is better at detecting motion than the central vision.
Mobile devices are best viewed from 7-9.8 screen heights distance (Knoche and Sasse,
2008), which keeps the entire screen inside the visual focus area. HDTV screens, on the
other hand, are best viewed from 3 screen heights distance, where the display still covers
most of the human field of vision. This difference influences the minimal required angular
resolution of the human eye and foveal field-of-vision (Knoche and Sasse, 2008; McCarthy
et al., 2004). Due to the small size of screen, mobile video is usually not perceived by
peripheral vision. The complete screen on mobile devices is in the central high acuity
region and therefore details are resolved throughout the displayed image at almost the
same fidelity. On HDTV screens, the image covers a larger region of the field-of-vision.
Hence, humans focus on particular details within the image, which are seen with high
acuity, while outer regions of the image cover the temporally sensitive area perceived by
peripheral vision. Thus, temporal abnormalities (jerkiness, jumping objects, flicker) are
detected much easier and may even be annoying for the viewer.

Given the different quality impacts of screen size, video adaptation strategies for differ-
ent end devices should be chosen accordingly. For mobile devices, temporal layer switching
was shown to perform better than SNR layer downscaling, but not better than temporal
downscaling. Hence, when bandwidth adaptation is required, the streamed video can
select to first downscale its temporal resolution but no less than 10 ∼ 12 fps without
introducing perceptual quality degradation. After that, SNR layer switching and down-
scaling alone can be compared to determine whether FLS should be applied for additional
bandwidth saving. In the SNR dimension, the comparison of layer switching and down-
scaling on mobile devices shows that SNR layer switching with an 2frames (80ms) period
leads to a visually disturbing flicker effect, while switching above a 72frames (3seconds)
period is not clearly preferable to downscaling. Between these points, however, SNR layer
switching, and thus FLS, has a beneficial effect that grows until a period length of 48-
frames (2seconds). For large screens, adaptation in the temporal dimension was deemed
to be generally undesirable comparing to SNR layer adaptation. Therefore, SNR layer
adaptation should be given higher priority for bandwidth adaptation. When switching
layer in the SNR dimension, short switching periods below 24frames (1second) should also
be avoided to prevent annoying flicker effect.

In terms of resource consumption, both the temporal switching pattern (figure 5.1e)
and SNR switching pattern (figure 5.1d) can achieve bit-rates between the encoded SVC
base layer and the enhancement layer. Both switching patterns were preferred over the
SNR downscaled operation point (figure 5.1b). Thus, we claim that such fine grained
adaptation is possible in different scenarios. FLS is mostly suitable for video content
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characterized by high contrast edges, artificial texture and movements.
However, based on our preliminary tests, we cannot say which switching pattern will

give the best possible result. We need to investigate further how the detectability and
acceptability of flicker is related to various kinds of factors such as flicker threshold and
bit-rate intervals between high and low switching points. To investigate these factors, an
additional subjective study has been performed, and we introduce the study in chapter
6. In practice, popular HD videos are not only streamed to large displays, but also can
be watched on displays with smaller size. Additional studies can be done to investigate if
the same temporal downscaling strategy also applies to HD video on smaller screens. At
this point, we tested also only clips without scene changes. To further limit the perceived
quality degradation of switching techniques, scene changes can for example be used as
switching points.
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Chapter 6

Flicker effects

This chapter reports on an in-depth investigation of the three types of flicker artefacts
that are specific for frequent bandwidth adaptation scenarios.

6.1 Introduction

In the previous chapter, we presented the FLS study that investigated the quality impacts
of frequent layer variation on scalable video. It was shown that active layer switching may
create flicker artefacts that specifically come from repeated quality fluctuations in the
streamed video. The flicker artefact degrades usually the experienced subjective quality.
However, the subjective tests included in the FLS study indicate that noise and motion
flicker can not generally be considered deficiencies. In practice, active video adaptation
to changes in available bandwidth is generally preferable to random packet loss or stalling
streams, and not every quality change is perceived as a flicker effect. Essentially, the
perceptual effect of flicker is closely related to the adaptation pattern, which is usually
characterized by amplitude and frequency of the quality changes. So, the question remains
how to make adaptation patterns to control these flicker artefacts in order to ensure
sufficient video quality. With this question in mind, this chapter, which extends the
paper of Ni et al. (2011a) with more analyses and conclusions, explores the acceptability
of flicker for a handheld scenario. The original paper is included in Appendix E.

In figure 6.1, we show sketches of simple streaming patterns for both spatial and
temporal scaling. Figure 6.1a depicts a video stream encoded in two layers; it consists of
several subsequent segments, where each segment has a duration of t frames. The full-
scale stream contains two layers (L0 and L1), and the low quality stream (sub-stream 3)
contains only the lower layer (L0), it is missing the complete L1 layer. For these, the
number of layers remains the same for the entire depicted duration, meaning that neither
of the two streams flickers. The other two examples show video streams with flicker. The
amplitude is a change in the spatial dimension, in this example the size of the L1 layer (in
other scenarios, this may be the number of layers). The frequency determines the quality
change period, i.e., how often the flicker effect repeats itself. In this example, sub-stream 1
changes its picture quality every t frames (2 blocks in the figure), whereas sub-stream 2
changes every 3t frames (6 blocks in the figure). Figure 6.1b shows a similar example of
how the amplitude and frequency affect the streaming patterns in the temporal dimension.
Here, the amplitude is a change in the temporal dimension (frame rate). In this example,
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(a) Scaling in spatial dimension

(b) Scaling in temporal dimension

Figure 6.1: Illustration of streaming patterns for scalable video.

we index video segments by their temporal resolutions since only temporal scalability is
our concern. The full-scale stream can be displayed at a normal frame rate. Sub-stream 3
drops frames regularly and can be displayed at a constant low frame-rate. Neither of
the two streams flickers in the temporal dimension. Hence, we say that the full-scale
stream contains layer L1, whereas sub-stream 3 contains only layer L0. Sub-stream 1 and
2 halve the normal frame-rate at a regular interval of 2t and 4t time units, respectively.
Therefore, the layer variations in sub-streams 1 and 2 have the same amplitude, but the
changes appear at different frequencies.

To provide the best possible video quality for a given available bandwidth, the applica-
tions need to select the most suitable options from several streaming patterns. Considering
the alternatives in figures 6.1a and 6.1b, three sub-stream alternatives can be used if the
full quality stream cannot be provided. Therefore, to get a better understanding of human
quality perception of flicker, we have performed a subjective field study with a special
focus on handheld devices. We have considered state-of-the-market encoding techniques
represented by the H.264 series of standards. Our goals are to evaluate the influence of
the main influential factors on acceptability, and to find the range of these factors’ levels.
With these answers we hope to minimize the flicker effect in layer variation.
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6.2 Experiment Design

6.2.1 Randomized Block Design

We conduct subjective experiments to explore the impact of noise, blur and motion flicker
on the perception of video quality. In addition to the three different adaptation domains
(SNR for noise flicker, spatial resolution for blur flicker and temporal resolution for mo-
tion flicker), the overall video quality is influenced by other factors including amplitude,
frequency and content characteristics (see section 6.2.2). All of these are design factors
studied in our experiment. We do not limit ourselves to a single genre of video content,
but we do not aspire to cover all semantic categories. We explore four content types, which
are selected as representatives for extreme values of low and high spatial and temporal
information content. In our experiments, the subjects are asked to rate their acceptance
of the overall video quality. Due to the fluctuating state of videos that flicker, we predict
flicker to be perceived differently than other artefacts. We add a Boolean score on per-
ceived stability, which we expect to provide us with more insight into the nature of the
flicker effects (see section 6.2.4). Finally, we measure participants’ response time, which
is the time between the end of a video presentation and the time when they provide their
response.

The repeated measures design (Coolican, 2004) of these experiments ensures that each
subject is presented with all stimuli. The repeated measures design offers two major ad-
vantages: First, it provides more data from fewer people than, e.g., Randomized Pairwise
Comparison (r/pc) studies. Second, it makes it possible to identify the variation in
scores due to individual differences as error terms. Thus, it provides more reliable data
for further analysis. This study employs an alternative to the traditional full factorial
repeated-measures design that is called Randomized Block Design (Mason et al., 2003).
It blocks stimuli according to flicker type and amplitude level. A stimuli block consists of
a subset of test stimuli that share some common factor levels and can be examined and
analyzed alone. Stimuli are randomized within each block and blocks are randomized to
an extent that relies solely on the participant, as they are free to choose which block to
proceed with.

The randomization of stimuli levels ensures that potential learning effects are dis-
tributed across the entire selection of video contents and frequency levels, and, to a
degree, also amplitudes and flicker type. Moreover, we hope to minimize the effect of
fatigue and loss of focus by dividing stimuli into smaller blocks and allowing participants
to complete as many blocks as they wish, with optional pauses between blocks.

6.2.2 Content Selection and Preparation

As the rate distortion performance of compressed video depends largely on the spatial
and temporal complexity of the content, the flicker effect is explored across four content
types at different extremes. Video content is classified as being high or low in spatial
and temporal complexity, as recommended by International Telecommunications Union
(1999) and measured by spatial information (SI) and temporal information (TI) metrics,
respectively. Four content types with different levels of motion and detail are selected
based on the metrics (figure 6.2). To keep the region of interest more global and less
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Figure 6.2: Test sequences.

focused on specific objects, we avoid videos with dictated points of interest, such as a
person speaking. We avoid also video with artificial textures and focus video with natural
textures instead. It is beyond the scope of the current investigation to generalize the
results to all video content.

Raw video material is encoded using the H.264-SVC reference software, JSVM 9.19,
with two-layer streams generated for each type of flicker, as portrayed in figure 6.1. The
amplitude levels of the layer variations are thus decided by the amount of impairment that
separates the two layers. Table 6.1 summarizes the factor levels of amplitude, frequency,
and content, according to the different flicker stimuli, noise, blur, and motion. For noise
flicker stimuli, constant quantization parameters (QP) are used to encode a base layer L0
and an enhancement layer L1. Since the latter is encoded with QP24 for all test sequences,
the amplitude levels and variations in video quality are represented by the QPs applied to
L0 for noise flicker stimuli. Similarly, with blur flicker stimuli, amplitude is represented
by spatial downscaling in L0, and temporal downscaling in L0 defines the amplitude for
motion flicker stimuli.

To simulate the different flicker effects that can arise in streamed video, video segments
from the two layers are alternately concatenated. Different frequencies of layer variation
are obtained by adjusting the duration of the segments. For simplicity, we assume periodic
layer switching scheme, and set the duration constant for the segments in a video sequence.
Therefore we use period to refer to the segment duration. Corresponding to six frequency
levels, six periods in terms of the L1 frame-rate are selected, which include 6, 10, 30,
60, 90 and 180 frames for both noise and blur flicker stimuli. Since short durations for
changes in frame-rate are known to lead to low acceptance scores (Ni et al., 2010), the
periods for motion flicker stimuli are limited to 30, 60, 90 and 180 frames.
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a) Noise flicker

Amplitude L1 QP24

L0 QP28, QP32, QP36, QP40

Period 6f, 10f, 30f, 60f, 90f, 180f

Content RushFieldCuts, SnowMnt, Desert, Elephants

b) Blur flicker

Amplitude L1 480x320

L0 240x160, 120x80

Period 6f, 10f, 30f, 60f, 90f, 180f

Content RushFieldCuts, SnowMnt, Desert, Elephants

c) Motion flicker

Amplitude L1 30fps

L0 15fps, 10fps, 5fps, 3fps

Period 30f, 60f, 90f, 180f

Content RushFieldCuts, SnowMnt, Desert, Elephants

Table 6.1: Selection of factor levels

6.2.3 Participants

In total, 28 participants (9 female, 19 male) were recruited at the University of Oslo, with
ages ranging from 19 to 41 years (mean 24). They volunteered by responding to posters on
campus with monetary compensation rewarded to all. Every participant reported normal
or corrected to normal vision.

6.2.4 Procedure

This field study was conducted in one of the University of Oslo’s library with videos pre-
sented on 3.5-inch iPhone of 480x320 resolution and brightness levels at 50%. Participants
were free to choose a seat among the available lounge chairs but were asked to avoid any
sunlight. They were told to hold the device at a comfortable viewing distance and to
select one of the video blocks to commence the experiment. The 12-second long video
segments were presented as single-stimulus events, in accordance with the ITU-T Ab-
solute Category Rating method (International Telecommunications Union, 1999). Each
video stimulus was displayed only once. Video segments were followed by two response
tasks, with responses made by tapping the appropriate option on-screen. For the first,
participants had to evaluate the perceived stability of the video quality by answering “yes”
or “no” to the statement “I think the video quality was at a stable level”. The second in-
volved an evaluation of their acceptance of the video quality, where they had to indicate
their agreement to the statement “I accept the overall quality of the video” on a balanced
5-point Likert scale. The Likert scale includes a neutral element in the center and two
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opposite extreme values at both ends. A positive value can be interpreted as an accept-
able quality level, a neutral score means undecidedness, while a negative score indicates
an unacceptable quality level. Upon completion of a block, participants could end their
participation, have a short break, or proceed immediately to the next block. Participants
spent between 1.5 and 2 hours to complete the experiment.

6.3 Data analysis

6.3.1 Method of Analysis

The current study explores the influence of amplitude and frequency of video quality
shifts for three types of flicker stimuli, noise, blur and motion, as well as video content
characteristics, on the perception of stability, the acceptance of video quality and response
time. Control stimuli with constant high or low quality are included as references to
establish baselines for the scores provided by participants. Stability scores and rating
scores are processed separately, grouped according to flicker type. Thus, responses are
analyzed in six different groups, with control stimuli included in all of them. Since the
perception of stability relies on detection, scores are binary and are assigned the value
“1” for perceived stability of quality, and the value “0” for the opposite. Rating scores are
assigned values ranging from -2 to 2, where “2” represents the highest acceptance, “0” the
neutral element, and “-2” the lowest acceptance.

Consistency of acceptance scores is evaluated by comparing scores for control stimuli
of constant high or low quality. Whenever a low quality stimulus scores better than the
corresponding high quality stimulus, this is counted as a conflict. Conflicts are added
up for each participant. If the acceptable number of conflicting responses is exceeded,
the participant is excluded as an outlier. An acceptable number of conflicts stays within
1.5 times the interquartile range around the mean as suggested by Frigge et al. (1989);
Coolican (2004). For the blur stimuli group, this excluded two participants (12.5%), two
for the motion stimuli group (10.5%), and none for the noise stimuli group.

The consistency of response times is also evaluated in order to eliminate results that
reflect instances in which participants may have been distracted or taken a short break.
Thus, any response time above three standard deviations of a participant’s mean is not
included in the following analyses.

Stability scores are analyzed as ratios and binomial tests are applied to establish sta-
tistical significance. As for acceptance scores, these are ordinal in nature and are not
assumed to be continuous and normally distributed. They are therefore analyzed with
the non-parametric Friedman’s chi-square test (Sheldon et al., 1996). The Friedman
test is the best alternative to the parametric repeated-measures ANOVA (Howell, 2002),
which relies on the assumption of normal distribution; it uses ranks to assess the differ-
ences between means for multiple factors across individuals. Main effects are explored
with multiple Friedman’s chi-square tests, applied to data sets that are collapsed across
factors. Confidence intervals are calculated in order to further investigate the revealed
main effects, assessing the relations between factor levels. Multiple comparisons typically
require adjustments to significance levels, such as the Bonferroni correction. Yet, such
adjustments can increase the occurrence of Type II errors, thus increasing the chances of
rejecting a valid difference (Perneger, 1998). In light of this, we avoid the use of adjust-
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a) Period

Options Stable Unstable P-value Signif.

HQ 95.3% 04.7% 2.04e-71 +
6f 30.6% 69.4% 3.32e-12 –
10f 30.0% 70.0% 6.18e-13 –
30f 30.3% 69.7% 1.44e-12 –
60f 31.6% 68.4% 3.71e-11 –
90f 32.5% 67.5% 3.65e-10 –
180f 41.2% 58.8% 0.002 –
LQ 71.3% 28.7% 1.80e-14 +

b) Amplitude

Options Stable Unstable P-value Signif.

QP28 65.8% 34.2% 3.66e-12 +
QP32 27.7% 72.3% 4.49e-23 –
QP36 21.7% 78.3% 3.51e-37 –
QP40 15.6% 84.4% 8.74e-56 –

Table 6.2: Perceived quality stability for Noise flicker (+ Stable, - Unstable, (*) not
significant), HQ = constant high quality, LQ = constant low quality.

ments and instead report significant results without corrections. This procedure requires
caution; we avoid drawing definite conclusions and leave our results open to interpreta-
tion. Repeated-measures ANOVA tests are finally introduced when analyzing response
times.

6.3.2 Response Times

None of the repeated-measures ANOVA tests reveals any effect of amplitude, frequency
or content on response time, for any type of flicker. In fact, response times seem to vary
randomly across most stimuli levels. Possibly, this may be related to individual effort in
detecting stability. If so, the video quality variation did not increase the decision-making
effort. We may even surmise that participants evaluated the stability of video quality
with a fair degree of confidence.

6.3.3 Noise Flicker Effects

The perceived stability of noise flicker stimuli is generally low and varies little over the
different periods, as seen in table 6.2(a). However, the response percentage reflecting
stable video quality is slightly higher for video segments of 180 frames. A significantly
larger share of responses for the control stimuli reports video quality to be stable, as
opposed to unstable, refer to the top and bottom lines in table 6.2(a). Due to the small
difference between layers for QP28, it is plausible that the vast majority of participants do
not perceive the flicker effect, which would explain why two thirds report stable quality,
see the top line in table 6.2(b). Meanwhile, the higher rate of reported stability for non-
flicker stimuli fits well with predictions. It indicates that participants detect and identify
flicker as instability, whereas constant quality is experienced as stable, even when it is
poor.

Main effects are found with Friedman’s chi-square tests for period (χ2(5) = 69.25, p<.001),
amplitude (χ2(3) = 47.98, p<.001) and content (χ2(3) = 27.75, p<.001). The means and
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Figure 6.3: Effects of period, amplitude and content on Noise flicker stimuli. Error bars
represent 95% confidence intervals.
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(c) Amplitude effects per content type
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Figure 6.4: Explored interactions between influential factors of Noise flicker. (HQ =
constant high quality, LQ = constant low quality)
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a) Period

Options Stable Unstable P-value Signif.

HQ 100% 00.0% 3.85e-34 +
6f 11.6% 88.4% 1.50e-17 –
10f 11.6% 88.4% 1.50e-17 –
30f 11.6% 88.4% 1.50e-17 –
60f 13.4% 86.6% 7.12e-16 –
90f 12.5% 87.5% 1.08e-16 –
180f 17.0% 83.0% 6.75e-13 –
LQ 81.2% 18.8% 1.42e-11 +

b) Amplitude

Options Stable Unstable P-value Signif.

240x160 19.3% 80.7% 4.89e-31 –
120x80 06.6% 93.5% 2.57e-67 –

Table 6.3: Perceived quality stability for Blur flicker (+ Stable, - Unstable, (*) not sig-
nificant).

confidence intervals presented in figure 6.3a show that acceptance scores become increas-
ingly higher than the constant low quality controls for periods of 60 frames and above.
Figure 6.3b displays the decrease in acceptance with larger amplitudes, while figure 6.3c
shows only small variations in acceptance scores depending on content type. The effect
of content factor is shown only in the case of low amplitudes such as QP28 and QP32,
as illustrated in figure 6.4d. As for potential interactions, figure 6.4 illustrates how mean
acceptance scores vary across levels of multiple factors. It shows in Figure 6.4c,6.4b that
the mean acceptance scores tend to increase as amplitude decreases or period increases,
irrespective of the content factor. However, the scores in figure 6.4a point to noteworthy
interactions between period and amplitude.

6.3.4 Blur Flicker Effects

For blur flicker stimuli, perceived video quality stability is again low across the different
periods, accompanied by high perceived stability ratios for control stimuli, summarized
in table 6.3(a). Furthermore, participants tend to judge the video quality as unstable at
both amplitude 240x160 and amplitude 120x80, see table 6.3(b). This is also consistent
with expectations, suggesting again that flicker is detectable and perceived to be unstable.

Friedman’s chi-square tests reveal main effects for period (χ2(6) = 41.79, p<.001),
amplitude (χ2(1) = 14.00, p<.001) and content (χ2(3) = 33.80, p<.001). Similar to noise
flicker, mean acceptance scores tend to increase as as amplitude decreases or period in-
creases as seen in figures 6.5a and 6.5b. But, the mean acceptance scores are generally
low across period and amplitude levels. Frequent changes of spatial resolution seems to
be unacceptable. Only at 60 frames and above the mean acceptance scores of fluctuated
quality approach the acceptance of constant low quality. Compared to noise flicker, larger
effect of content factor was manifest on blur flicker. As shown in figure 6.5c, acceptance
scores for the Desert and Elephants clips appear to be higher than the RushFieldCuts
and SnowMnt clips.
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Figure 6.5: Effects of period, amplitude and content on Blur flicker. Error bars represent
95% confidence intervals.
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(a) Period effects according to amplitude
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Figure 6.6: Explored interactions for Blur flicker. (HQ = constant high quality, LQ =
constant low quality)
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a) Period

Options Stable Unstable P-value Signif.

HQ 90.8% 09.2% 4.43e-47 +
30f 14.3% 85.7% 7.85e-35 –
60f 16.2% 83.8% 4.08e-31 –
90f 18.0% 82.0% 1.08e-27 –
180f 20.6% 79.4% 2.44e-23 –
LQ 40.8% 59.2% 0.0029 –

b) Amplitude

Options Stable Unstable P-value Signif.

15fps 43.8% 56.2% 0.045 (*)
10fps 15.1% 84.9% 2.62e-33 –
5fps 07.4% 92.6% 2.82e-52 –
3fps 02.9% 97.1% 1.82e-67 –

Table 6.4: Perceived quality stability for Motion flicker (+ Stable, - Unstable, (*) not
significant).

Figure 6.6 further illustrates the effect of each influential factor when considering
interactions. Period seems to have larger effect when the amplitude is smaller as shown in
figure 6.6a. Similarly, the interaction of amplitude and content shows more markedly by
the larger variation between the different content groups at resolution 240x160, as seen
in figures 6.6c and 6.6d. However, we note that changing resolution to 240x160 is large
enough to produce detectable flicker artefact, as reported in table 6.3(b).

6.3.5 Motion Flicker Effects

Low perceived stability ratios are evident across all periods for motion flicker stimuli,
presented in table 6.4(a). As expected, the vast majority of participants think that
the video quality is stable for constant high quality control stimuli but not for constant
low quality; there are more responses that correspond to perceived instability for low
quality control stimuli. This is potentially explained by the lack of fluency of movement
that occurs at lower frame-rates. The stability scores for amplitude may also reflect a
bias towards reporting jerkiness as instability, as listed in table 6.4. However, stability is
reported more frequently for larger periods and better frame-rates; this indicates influences
from both period and amplitude on perceived quality stability.

Friedman’s chi-square tests uncover main effects for all factors, including period
(χ2(3) = 7.82, p < .05), amplitude (χ2(3) = 41.62, p < .001), and content (χ2(3) = 27.51,
p < .001). However, the main effect for period is very close to the significance threshold
(p=0.0499), which is likely the reason for the relatively flat distribution of acceptance
scores observed in figure 6.7a. Amplitude and content type, on the other hand, have
larger effects on quality acceptance, as seen in figures 6.7b, 6.7c and 6.8. The effect of
content appears most significant at 10 fps.
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Figure 6.7: Effects of period, amplitude and content on Motion flicker stimuli. Error bars
represent 95% confidence intervals.
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Figure 6.8: Explored interactions for Motion flicker. (HQ = constant high quality, LQ =
constant low quality)
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6.4 Discussion

6.4.1 Period Effect

The period of flicker is a major influential factor for flicker in the spatial dimension.
Significant differences between acceptance scores given to different periods in noise flicker
can be found in figure 6.3a, and for blur flicker in figure 6.5a. In figures 6.6a and 6.6b,
we can highlight three period ranges that influence the overall quality acceptance: low
acceptance for short periods, acceptance higher than the low-quality control stimuli for
moderate periods, and stagnating for long periods. Stagnation is less pronounced in
figures 6.4a and 6.4b.

In figure 6.4b, the average across all amplitudes is shown for individual contents,
reinforcing that the effect is independent of the content. At high frequencies (< 30f
corresponding to < 1sec.), the flicker is perceived as more annoying than constant low
quality for all different content types. Starting at moderate frequencies (30 ∼ 60f or
1 ∼ 2s), the quality is considered as better than a constant low quality for some content
types. At low frequencies (> 60f or > 2s), it is more or less established that the quality
of a flicker video is in most cases regarded as better than a constant low quality. For both
flicker types in the spatial dimension, this is significant across amplitudes (figures 6.4a
and 6.6a), content (figures 6.4b and 6.6b), but counter-examples exist (see the top line in
figure 6.6a).

In the temporal dimension, the period does not seem to have a significant influence on
the motion flicker. There are only small differences between acceptance scores for different
periods, ranging from 30f to 180f (see figures 6.7a, 6.8a and 6.8b). When the amplitude
of temporal downscaling is small, scores are higher than for the low-quality control stimuli
(figures 6.8a, 6.10a). No period ranges can be highlighted.

A general observation for all three flicker types is that adaptive video streaming can
outperform constant low quality streams, but the switching period must be considered in
relation to the flicker amplitudes.

6.4.2 Amplitude Effect

The amplitude is the most dominant factor for the perception of flicker. This seems
reasonable since the quality differences become more apparent with increasing amplitude
when alternating between two quality versions. Our statistical results, presented in sec-
tion 6.3, show this and evaluate the strength of the influence. At low amplitude where
visual artefacts are less obvious, the flicker effect can be unnoticeable for the majority of
our participants, but the detectability of quality fluctuation grows with the increase of
flicker amplitudes for all three types of flicker. The period effect becomes significant only
if the flicker effects are detectable from the increase of flicker amplitude. It is possible to
obtain a benefit by choosing a suitable period for SNR and resolution variation, but it
seems that only amplitude is critical for frame-rate variation.

We asked the assessors in our experiments to report whether they perceived the quality
of the presented videos to be stable or not. Stability scores serve as measures of amplitude
thresholds above which flicker effects become perceptible. With 65.8% of 480 responses
(see Q28 in table 6.2(b)) agreeing on stable quality when QPs differ by 4 or less, the
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(b) Amplitude = QP32

Figure 6.9: Mean acceptance scores for two top amplitude levels in Noise flicker. (HQ =
constant high quality, LQ = constant low quality)

amplitude threshold is established at 4 QP levels for noise flicker. As for motion flicker,
the amplitude threshold is set to a 50% reduction of frame-rate, with consensus on stability
for 56% of the 272 responses for adaptations varying between 15 and 30 fps. For the blur
flicker, however, higher resolution than 240x160 has not been evaluated in this study.
Nevertheless, the amplitude threshold should be no more than 50% reduction.

In this study, we kept the higher quality layer at a constant level while changing the
lower quality layer to different levels, therefore the amplitude level represents also the
total amount of visual artefacts in a video. Large amplitude levels may result in severe
visual distortion and make the video quality unacceptable. As shown in figures 6.9 and
6.10, frequent adaptation with amplitude of more than 4 QP differences or 50% frame-rate
reduction may be generally rated as unacceptable for all content types. For blur flicker,
user experience of watching up-scaled video that was originally half or a quarter of the
native display resolution of a handheld device turned out to yield low acceptance. Given
the fact that our content is chosen from a wide range of spatial and temporal complexities
(figure 6.2), this indicates that the change of spatial resolution should not exceed half the
original size in order to deliver a generally acceptable quality. Further investigations are
necessary to find amplitude thresholds for blur flicker.

6.4.3 Content Effect

Content seems to play a minor role for flicker, but its effect varies across different flicker
types. For noise flicker, the effect of content is not significant (figure 6.3c). We observe
weak interaction effects between period and content (figure 6.4b), but no interaction
between amplitude and content. In figure 6.4d, we see that the acceptance scores vary only
slightly between content for the noise flicker although the chosen amplitudes cover a large
part of the scale. However, a significant effect of content can be found in both blur and
motion flicker (figures 6.5c and 6.7c). Content interacts slightly with amplitude as well.
For blur flicker, the Desert and Elephant sequences get significantly different scores than
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(a) Amplitude = 15 fps
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Figure 6.10: Mean acceptance scores for two top amplitude levels in Motion flicker. (HQ
= constant high quality, LQ = constant low quality)

RushFieldCuts and SnowMnt, see figure 6.6d. For motion flicker, the SnowMnt sequence
is least influenced by the loss of frame-rate and always has significantly higher scores, see
figures 6.8b, 6.8d and 6.10. The observation means different content characteristics can
influence the perception of flicker.

The SnowMnt and RushFieldCuts sequences have more complex texture details then
the other two content types and are therefore more strongly affected by the loss of spatial
resolution. Additionally, SnowMnt contains significantly less motion; half of the sequence
moves slowly around the snow mountain at fairly constant distance. The lack of relative
movement between objects in the scene may limit the visible effect of frame dropping.
However, video classification based only on two simple metrics of spatial and temporal
information does not cover enough content features that are related to human perception.
Region of interest, the scope and direction of motion etc. may also have influences on
visual experience. In our experiments, 15 fps has the effect that the scores for two test
sequences are on the negative part of the scale (see figure 6.10a), while the two sequences
have quite different temporal complexity according to the TI metric, introduced in section
6.2. More advanced feature analysis is needed for further explanation of these phenomena.

6.4.4 Applicability of the Results

The discussion in section 6.4.1 highlights the detrimental effects of high-frequency quality
fluctuations on perceived quality of video streams. Short switching periods are therefore
not recommended for practical bit-rate adaptation schemes. To explore the differential
effects of the remaining streaming options, we examine again the experimental results
after filtering out period levels lower than 2 seconds.

In our study, a bit-rate adaptation scheme is represented by a type of quality down-
scaling operation and the magnitude of quality change. Beside the adaptation schemes
that actively switch between multiple video layers, streaming only a single layer without
switching can be also regarded as a special case of adaptation scheme with zero magnitude
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Figure 6.11: Bit-rate adaptation schemes ranked according to the mean acceptance scores.
Scores are averaged across quality-shift periods of 2, 3 and 6 seconds, excluding the shorter
periods perceived as flicker.

of quality change. Comparing to active layer switching, streaming only a single sub-layer
provides constant quality at lower bit-rates. To make an overall comparison between these
schemes, we sort these schemes according to their mean acceptance scores, as illustrated
in figure 6.11.

The overall picture shows that quality switching options have almost always higher
mean acceptance scores than their respective single low layer options, regardless of the am-
plitude of changes and the adaptation dimension. But, because that large amplitudes were
used in our experiments, the acceptance scores for many switching options in figure 6.11
are not sufficiently high. Higher acceptance scores may be obtained if we introduce an
intermedia quality layer in between the two layers of any switching options.

The flicker amplitude and frequency determine the severity of flicker effect. When
flicker effect is eliminated, the acceptance of overall quality is mainly related to the mag-
nitudes of quality degradation, which reflect the amount of quality artefacts created during
encoding process. In this respect, figure 6.12 depicts scores and statistics for these single
layer streaming options, arranged from highest to lowest mean acceptance score. As seen
from the figure, median and mean acceptance scores are below neutral for all adaptations
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Figure 6.12: Box plot of acceptance scores for compression, resolution, and frame-rate
adaptations. The central box spans the interquartile range, with minimum and maximum
scores illustrated by “whiskers” to the left and right. Within the box, the bold line
corresponds to the median, whereas the dotted line represents the mean acceptance score.
The resulting bit-rates are also included for each step. The first bit-rate is when using
I-frames only, which is used in the subjective assessments in order to maintain focus on
the given quality parameters and avoid irrelevant artefacts. A real-world scenario would
include inter-frame coding (like IBB* used in second bit-rate) giving a lower rate (we did
not observe any visual difference between the I* and IBB*-videos)
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with compression ratio at QP32 or above, frame-rate at 10 fps or below, and resolu-
tion at 240x160 pixels or below. These findings imply that video quality degradation at
these levels are generally perceived as unacceptable for mobile devices with 480x320 pixel
screens.

When it comes to frame-rate, previous research has suggested that 6 fps is sufficient
for acceptable video quality (McCarthy et al., 2004), yet our data set does not provide
support for this threshold. We found mean acceptance scores below neutral even at 15 fps.
This decrease in acceptance scores could be related to the larger screens of today’s mobile
devices, and possibly to an increase in the use and familiarity of watching mobile video.
Judging from the implemented levels of compression and spatial resolution, we surmise
that the acceptance thresholds for SNR and spatial scaling techniques are located around
QP32 and 240x160 pixels. These thresholds for each scaling technique serve as guidelines
to the extent a physical quality trait can be reduced without risking an adverse impact
on user satisfaction.

It shows in figure 6.12 that the only four levels with mean acceptance scores better than
neutral are all different levels of SNR downscaling, ranging from QP12 to QP28. Going
by these results, we can conclude that SNR scalability is the most efficient adaptation
option. When switching SNR layer, quality differences should be limited to less than 4
QP levels to avoid making flicker artefact visible. However, if a larger quality shift is
necessary, a quality level should be kept stable for at least 2 seconds in order to relieve
the annoyance of the flicker effect. Combination of different scaling techniques above their
respective acceptance threshold is recommended.

The results of our study can help to improve video adaptation strategies in streaming
systems or bit-rate controllers for processing scalable video and non-scalable video. The
knowledge is applicable for both SVC-type and AVC-type systems. We have used SVC,
but the results should be equally important/relevant for AVC-type systems like those
used in modern HTTP streaming systems. For SVC, this knowledge helps to schedule the
different enhancement layers and decide which to drop in case of congestion. For AVC, it
helps determining how to code video segments of different quality in order to optimise the
overall viewing experience if congestion forces the application to choose another quality
segment.

6.5 Conclusion

To understand the human perception of video quality adaptation in fluctuating bandwidth
scenarios, like streaming to handheld devices over wireless networks, we have performed
a series of subjective assessment experiments using iPhones and iPods. We evaluated the
effect of noise, blur and motion flicker on several different types of video content. For each
video type, we investigated how users experience quality changes at different amplitudes
and frequencies. In total, we performed 5088 individual assessments.

From our results, we observe that the perception of quality variation is jointly influ-
enced by multiple factors. Amplitude and frequency have significant impact on subjective
impression. Most notably, when decreasing the quality switching frequency for flicker in
the spatial domain, including noise and blur flicker, users’ acceptance scores of the video
quality tend to be higher. However, although low frequency can relieve the annoyance
of flicker effect in the spatial dimension, decreasing frequency further below a threshold
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(on the scale of a few seconds) does not have significant effect. On the other hand, the
amplitude has a dominant effect across spatial and temporal dimensions and should be
kept as low as possible for satisfactory visual quality. Finally, flicker type and content
type are found to influence perceived video quality in their own ways. For instance, both
blur and motion flicker demonstrated different effects for different video content types
in our experiments. The experimental results indicate that videos with complex spatial
details can be easily affected by blur flicker and videos with global motion demand often
high frame-rate to be perceived as smooth.



Chapter 7

Conclusion

In this chapter, we will summarize our work on evaluating user experience of scalable
video streaming, provide suggestions to video adaptation strategies and outline possible
directions of future work.

7.1 Perception and adaptation

In this thesis, we have presented a sequence of user studies that evaluate the effects of
multidimensional video adaptation techniques on human quality perception. The results
of our subjective tests show that the visual artefacts followed by adaptive operations in
different scaling dimension are not perceived in the same manner, so that we can no longer
assume a monotonic rate-distortion function for scalable video. With multidimensional
scalability, more dynamic bit-rate variations may be introduced in a video stream, which
negatively impacts the perceived quality stability. The subjective experience of scalable
video becomes even harder to estimate. As objective metrics were generally found unreli-
able for video quality estimation, we sum up our observations of human quality perception
based on our experimental results and provide some initial suggestions for perceptually
preferable quality adaptation accordingly.

Our user studies are mainly on the subject of multimedia experience on mobile devices.
The conclusions from our subjective quality experiments tell that active video adaptation
is a viable way of achieving fine-grained scalability and sufficient perceptual quality, but
care should be taken to prevent the detrimental flicker effects. Our experiments reveal
that the flicker effect can be very pronounced in the spatial domain if quality changes
are more frequent than once per second, but the effect diminishes with the decrease of
frequency. To ensure stability of the perceived video quality, we suggest thus not to change
the spatial components (pixel values and frame size) for at least 2 seconds when streaming
videos online. Not surprisingly, the magnitudes, or the amplitudes of the quality changes,
are also bound to affect the perceived quality. In the spatial domain, the flicker effect
resulting from great amplitude may significantly impair the perceived quality, while for
small amplitudes, the effect could go unnoticed even on high-frequency layer switching. In
our subjective studies, we found that the fluctuations of SNR are generally not noticeable
for most of people if the QP differences in consecutive video frames are limited to 4
levels. On the other hand, dyadic downscaling of frame-size or QP increment of more
than 8 levels bring always noticeable quality degradation. We suggest to avoid such a

99
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large quality downscaling as much as possible. When it comes to quality changes in the
temporal domain, the rules of spatial components do not apply. We found that the play-
out smoothness is mainly influenced by the frame-rate of the lower temporal layer while
cyclic or irregular variations of frame-rate do not have obvious impacts on the multimedia
experience on mobile devices.

Besides the flicker thresholds, the acceptance thresholds for quality downscaling in
separate dimensions have been explored by our studies. The experimental results imply
that compression ratio given by QP 32 or above, frame-rate at 10 fps or below, and
resolution at 240x160 or below will generally result in unacceptable quality of video-
watching experience on mobile devices with 480x320 screen size. These findings serve as
guidelines to the extent a physical quality trait can be reduced without risking an adverse
impact on user satisfaction.

Among the three dimensional adaptation techniques, increasing compression ratio by
coarse quantization makes the most efficient tradeoff between bandwidth saving and
perceived video quality, so that it should be used as the primary adaptation method.
However, with very limited bandwidth, these compression ratios below their acceptance
threshold may not yield sufficiently low bit-rates, in which case it would be advisable to
reduce the frame-rate. Resolution adaptation appears to be the last resort, only to be
applied under severely poor conditions. For the best subjective experience, combination
of all the three adaptation techniques is recommended in order to avoid exceeding their
respective acceptance thresholds. To avoid flicker effects, we also recommend stepwise
quality layer switching so that the amplitude and frequency of changes at each step do
not exceed their flicker thresholds either.

Quality adaptations do not operate uniformly across video contents according to our
experimental results. We found that both the spatial and temporal characteristics of
different video contents interacting with the applied adaptation technique. In the spa-
tial domain, the quality acceptance for video contents with complex textural details was
more negatively affected by resolution adaptations compared to contents with low spatial
complexity, but compression artefacts are more visible in video with smooth or simple
texture than in video with complex texture. On the other hand, we observed that high
edge contrast counteracts to some extent the influence of flicker effect. As to frame-rate
adaptation, video with fast or unidirectional motion received lower evaluation scores than
content with slow or non-orientable motion. In addition, people usually do not expect
artificial movements to be as smooth as true-life movements. These differences make small
but noticeable discrepancies in the actual acceptance and flicker thresholds for concrete
video materials. Hence, it would be prudent for service providers to consider video content
characteristics before applying an adaptation technique.

Besides the investigations of user perception on mobile devices, we also conducted a
preliminary user study on large screens. The study shows that human perceptions change
in relation to the viewing environment. Especially, a higher degree of humans sensitivity
to motion jerkiness was found on the large screen. The acceptance threshold of frame-
rate seems to be significantly higher on large screens than on small screens. The effect of
content characteristics seem to be also stronger, which makes larger discrepancies in the
acceptance and flicker thresholds for quality fluctuations. But similar to the effect found
on mobile devices, artificial movements and high contrast edges make frequent quality
changes easier to accept.
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7.2 Contributions

The work presented in this dissertation addressed several issues in the field of audiovisual
quality assessment, which include visual artefact analysis, experimental design, and sub-
jective evaluation methodology etc. Here, we summarise the main contributions derived
from this work.

Development of method for audiovisual quality assessment: A field study is the
fundamental means for the exploration of a realistic multimedia experience. How-
ever, the practicality of subjective studies is often threatened by prohibitive require-
ments, in particular by the participant’s time and the budget for recompensation.
We introduced Randomized Paired Comparison (r/pc), an easy-to-use, flexible,
economic and robust tool for conducting field studies. With the use of r/pc, an
experimenter can easily obtain stable results with an accuracy close to traditional
experiment designs at a much lower cost. We demonstrate the efficiency and prac-
ticality of r/pc by simulations. For the first time, we quantify, in a heuristic study,
the performance difference between r/pc and classical evaluation method. We pro-
totyped also a software program on iOS to automate the experimental design.

Gathering of subjective evaluations of perceived video quality: We spent a con-
siderable amount of time conducting experiments of subjective evaluation. A large
number of reliable subjective evaluation scores were recorded and can be used as
reference when comparing or validating different objective quality metrics. We do
not limit ourselves to a single genre of video content, and we therefore collected a
rich data set that has wide applicability in video streaming systems.

Subjective evaluation of Scalable Video Coding (SVC): The Scalable Video Cod-
ing extension of the H.264-AVC standard provides three different types of scalability
for efficient and flexible video adaptation. However, the increased number of scaling
options increases also the difficulty of visual quality assessment. We conducted the
first study that evaluated the subjective performance of multi-dimensional scalabil-
ity features in SVC. The study reveals that adaptation decisions for SVC bitstreams
should not only be based on bit-rate and layer dependency information alone, as the
perceived quality degradation may be non-monotonic to bit-rate reduction and the
preferred adaptation paths depend on content and user expectations. The exper-
imental results can help improving the design of objective quality models towards
multi-dimensional video scalability and the evaluation scores from this study can be
used to validate the performance of existing and future objective models.

Subjective evaluation of frequent bit-rate adaptation: Optimal bandwidth adap-
tation is usually achieved via frequent switching between different bit-rate versions
of video segments. To investigate the visual effects and usefulness of frequent bit-
rate adaptation, we performed several subjective quality assessment experiments in
different scenarios. Our results show that frequent quality variations may create
additional visual artefacts denoted flicker effects, and it is not worthwhile making
quality changes unless the negative impact of flicker on visual quality is eliminated.
We associated the clear definition of flicker effect with different types of quality vari-
ations. In addition, we found that people can detect slow or irregular frame-rates
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much easier on large HDTV screens than small screens of mobile devices. There-
fore, our suggestions of how to make video adaptation strategies were given with
the consideration of screen size of the end devices.

In-depth study on flicker effect: The perception of flicker effects is jointly influenced
by multiple factors. To get a better understanding of human quality perception of
the flicker effects, we performed a comprehensive set of subjective tests on handheld
devices. From the study, we were able to identify the main influential factors on
the visibility of flicker effects and determine the threshold quantities of these factors
for acceptable visual quality of video. These findings can help improving video
adaptation strategy or bit-rate controllers deployed in video streaming services.
Since our observations were made about the visual artefacts in general terms, the
experimental findings are applicable for both scalable or non-scalable video. This is
especially useful for modern HTTP streaming systems, which use segmentation to
achieve dynamic bandwidth adaptation for non-scalable video. Finally, the flicker
effects were explored across different types of video content. We provided some
preliminary analyses of content effects on human quality perception.

7.3 Limitations

Audiovisual quality assessment is a relatively new research field for computer scientists.
The work presented in this dissertation is still at the exploration stage. Our subjective
quality studies provided only some initial suggestions for perceptually preferable quality
adaptation. More quality adaptation levels and quality adaptations in more than one
dimension should be included for a more thorough survey. Furthermore, we focused
mainly on perceived video quality on handheld devices. Only a small-scale experiment
that tested fewer types of video content was performed on a HDTV monitor. Therefore,
many experimental results apply only to small screens. For a better comparison between
the viewing experiences on small and large screen, experimental repetition on large screens
is necessary.

In addition, our experiments were performed on mobile devices produced before year
2008. With the rapid development of hardware technology, displays with higher resolution
are nowadays used on even small mobile devices. The average screen size of mobile phones
increases as well. Our experimental findings may not apply directly on these state-of-the-
art devices.

In mobile-viewing environments, both the user and the environment influence the user
experience in a much more complex way than in home-viewing environments with large
screen. There are more variations in the video streamed over wireless networks, while
user’s intention of watching mobile video can vary largely from video conversation to
aimless kill-time. All of these uncontrolled factors make it impossible to find a close form
to express their combined effects on human quality perception. Therefore, we have not
developed an objective metric for perceived video quality on mobile devices in this thesis.
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7.4 Future work

Our work covers the two research topics: audiovisual quality assessment and adaptive
video streaming. We proposed a new method for conducting quality assessment studies
in the field. By quality assessment studies of scalable video, we investigated factors that
were most relevant for adaptive streaming services. It lies beyond the scope of this thesis
to develop an objective quality metric, but we obtained knowledge of the perceived effects
of these factors and their interactions with the quality of users’ viewing experience. We
provided advice on how to deliver satisfactory service quality while avoiding unnecessary
bandwidth expense. However, there are still unaddressed issues that need further explo-
ration. In this section, we outline some of the topics that may extend the work presented
in this thesis.

In chapter 3, we examined the accuracy of the randomized pairwise comparison method
using simulations, but the simulation results are based on the data set from only one study.
Data sets from one or more additional new quality assessment studies could be used for
further verifying the robustness of our method. Moreover, an analytical model could also
be future work to offer a more solid theoretical foundation. In addition, there still exists
a demand for new methodologies that are applicable to the evaluation of long viewing
experiences in the field.

In all the reported studies (chapter 4, 5, 6), our analyses of video content effects were
based on simple classification of visual differences in texture and motion features. How-
ever, according to our experience, it could be useful to find alternative ways to classify
different video genres. For example, more accurate and complete descriptions of video
content can be obtained if we extract and include other content features such as region
of interest, focus point, global motion and motion trajectory etc. Then, we could investi-
gate further the influences of these high-level semantic features on user perceived quality.
The quality of viewing experience is also influenced by user’s expectation and attention.
Experiments could also be performed to find out how human’s usual practices affects the
subjective evaluation of visual quality.

Finally, as described in chapter 5, human perception of visual information on large
screens is different than it is on small screens. Additional user studies should be performed
to find out the flicker and acceptance thresholds for HD displays. To verify if the suggested
streaming strategy also applies to HD video on small screens, we should repeat our user
studies on state-of-the-market mobile devices.
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Terminology

Flicker effect: A visual artefact that appears due to a repeated fluctuation in video
properties such as brightness, sharpness, noise or motion smoothness. Flicker effects
can appear as quick flashes, or constant fluctuations at different frequencies, from
brief flicker (high frequency), to medium flutter and even slow shifts. In this thesis,
we mainly use the term to describe the unstable visual quality caused by adaptation
operations in video streaming systems.

Flicker threshold: The flicker threshold defines the frequency at and above which a
quality fluctuation appears to be statistically stable for human observers.

Frequent layer switching: A general term used to describe active bandwidth adapta-
tion strategies for streaming scalable video.

Operation point: A subset of a scalable video stream that is identified by a set of
particular values of scaling parameters. A bitstream corresponding to an operation
point can be decoded to offer a representation of the original video at a certain
fidelity in terms of spatial resolution, frame-rate and reconstruction accuracy.

Spatial scalability: The ability to support multiple display resolutions of the same video
sequence.

Temporal scalability: The ability to reduce the frame-rate of a video sequence by drop-
ping packets.

SNR/Quality scalability: The ability to have multiple quality versions of the same
video sequence.

Scaling/adaptation granularity: The extent to which a scalable video stream can be
broken into decodable video streams with smaller sizes.

Visual attribute: The sensory characteristics of video material that are perceived by
our senses of sight, i.e blurriness, fogginess etc.

Acceptance threshold: The level or amount of a given quality degradation that fulfills
a user’s minimal expectations and needs as a part of user experience.

Switching amplitude: The amount of changes in quality level or bit-rate when a scal-
able video is switched from one video layer to the other.

Switching frequency: The number of times a scalable video repeats switching between
its layers within a specified interval.
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Independent variable: variable that is deliberately changed by the experimenter to
examine its effect on the dependent variable.

Dependent variable: variable that is assumed to be influenced by the changes in the
independent variables in an experiment.

Factor: A controlled independent variable in a multi-factorial design.

Treatment: A treatment is a test condition that an experimenter administered to ex-
perimental units. It represents by a level of a factor.

Experimental unit: An unit is the basic object upon which the experiment is carried
out. For example, a video material is the experimental unit in an audiovisual ex-
periment.

Observation unit: An observation unit is the entity on which information is received
and statistical data are collected. In an audiovisual experiment, the observation
unit is one individual person.

Test stimulus: A detectable change in the experimental unit after applying a specific
treatment. Usually a test stimulus corresponds to a treatment / factor level.

Field study: Study carried out outside the laboratory.

Factorial design: Experiment in which more than one independent variable is involved.

Repeated measure / Within-subjects design: An experimental design in which all
subjects experience every treatment condition.

Independent-measures / Between-subjects design: An experimental design in which
different groups of subjects are randomly assigned to only one treatment condition.

Blocking: Blocking is a technique that manages relatively homogeneous experimental
units into groups (blocks). Comparisons among the factors of primary interest are
made within each block.

Replication: Repetition of the basic experiment.

Randomization: Randomization is the design principle used to guard against unknown
or uncontrollable factors. By randomization, both the allocation and presentation
order of stimuli to observation units in each individual run of the experiment are
randomly determined.

Randomized block design: In this type of experimental design, experimental units are
divided into several blocks, and the complete randomization is restricted within each
block.

Correlation analysis: The study that analyzes the extent to which one variable is re-
lated to the another.

Significance level: A fixed probability that is used as criterion for rejecting the null
hypothesis.
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Main effect: The effect of a factor on a dependent variable averaged across the levels of
any other factors.

Interaction effect: The effect of one factor differs significantly depending on the level
of another factor.

Type I error: Mistake made in rejecting the null hypothesis when it is true.

Type II error: Mistake made in retaining the null hypothesis when it is false.

Effect size: The size of effect being investigated (difference or correlation) as it exists in
the population.

Power: The probability of not making a Type II error if a real effect exists

Confounding: A confounding variable is an extraneous variable that is statistically re-
lated to the independent variable, which leads to an error in the interpretation of
what may be an accurate measurement.
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This appendix lists all the scientific publications of the candidate. Section A.1 contains
those publications that are the basis for this thesis. Each publication is briefly described,
and the individual contributions of the authors are explained.

A.1 Papers relied on in this thesis
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ACM MM 2011 Ni, Pengpeng, Ragnhild Eg, Alexander Eichhorn, Carsten Griwodz,
and Pål Halvorsen. “Flicker Effects in Adaptive Video Streaming to Handheld De-
vices”, In ACM International Multimedia Conference (ACM MM), 2011 (Ni et al.,
2011a).

This paper describes the flicker effects, the visual artifacts that are caused by adap-
tive layer switching, and investigates their perceptual impacts through subjective
assessments. Pengpeng Ni was responsible for designing, conducting the quality
assessment experiments, as well as statistical analyses of the subjective evaluation
scores and writing this paper. Ragnhild Eg contributed by writing, as well as pro-
viding feedbacks on the text and the evaluation results. All authors took part in
the technical discussions and contributed to the writing. This paper is an extension
of the QoMEX 2011 work (Ni et al., 2011b), relied on parts of my work conducted
for this thesis. Chapter 6 is based on this paper but extends it with more studies
and conclusions. The paper is included in thesis as Appendix E.

NOSSDAV 2010 Eichhorn, Alexander, Pengpeng Ni, and Ragnhild Eg. “Randomised
Pair Comparison - an Economic and Robust Method for Audiovisual Quality As-
sessment”, In International Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV), 2010 (Eichhorn et al., 2010)

This paper introduces an easy-to-use, flexible and economic method for conduct-
ing subjective quality perception studies. Alexander Eichhorn contributed to the
planning and writing this paper. Pengpeng Ni implemented the required software
tools and was in charge of the evaluation experiment. The two were also both re-
sponsible for designing the method. Ragnhild Eg contributed by writing the section
on fatigue and learning effects. All authors involved in technical discussions and
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provided feedback on the paper’s content. This paper relied on parts of my work
conducted for this thesis. Chapter 3 is based on this paper but extends it with more
studies and conclusions. The paper is included in thesis as Appendix B.

ICC 2009 Eichhorn, Alexander, and Pengpeng Ni. “Pick Your Layers Wisely - a Quality
Assessment of H.264 Scalable Video Coding for Mobile Devices”, In IEEE Interna-
tional Conference on Communications (ICC), 2009 (Eichhorn and Ni, 2009)

This paper relied on parts of my work conducted for this thesis. It presents the
first subjective quality assessment we performed to investigate the effects of multi-
dimensional scalability on human quality perception. Chapter 4 is based on this
paper but extends it with additional analyses. The paper is included in thesis
as Appendix C. Alexander Eichhorn designed the experiment and contributed to
most of the writing. The experiment was carried out by Pengpeng Ni, who also
contributed by performing objective quality evaluation and writing the section on
related work.

A.1.2 Journal article

Multimedia Systems Journal Ni, Pengpeng, Alexander Eichhorn, Carsten Griwodz,
and Pål Halvorsen. “Frequent Layer Switching for Perceived Quality Improve-
ments of Coarse-Grained Scalable Video”, In ACM Multimedia Systems Journal
16, 2010 (Ni et al., 2010)

This paper proposes and evaluates the idea of performing frequent layer switching
in coarse-grained scalable video for finer-grained bitrate adaptation. It is an ex-
tension of the NOSSDAV 2009 work (Ni et al., 2009), which relied on parts of my
work conducted for this thesis. Chapter 5 is based on this paper but extends it with
additional analyses and conclusions. The paper is included in thesis as Appendix D.
Pengpeng Ni designed and conducted the quality assessment experiments. All au-
thors took part in the technical discussions, contributed to the writing, and provided
feedback on the paper’s content and structure.

A.2 Other papers co-authored by the candidate

A.2.1 Refereed Proceedings

QoMEX 2011 Ni, Pengpeng, Ragnhild Eg, Alexander Eichhorn, Carsten Griwodz, and
Pål Halvorsen. “Spatial Flicker Effect in Video Scaling”, In International Workshop
on Quality of Multimedia Experience (QoMEX), 2011 (Ni et al., 2011b).

This paper investigates the perceptual impacts of some flicker effects through sub-
jective assessments. Pengpeng Ni was in charge of the experiment and the paper
writing. All authors took part in the technical discussions and contributed to the
paper’s content.

NOSSDAV 2009 Ni, Pengpeng, Alexander Eichhorn, Carsten Griwodz, and Pål Halvorsen.
“Fine-Grained Scalable Streaming From Coarse-Grained Videos”, In International



A.2. Other papers co-authored by the candidate 117

Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), 2009 (Ni et al., 2009)

This paper proposes and evaluates the idea of performing frequent layer switching
in coarse-grained scalable video for finer-grained bitrate adaptation. The idea came
from Pengpeng Ni, who also designed and conducted the evaluation experiment.
Alexander Eichhorn contributed to implementation and statistical analysis. All au-
thors took part in the technical discussions, contributed to the writing, and provided
feedback on the paper’s content and structure.

ACM MM 2009 Ni, Pengpeng, Fredrik Gaarder, Carsten Griwodz, and Pål Halvorsen.
“Video Streaming Into Virtual Worlds: the Effects of Virtual Screen Distance and
Angle on Perceived Quality”, In the ACM International Multimedia Conference
(ACM MM), 2009 (Ni et al., 2009)

This paper presents a subjective study assessing how positioning of video in the 3D
virtual environment influences the user perception of quality degradation. Fredrik
Gaarder did the programming and carried out the assessment experiment. Pengpeng
Ni contributed to statistical analysis and the writing. The other authors contributed
with feedback on the textual content.

ICC 2008 Ni, Pengpeng, and Damir Isovic.“Support for Digital VCR Functionality Over
Network for H.264/AVC”, In IEEE International Conference on Communications
(ICC), 2008 (Ni and Isovic, 2008)

This paper is an extension of the ACM MM 2006 work (Ni et al., 2006), which
proposes a self adaptive rate-control algorithm to optimize the bit allocation in
multi-layered video sequences. The major contribution to both writing, implemen-
tation and evaluation was made by Pengpeng Ni. Damir Isovic contributed with
input and feedback on the textual content.

ACM MM 2006 Ni, Pengpeng, Damir Isovic, and Gerhard Fohler. “User Friendly
H.264/AVC for Remote Browsing”, In ACM International Conference on Multi-
media (ACM MM), 2006 (Ni et al., 2006)

This paper proposes a layered video coding structure and a transcoding scheme
for H.264/AVC video to support trick-mode implementation. The idea came from
Pengpeng Ni, who also were responsible for most of the writing. Damir Isovic
contributed also to the writing, as well as creating figures used for illustration and
providing feedback on the paper’s content and structure. All authors involved in
technical discussions.

A.2.2 Journal article

Advances in Multimedia Evensen, Kristian, Tomas Kupka, Haakon Riiser, Pengpeng
Ni, Ragnhild Eg, Carsten Griwodz, and Pål Halvorsen. “Adaptive Media Streaming
to Mobile Devices: Challenges, Enhancements, and Recommendations”, In Advances
in Multimedia, 2014 (Evensen et al., 2014)

This paper evaluates how different components of a streaming system can be op-
timized when serving content to mobile devices in particular and make recommen-
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dations accordingly. All authors contributed with text input and feedback on the
paper’s content and structure.

A.2.3 Thesis

Licentiate Thesis Ni, Pengpeng. “Towards Optimal Quality of Experience via Scalable
Video Coding”, Licentiate Thesis, School of Innovation, Design and Engineering,
Mälardalen University, 2009 (Ni, 2009)

This thesis collects our early works on the subject of QoE (Ni and Isovic, 2008;
Ni et al., 2009; Eichhorn and Ni, 2009; Ni et al., 2009). It touches upon relatively
a wider range of aspects of QoE, including trick-mode functionality, virtual screen
distance and angle etc.
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Abstract: Subjective quality perception studies with human observers are essential for
multimedia system design. Such studies are known to be expensive and difficult to
administer. They require time, a detailed knowledge of experimental designs and
a level of control which can often only be achieved in a laboratory setting. Hence,
only very few researchers consider running subjective studies at all. In this paper
we present Randomised Pair Comparison (r/pc), an easy-to-use, flexible, economic
and robust extension to conventional pair comparison methods. r/pc uses random
sampling to select a unique and small subset of pairs for each assessor, thus separat-
ing session duration from the experimental design. With r/pc an experimenter can
freely define the duration of sessions and balance between costs and accuracy of an
experiment. On a realistic example study we show that r/pc is able to create stable
results with an accuracy close to full factorial designs, yet much lower costs. We
also provide initial evidence that r/pc can avoid unpleasant fatigue and learning
effects which are common in long experiment sessions.
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ABSTRACT
Subjective quality perception studies with human observers
are essential for multimedia system design. Such studies are
known to be expensive and difficult to administer. They re-
quire time, a detailed knowledge of experimental designs and
a level of control which can often only be achieved in a lab-
oratory setting. Hence, only very few researchers consider
running subjective studies at all.
In this paper we present Randomised Pair Comparison

(r/pc), an easy-to-use, flexible, economic and robust exten-
sion to conventional pair comparison methods. r/pc uses
random sampling to select a unique and small subset of pairs
for each assessor, thus separating session duration from the
experimental design. With r/pc an experimenter can freely
define the duration of sessions and balance between costs
and accuracy of an experiment.
On a realistic example study we show that r/pc is able to

create stable results with an accuracy close to full factorial
designs, yet much lower costs. We also provide initial evi-
dence that r/pc can avoid unpleasant fatigue and learning
effects which are common in long experiment sessions.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Evaluation

General Terms
Human Factors, Measurement, Experimentation

Keywords
Quality assessment, Pair comparison, Experiment Design

1. INTRODUCTION
Audiovisual quality assessment fundamentally relies on

subjective methods to capture the perceived quality expe-
rience of human observers. Subjective assessment in gen-
eral is useful for measuring end-user acceptance, compar-
ing alternative algorithms and finding optimal designs or
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bear this notice and the full citation on the first page. To copy otherwise, to
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permission and/or a fee.
NOSSDAV’10, June 2–4, 2010, Amsterdam, The Netherlands.
Copyright 2010 ACM 978-1-4503-0043-8/10/06 ...$5.00.

configurations. Pair comparison is a particularly prominent
assessment method because it involves a simple cognitive
task, comparing two stimuli in a pair against each other.
Results obtained with pair comparison tests are robust and
known to closely reflect perceived sensations on a psycho-
logical scale [12].

However, the main drawback of pair comparison is that
the number of pairs grows exponentially with the number
of factors and factor levels under investigation. Audiovisual
quality studies are known to contain a large number of fac-
tors and levels. Full factorial experiment designs that cover
all possible combinations of influential factors at all levels
are impractical. For example, the study of a scalable video
encoder may require investigation of effects on multiple scal-
ing dimensions at multiple scaling magnitudes on different
content types and different display devices. Another exam-
ple is a comparison of alternative error protection schemes
under different loss patterns and loss rates, potentially gen-
erating a variety of decoding artifacts and distortions which
may have to be considered separately.

Even fractional factorial designs and blocking strategies
[7] which systematically reduce the number of pairs by ex-
cluding some factor combinations are of limited help. To
stay within time and resource limits, an experimenter has
to strictly limit the number of factors, also to avoid un-
desirable fatigue and learning effects. Screen-based tasks
are especially susceptible to fatigue effects, even for dura-
tions as short as 15 minutes [2]. In video quality assess-
ment, assessors can easily become tired, bored and uncoop-
erative. Their responses will therefore be increasingly un-
reliable, leading to greater unexplained variance. Moreover,
simple cognitive tasks are quickly mastered [8], and discrim-
ination between two visual signals improves over time [13].
It follows that repeated exposure to the same content during
an experiment session (although at different quality levels)
may lead to undesired training. Assessors tend to focus on
salient features of audio and video clips instead of reporting
their overall quality impression. This may lead to stricter
than necessary interpretations of salient artifacts.

We introduce Randomised Pair Comparison (r/pc) as an
economic extension to traditional pair comparison designs
which become increasingly counterproductive for audiovi-
sual quality studies. The novelty is that, in contrast to
full factorial designs, r/pc randomly selects small subsets of
pairs and thus creates a unique experiment session for each
assessor. An experimenter can control the session duration
regardless of the number of factor-level combinations. This
allows to make more realistic assumptions about the time
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assessors have to spend on a study and makes it easier to
use the method on assessors with different background and
age. Thus we believe r/pc is useful for laboratory experi-
ments, observed field studies and self-controlled web-based
studies. r/pc can offer a level of robustness close to tradi-
tional experiment designs while effectively avoiding fatigue
and learning effects.
Randomisation in general is known to yield many ben-

efits for statistical analysis, but the random pair selection
in r/pc leads to unbalanced and missing data. Without
balance, common statistical tools like ANOVA or GLMs be-
come unstable. That’s why the data analysis for r/pc has
to either sacrifice some of the quality in the obtained data
(e.g. ignore within-subject variability) or use computation-
ally more expensive statistics. We will discuss some alterna-
tive ways for data analysis and we will show that it is still
possible to find significant main effects.
In the remainder of this paper we first discuss related work

in section 2 before we present our r/pc method in depth
in section 3. Section 4 provides a first validation of r/pc

which is based on an example study we conducted in order
to compare a full factorial design against r/pc with the
same video material, presentation settings and report scales.
Finally, section 5 concludes the paper.

2. RELATED WORK
International recommendation such as ITU BT.500-11 [5],

ITU-T P.910 [4], provide instructions on how to perform dif-
ferent types of subjective tests for the assessment of video
quality in a controlled laboratory environment. The rec-
ommended test methods can be classified as Double Stim-
ulus (DS), Single Stimulus (SS) or Pair Comparison (PC)
method. The standard recommendations focus on common
aspects of subjective assessment such as viewing conditions,
measurement scales and basic statistics for data analysis,
while stimuli selection and experiment organisation are left
to the experimenter.
In DS methods, assessors are asked to rate the video qual-

ity in relation to an explicit reference. In contrast, SS and
PC methods do not use explicit references. In SS methods,
assessors only see and rate the quality of a single video with
an arbitrary length. In the PC method, a pair of clips con-
taining the same content in two different impairment ver-
sions is presented and the assessor provides a preference
for one version in each pair. The rating procedure of PC
method is simpler than that of DS and SS methods and the
comparative judgement can be easily verified by examining
the transitivity of the ratings.
A comparison of the DS and SS method in [10] shows

that the SS method can generate quality estimates compa-
rable to DS methods, but humans consider only the last 9
to 15 seconds of video when forming their quality estimate.
While DS and SS methods are mainly used to test the over-
all quality of a video system, PC methods are well-suited for
inspecting the agreement between different users [3].
Pair comparison is widely used in various domains. One

example are online voting systems [1] for crowd-sourcing
quality assessment tasks. The test design exerts loose con-
trol of stimuli presentation only. Assessors are allowed to
skip between clips in a pair and they can also decide when to
vote. This design is limited to test sequences with constant
quality, which restricts its capability of evaluating quality
fluctuation within sequences. Our r/pc method is also a

variant of the PC test design as defined by ITU-T P.910 [4].
We partially follow standard recommendations and restrict
the length of a test sequence to 8 to 10 seconds with the
consideration of human memory effects. We also let the ex-
perimenter freely select content and quality patterns. One
difference to standards is that we do not force assessors to
vote in a given time. Instead we measure the timing of re-
sponses as well.

The experimental design of r/pc is closely related to de-
signs commonly used in psychological, sociological and bi-
ological studies. In particular, completely randomised fac-
torial designs and split-plot factorial designs [7] are closest
to r/pc . Such designs are economic in a sense that they
require the optimal number of factor combinations and re-
sponses to find desired main and interaction effects. They
mainly assure that data is balanced so that common sta-
tistical assumptions are met. The main difference of r/pc

is that our design creates unbalanced data due to random
pair selection and early drop-outs and that r/pc allows to
choose an arbitrarily small number of pairs per session which
is independent of factorial combinations.

3. R/PC METHOD DESIGN
We designed the Randomised Pair Comparison Method

with realistic expectations about the time assessors are will-
ing to spend in a study and practical assumptions about
the ability of experimenters to control environmental and
content-related factors. r/pc is robust and easy to use in
laboratory and field studies and is even suitable for web-
based self-controlled studies.

Session duration is separated from factorial complexity of
an experiment and an experimenter can balance between
experiment costs and data accuracy. A session can have an
arbitrary duration (down to a single pair) and assessors can
quit their session anytime, e.g. when they get distracted by
phone calls or have to leave a bus or train.

In contrast to traditional full factorial designs r/pc does
not collect a full data sample for all pairs from every asses-
sor. The randomisation procedure in r/pc guarantees that
all pairs get eventually voted for, that an experiment ses-
sion will be unique for every assessor and that all required
reference pairs are contained in a session.

The overall costs of r/pc are typically lower than that
for comparable full factorial designs. r/pc achieves this by
shifting the resource consumption (time and number of as-
sessors, resp. number of responses) to software-based ran-
domisation and a computationally more expensive data anal-
ysis. Main effects will be visible with a minimum number of
assessors, but with too few responses interaction effects may
remain undiscovered. More assessors may increase reliabil-
ity and the chance to find interaction effects. In total, r/pc
may require more individual assessors to achieve significant
results, but each assessor has to spend less time.

In the remainder of this section we present the general de-
sign of our method and recommendations for applying it to
a particular problem. We will also discuss some implications
on scales and statistical data analysis.

3.1 Presentation
Similar to conventional Pair Comparison methods [4], au-

diovisual stimuli are presented as pairs of clips. The du-
ration of each clip should not be longer than 10s, but it
can be adjusted to the displayed content and purpose of the

64



Figure 1: Presentation pattern for a single clip pair.

study. Each clip in a pair is introduced by a 2 second long
announcement of the clip name and the letter A or B, dis-
played as a 50% grey image with black text. This results in
the time pattern as shown in figure 1.
After each pair is presented, an assessor is expected to

enter a response about the preference on one of the scales
defined below. The time to enter the response is recorded
and used for later analysis. The session continues with the
next pair immediately after the response has been entered.
Because clips in each pair are presented sequentially an

assessor’s response may be influenced by order which may
lead to a systematic bias. We compensate for that by dis-
playing both possible clip orders within a pair (see section
3.3) and randomising the order of pair presentation.

3.2 Factorial Designs
Any two clips in a pair may differ in one or multiple fac-

tors, as defined by the experimenter. We call such pairs
contrast pairs. They are used for actual exploration and hy-
pothesis testing. An experimenter may, for example, base
his research hypothesis on assumptions about the visibility
and effect size of contrasting factors.
An experimenter should first identify factors which will

be controlled in the study and the number of levels for each
factor. Factors can be discrete or continuous and the number
of levels may differ between factors. Uncontrolled factors
such as, for example, an assessor’s age and occupation or
the time and location of an experiment session should at
least be measured if they are regarded as relevant.
Pairs are created for all factor/level combinations. To re-

duce the overall number of pairs, it is worthwhile to identify
factors for blocking. Blocking restricts combinations within
each level of the selected factor. The blocking factor can be
used in the later analysis to investigate differences between
blocks. For example, to explore the effect of video clip con-
tent it is not necessary to assess all potential combinations
of clips in separate pairs. Instead, only pairs made of the
same clip can be assessed.
Blocking by content type also isolates a systematic effect

that is introduced by the content itself. Because content is
one of the major sources for unexplained variance in audio-
visual quality assessment it is desirable to understand and
limit its impact. Using a small set of standard sequences
would be statistically reasonable, but practically it is unde-
sirable due to the limited relevance findings would have.

3.3 Reference Conditions
Reference conditions are introduced to find unreliable as-

sessors and outliers in the data, but also to understand the
perceptual limits of individual assessors.
r/pc uses two types of reference conditions, (1) equal ref-

erence pairs that contain the same clip at the same quality
level twice, and (2) matched contrast pairs that just differ
in the presentation order of the contained clips, but are reg-
ular contrast pairs otherwise. For every contrast pair there

should be a matched contrast pair of opposite order. Like-
wise, for every factor/level combination there should be an
equal reference pair, but equal reference pairs don’t need a
matched counterpart. Reference conditions should be ran-
domly distributed and hidden inbetween other pairs when
presented to an assessor to avoid their detection.

Although reference pairs increase the duration of an ex-
periment session, they are necessary to assure data quality
and detect systematic problems during data analysis.

3.4 Random Pair Selection and Ordering
In contrast to full factorial designs, where each assessor

has to respond to all combinations, the r/pc method creates
a unique random subset of pairs for each assessor and then
randomises the presentation order for pairs.

The procedure ensures that (1) the ratio of contrast to ref-
erence pairs is equal in each subset and is also equal to the
ratio in a full design, (2) each selected contrast pair is con-
tained in both possible presentation orders (both matched
contrast pairs AB and BA are present), (3) equal reference
pairs correspond to selected contrast pairs (there is no refer-
ence clip version which does not occur in a contrast pair as
well), and (4) equal reference pairs are contained only once.

First, an experimenter must pre-determine the subset size.
Assuming all pairs are of equal duration, the size s is cal-
culated as s = ds/dp, where ds is the total session duration
as defined by the experimentor and dp is the duration of a
pair including an estimated time for voting. The subset size
should be equal for all assessors in an experiment.

Then contrast pairs are randomly chosen and their matched
contrast pair counterparts are added. Assuming there are
in total p contrast pairs (in AB order), the same amount
of matched contrast pairs (in BA order), and e equal refer-
ence pairs, then s(p/(2p+ e)) (matched) contrast pairs and
s(e/(2p+e)) equal reference pairs are selected. This ensures
the same ratio between contrast pairs and equal reference
pairs as in a full factorial design. Note that equal reference
pairs have to match the selection of contrast pairs so that
no reference pair exists which does not occur otherwise.

Randomisation in general has many benefits for statistical
analysis. The randomised pair selection in r/pc , however,
leads to an unbalanced data matrix, where (i) the total num-
ber of responses per item may be unbalanced, (ii) the num-
ber of responses per item can be zero, (iii) each assessor votes
for a small percentage of pairs only and thus many empty
within-subject cells exist, (iv) the number of responses per
assessor may be unbalanced when the assessor quits a session
before it ends. Statistical tools for data analysis have to be
robust against these uncommon features or a pre-processing
step will be required to create the desired features for sta-
tistical tests an experimenter would like to employ.

Because r/pc presents a small amount of pairs per ses-
sion only, it is expected that the number of assessors may be
higher than for full factorial designs to achieve stable sta-
tistical results. Overall, each assessor spends less time in
a session and less responses are collected which may lead
to confounding of estimated main effects with factor inter-
actions. Due to the complete randomisation in r/pc the
confounding effects are limited. This is because each pair
that would be used in a full factorial design will eventu-
ally contribute in r/pc as well. For confounding effects to
become negligible and results to become stable a sufficient
number of assessors is required. A minimal number may dif-
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fer between studies and we are investigating the influencing
factors further.

3.5 Assessment Task and Reporting Scales
The main task for assessors is to compare the overall qual-

ity of the presented pairs and to report their preference using
a self-report scale. At the beginning of a session a brief intro-
duction about the purpose of the study and the scale which
is used may be given. Assessors should be reminded to pay
close attention, but an experimenter should avoid specific
restrictions or hints which might guide an assessor’s focus.
A training session is not required.
For voting we suggest not to impose time limitation which

would force a decision. Instead we propose to measure the
time it takes an assessor to respond and use this in the data
analysis. Assessors should report their preference on one of
the following comparison scales:

• a binary preference scale which allows to express either
a preference for clip A or a preference for clip B (forced
preference selection results in random votes for equal
reference pairs and close to just noticeable differences,
JND)

• a 3-point Likert scale which contains a neutral element
in addition to a preference for A or B (promotes inde-
cisiveness, but allows to detect JND thresholds)

• a 4-point Likert scale which provides items for weak
and strong preference for either clip, but lacks a neu-
tral element (has a higher resolution than the binary
scale and forces preference selection)

• a 5-point Likert scale which contains a neutral element
as well as items to express weak and strong preference
(high resolution, may promote indecisiveness, but al-
lows JND detection)

From a statistical perspective the data obtained with such
scales is binomial or ordinal at most. Although some psy-
chometrics researchers argue that data on a 5-point Likert
scale can be considered as interval-type because this scale
measures psychological units (perceptual differences in our
case), we advise to apply non-parametric statistics.

3.6 Data Analysis
Proper data analysis for r/pc is currently a work in progress.

In this paper we briefly discuss some implications of our
method design and options on how to deal with unbalanced
data. For an in-depth discussion on non-parametric proce-
dures see [11].
The nature of the binomial and Likert scales suggests non-

parametric statistics for data analysis. Whether the rea-
son for a study is hypothesis testing or exploratory analy-
sis, care should be exercised when responses from assessors
are extremely skewed or inconsistent. Even though non-
parametric statistics are robust against outlier values, be-
cause they rely on medians instead of means, unreliable as-
sessors should be completely removed. Assessor validity can
be verified based on reference pairs, in particular, by com-
paring matched contrast pairs for inconsistent responses.
Useful non-parametric statistical tools are Binomial tests

or χ2 tests for majority analysis on counts (to check whether
a majority of preference ratings for one factor-level is sig-
nificant). As non-parametric counterparts to t-tests and

ANOVA, the Mann-Whitney U, Kruskal-Wallis and Fried-
man tests exist. Rank-order analysis for finding total tran-
sitive preference orders between pairs are provided by the
zeta method [3] and Thurstone’s law of comparative judge-
ment [12]. For more thorough investigations on the underly-
ing structure of the data and to find a linear combination of
variables that explains how factors contribute to effects an
exploratory factor analysis using generalised linear models
or logit models should be considered.

Although we obtain repeated measures, for analysis we re-
gard response data as independent (we drop subject-specific
data). Our rationale is that although within-subject vari-
ability may be useful to explain effects, we have to sacrifice
some of the data quality to compensate for the unbalanced
design, in particular the large number of empty cells. Hence,
the repeated measures design is just for convenience’ sake of
obtaining more data from each assessor. We could as well
just collect a single response per assessor, which may be
more adequate for web-based self-studies.

Ignoring subject-specific data for audiovisual experiments
is reasonable because we are interested in general observa-
tions which are independent from individual assessors abil-
ities, expectations or perceptual limits. Conclusions from
audiovisual quality experiments are expected to apply to a
broad spectrum of end-users. Hence we regard all assessors
as relatively homogeneous. If a specific target group is of
interest in a study, then assessors should be representative
for that group.

4. METHOD VALIDATION
To validate the usability and reliability of our r/pcmethod

we performed a simple quality assessment study. Purpose
of the study was to obtain two data sets, one with a con-
ventional pair comparison method based on a full factorial
experiment design (f/pc ) and a second data set with r/pc .
We first explain the design of our example study and present
an initial analysis of our findings afterwards.

4.1 Example Study
As a simple example of an audiovisual study, we examined

the visibility of different video quality reductions in relation
to already existing impairments. Our quality impairments
originate in a loss of image fidelity between five different
operation points, which have been created using different
fixed quantisation parameters (QP) for encoding.

In this study, we focus on three factors that are assumed
to have main effects, namely the original quality level, the
amplitude of a quality change and the content type. These
factors can mutually influence the user’s perception. For ex-
ample, the same amplitude in quality changes may be per-
ceived differently depending on the original quality and the
direction of the quality change. Interactions may also exist
between the change amplitude and the content.

To test different kinds of content with varying detail and
motion, we selected six 8 second long clips (200 frames) with-
out scene cut from different genres (see table 1). All clips
were downscaled and eventually cropped from their original
resolution to 480x320 pixel in order to fit the screen size of
our display devices. We used x264 to encode the original clip
in constant quantiser mode so that the same amount of sig-
nal distortion was added over all frames in a test sequence.
Since the visibility of quality impairments is not linearly re-
lated to the size of QP, we selected a set of five QPs with
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logarithmically distributed values. In a pilot study, the cor-
responding QPs (10, 25, 34, 38, and 41) have been verified
to yield perceptual differences. With five quality levels we
can create

`
5
2

´
= 10 unique combinations of contrast pairs

that have quality change amplitudes between 1 to 4 and five
equal reference pairs per content type. In total, we created
120 contrast pairs in both orders and 30 (25%) equal refer-
ence pairs. In our example study, a f/pc test session lasted
for 60 min while a r/pc test session lasted for only 12 min.
The clip pairs were displayed to assessors on an iPod touch

which has a 3.5-inch wide-screen display and 480x320 pixel
resolution at 163 pixels per inch. Display and voting were
performed on the same device using a custom quality as-
sessment application. The experiment was carried on in a
test room at Oslo university. Overall, 49 participants (45%
female) at an age between 19 and 39 performed the experi-
ment. Among the participants, 34 people (50% female) were
paid assessors who performed both the f/pc test and r/pc

test while 15 participants (40% female) are volunteers who
performed only the r/pc test. Half of the participants who
did both tests, performed the r/pc method first, while the
other half did the f/pc test first. During all test sessions the
participants were free to choose a comfortable watching po-
sition and to adjust the watching distance. They were also
free to decide when and for how long they needed a break.

Genre Content Detail Motion

Animation BigBuckBunny 3.65 1.83
Cartoon South Park 2.75 0.90
Docu Earth 2007 3.64 1.61
Movie Dunkler See 1.85 0.58
News BBC News 2.92 0.69
Sports Free Ride 3.32 1.90

Table 1: Sequences used in the experiments. Detail is the
average of MPEG-7 edge histogram values over all frames [9]
and Motion is the MPEG-7 Motion Activity [6], i.e., the
standard deviation of all motion vector magnitudes.

a) Full factorial Pair Comparison

Unique Subjects: 34
Unique Pairs: 150
Unique Responses: 5100
Resp/Subj (min/mean/max): 150 / 150 / 150
Resp/Pair (min/mean/max): 34 / 34 / 34

b) Randomised Pair Comparison

Unique Subjects: 49
Unique Pairs: 150
Unique Responses: 1470
Resp/Subj (min/mean/max): 30 / 30 / 30
Resp/Pair (min/mean/max): 4 / 9.8 / 19

Table 2: Grand totals and statistics for the two data sets in
our example study.

4.2 Fatigue and Learning Effects
In order to assess learning and fatigue effects in the 60

minutes long f/pc test, we created a measure of accuracy

by coding preference responses as correct, neutral or incor-
rect. For equal reference pairs, neutral and correct responses
were equivalent. Learning and fatigue effects were explored
separately, with both reference and contrast pairs.

We expected fatigue effects to become evident already af-
ter the first ten minutes, so we divided an experiment session
into five equal duration groups, each consisting of 12 min (30
pairs). We also expected the impact of fatigue to be more
prominent for video pairs with a fairly visible quality differ-
ence, hence video contrasts with one level quality difference
were excluded from the analysis. A Pearson chi-square was
run for all remaining contrast pairs, but no effects were un-
covered (χ2(8)=11.18, ns). Due to the binary nature of the
response categories for the equal reference pairs, a Cochran-
Mantel-Haenszel chi-square was used for this analysis. It
revealed that response accuracy was conditional of duration
(χ2=4.60(1), p>.05), thus indicating that neutral and incor-
rect responses varied across one or more duration groups.
Binomial tests were applied to further explore this relation-
ship. We found that neutral responses were more frequent
in the final compared to the first duration group (S=43,
p>.05), otherwise there were no differences in neutral or in-
correct responses.

Learning effects were expected to be most relevant where
quality differences were hard to spot; hence the analysis in-
cluded only contrast pairs with one level quality difference.
These were grouped according to content repetition, so that
five content repetition groups were created based on how
many times a video pair with the same content had pre-
viously been presented. However, Pearson chi-square re-
vealed no variation according to the number of repetitions
(χ2(8)=5.21, ns). Neither did Cochran-Mantel-Haenszel chi-
square reveal any differences for the equal reference pairs
(χ2=3.76(1), ns).

The significant difference in neutral responses for equal
reference pairs could indicate that assessors are suffering
from fatigue. With more neutral responses towards the end
of the experiment, a plausible proposal might be that they
become more careless with responses when tired. However,
such an effect should perhaps present itself earlier. Another
plausible proposal is that the difference is not due to fa-
tigue, but to learning. Although completely randomised, on
average an assessor would have observed the presented video
contents several times when embarking on the final 30 pairs.
Thus the increase in neutral responses may represent an im-
proved ability to detect the absence in difference between
equal reference pairs. The current analyses do not provide
sufficient data to form a conclusion, but they do suggest that
responses change during the course of a f/pc test.

4.3 Reliability
Based on the two data sets we gathered using f/pc and

r/pc we did some initial comparative analysis. We are in-
terested whether an investigator using different statistical
procedures on either data set would be able to find similar
results. Hence, we first looked at the correlation between
both data sets and second we tried to fit a linear model to
the data in order to find factors which influence main effects.

For the correlation analysis we first calculated the arith-
metic mean and the median of all responses per pair. Then
we calculated Pearson, Spearman and Kendall correlation
coefficients as displayed in table 3. All coefficients were sig-
nificant below the p<0.01% level.
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Metric CC SROCC τ
mean 0.974 0.970 0.857
median 0.961 0.965 0.931

Table 3: Correlation between r/pc and f/pc data sets.
CC - Pearson Product-Moment Correlation Coefficient,
SROCC - Spearman Rank-Order Correlation Coefficient,
τ - Kendall’s Rank Correlation Coefficient.

Despite the fact that responses in the r/pc data set are
very unbalanced (min = 4, max = 19 responses for some
pairs, see table 2) and that the total unique responses col-
lected with our r/pc method are only <1/3 of the total
f/pc responses, there is still a very strong correlation be-
tween both data sets. This supports the assumption that
random pair selection may become a useful and robust al-
ternative to full factorial designs for audiovisual quality as-
sessment. However, further analysis is needed to find the
minimal number of required assessors and responses.
In our second validation step we compared the results of

fitting a generalised linear model (GLM) to both data sets.
We used a binomial distribution with a logit link function
and modelled the main effects original quality level (Q-max),
amplitude of quality change (Q-diff) and content type (con-
tent), but no interaction effects. As table 4 shows, all main
effects are significant, although the significance is lower in
the r/pc case which was to be expected. Again, it is plau-
sible to argue for a sufficient reliability of the r/pc method.

Factor Df Dev R.Df R.Dev P(>χ2)

f/pc
Q-diff 4 718.43 5095 3505.5 < 2.2e-16
Q-max 4 54.31 5091 3451.2 4.525e-11
content 5 34.39 5086 3416.8 1.995e-06

r/pc
Q-diff 4 236.18 1465 1085.2 < 2.2e-16
Q-max 4 20.48 1461 1064.8 0.0004007
content 5 16.94 1456 1047.8 0.0046084

Table 4: Deviance analysis for a simple GLM considering
main factor effects.

5. CONCLUSION
In multimedia system design the search for optimal so-

lutions is often exploratory, necessitating large numbers of
experimental factors which makes full-factorial studies ex-
cessively long and draining. In the current paper, we have
presented Random Pair Comparison as a practical and eco-
nomic method for exploratory quality assessment. r/pc

provides the possibility of investigating numerous factors,
while maintaining the freedom of both experimenters and
assessors. We provided first evidence that r/pc is a robust
assessment method suitable for finding main effects at rea-
sonable costs.
However, r/pc comes at the expense of higher computa-

tional costs for randomisation and data analysis. Violations
of normality, uneven response distributions and greater er-
ror variance complicate the statistical analysis. In future
studies, we aim to further explore non-parametric tests and
establish a robust statistical procedure for analysing data
generated by r/pc .

One important question remains unanswered so far: what
is the minimal number of assessors and responses required to
achieve stable results and how much can r/pc really reduce
the costs of a study. An answer is not simple since statisti-
cal results depend on many factors. In our example study
we were able to find significant results with only 29% of re-
sponses and costs. A thorough statistical analysis and more
data from studies using r/pc will provide further insights.
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Abstract—Multi-dimensional video scalability as defined in
H.264/SVC is a promising concept to efficiently adapt encoded
streams to individual device capabilities and network conditions.
However, we still lack a thorough understanding of how to
automate scaling procedure in order to achieve an optimal quality
of experience (QoE) for end uses.

In this paper we present and discuss the results of a sub-
jective quality assessment we performed on mobile devices to
investigate the effects of multi-dimensional scalability on human
quality perception. Our study reveals that QoE degrades non-
monotonically with bitrate and that scaling order preferences
are content-dependent. We confirm previous studies which found
common objective metrics to fail for scalable content, but we
also show that even scalability-aware models perform poor. Our
results are supposed to help improving the design of quality
metrics and adaptive network services for scalable streaming
applications.

I. INTRODUCTION

H.264 Scalable Video Coding (SVC) is the first interna-

tional video coding standard that defines multi-dimensional

scalability [1]. SVC supports several enhancement layers to

vary temporal resolution, spatial resolution and quality of a

video sequence independently or in combination. This enables

efficient adaptation of a compressed bitstream to individual

device capabilities and allows to fine-tune the bitrate to meet

dynamic network conditions without transcoding. Scaling even

works at media aware network elements (MANE) in the

delivery path. Hence, SVC is an ideal choice for large-

scale video broadcasting like IPTV and content distribution

to mobile devices.

SVC was designed for efficient and network-friendly op-

eration [2], but the actual delivery over unreliable networks

requires additional methods to protect data and avoid conges-

tion. Such techniques inherently rely on objective video quality

metrics (VQM) [3] for optimal performance. QoE, however,

is a subjective measure, and current objective models fail to

estimate human perception at low frame rates or in mobile

environments [4], [5]. An objective metric that considers

combined scalability in multiple dimensions and helps content

producers or distributors to pick the right combination of

layers when encoding, protecting or adapting a scalable video

stream is missing so far.

In order to understand human quality perception of

H.264/SVC scalability, we performed a subjective field study

with a special focus on mobile devices. Our goals are to (1)

identify when quality degradations become noticeable, (2) find

optimal adaptation paths along multiple scaling dimensions

and (3) examine whether objective VQMs can predict subjec-

tive observations with reasonable accuracy. To our knowledge,

this is the first study that investigates the subjective perfor-

mance of multi-dimensional scalability features in H.264/SVC.

In this study, we restrict ourselves to on-demand and

broadcast delivery of pre-encoded content at bitrates offered by

existing wireless networks. Because we are interested in QoE

perception on real mobile devices in natural environments,

we conduct a field study rather than a synthetic laboratory

experiment. Due to lack of space, we focus on static relations

between SVC scaling dimensions only. Dynamic aspects like

SVC’s loss resilience or the impact of layer switching and

timing issues on quality perception are not investigated here.

Our results reveal that adaptation decisions for SVC bit-

streams should not only be based on bitrate and layer depen-

dency information alone. We found that quality degradation

may be non-monotonic to bitrate reduction and that preferred

adaptation paths depend on content and user expectations.

Confirming previous studies, we also found that common

objective VQM like Peak signal-to-noise ratio (PSNR) and

structural similarity (SSIM) index fail for scalable content and

even scalability-aware models perform poor.

Our results are supposed to help improving the design

of objective quality models towards multi-dimensional video

scalability. Enhanced objective models will be useful for sev-

eral applications and network-level mechanisms, such as band-

width allocation for wireless broadcasting networks, streaming

servers, packet scheduling, unequal error protection and packet

classification schemes and quality monitoring.

The paper is organised as follows. Section II briefly sum-

marises related work. Section III presents the design of our

field study. Section IV analyses several bitstream properties

and Section V reports and discusses our quality assessment

results. Finally, Section VI concludes the paper.

II. RELATED WORK

The mean squared error based PSNR metric is widely

used due to its simplicity, but it does not reflect well the

video quality perceived by human observers [3]. To mimic the

overall reaction of the human visual system (HVS), Wang et

al. proposed the SSIM metric [6] that compares local patches

of pixel intensities that have been normalised for luminance

and contrast. In [7], the National Telecommunications and



Information Administration General Model (NTIA GM) was

introduced for combining measures of the perceptual effects

of different types of impairments such as blurring, blocking,

jerk, etc. Despite of some reported superiority of the two latter

objective models over PSNR, the evaluations performed in [5],

[4] indicates that the SSIM and NTIA GM do not work well

on multimedia video with low bitrates, various frame rates,

and small frames size.

The scaling options of H.264/SVC increase the perceptual

uncertainty dramatically. Due to the lack of encoders capable

of full scalability, previous studies could not investigate the

influence of three-dimensional scaling on quality perception.

Additionally, many existing subjective tests like [8]–[10] were

conducted on desktop monitors in a controlled laboratory

environment. This differs from our testing scenario defined

for mobile video applications.

In [8], a set of experiments were carried out to discover the

Optimal Adaptation Trajectory (OAT) that maximizes the user

perceived quality in the adaptation space defined by frame rate

and spatial resolution. Meanwhile, an objective VQM multi-

plicatively combining the quantization distortion and frame

loss was proposed in [11]. The effects of fidelity degradation

and frame rate downscaling were also evaluated by subjective

tests in [9]. Evaluations like [10] have been performed to

investigate the relationship between quality impairment and

layer switching at both temporal and quality dimensions. Fur-

ther, other factors affecting video quality such as performance

of codecs, picture ratio and synthetical audiovisual effects

etc, were examined in [12]. Although codec performance is

critical for decoded video quality, none of the above mentioned

evaluations were performed for SVC encoded video, and SVC

performance was only measured using PSNR metric in [13].

Recently, Kim et al. proposed a scalability-aware VQM [14]

which incorporated the spatial resolution together with frame

rate and quality distortion into a single quality metric. We

examine this model’s performance together with other VQMs

in Section V-C.

III. FIELD STUDY DESIGN

Our research method is based on ITU-R recommendations

for subjective quality assessment BT.500-11 [15], we con-

ducted a field study using iPods as mobile display device and

television content that contains an audio track. This research

method allows us to study natural user experience under

familiar viewing conditions rather than quality perception in

a single synthetic environment.

A. Content Selection and Encoding

We selected six sequences from popular genres which are

potential candidates for mobile broadcasting (see table I). All

sequences were downscaled and eventually cropped from their

original resolution to QVGA (320x240). From each sequence,

we extracted an 8 second clip (200 frames) without scene

cuts. We encoded the SVC bitstreams with version 9.12.2 of

Genre Content Detail Motion Audio

Animation BigBuckBunny HD 3.65 1.83 sound
Cartoon South Park HD 2.75 0.90 speech
Documentary Earth HD 3.64 1.61 sound
Short Movie Dunkler See 1.85 0.58 sound
News BBC Newsnight 2.92 0.69 speech
Sports Free Ride 3.32 1.90 music

Table I
SELECTED SEQUENCES AND THEIR PROPERTIES. DETAIL IS THE AVERAGE

OF MPEG-7 EDGE HISTOGRAM VALUES OVER ALL FRAMES [16] AND

MOTION IS THE MPEG-7 MOTION ACTIVITY [17], I.E. THE STANDARD

DEVIATION OF ALL MOTION VECTOR MAGNITUDES.

the JSVM reference software1. The encoder was configured to

generate streams in the scalable baseline profile with a GOP-

size of 4 frames, one I-picture at the beginning of the sequence,

one reference frame, inter-layer prediction and CABAC encod-

ing. Due to the lack of rate-control for enhancement layers in

JSVM, we determined optimal quantisation parameters (QP)

for each layer with the JSVM Fixed-QP encoder.

Since we are interested in quality perception along and

between different scaling dimensions, we defined a full scal-

ability cube with 2 spatial resolutions at QQVGA (160x120)

and QVGA (320x240), 3 temporal layers of 25, 12.5 and 6.25

fps, and 4 quality layers with lowest/highest target rate points

at 128/256 Kbit for QQVGA/25fps and 1024/1536 Kbit for

QVGA/25fps. The target bitrates were chosen according to

standard bitrates of radio access bearers in current wireless net-

working technologies such as HSDPA and DVB-H. For quality

scalability, we used SVC’s mid-grain scalability (MGS) due

to its improved adaptation flexibility that supports discarding

enhancement layer data almost at the packet level [1].

B. Scalable Operation Points

From the scalable bitstreams, we extracted six scalable

operation points (OP) which cover almost the total bitrate

operation range (see table II). Our selection lets us separately

assess (a) the QoE drop for temporal scaling at the highest

spatial layer (OP1, OP3, OP4), (b) the QoE drop of spatial

scalability at two extreme quality points with highest frame

rate (OP1 vs. OP5 and OP2 vs. OP6), and (c) the QoE drop

of quality scalability at two resolutions with highest frame rate

(OP1 vs. OP2 and OP5 vs. OP6).

C. Subjective Assessment Procedures

We performed subjective tests with the Double Stimulus

Continuous Quality Scale (DSCQS) method as defined by the

ITU [15]. Although this method was designed for television-

grade systems, it is widely used as the standard method for

several kinds of video quality assessment. DSCQS is a hidden

reference method where the original and a distorted sequence

(one of the operation points) are displayed twice in A-B-A-

B order without disclosing the randomised position of the

original. The assessors are asked to score the quality of both

1Available at http://ip.hhi.de/imagecom G1/savce/downloads/
SVC-Reference-Software.htm.



Operation Spatial Frame Layer Target
Point Resolution Rate Quality ID Bitrate

OP1 320x240 25.00 highest 23 1536 kbit
OP2 320x240 25.00 lowest 14 1024 kbit
OP3 320x240 12.50 highest 20 –
OP4 320x240 6.25 highest 17 –
OP5 160x120 25.00 highest 11 256 kbit
OP6 160x120 25.00 lowest 2 128 kbit

Table II
SELECTED OPERATION POINTS.

sequences on a continuous five-grade scale. We interspaced the

A-B clips with 4 second breaks, displaying a mid-grey image

with black text that announced the following clip or called for

voting. We randomised the order of operation points as well

as the order of sequences to avoid ordering effects.

Currently, there is no mobile device capable of decoding

and displaying SVC bitstreams. Hence, we re-encoded the test

sequences into H.264/AVC2 and displayed them in fullscreen

on an iPod classic (80GB model, generation 5.5) as a typical

mobile video player. The average distortion introduced by

re-encoding was 0.09 dB. Our iPod models contain a 2.5-

inch display with 163 ppi and a QVGA resolution. The iPod

further supports a low-complexity version of the H.264/AVC

Baseline Profile at 1.5 Mbps bitrate. Low spatial resolutions

were upscaled to QVGA using JSVM normative upsampling

and low frame rates were upscaled by frame copy to the

original 25 fps. The audio track was encoded into AAC-LC

48 KHz 120 KBit after the volume was normalised.

Thirty non-expert assessors (33% female) in age classes

between 18 and 59 with different education participated in

the test. At the beginning, an introduction was held and a

training sequence covering the upper and lower quality anchors

was shown. The test session lasted for half an hour. We

calculated the differential mean opinion scores (DMOS) per

operation point after quantising the raw scores obtained from

each assessor. We then screened the scores for outliers and in-

consistencies as defined in [15] and checked the reliability with

Cronbach’s alpha coefficient [18]. As normality assumptions

for DMOS scores were violated, we used conservative non-

parametric statistics for further processing. We also specify

Cohen’s statistical effect size and power [19] to provide further

confidence in our observations. Effect size helps to diagnose

validity and discern consistent from unreliable results, e.g. a

small effect size reflects a weak effect caused by small

difference between scores. Power is the probability of not

making a type-II error, that is, with low power we might find

a real existing effect as not significant.

D. Limitations

Field studies generally suffer from less controlled presenta-

tion conditions. We therefore designed our study carefully by

selecting more participants than required by ITU-R BT.500-11

2AVC re-encoding was done with x264 version 2245 available at http:
//www.videolan.org/developers/x264.html.

and strictly removed outliers (6 in total among 30). To alleviate

effects of an audio track which can influence video quality

perception [12], we used undistorted, perfectly synchronised

and normalised signals for all sequences. Although we are

likely to miss effects that might have been observed in a

laboratory, we still found significant results at significance

level p < 0.01 of high statistical power and effect size in

all tests. According to the power the number of participants

was also sufficient for obtaining all results presented here.

DSCQS is sensitive to small differences in quality and used

as quasi-standard in many subjective studies. For scalable

content, however, it has two drawbacks. First, DSCQS is im-

practical to assess large numbers of operation points at several

scaling dimension due to the limited amount of time before

assessors become exhausted. Hence, we selected representative

operation points only. Second, the scale used by DSCQS is

ambiguous because QoE perception is not necessarily linear

for people and individual participants may interpret scores

differently [20]. Hence, assuming DMOS scores obtained

by DSCQS are interval-scaled is statistically incorrect. We

address this by lowering our assumptions to ordinal data and

non-parametric statistics. Despite these facts, we still found

significant results and regard unnoticed effects as insignificant

for mobile system design.

IV. BITSTREAM ANALYSIS

Compared to non-scalable video streams, a scalable video

stream is more complex. In this section, we analyse a scalable

bitstream to detect some of its structural properties.

A. Scaling Granularity and Diversity

Figure 1 displays the bitrate distribution in the Sports

bitstream at different operation points. Each OP extracted from

a SVC bitstream is identified by an unique combination of its

spatial, temporal and quality layers tagged as [Sm, Tn, Qi]. To

further describe a scalable bitstream, we introduce two prop-

erties: scaling granularity and scaling diversity. Granularity is

the difference between bitrates of two close-by scaling options.
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Figure 1. Bitrate allocation for scalable OPs [Sm, Tn] in Sports sequence,
where Sm represents m-th spatial resolution, Tn represents n-th temporal
resolution. Each bar column can be additionally truncated into 4 quality layers
identified by Qi.
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Figure 2. Cumulative distribution function (CDF) of NALU packet sizes for
selected operation points of the Sports sequence.

Smaller bitrate differences give higher granularity. Obviously,

video streams with higher granularity can be more robust

and adaptive to bandwidth variations. Scaling diversity, on

the other hand, reflects the number of distinct scaling options

for efficient utilisation of a given bandwidth. Higher diversity

provides more adaptation paths to choose.

Scaling granularity and scaling diversity in figure 1 are

higher in the range of lower bitrates and OPs with low spatial

resolution. I.e., at the bitrate of approximately 192 Kbps, the

scaling diversity becomes as high as 3 where [S0, T0, Q3],
[S0, T1, Q2] and [S0, T2, Q1] overlap. On the other hand, in the

range of high bitrates the granularity is coarser and diversity

is reduced. I.e., at a bitrate of 600 Kbps no alternative scaling

option exists besides dropping to [S0, T2, Q3] which wastes a

considerable amount of bandwidth.

B. Packet Statistics

To further understand bitstream properties, we investi-

gate size and distribution of Network Abstract Layer Units

(NALU). This is of interest for protocol designer who need to

fragment or aggregate NALUs into network packets.

In figure 2, OP1 is actually the global SVC bitstream

which comprises all NALUs. OP4 has the same spatial and

quality resolution as OP1, but the lowest temporal resolution.

It contains a subset of the NALUs in OP1 only and according

to figure 2 the maximum packet size in both OP1 and OP4

is 15235 bits. However, it appears that OP4 contains a larger

percentage of NALUs compared to OP1. For example, about

6% of the NALUs in OP1 are larger than 2000 bits, while

OP4 contains 14% of such NALUs. This reflects the fact that

anchor/key frames in lower temporal layers require more bits

than frames in higher layers. Meanwhile, OP5 at the lower

spatial layer has a maximum packet size of 2935 bits. This

reveals that low spatial layers usually contain small packets

only, while the larger packets are contained in higher spatial

layers.

V. SVC QUALITY ASSESSMENT

This section reports on our results of three statistical analy-

sis we performed to gain initial insights into human perception

of multi-dimensional scalability of SVC encoded video.

Dim T T T S S Q Q
from 25 fps 12 fps 25 fps 320H 320L 320H 160H

Sequence to 12 fps 6 fps 6 fps 160H 160L 320L 160L

Animation +++ +++ +++ +++ +++ +++ +
Cartoon ◦ ◦ ◦ +++ +++ ++ ◦

Documentary ++ +++ +++ +++ +++ ◦ ◦
Short Movie +++ +++ +++ +++ +++ +++ ◦

News +++ +++ +++ +++ +++ ◦ ◦
Sports +++ +++ +++ +++ +++ +++ ◦

All ++ +++ +++ +++ +++ ++ ◦

Table III
NOTICEABLE EFFECT OF QOE DROP WITHIN DIMENSIONS.

LEGEND: ◦ NOT SIGNIFICANT, + SMALL EFFECT, ++ MEDIUM EFFECT,
+++ LARGE EFFECT.
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Figure 3. Subjective DMOS scores for selected sequences as means with 95%
confidence intervals. QoE gradients for within-dimension scaling are shown
as lines. Note that higher DMOS scores mean lower QoE and that the bitrate
drops from 1.5 Mbit for OP1 to 128 Kbit for OP6.

A. Noticeable QoE Degradations

The objective of this analysis is to find out whether a

degradation in a particular scaling dimension is visible, and

if this depends on content or on another dimension that was

previously downscaled. We assume at least for some sequences

that if QoE is already poor, an additional reduction in another

dimension is perceived as less severe.

For this analysis, we check if DMOS values of two oper-

ation points on the same scaling axes differ significantly. We

perform directional Wilcoxon tests pair-wise for all operation

points by expecting higher means for DMOS of lower-layer

operation points, meaning they represent a lower QoE.

Table III shows that a QoE drop was noticed with a large

effect size and sufficient power in almost all dimensions for

almost all sequences. One exception is the Cartoon sequence,

where no significant evidence for a noticeable QoE degrada-

tion for temporal scaling was found. Even at a very low frame

rate our assessors seemed to regard the QoE as sufficient.

The reason is that the content already is non-naturally jerky.

We also observed that quality scalability seems to have a

less noticeable effect, especially when applied to spatially

downscaled content. At low spatial resolution we found no



significant degradation in most sequences and even at high

spatial resolution the effects were small.

Figure 3 further clarifies the observed effects on three

examples. Displayed are DMOS scores and QoE gradients

for single-dimension scaling. We avoid speculations about

absolute differences here, because scores are non-linear and

ordinal only. However, some conclusions can still be drawn:

First, detectability and severity of QoE degradations depend

on scaling dimension and content. Second, QoE degradations

may be non-monotonic to bitrate reduction.

Cartoon is almost unaffected by frame rate reduction due

to its non-natural motion as demonstrated by the overlapping

confidence intervals of OP1, OP3 and OP4. Our assessors were

also less sensitive to further QoE reductions when the quality

was already poor, such as shown for SNR scaling at low spatial

resolution (OP5 – OP6). In the Sports sequence, initial spatial

or quality scaling is perceived worse than temporal scaling.

This is in line with results found in [9]. However, below a

certain bitrate limit, further downscaling had no effect on QoE

regardless of the scaling dimension.

While the News sequence shows a logistic relation between

QoE and bitrate which was also found by [9], Cartoon and

Sports display non-monotonic characteristics. At least the first

temporal scaling stage got a better QoE score than quality scal-

ing although the operation point has a lower bitrate. Moreover,

despite the huge bitrate drop in the Sports sequence from 800

Kbit (OP4) to 128 Kbit (OP6) a further quality reduction was

not found significant. Hence, monotony assumptions about the

relation between bitrate and QoE should be reconsidered for

multi-dimensional scaling.

B. Scaling Order Preferences

This analysis is supposed to identify quality-optimal order-

ing relations for SVC bitstream scaling. In particular, we want

to find out (1) whether there exists a scaling dimension that is

generally preferred to be scaled first and (2) whether optimal

scaling paths depend on content.

We define a dominates relation Di � Dj , which expresses

that scaling in one dimension Di has a larger impact on QoE

perception than scaling in another dimension Dj . Note that

this is still possible for ordinal data. In order to determine

domination from our data set, we select all operation point

pairs (OPk, OPl) that differ in exactly two scaling dimensions,

whereas OPk contains more layers in dimension Di and less in

Dj and vice versa for OPl. If OPl has a significantly higher

DMOS score than OPk, an increase of layers in dimension

Dj can obviously not compensate for a decrease of layers in

dimension Di. We then say that Di dominates Dj or Di � Dj .

With the dominates relation we identify whether there is a

positive effect Di � Dj or a negative effect Dj � Di between

any two dimensions. Table IV displays the results for the five

dimension pairs we covered with our OP selection. Spatial

scaling is generally regarded worse compared to temporal and

quality scaling, although it yields the largest bitrate variability.

An adaptation scheme should therefore drop quality layers

and some temporal layers first. The preferences are, however,

Dim T12 � S T6 � S T12 � Q T6 � Q S � Q
OPk OP3 OP4 OP1 OP2 OP5 Pref.

Sequence OPl OP5 OP5 OP3 OP4 OP2 Order

Animation - - - + ◦ +++ +++ 1
Cartoon - - - - - - - - +++ 2

Documentary - - - - ◦ +++ +++ 3
Short Movie - - - - - - ◦ +++ +++ 3

News - - - - - - ++ +++ +++ 2
Sports - - - ◦ - - +++ ++ 4

All - - - - - ◦ +++ +++ -

Table IV
SCALING ORDER PREFERENCES BETWEEN DIMENSIONS.

LEGEND: T - TEMPORAL, S - SPATIAL, Q - QUALITY (SNR) DIMENSION,
- - - LARGE NEGATIVE EFFECT, - - MEDIUM NEGATIVE EFFECT, - SMALL

NEGATIVE EFFECT, ◦ NOT SIGNIFICANT, + SMALL POSITIVE EFFECT,
++ MEDIUM POSITIVE EFFECT, +++ LARGE POSITIVE EFFECT. PREFERRED

SCALING ORDERS: 1 (Q – T12 – S – T6), 2 (T12 – T6 – Q – S),
3 (Q – T12 – T6 – S), 4 (T12 – Q – T6 – S).

content dependent as revealed by figure 3. Quality and tem-

poral dimensions yield smaller bitrate variability, especially in

OPs with higher spatial resolution. Fine granularity adaptation

with a minimal QoE drop is possible here, but scaling options

are rare due to a low scaling diversity. In contrast, the high

scaling diversity at low spatial resolution is useless because

QoE is already too bad to notice a significant difference there.

Hence, reasonable relations between scaling paths and bitrate

variability should already be considered during encoding.

We also determined the preferred scaling order for each

sequence which is easy because the dominates relation creates

a partial order over dimensions. We found four different

preferential orders for the six sequences in our test (see the

last column of table IV). This clearly justifies that human

perception of multi-dimensional QoE degradation is content-

specific. An optimal SVC adaptation scheme should consider

content characteristics.

We further observed that QoE perception is influenced

by assessor expectations, rather than by technical content

characteristics alone. Comparing the preferences of temporal

and quality scaling for News and Sports in figure 3 it becomes

clear that even for the low motion News sequence a lower

frame rate was more annoying than a lower quality. The oppo-

site happened to high-motion Sports sequence. Our assessors

obviously expected less detail for News and more detail for

Sports. Common metrics for textural detail and motion activity

like the ones used in table I cannot model such situations well.

We found no significant correlation to subjective preferences.

C. Objective Model Performance

In this section, we analyse the performance of some existing

objective video quality assessment models. Among many

existing models, we selected three popular ones: Y-PSNR,

SSIM [6] and the NTIA General Model [7]. In addition, we

implemented a recently proposed model which is specifically

designed for video streams with multi-dimensional scalability

[14]. For simplicity, we call this model SVQM.



Metric CC SROCC

Y-PSNR (copy) -0.532 -0.562
Y-PSNR (skip) -0.534 -0.555
SSIM (copy) -0.271 -0.390
SSIM (skip) -0.443 -0.451
NTIA GM 0.288 0.365
SVQM -0.661 -0.684

Table V
CORRELATION RESULTS FOR OBJECTIVE QUALITY MODELS.

CC - PEARSON PRODUCT-MOMENT CORRELATION COEFFICIENT,
SROCC - SPEARMAN RANK-ORDER CORRELATION COEFFICIENT.

For each test sequence we compared the quality of all the

extracted and decoded OPs with the original video sequence

using the four objective models. We omitted temporal and

spatial registration because all decoded OPs are perfectly

aligned with the reference video. For those OPs with lower

frame rate, the missing video frames were either skipped or

the available frames were duplicated to replace the dropped

frames. We performed skipping only for PSNR and SSIM

to understand the influence of frame repetition and temporal

scalability on those models. Finally, the video quality of each

OP was quantified into a single value by averaging the quality

values of each single or pair of frames. We measured the

objective model performance using Pearson’s and Spearman’s

correlation coefficients. Correlation was found to be significant

with p < 0.01 at high power.

As table V reveals, SSIM and NTIA GM perform bad for

scalable content on mobile screens. Although other studies

reported good performance at television resolutions, both

models are not tailored to multi-dimensional scalability and

small screen sizes. PSNR performs only slightly better. SVQM

achieved the best results of all examined models, but it is

still far from being ideal. Although our version of SVQM is

trained for the sequences used in [14] it still creates reasonable

results for our content. This indicates that the general idea of

considering motion, frame rate and spatial resolution in an

objective model can yield some benefits. In contrast, a simple

extension to traditional metrics like PSNR or SSIM which

skips missing frames at low temporal resolutions does not

create considerably better results.

VI. CONCLUSIONS

We performed a subjective field study to investigate the ef-

fects of multi-dimensional scalability supported by H.264/SVC

on human quality perception. Our results reveal that visual

effects of QoE degradations differ between scaling dimensions

and scaling preferences are content dependent. None of the

existing objective models works well on multi-dimensional

scalable video, but the objective model with scalability-

awareness performed slightly better than the others.

For optimal QoE and increased chances of adaptation tools

to follow preferred scaling orders, video encoders should max-

imise the scaling diversity and granularity of bitstreams. MGS

is generally recommended for increased scaling granularity

and advanced signalling mechanisms are required to inform

adaptation tools about content genre, recommended scaling

paths, diversity and granularity of bitstreams.
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Abstract Scalable video is an attractive option for

adapting the bandwidth consumption of streaming video to

the available bandwidth. Fine-grained scalability can adapt

most closely to the available bandwidth, but this comes at

the cost of a higher overhead compared to more coarse-

grained videos. In the context of VoD streaming, we have

therefore explored whether a similar adaptation to the

available bandwidth can be achieved by performing layer

switching in coarse-grained scalable videos. In this

approach, enhancement layers of a video stream are swit-

ched on and off to achieve any desired longer term band-

width. We have performed three user studies, two using

mobile devices and one using an HDTV display, to eval-

uate the idea. In several cases, the far-from-obvious con-

clusion is that layer switching is a viable way of achieving

bit-rate savings and fine-grained bit-rate adaptation even

for rather short times between layer switches, but it does,

however, depend on scaling dimensions, content and dis-

play device.

Keywords Quality of experience � Scalable video �
Layer switching

1 Introduction

Streaming stored video to a large number of heterogeneous

receivers over various networks introduces several

challenges with respect to delivered rate and quality.

Various layered video approaches that address this exist,

including coarse-grained and fine-grained scalable video

and multiple description coding. They can be used to

choose a quality level whose bandwidth can be delivered to

and consumed by a receiver with a limited amount of

prefetching and buffering. They can also be used to adapt

over time the amount of bandwidth that is delivered to a

single receiver. Fine-grained scalable video is apparently

meant for the latter approach in particular. However, since

both fine-grained scalable video and multiple description

coding suffer from a considerable overhead, the question

arises whether more or less frequent switching between the

layers of a coarse-grained scalable video could yield better

bandwidth adaptation while providing similar or even

better perceived quality.

In [10], we introduced the technique of frequent layer

switching (FLS), a method for fine-grained bit-rate adap-

tation of scalable bitstreams with few scaling options.

Here, we investigate the perceptual effects and usefulness

of FLS in mobile and HDTV scenarios. Our aim is to

provide recommendations on how to best incorporate FLS

into practical streaming systems.

In general, we are interested in two central questions:

• Is FLS a useful alternative to downscaling in streaming

scenarios with limited and fluctuating bandwidth?

• How do switching frequency and display size influence

the subjective quality perception of human observers?

We used multiple assessment methods in different

environments and investigated selected switching and

scaling patterns systematically.

We performed our study on material that has been

encoded in H.264 scalable video coding (SVC), an inter-

national video coding standard with multi-dimensional
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scalability [13] supporting different temporal resolutions,

spatial resolutions and qualities of a video sequence. SVC

uses multiple enhancement layers and is designed for

efficient and network-friendly operation [14]. Device het-

erogeneity and bandwidth variations can be supported by

tuning resolution and bit-rate off-line to meet individual

device capabilities and using adaptive downscaling of the

compressed bitstream during streaming.

The granularity of the scaling options is determined

by the bit rates of contained operation points, i.e.,

between the different encoded quality layers. Scaling

options are predetermined at encoding time and the

standard currently limits number of supported enhance-

ment layers to 8 [13]. SVC’s mid-grain scalability

(MGS) feature is supposed to introduce higher adaptation

granularity, but this comes again at the cost of increased

signaling overhead. For better bit-rate efficiency, it is

thus desirable to limit the number of layers and also the

number of MGS partitions.

In previous work [3], we showed that, at low bit rates

less than 200 kbps, a scalable stream with a fixed set of

operation points (6) can have sufficient granularity. How-

ever, for higher bit-rate streams, the granularity becomes

coarse and the diversity of scaling options is reduced. This

results in a lack of alternative scaling options, either

wasting resources or decreasing the quality of experience

(QoE) more than necessary.

Layer switching can achieve a bandwidth consumption

different from the long-term average of any operation point

of a coarse-grained scalable video without the extra costs

of MGS. This ability makes FLS suitable in several

streaming scenarios:

• FLS can be used to achieve a long-term average target

bit rate that differs from average bit rates of available

operation points in coarse-grained scalable videos. This

works even for variable bit-rate SVC streams. Every

average target bit rate above the base layer’s bandwidth

demand can be achieved by switching enhancement

layers on and off repeatedly, if necessary at different on

and off durations.

• FLS can be used as an alternative means to exploit

the temporary availability of bandwidth that exceeds

the demands of the base layer, but does not suffice the

bandwidth demands of an enhancement layer. Through

variations of the retrieval speed (implicitly in pull

mode, explicitly in push mode), receivers can use the

excess bandwidth during a period of base-layer playout

to prefetch data for a period of enhanced-quality

playout. The period duration depends on the available

space for a prefetching buffer, but it also depends on

the perceived playout quality which forbids an arbitrary

choice.

• FLS can be used for bandwidth sharing in fixed-rate

channels, in particular, for multiplexing multiple scal-

able bitstreams over Digital Video Broadcasting chan-

nels. With FLS, a channel scheduler gains more

selection options to satisfy quality and bit-rate con-

straints. In addition to coarse operation point bit rates,

FLS can offer intermediate bit rates at a similar QoE.

In all the above scenarios, the choice of switching pat-

tern and switching frequency is of central importance

because they may considerably impact the perceived

quality. To identify the feasibility of switching techniques

and give advice on design constraints, we conducted a

subjective quality assessment study asking human observ-

ers for their preferences when watching video clip pairs

impaired with different switching and scaling patterns.

We have performed experiments in three different sce-

narios, i.e., mobile displays in private spaces, mobile dis-

plays in public spaces and HTDV displays in private

spaces. Our results indicate that the perceived quality of

different switching patterns may differ largely, depending

on scaling dimensions, content and display device. In some

cases, there are clear preferences for one technique while in

other cases both, switching and downscaling, are liked or

disliked equally. In several cases, FLS is a practical alter-

native for achieving fine-grained scalable streaming from

coarse-grained videos, i.e., if the switching period is long

enough to avoid flickering, then layer switching is even

preferred over downscaling to a lower SVC quality layer.

The remainder of this paper is organized as follows:

Sect. 2 discusses some relevant related work. Our study is

further described in Sect. 3, whereas the experimental

results are presented in Sects. 4, 5 and 6 for the three

scenarios, respectively. We discuss our findings in Sect. 7,

and in Sect. 8, we summarize the paper.

2 Related work

SVC increases perceptual uncertainty dramatically because

of its multi-dimensional scaling possibility. There are a few

published studies investigating the quality influence of

different scaling options. In [2], a set of experiments was

carried out to discover the Optimal Adaptation Trajectory

that maximizes the user perceived quality in the adaptation

space defined by frame rate and spatial resolution. It was

shown that a two-dimensional adaptation strategy outper-

formed one-dimensional adaptation. Meanwhile, according

to an objective video quality model [15] that multiplica-

tively combines the quantization distortion and frame loss,

it was claimed that quality scaling worked better than

temporal scaling under most circumstances. Additionally,

the subjective tests presented in [8] showed that high frame
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rate is not always more preferable than high image fidelity

for high motion video. Probably closest to our work, Zink

et al.’s evaluation has been performed to investigate quality

degradation caused by variations in the amount of trans-

mitted layers during streaming sessions [16]. The authors’

results showed that the perceived quality of video is

influenced by the amplitude and the frequency of layer

switchings. In contrast to our work, they did not treat the

layer switching and its related impairment in different

dimensions separately. However, the resulting visual

effects of quality impairment in temporal and quality

dimensions are significant different and deserve an in-dept

study. We identified the flickering and jerkiness as two

peculiar effects caused by FLS in separate dimensions. Our

work compare the two dimensional video impairment

systematically and investigate how the visual effects are

related to content, device and adaptation strategy.

The subjective tests by Cranley et al. [2] and Zink et al.

[16] were conducted with regular monitors under lab

conditions, which is different from our testing scenario

defined for mobile video applications using iPods. Further,

very few of previous studies performed subjective evalu-

ation of the H.264 scalable extension. To the best of our

knowledge, only in [3], a subjective field study about the

H.264/SVC is introduced which also grounded our inves-

tigation presented in this paper.

3 Quality layer switching study

One of the main goals of our study is to see if our FLS can

be used to achieve a more efficient fine-grained streaming

solution compared to the high overheads of existing

schemes. In this section, we show which operation points

we have experimented with, identify possible quality

reduction effects and describe the general subjective

quality evaluation approach.

3.1 FLS

In contrast to adaptation approaches that downscale a SVC

bitstream to a particular fixed operation point using fine-

grain or mid-grain scalability, FLS alternates between two

or multiple operation points in order to meet a given bit-

rate constraint over a short time-window without the extra

overhead of defining additional operation points. For video

with multi-dimensional scalability, layer switching is not

limited to one single dimension. For instance, Fig. 1b, c

shows two different approaches for downscaling. More-

over, Fig. 1d–f illustrates three different switching pat-

terns, two that perform switching in a single dimension

(temporal or quality) and one pattern that combines layer

switching in the two multi-dimensions. Thus, FLS intro-

duces intermediate scaling options, but it also causes two

perceptible effects on the users QoE:

Flickering. Frequent switching between quality layers

and spatial layers (at fullscreen resolution) can lead to a

flickering effect. Flickering is characterized by rapid

changes in edge blurriness and texture details or by

repeated appearing of coding artifacts when a very low

quality is displayed for a brief moment. Flickering is

most visible in content with high details or when quality

differences between operation points are large.

Jerkiness. Rapid changes in temporal resolution (frame

rate) caused by temporal layer switching can be

perceived as jerkiness. Jerkiness may even become

visible if switching happens at frame rates that alone are

regarded as sufficiently smooth [8]. Jerkiness is most

visible in content with smooth global motion or low and

natural local motion.

The choice of switching pattern and switching frequency

is therefore of central importance due to the possible high

impact on the perceived quality. Questions such as under

(a)  Global Bitstream (G) (b)  Temporal Downscaling (TD) (c)  Quality Downscaling (QD)

(d)  Quality Switching (QS) (e)  Temporal Switching (TS) (f)  Multi-dimension Switching (MS)

Fig. 1 Bitstream layout for downscaling and layer switching options used in the experiments. Q and T denote the quality and temporal

dimensions, respectively
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which conditions (e.g., viewing context, display size and

switching frequency) these effects become noticeable and

how they influence the perceived quality impression are

therefore important research issues, and to identify the

feasibility of switching techniques and advice design con-

straints, we were interested in answering the following

questions:

• Do people perceive a difference in quality between

scaling and switching techniques?

• Is there a general preference of one technique over the

other?

• Does a preference depend on genre, switching fre-

quency or the scaling dimension?

• Are there frequencies and dimensions that are per-

ceived as less disturbing?

• How general are our observations, i.e., do location,

device type, display size and viewing distance influence

the results?

3.2 Subjective quality evaluation

To answer the above question finding appropriate switch-

ing and scaling patterns, we have performed a set of sub-

jective video quality evaluation experiments. In this study,

we asked human observers for their preferences when

watching video clip pairs.

To test different kinds of content with varying detail and

motion, we selected eight sequences from different genres

(see Table 1), i.e., six for the small mobile devices and two

for the HDTV. We obtained the content from a previous

study on scalable coding [3] which allowed for a com-

parison with earlier results. From each sequence, we

extracted an 8-s clip without scene cuts. After extraction,

the texture complexity and motion activity are measured

according to MPEG-7 specification.

We encoded the SVC bitstreams with version 9.16 of the

JSVM reference software.1 The encoder was configured to

generate streams in the scalable high profile with one base

layer and one coarse-grained scalable or MGS enhance-

ment layer, a GOP size of 4 frames with hierarchical

B-frames, an intra period of 12 frames, inter-layer prediction

and CABAC encoding. Note that SVC defines the set of

pictures anchored by two successive key pictures together

with the first key picture as a group of picture, where key

pictures are usually encoded as P-frames within an intra

period, see [13]. Due to the lack of rate control for quality

enhancement layers in JSVM, we used fixed quantization

parameters.

From the encoded SVC bitstreams, we extracted three

scalable operation points with high variability in the bit

rates (see Fig. 1a–c). The ‘G’ operation point (Fig. 1a)

contains the full bitstream including the base layer (Q0) and

the quality enhancement layer (Q1) at the original frame

rate, while the other two operation points are each down-

scaled in a single dimension to the low-quality base layer at

full temporal resolution (QD) or a lower temporal resolu-

tion T1 (12 fps), but with quality enhancement (TD). These

operation points were then used to generate streams with

different switching patterns and to compare the switched

streams’ quality. Note that we only focused on quality

scalability and temporal scalability in this study. We did

not consider spatial scalability, because it is undesirable for

FLS due to the large decrease in perceived quality as

shown in previous subjective studies [3].

Next, we have performed experiments in three different

scenarios: mobile displays in both private and public

spaces and HDTV displays in private spaces trying to find

suitable switching patterns from the downscaling operation

Table 1 Sequences used in the experiments

Genre Content Detail Motion Audio CGS bit rate MGS bit rate

Max Min Max Min

Animation BigBuckBunny 3.65 1.83 Sound 530.8 136.1 823.6 175.5

Cartoon South Park 2.75 0.90 Speech 533.8 158.8 767.5 199.7

Docu Monkeys & River 3.64 1.61 Sound 1,156.1 192.1 1,244.3 208.7

Movie Dunkler See 1.85 0.58 Sound 255.2 67.9 419.9 92.4

News BBC News 2.92 0.69 Speech 268.6 74.0 453.1 101.0

Sports Free Ride 3.32 1.90 Music 734.8 121.1 745.9 129.1

HD-Animation BigBuckBunny 2.88 4.13 Sound 10,457.0 1,032.4 14,210.0 1,021.7

HD-Docu Canyon 3.09 3.33 Sound 25,480.0 2,407.0 28,940.0 2,394.0

Detail is the average of MPEG-7 edge histogram values over all frames [11] and motion is the MPEG-7 motion activity [6], i.e., the standard

deviation of all motion vector magnitudes. Bit rates are given in kbit for the SVC bitstream at the highest enhancement layer (max) and the base

layer (min)

1 Available at http://ip.hhi.de/imagecom_G1/savce/downloads/SVC-

Reference-Software.htm.
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points (Fig. 1b, c) resulting in patterns like the ones shown

in Fig. 1d–f, i.e., better and more efficiently matching the

available bit rates between the downscaling operation

points giving better video quality than the lower base layer

only.

4 Mobile scenario: field study 1

In our first experiment, we were interested in how user

perception over FLS compared to static layer scaling. The

experiment is performed in a private, in-door environment

(lab), and each participant evaluated all the video content.

4.1 Experiment design

Three types of video quality assessment methodologies

have been introduced in international recommendations

such as ITU BT.500-11 [5] and ITU-T P.910 [4], namely

Double Stimulus (DS), Single Stimulus (SS) and Pair

Comparison (PC) methods. In DS method, assessors are

asked to rate the video quality in relation to an explicit

reference. In SS method, assessors only see and rate the

quality of a single video with an arbitrary length. Both DS

and SS methods use an ordinal grade scale and require

assessors to give a rating from Bad (very annoying) to

Excellent (imperceptible). In the PC method, a pair of

video clips containing the same content in two different

impairment versions is presented, and the assessor provides

a preference for one version in each pair. The rating pro-

cedure of this method is simpler than that of DS and SS

methods, and the comparative judgment can be easily

verified by examining the transitivity of the ratings. In this

paper, the comparison between layer switching and

downscaling is of the most interest. Hence, the PC method

suits best the context of our studies. We based our first

experiment design on the standardized full factorial PC

method (F/PC).

In our studies, we always compared one layer switching

pattern against one static operation point. Each pair of

patterns was presented twice during a test sequence, once

in each possible order to assess the reliability of votes from

each participant and detect inconsistent ratings. The order

of all the pairs of a test sequence was a random permuta-

tion. Between subsequent pairs, there was a 6-s break,

displaying a mid-grey image with black text that called for

voting and announced the following clip. The participants

were asked to judge whether they preferred the first or the

second clip in the pair or whether they did not perceive a

difference.

For each clip pair, we obtained a single measure about

which clip a participant preferred to watch. If undecided,

participants could also select that they had no preference.

This resembles a repeated measurement design with three

rating categories. We used all ratings from both clip-pair

orders (AB, BA) in our analysis. We also included con-

flicting ratings, because they would just decrease signifi-

cance, but not invalidate our results. For statistical analysis,

we ran binomial tests to see if a significant majority of

ratings for one of the preference categories existed.

4.1.1 Material

In this experiment, we tested video from all the six dif-

ferent genres listed in Table 1. The selected six sequences

were downscaled and eventually cropped from their ori-

ginal resolution to QVGA (320 9 240) in order to fit the

screen size of our display devices. Based on our previous

experience and in order to obtain a perceivable quality

difference, we selected quantization parameter 36 for the

base layer and quantization parameter 28 for the

enhancement layer. The switching periods that were chosen

for this experiment were 0.08, 1 and 2 s.

4.1.2 Participants

Twenty-eight payed assessors (25% female) at mean age of

28 participated in the test. Among the assessors, 90% are at

the age between 18 and 34 while 10% are at the age

between 35 and 39. All of the assessors are college students

with different education but no one has majored in multi-

media technologies. All of the assessors are familiar with

concepts such as digital TV and Internet video streaming

while 75% of them claimed that media consumption is part

of their daily life. We obtained a total of 2,016 preference

ratings of which 44% indicated a clear preference (con-

sistent ratings on both clip orders), 31% a tendency (one

undecided rating) and 10% no difference (two undecided

ratings). We observed 15% conflicting ratings, where par-

ticipants gave opposite answers to a test pattern and its

hidden check pattern. Participants with more than 1.5 times

the inter-quartile range of conflicting ratings above the

average were regarded as outliers. In total, we removed two

outliers from our data set. Regardless of remaining con-

flicts we found statistically significant results.

4.1.3 Procedure

As mobile display devices, we used the iPod classic and the

iPod touch from 2008. The two iPod models contain,

respectively, a 2.5- and 3.5-in. display and have pixel

resolutions of 320 9 240 and 480 9 320 at 163 pixel per

inch. The selected display size is sufficient for depicting

content at QVGA resolution according to [7]. All videos

had an undistorted audio track to decrease the exhaustion

of test participants.
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Although quite a few of assessors have previous expe-

rience in watching video on handheld devices such as iPod,

a brief introduction about how to operate the iPods during

the experiments was given to the assessors prior to a test

session. A whole test session lasted for about 1 h, including

two short breaks. Each participant watched in total 144 clip

pairs. During the session, the assessors were free to choose

a comfortable watching position and to adjust the watching

distance. For example, they could choose to sit on sofas or

in front of a desk. They were also free to decide when they

wanted to continue the test after a break.

4.2 Results

Results are reported as preference for layer switching or

layer scaling with 0.01 confidence intervals. If a preference

was found as not significant, we still give a weak tendency.

Table 2 displays preferences between switching and sca-

ling across genres, and Table 3 shows results for different

period lengths. The ‘all’ line in Table 3 contains general

results for all periods and all genres.

4.2.1 Temporal layer switching

Participant ratings indicate no clear preference when tem-

poral switching (TS) is compared to temporal downscaling

(TD). This is significant for all low-motion sequences

where temporal resolution is less important to convey

information, but not significant for other genres. Besides a

weak tendency towards an undecided rating, a general

conclusion is not possible.

One possible reason for this observation is that temporal

resolution changes between 25 and 12 fps have a minor

impact on quality perception. This confirms results of

previous studies as reported in [3, 8]. Using more band-

width for a temporally switched stream (92%) compared to

a temporal downscaled stream (85%) is thus not justified

by a significant increase in quality perception. We are

currently investigating whether this observation also

applies to switching to lower temporal resolutions (below

10 fps).

When layer switching in the temporal (TS) or quality

dimension (QS) is compared to downscaling in the other

dimension (QD and TD, respectively), the results indicate a

clear preference towards decreasing the temporal resolu-

tion rather than the quality of a video. With high signifi-

cance, our results are consistent across all genres and

independent of the switching period. The result again

confirms previous findings reported in [8]. People seem to

be more sensitive to reductions in picture quality than to

changes in frame rates when watching video on mobile

devices. This clearly indicates that switching is a viable

option for frequent temporal resolution changes. Although

temporal base layers consume the main bit rate and

potential savings are small, switching can still yield fine-

grained adaptation in the upper bit-rate range of a stream.

For a fair comparison, it is noteworthy that the TS (92%)

had a considerably higher bit rate than the low-quality

operation point QD (28%). However, the quality of

switching pattern QS (89%) compared to the lower tem-

poral resolution TD (85%) shows that a lower bit-rate

stream can yield a higher subjective quality regardless of

the content.

4.2.2 Quality layer switching

When quality switching (QS) is compared to downscaling

in the same dimension (QD), the combined results over all

period sizes are not significant. There is also no general

tendency towards a single adaptation technique that can be

attributed to content characteristics alone. However, we

observed a significant preference for quality layer switch-

ing at long periods while for shorter periods a preference

for quality scaling exists.

We attribute this observation to a flickering effect that

was perceived as disturbing by almost all participants.

Flickering is caused by fast switching between high- and

low-quality encodings which leads to rapid iteration of

high- and low-frequency textures. At longer switching

periods, this effect becomes less annoying and disappears

Table 2 Private space mobile: quality preference per genre for layer

switching versus downscaling (? switching preferred, - downscaling

preferred, � no preference, * not significant)

TS QS

TD QD TD QD

Animation � ? - (?)

Cartoon (�) ? - (?)

Documentary (?) ? - (-)

Short movie � ? - (-)

News � ? - (?)

Sports (�) ? - (-)

Table 3 Private space mobile: quality preference over different

switching periods for layer switching versus downscaling (symbols as

in Table 2)

TS QS

TD QD TD QD

80 ms - -

1 s (�) ? - (?)

2 s (�) ? - ?

All (�) ? - (?)

Empty cells are not covered by this study
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eventually. We call the limit at which flickering disappears

the flickering threshold. Interestingly, long switching

periods above the flickering threshold are also preferred to

a constant low quality.

We just conducted tests with equally long intervals of

high and low quality. Hence, the bit-rate demand of a QS

scheme is still much higher than that of the low-quality

operation point (89 vs. 28%). Asymmetric patterns with

longer low-quality intervals will have a much lower bit-rate

consumption and offer a wider range of bit-rate adaptation.

We will investigate whether such patterns can also yield a

better visual quality. We assume, however, that the flick-

ering threshold plays an important role for asymmetric

patterns as well.

5 Mobile scenario: field study 2

The second field study discussed in this section was con-

ducted to verify the validity of the conclusions drawn in

Sect. 4 by changing the way in which the user study itself

was performed. We made a new method for performing the

tests, and we moved the experiment location from a lab

setting to a more realistic public space environment.

5.1 Experiment design

The primary concern that had arisen from the first study

(Sect. 4) was the long duration of each participant’s

viewing time, about 1 h. Although participants had been

allowed to change location and even to take breaks, they

were generally annoyed with the test itself, and we were

concerned that this can have had unpredictable effects on

the quality of their evaluation. Furthermore, the video

quality tests in our first study were mostly performed at

Simula and on the university campus.

In order to perform tests with people with a more varied

background in more realistic environments, we designed an

evaluation method that is easy-to-use and less demanding to

the participants. We named this test method as randomized

PC (R/PC). R/PC is a flexible and economic extension to tra-

ditional pair comparison designs. Conventionally, it pre-

sents stimuli as pairs of clips. In contrast to traditional PC

design that collects a full data sample for all pairs from

every participant, R/PC uses random sampling to select small

subsets of pairs and thus creates a shorter but unique

experiment session for each participant. The randomization

procedure in R/PC guarantees that all pairs get eventually

voted for.

We designed our second field study with the R/PC

method. In this study, participants were allowed to stop at

anytime, viewing and evaluation were better integrated,

and the test was performed in an everyday environment.

5.1.1 Material

In this field study, we used the same video material to

generate our test sequences as in Sect. 4. We used only

iPod touch devices from 2008 to perform the tests and used

encoding settings that were similar to those of the first field

study, except that the resolution was changed. Instead of

scaling the video on the devices itself, all sequences were

downscaled and cropped from their original resolution to

480 9 272 pixels in order to fit the 3.2-in. screen size of

iPod touch and keep the 16:9 format.

We simulated layer switching in quality dimension (QS)

and temporal dimension (TS) according to the patterns

illustrated in Fig. 1d, e. The switching periods that were

chosen for this experiment were 0.5, 1.5 and 3 s.

5.1.2 Participants

The field study was performed under conditions that differ

from the first one in several ways. Participants were

approached by students in public locations in Oslo in the

summer and autumn. They were approached in situations

that we considered realistic for the use of a mobile video

system. We had 84 respondents, who had mostly been

approached when they were idle, e.g., waiting for or sitting

on a bus. They were asked for 15 min of their time.

Among the participants, 74% are between the age of 18

and 34, 20% are between the age of 35 and 59 and 6% are

at the age under 18. 96% of the participants have normal

visual acuity with or without glasses while 4% have limited

visual acuity in spite of glasses. The field study was mostly

conducted indoors (95%) in different locations (restaurant,

bus station, cafeteria), while three participants were

en-route and one person was outdoors. Using the same

criterion introduced in Sect. 4, we gathered in total 2,405

ratings of which 30% indicated a clear preference (consis-

tent ratings on both clip orders), 36.3% a tendency (one

undecided rating), 24.4% no preference (two undecided

ratings) and 8% conflicting ratings. Using the same crite-

rion introduced in Sect. 4, we filter out three unreliable

participants.

5.1.3 Procedure

Consistently with an experiment that was as close to the

real world, we did not control lighting or sitting conditions.

Participants were not protected from disturbances that are

consistent with those that a user of a mobile video service

would experience. They experienced distractions by pass-

ersby, or the urge to check departure times or the station for

the next stop. In case of such a short-term disturbances,

they were allowed to restart watching the same pair of

clips.
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Participants were not shown training sequences, but they

received a brief introduction by the student, explaining that

clips might look identical. The expected number of clips

watched by a participant was 30, but considering the

experience of fatigue and annoyance with the first experi-

ment design and the situation of the participants, they could

terminate the experiment at any time. The downside of this

possibility was that the consistency of an individual par-

ticipant’s answers could not be checked, and that every

vote for a clip pair needed to be considered an independent

sample. Lacking the control mechanism, we required 20 or

more votes for each clip pair. Following this method,

participants were asked to assess the quality of two

sequentially presented clips. A subset of clip pairs was

randomly chosen for each participant from a base of 216

clip pairs (including reverse order for each pair). The

quality changed once in each clip, either increasing or

decreasing. The changes occurred at 2, 4 or 6 s.

The evaluation procedure was changed from the paper

questionnaire approach taken in Sect. 4. This field study

integrated both testing and evaluation into the iPod. Thus,

users were given the opportunity to first decide whether

they had seen a difference between the clips after each pair

of clips that they had watched. If the answer was yes, they

were asked to indicate the clip with higher quality.

5.2 Results

The results of the second field study are presented in the

same way as those for the first study. Confidence intervals

are reported as 0.01. Table 4 displays preferences between

switching and scaling across genres, and Table 5 shows

results for different period lengths. The ‘all’ line in Table 5

contains general results for all periods and all genres.

5.2.1 Temporal layer switching

Two series of ratings provided by the participants yielded

results that were identical independent of genre. In the

comparison of TS and TD in Table 4, our random,

untrained participants did not favor either option for any

type of content independent of motion speed in the clip.

This makes it very clear that a frame rate difference of 25

versus 12 fps on a mobile device has minimal impact to the

casual viewer. Additionally, TS is given a clear preference

for all types of content of quality downscaling (QD). This

repeats the equally clear findings of the first field study.

Both of these comparisons stay the same when different

switching periods are considered.

5.2.2 Quality layer switching

The preference that is given to TD over QS is detected

much less clearly in the second field study than in the first.

While TD was clearly preferred in the first study, the result

is only clear for the animation clip with its sharp edges, and

the news clip that has very little motion. For all other

content types, the results are not statistically significant, but

answers tend not to prefer either clip.

The comparison of QS and QD was similarly undecided

for each of the different genres of clips as in the first field

study. It can be mentioned that QD was never the preferred

answer for any of the clips. QS was clearly preferred for the

three contents that gave the participants the opportunity of

focusing on quality rather than motion: the sharp-edged

animation, the cartoon clip and the fairly static news clip.

For the three clips with faster motion, participants tended

not to prefer any clip.

Considering the different switching period for this series

of tests, it is remarkable that participants did not prefer any

clip when the switching period reached 3 s. This seems to

indicate that users ignore quality changes at this longer

time-scale.

6 HDTV scenario: field study 3

With respect to both environment and device, there are

large differences between small mobile devices such as

iPods and large, high-resolution devices like a 42-in.

HDTV. The goal of our third experiment was to validate

Table 4 Public space mobile: quality preference per genre for layer

switching versus downscaling (symbols as in Table 2)

TS QS

TD QD TD QD

Animation � ? - ?

Cartoon � ? (�) (?)

Documentary � ? (�) (�)
Short movie � ? (�) �
News � ? - (?)

Sports � ? (�) (�)

Table 5 Public space mobile: quality preference over different

switching periods for layer switching versus downscaling (symbols as

in Table 2)

TS QS

TD QD TD QD

500 ms � ? (�) (?)

1.5 s � ? (�) (?)

3 s � ? (-) �
All � ? (-) (�)
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whether the results obtained in the mobile scenarios are

general observations or whether the results depend on the

screen size and viewing distance.

6.1 Experiment design

As we did in the first experiment described in Sect. 4, we

used the pair comparison method to test whether either the

downscaling or the switching video adaptation options did

significantly affect whether a user perceived the one or the

other as better. The assessors could select if they preferred

layer switching or layer downscaling, or if they had no

preference. After gathering enough votes, we ran binomial

tests to see if a significant majority of the ratings exist

among the three rating categories.

6.1.1 Material

We prepared the test sequences in a similar way to our pre-

vious experiments.We encoded one base layer and oneMGS

enhancement layer using fixed quantization parameters of 36

and 20, respectively. The original spatial resolution of

1,920 9 1,080 was preserved in the selected two HD video

sequences (see Table 1). The HD-Animation test sequence

had the same content as the animation movie in the mobile

tests. The HD-Docu sequence was extracted from the same

documentary movie as the one used in our mobile scenario.

But to fit the visual characteristics and potential for HDTV

presentation, we selected a different part of the movie.

6.1.2 Participants

The study was conducted with 30 non-expert participants

in a test room at Oslo University. All of them were col-

leagues or students between the age of 18 and 34. 3 of them

claimed to have limited visual acuity even with glasses. In

total, we gathered 720 preference ratings of which 49%

indicated clear preference, 29% a tendency and 12% no

preference. In the results, there were 10% conflicting rat-

ings. We removed three outliers from our data set using the

same criterion as that introduced in Sect. 4.1.2

6.1.3 Procedure

The visual setup was a 32-in., 1080p HDTV monitor. Our

assessors were seated directly in line with the center of the

monitor with a distance of about three monitor screen

heights (3H distance). Since we conducted the test as a

field study, we did not measure the environmental lighting

in the test room, but the lighting condition was adjusted to

avoid incident light being reflected from the screen. We

displayed the video clip pairs in two different randomized

orders. The duration of a whole continuous test session was

20 min and none of the accessors requested break during

the test.

6.2 Results

In a similar way as in the two previous sections, the results

of this study are reported with 0.01 confidence intervals.

We demonstrate the correlations between the preferences,

content genres and switching period lengths in Tables 6

and 7.

6.2.1 Temporal layer switching

Similar to what we found in mobile test scenarios, parti-

cipant ratings do not indicate a clear preference when

comparing temporal layer switching (TS) to TD. There is

an indication that neither is preferred, but it is not possible

to make a general conclusion.

When temporal layer switching (TS) is compared with

downscaling in the other dimension (QD), preferences

differ between genres.

The majority of our assessors preferred TS over QD

when watching the animation video. Watching the Canyon

clip, on the other hand, they indicated the opposite pre-

ference, which contradicts also all the results from the two

mobile field studies. Also the combined results over all

period length indicate a preference towards QD than TS.

This preference is significant for shorter switching periods,

while it weakens when the period reaches 3 s. This

observation differs significantly from what we found out in

mobile scenarios.

Table 6 HDTV scenario: quality preference per genre for layer

switching versus downscaling (symbols as in Table 2)

TS QS

TD QD TD QD

Animation (�) ? (?) ?

Canyon (?) - ? (�)

Table 7 HDTV scenario: quality preference over different switching

periods for layer switching versus downscaling (symbols as in

Table 2)

TS QS

TD QD TD QD

500 ms (�) - ? (-)

1.5 s (�) - ? (?)

3 s (�) (-) ? (�)
All (�) - ? (?)
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6.2.2 Quality layer switching

In the HDTV scenario, people seem to be more sensitive to

frame rate changes than quality loss at the picture level.

When QS is compared to TD, participant ratings indicate a

clear preference towards QS instead of TD, which is again

different than the test results obtained from mobile sce-

narios. The results are consistent across genres and the

preference of QS applies for different switching periods.

When layer switching is compared with downscaling in

the single quality dimension (QS against QD), we do not

find any significant results except for the animation content

genre. However, the results show that the length of

switching period affects the psychophysical video quality

in a similar way both in HDTV and mobile scenarios.

Namely, more people preferred QD than QS at short period

because of the flickering effect. In the HDTV scenario, the

period would be less than 500 ms. When the period was

extended to a certain length such as 1.5 s, the flickering

effect became less annoying. However, when the period

was extended beyond a certain length such as 3 s in our

experiments, most people became uncertain of their pre-

ference. One possible reason for this uncertainty is that

people are able to detect video impairment that last longer

than a certain interval, and they evaluate video quality by

their worst experience within memory.

7 Discussion

In this section, we provide an analysis of the perceived

quality of FLS and its usefulness to adapt to a given

average bandwidth. We also take a critical look at the

assessment methods itself.

7.1 Range of experiments

We have performed three field studies in order to under-

stand whether people who watch video consider it bene-

ficial to increase and decrease video quality frequently, and

whether the answer to this question changes with the

switching frequency. That it is beneficial to exploit avail-

able bandwidth to its fullest and adapt video quality

quickly to use it, is an assumption that has frequently been

made in the past. Through prefetching or buffering on the

client side, even course- and medium-grained scalable

video codecs would be able to come close to exploiting all

available bandwidths in the long-term average.

Our investigations considered only options that are

available in the toolset of SVC as implemented by the

reference encoder. We considered bandwidth changes

through temporal quality adaptation and through quality

adaptation separately. We investigated only switching

patterns where half of the frames belong to an upper and

half to a lower operation point. A finer adaptation granu-

larity can be achieved by adaptively turning this ratio,

but the 8-s clip length used in our tests in accordance

with the PC approach prevents an exploration of other

ratios. When analyzing the results from all three studies,

we found that preference indicators depend highly on the

scenario.

7.2 Mobile devices

In our two field studies that examined mobile devices, we

found that TS and also TD down to 12 fps result in better

subjective quality than any type of quality layer reduction.

When directly comparing switching versus downscaling in

the temporal domain alone, no preference became appar-

ent. Hence, temporal adaptation could be employed at any

desired ratio in the observed range between 25 and 12 fps.

The reason for this is that human observers regard all frame

rates above a margin of 10 fps as sufficiently smooth, when

they watch videos on small devices at typical viewing

distances. These observations have been reported in earlier

studies [3, 8] and were confirmed by us. The obvious

conclusion from this observation is that it is not meaningful

to encode videos for mobile devices at a higher frame rate

than 12 fps.

For QS, the period length is a crucial design criteria.

Very short periods (less than 0.5 s) should be avoided,

because they introduce flickering at edges and in high-

frequency textures. This observation strengthens the

assumption that per-frame scaling decisions result in bad

visual quality and should be avoided. QS above a period of

2 s, on the other hand, is perceived as having a similarly

bad quality as downscaling. This implies that long periods

of low quality are identified with constant bad quality by

many viewers, meaning that there is either no significant

preference or that undecidedness prevails.

7.3 Small versus large screens

The mobile test scenarios reveal a clear preference of TS

over quality scaling regardless of content and switching

period. In our investigation of HD screens, we found nearly

the opposite picture. Therefore, people prefer a regular

quality reduction over temporal jerkiness which, interest-

ingly, becomes apparent on large screens even when the

frame rate is reduced from 25 to 12 fps. The explanation

for this can be found in the human visual system. Mobile

devices are best viewed from 7 to 9.8 screen heights dis-

tance, which keeps the entire screen inside the visual focus

area. HDTV screens, on the other hand, are best viewed

from 3 screen heights distance, where the display still

covers most of the human field-of-vision. This difference
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influences the minimal required angular resolution of the

human eye and foveal field-of-vision [7, 8].

Visual acuity in human’s foveal field-of-vision decrea-

ses from the center towards the outside while sensitivity to

motion effects increases [1, 9, 12]. On mobile screens, the

complete screen is in the central high acuity region and

therefore detail is resolved throughout the displayed image

at almost the same fidelity. Frame rate is less important

here. On HDTV screens, the image covers a larger region

of the field-of-vision. Hence, humans focus on particular

details within the image, which are seen with high acuity,

while outer regions of the image cover the temporally

sensitive area perceived in peripheral vision. Temporal

abnormalities (jerkiness, jumping objects, flickering) are

detected much easier and may even be annoying for the

viewer.

7.4 Applicability of findings

The layer switching pattern must be supported by the SVC

encoding structure and synchronized to the decoder oper-

ation to avoid prediction errors. The switching patterns

used in our study assumed short GOP sizes and frequent

intra-updates to allow for short switching periods. Due to

inter-frame prediction, switching may not be possible at

every frame boundary. FLS points are usually in conflict

with practical encoder setups that use multiple reference

pictures, long GOPs and rare intra-updates for increased

coding efficiency. This requires a trade-off at encoding

time.

The results of our studies are not limited to layer

switching in the coarse-grain encoded versions of H.264/

SVC streams alone. Any adaptation strategy in streaming

servers, relaying proxies and playout software that can

alternate between different quality versions of a video may

benefit from our findings.

7.5 Usefulness of testing methods

For our tests, we used two different assessment methods,

standardized full factorial PC (F/PC) and randomized PC

(R/PC). Both have their particular problems. F/PC requires

that test participants sit through long test sessions, which

leads to fatigue and annoyance with the test itself. Test

subjects are also experiencing learning effects; since the

method requires the frequent repetition of the same content

at different qualities, participants learn to focus on spots in

the video that show quality differences best. The overall

quality impression of the video clips is then no longer

evaluated. Long test duration results in often high ratio of

conflicting rating. For example, there are 15% conflicting

ratings in our first study that lasted for about 1 h. Our

second study was conducted in more interferential

environments. But only 8% conflicting ratings were found

due to shorter test duration at maximum 15 min.

R/PC avoids these problems and has many practical

benefits. However, it requires a much larger number of

participants who watch each pair clip. Through our inten-

tional use in a noise and disruptive (but realistic) envi-

ronment, R/PC test results did also tend towards

undecidedness.

Finally, the explanatory power of both tests suffers from

the requirement to use short clips to avoid memory effects.

Especially when trying to answer questions about change

frequency as we did in this paper, this is a strong limitation.

We do therefore believe that we need new test methods that

are suited for longer durations without increase in memory

effects and fatigue.

8 Conclusion

We have investigated whether we can achieve fine-

grained video scalability using coarse-grained H.264 SVC

without introducing the high overhead of MGS in dif-

ferent streaming scenario including mobile TV and

HDTV. This was tested by switching enhancement layers

on and off to achieve the target bit rate between CGS

operation points. We tested different switching patterns

against different downscaling patterns, and our subjective

tests indicate:

• Switching patterns with sufficient perceptual quality

exist.

• Human perception of quality impairment in FLS is

content and context specific.

For mobile devices, TS is shown to perform better than

QD, but not better than TD. Hence, when bandwidth

adaptation is required, the streamed video can select to first

downscale its temporal resolution to an extent without

introducing perceptual quality degradation. After that, QS

and QD alone can be compared to determine whether FLS

should be applied for additional bandwidth saving. The

comparison of QS and QD on mobile devices shows that

QS with an 80-ms period leads to a visually disturbing

flickering effect, while QS above a 3-s period is not clearly

preferable than QD. Between these points, however, QS,

and thus FLS, has a beneficial effect that grows until a

period length of 2 s.

For large screens, frequent temporal layer switching is

generally undesirable, while the conclusions for QS are

genre-dependent. At a switching period above 1 s, FLS is

shown to improve perceptual quality for content with clear

edges and little visual change, while FLS provides no

clearly proven improvement for clips with fast visual

changes.
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In terms of resource consumption, both the TS (Fig. 1e)

and QS (Fig. 1d) can achieve bit rates between the encoded

SVC base layer and the enhancement layer. Both switching

patterns were preferred over the quality downscaled oper-

ation point (QD, Fig. 1c). Thus, we claim that such fine-

grained adaption is possible in different scenarios.

However, based on our preliminary tests, we cannot say

which switching pattern will give the best possible result.

This requires additional subjective studies. For example,

we must further investigate the flickering threshold and the

different ratios between high and low switching points. We

need also understand how the detectability of jerkiness is

related to content and context variations. In practice,

popular HD videos are not only streamed to large display,

but also can be watched on displays with smaller size.

Additional studies can be done to verify if the same TD

strategy also applies to HD video on smaller screens. At

this point, we have also only tested clips without scene

changes. To further limit the perceived quality degradation

of switching techniques, scene changes can for example be

used as switching points.
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limit the streams’ bandwidth consumption within its fair
share. TCP streaming guarantees this and provides loss-
less streaming as a side-effect. Adaptation by packet drop
does not occur in the network, and excessive startup latency
and stalling must be prevented by adapting the bandwidth
consumption of the video itself. However, when the adapta-
tion is performed during an ongoing session, it may influence
the perceived quality of the entire video and result in im-
proved or reduced visual quality of experience. We have in-
vestigated visual artifacts that are caused by adaptive layer
switching – we call them flicker effects – and present our
results for handheld devices in this paper.
We considered three types of flicker, namely noise, blur

and motion flicker. The perceptual impact of flicker is ex-
plored through subjective assessments. We vary both the
intensity of quality changes (amplitude) and the number of
quality changes per second (frequency). Users’ ability to
detect and their acceptance of variations in the amplitudes
and frequencies of the quality changes are explored across
four content types. Our results indicate that multiple fac-
tors influence the acceptance of different quality variations.
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video quality, while frequency can also be adjusted to relieve
the annoyance of flicker artifacts.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems –
Human factors; H.5.1 [Information Interfaces and Pre-
sentation]: Multimedia Information Systems – Video

General Terms
Experimentation, Human Factors

Keywords
Subjective video quality, Video adaptation, Layer switching

*Area Chair: Wu-chi Feng

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
MM’11, November 28-December 1, 2011, Scottsdale, Arizona, USA.
Copyright 2011 ACM 978-1-4503-0616-4/11/11 ...$10.00.

1. INTRODUCTION
To cope with the Internet’s varying bandwidth, many

video streaming systems use adaptive and scalable video
coding techniques to facilitate transmission. Furthermore,
transfer over TCP is currently the favored commercial ap-
proach for on-demand streaming [1, 11, 14, 19] where video
is progressively downloaded over HTTP. This approach is
not hampered by firewalls, and it provides TCP fairness in
the network as well as ordered, lossless delivery. Adapta-
tion to the available bandwidth is controlled entirely by the
application.
Several feasible technical approaches for performing adap-

tation exist. One frequently used video adaptation approach
is to structure the compressed video bit stream into layers.
The based layer is a low-quality representation of the original
video stream, while additional layers contribute additional
quality. Here, several scalable video codec alternatives exist,
including scalable MPEG (SPEG) [6], Multiple Description
Coding (MDC) [4] and the Scalable Video Coding (SVC)
extension to H.264 [17]. The other alternative is to use
multiple independent versions encoded using, for example,
the advanced video coding (AVC) [8], which supports adap-
tation by switching between streams [1, 11, 14, 19]. Thus,
video streaming systems can adaptively change the size or
rate of the streamed video (and thus the quality) to main-
tain continuous playback and avoid large start-up latency
and stalling caused by network congestion.
Making adaptation decisions that achieve the best possi-

ble user perception is, on the other hand, an open research
field. Current video scaling techniques allow adaptation in
either the spatial or temporal domain [17]. All of the tech-
niques may lead to visual artifacts every time an adaptation
is performed. An algorithm must take this into account and,
in addition, it must choose the time, the number of times,
and the intensity of such adaptations.
This paper reports on our investigation of the types of vi-

sual artifacts that are specific for frequent bandwidth adap-
tation scenarios:

• Noise flicker is a result of varying the signal-to-noise-
ratio (SNR) in the pictures. It is evident as a recurring
transient change in noise, ringing, blockiness or other
still-image artifacts in a video sequence.

• Blur flicker is caused by repeated changes of spatial
resolution. It appears as a recurring transient blur
that sharpens and unsharpens the overall details of
some frames in a video sequence.

• Motion flicker comes from repeated changes in the



video frame rate. The effect is a recurring transient
judder or jerkiness of naturally moving objects in a
video sequence.

When the frequent quality fluctuations in the streamed
video are perceived as flicker, it usually degrades the expe-
rienced subjective quality. However, noise, blur and motion
flicker as such can not be considered deficient. Active adap-
tation to changes in available bandwidth is generally prefer-
able to random packet loss or stalling streams, and not every
quality change is perceived as a flicker effect. Essentially, the
perceptual effect of flicker is closely related to the amplitude
and frequency of the quality changes. This paper explores
the acceptability of flicker for a handheld scenario.
In figure 1, we show sketches of simple streaming patterns

for both spatial and temporal scaling. Figure 1(a) depicts
a video stream encoded in two layers; it consists of several
subsequent segments, where each segment has a duration of
t frames. The full-scale stream contains two layers (L0 and
L1), and the low quality stream (sub-stream 3) contains only
the lower layer (L0), it is missing the complete L1 layer. For
these, the number of layers remains the same for the entire
depicted duration, meaning that neither of the two streams
flickers. The other two examples show video streams with
flicker. The amplitude is a change in the spatial dimension,
in this example the size of the L1 layer (in other scenarios,
this may be the number of layers). The frequency determines
the quality change period, i.e., how often the flicker effect
repeats itself. In this example, sub-stream 1 changes its pic-
ture quality every t frames (2 blocks in the figure), whereas
sub-stream 2 changes every 3t frames (6 blocks in the figure).
Figure 1(b) shows a similar example of how the amplitude
and frequency affect the streaming patterns in the temporal
dimension. Here, the amplitude is a change in the tempo-
ral dimension. In this example, we index video segments by
their temporal resolutions since only temporal scalability is
in our concern. The full-scale stream can be displayed at a
normal frame rate. Sub-stream 3 drops frames regularly and
can be displayed at a constant low frame rate. Neither of
the two streams flickers in the temporal dimension. Hence,
we say that the full-scale stream contains layer L1, whereas
sub-stream 3 contains only layer L0. Sub-stream 1 and 2
halve the normal frame rate at a regular interval of 2t and
4t time units, respectively. Therefore, the layer variations
in sub-streams 1 and 2 have the same amplitude, but the
changes appear at different frequencies.
To provide the best possible video quality for a given avail-

able bandwidth, the applications need to select the most
suitable options from several streaming patterns. Consid-
ering the alternatives in figures 1(a) and 1(b), three sub-
stream alternatives can be used if the full quality stream can-
not be provided. Therefore, to get a better understanding
of human quality perception of flicker, we have performed
a subjective field study with a special focus on handheld
devices. We have considered state-of-the-market encoding
techniques represented by the H.264 series of standards. Our
goals are (1) to evaluate the influence of the main influential
factors on acceptability, and (2) to find the range of these
factors’ levels. With these answers we hope to minimize
the flicker effect in layer variation. We evaluate the effect
of noise, blur and motion flicker on four different types of
video content. For each video type, we tested several levels
of frequency and amplitude. In total, we performed 5088
individual assessments.

(a) Scaling in spatial dimension

(b) Scaling in temporal dimension

Figure 1: Illustration of streaming patterns for scal-
able video.

From our results, we observe that the perception of quality
variation is jointly influenced by multiple factors. Amplitude
and frequency have significant impact on subjective impres-
sion. Most notably, when decreasing the quality switching
frequency for flicker in the spatial domain, including noise
and blur flickers, users’ acceptance scores of the video quality
tend to be higher. Moreover, the different flicker and con-
tent types are found to influence perceived quality in their
own ways.
The paper is structured as follows. The experiment design

is presented in section 3. Section 4 analyzes user responses
and reports the analytical results. In section 5, we discuss
our findings. Finally, section 6 concludes the paper.

2. RELATED WORK
To the best of our knowledge, very little work considers

the flicker effect in the video quality domain. In [16], the
National Telecommunications and Information Administra-
tion General Model (NTIA GM) introduced combined mea-
sures for the perceptual effects relating to different types of
impairments, such as, blurriness, blockiness, jerkiness, etc.
Kim et al. [9] proposed a scalability-aware video quality met-
ric, which incorporated spatial resolution with frame rate
and SNR distortion into a single quality metric. However,
none of these objective metrics have considered the tem-
poral variation of different impairments. Some subjective
tests evaluate the visual quality of scalable video; for in-
stance, the effect of quality degradation in the temporal and
spatial dimensions is explored in [10,12,13]. The closest re-
lated work [20], points out that the frequency and amplitude
of layer changes influence the perceived quality and should
therefore be kept as small as possible. However, that user
study limits itself to SNR scalability and does not take the
influence of video content characteristics into account.



3. EXPERIMENT DESIGN

3.1 Randomized Block Design
We conduct subjective experiments to explore the im-

pact of noise, blur and motion flicker on the perception of
video quality. In addition to the three different adaptation
domains (SNR for noise flicker, spatial resolution for blur
flicker and temporal resolution for motion flicker), the overall
video quality is influenced by other factors including ampli-
tude, frequency and content characteristics (see section 3.2).
All of these are design factors studies in our experiment. We
do not limit ourselves to a single genre of video content, but
we do not aspire to cover all semantic categories. We explore
four content types, which are selected as representatives for
extreme values of low and high spatial and temporal infor-
mation content. In our experiments, the subjects are asked
to rate their acceptance of the overall video quality. Due
to the fluctuating state of videos that flicker, we predict
flicker to be perceived differently than other artifacts. We
add a Boolean score on perceived stability, which we expect
to provide us with more insight into the nature of the flicker
effects (see section 3.4). Finally, we measure participants’
response time, which is the time between the end of a video
presentation and the time when they provide their response.
The repeated measures design [2] of these experiments en-

sures that each subject is presented with all stimuli. The re-
peated measures design offers two major advantages: First,
it provides more data from fewer people than, e.g., pairwise
comparison studies. Second, it makes it possible to identify
the variation in scores due to individual differences as er-
ror terms. Thus, it provides more reliable data for further
analysis. This study employs an alternative to the tradi-
tional full factorial repeated-measures design that is called
Randomized Block Design. It blocks stimuli according to
flicker type and amplitude level. A stimuli block consists
of a subset of test stimuli that share some common factor
levels and can be examined and analyzed alone. Stimuli are
randomized within each block and blocks are randomized to
an extent that relies solely on the participant, as they are
free to choose which block to proceed with.
The randomization of stimuli levels ensures that potential

learning effects are distributed across the entire selection of
video contents and frequency levels, and, to a degree, also
amplitudes and flicker type. Moreover, we hope to minimize
the effect of fatigue and loss of focus by dividing stimuli
into smaller blocks and allowing participants to complete
as many blocks as they wish, with optional pauses between
blocks.

3.2 Content Selection and Preparation
As the rate distortion performance of compressed video

depends largely on the spatial and temporal complexity of
the content, the flicker effect is explored across four content
types at different extremes. Video content is classified as
being high or low in spatial and temporal complexity, as
recommended in [7] and measured by spatial information
(SI) and temporal information (TI) metrics, respectively.
Four content types with different levels of motion and detail
are selected based on the metrics (figure 2). To keep the
region of interest more global and less focused on specific
objects, we avoid videos with dictated points of interest,
such as a person speaking. It is beyond the scope of the

Figure 2: Test sequences.

current investigation to generalize the results to all video
content.
Raw video material is encoded using the H.264/SVC refer-

ence software, JSVM 9.19, with two-layer streams generated
for each type of flicker, as portrayed in figure 1. The am-
plitude levels of the layer variations are thus decided by the
amount of impairment that separates the two layers. Ta-
ble 1 summarizes the factor levels of amplitude, frequency,
and content, according to the different flicker stimuli, noise,
blur, and motion. For noise flicker stimuli, constant quan-
tization parameters (QP) are used to encode a base layer
L0 and an enhancement layer L1. Since the latter is en-
coded with QP24 for all test sequences, the amplitude levels
and variations in video quality are represented by the QPs
applied to L0 for noise flicker stimuli. Similarly, with blur
flicker stimuli, amplitude is represented by spatial down-
scaling in L0, and temporal downscaling in L0 defines the
amplitude for motion flicker stimuli.
To simulate the different flicker effects that can arise in

streamed video, video segments from the two layers are al-
ternately concatenated. Different frequencies of layer varia-
tion are obtained by adjusting the duration of the segments.
For simplicity, we use only periodic duration. Corresponding
to six frequency levels, six periods in terms of the L1 frame
rate are selected, which include 6, 10, 30, 60, 90 and 180
frames for both noise and blur flicker stimuli. Since short
durations for changes in frame rate are known to lead to low
acceptance scores [13], the periods for motion flicker stimuli
are limited to 30, 60, 90 and 180 frames.

a) Noise flicker

Amplitude L1 QP24
L0 QP28, QP32, QP36, QP40

Period 6f, 10f, 30f, 60f, 90f, 180f
Content RushFieldCuts, SnowMnt, Desert, Elephants

b) Blur flicker

Amplitude L1 480x320
L0 240x160, 120x80

Period 6f, 10f, 30f, 60f, 90f, 180f
Content RushFieldCuts, SnowMnt, Desert, Elephants

c) Motion flicker

Amplitude L1 30fps
L0 15fps, 10fps, 5fps, 3fps

Period 30f, 60f, 90f, 180f
Content RushFieldCuts, SnowMnt, Desert, Elephants

Table 1: Selection of factor levels



3.3 Participants
In total, 28 participants (9 female, 19 male) were recruited

at the University of Oslo, with ages ranging from 19 to 41
years (mean 24). They volunteered by responding to posters
on campus with monetary compensation rewarded to all.
Every participant reported normal or corrected to normal
vision.

3.4 Procedure
This field study was conducted in one of the University

of Oslo’s library with videos presented on 3.5-inch iPhone
of 480x320 resolution and brightness levels at 50%. Partici-
pants were free to choose a seat among the available lounge
chairs but were asked to avoid any sunlight. They were told
to hold the device at a comfortable viewing distance and
to select one of the video blocks to commence the experi-
ment. The 12-second long video segments were presented as
single-stimulus events, in accordance with the ITU-T Abso-
lute Category Rating method [7]. Each video stimulus was
displayed only once. Video segments were followed by two
response tasks, with responses made by tapping the appro-
priate option on-screen. For the first, participants had to
evaluate the perceived stability of the video quality by an-
swering “yes” or “no” to the statement “I think the video
quality was at a stable level”. The second involved an eval-
uation of their acceptance of the video quality, where they
had to indicate their agreement to the statement “I accept
the overall quality of the video” on a balanced 5-point Lik-
ert scale. The Likert scale includes a neutral element in the
center and two opposite extreme values at both ends. A pos-
itive value can be interpreted as an acceptable quality level,
a neutral score means undecidedness, while a negative score
indicates an unacceptable quality level. Upon completion
of a block, participants could end their participation, have
a short break, or proceed immediately to the next block.
Participants spent between 1.5 and 2 hours to complete the
experiment.

4. DATA ANALYSIS

4.1 Method of Analysis
The current study explores the influence of amplitude and

frequency of video quality shifts for three types of flicker
stimuli, noise, blur and motion, as well as video content
characteristics, on the perception of stability, the acceptance
of video quality and response time. Control stimuli with
constant high or low quality are included as references to
establish baselines for the scores provided by participants.
Stability scores and rating scores are processed separately,
grouped according to flicker type. Thus responses are ana-
lyzed in six different groups, with control stimuli included
in all of them. Since the perception of stability relies on
detection, scores are binary and are assigned the value “1”
for perceived stability of quality, and the value “0” for the
opposite. Rating scores are assigned values ranging from -2
to 2, where “2” represents the highest acceptance, “0” the
neutral element, and “-2” the lowest acceptance.
Consistency of acceptance scores is evaluated by compar-

ing scores for control stimuli of constant high or low quality.
Whenever a low quality stimulus scores better than the cor-
responding high quality stimulus, this is counted as a con-
flict. Conflicts are added up for each participant. If the

acceptable number of conflicting responses is exceeded, the
participant is excluded as an outlier. An acceptable num-
ber of conflicts stays within 1.5 times the interquartile range
around the mean as suggested by [2, 3]. For the blur stim-
uli group this excluded two participants (12.5%), two for the
motion stimuli group (10.5%), and none for the noise stimuli
group.
Consistency of response times is also evaluated in order to

eliminate results that reflect instances in which participants
may have been distracted or taken a short break. Thus, any
response time above three standard deviations of a partici-
pant’s mean is not included in the following analyses.
Stability scores are analyzed as ratios and binomial tests

are applied to establish statistical significance. As for ac-
ceptance scores, these are ordinal in nature and are not as-
sumed to be continuous and normally distributed. They are
therefore analyzed with the non-parametric Friedman’s chi-
square test [18]. The Friedman test is the best alternative
to the parametric repeated-measures ANOVA [5], which re-
lies on the assumption of normal distribution; it uses ranks
to assess the differences between means for multiple factors
across individuals. Main effects are explored with multiple
Friedman’s chi-square tests, applied to data sets that are
collapsed across factors. Confidence intervals are calculated
in order to further investigate the revealed main effects, as-
sessing the relations between factor levels. Multiple com-
parisons typically require adjustments to significance levels,
such as the Bonferroni correction. Yet, such adjustments
can increase the occurrence of Type II errors, thus increas-
ing the chances of rejecting a valid difference [15]. In light of
this, we avoid the use of adjustments and instead report sig-
nificant results without corrections. This procedure requires
caution; we avoid drawing definite conclusions and leave our
results open to interpretation. Repeated-measures ANOVA
tests are finally introduced when analyzing response times.

4.2 Response Times
None of the repeated-measures ANOVA tests reveals any

effect of amplitude, frequency or content on response time,
for any type of flicker. In fact, response times seem to vary
randomly across most stimuli levels. Possibly, this may be
related to individual effort in detecting stability. If so, the
video quality variation did not increase the decision-making
effort. We may even surmise that participants evaluated the
stability of video quality with a fair degree of confidence.

4.3 Noise Flicker Effects
The perceived stability of noise flicker stimuli is generally

low and varies little over the different periods, as seen in
table 2(a). However, the response percentage reflecting sta-
ble video quality is slightly higher for video segments of 180
frames. A significantly larger share of responses for the con-
trol stimuli reports video quality to be stable, as opposed to
unstable, refer to the top and bottom lines in table 2(a). Due
to the small difference between layers for QP28, it is plau-
sible that the vast majority of participants do not perceive
the flicker effect, which would explain why two thirds report
stable quality, see the top line in table 2(b). Meanwhile, the
higher rate of reported stability for non-flicker stimuli fits
well with predictions. It indicates that participants detect
and identify flicker as instability, whereas constant quality
is experienced as stable, even when it is poor.



a) Period

Options Stable Unstable P-value Signif.

HQ 95.3% 04.7% 2.04e-71 +
6f 30.6% 69.4% 3.32e-12 –
10f 30.0% 70.0% 6.18e-13 –
30f 30.3% 69.7% 1.44e-12 –
60f 31.6% 68.4% 3.71e-11 –
90f 32.5% 67.5% 3.65e-10 –
180f 41.2% 58.8% 0.002 –
LQ 71.3% 28.7% 1.80e-14 +

b) Amplitude

Options Stable Unstable P-value Signif.

QP28 65.8% 34.2% 3.66e-12 +
QP32 27.7% 72.3% 4.49e-23 –
QP36 21.7% 78.3% 3.51e-37 –
QP40 15.6% 84.4% 8.74e-56 –

Table 2: Perceived quality stability for Noise flicker
(+ Stable, - Unstable, (*) not significant), HQ =
constant high quality, LQ = constant low quality.

Main effects are found with Friedman’s chi-square tests
for period (χ2(5) = 69.25, p < .001), amplitude (χ2(3) =
47.98, p < .001) and content (χ2(3) = 27.75, p < .001). The
means and confidence intervals presented in figure 3(a) show
that acceptance scores become increasingly higher than the
constant low quality controls for periods of 60 frames and
above. Figure 3(b) displays the decrease in acceptance with
larger amplitudes, while figure 3(c) shows only small varia-
tions in acceptance scores depending on content type. As for
potential interactions, figure 4 illustrates how mean accep-
tance scores vary across content types, with a tendency to
increase as amplitude decreases or period increases. More-
over, the scores point to possible interactions, particularly
between period and amplitude.

4.4 Blur Flicker Effects
For blur flicker stimuli, perceived video quality stability

is again low across the different periods, accompanied by
high perceived stability ratios for control stimuli, summa-
rized in table 3(a). Furthermore, participants tend to judge

a) Period

Options Stable Unstable P-value Signif.

HQ 100% 00.0% 3.85e-34 +
6f 11.6% 88.4% 1.50e-17 –
10f 11.6% 88.4% 1.50e-17 –
30f 11.6% 88.4% 1.50e-17 –
60f 13.4% 86.6% 7.12e-16 –
90f 12.5% 87.5% 1.08e-16 –
180f 17.0% 83.0% 6.75e-13 –
LQ 81.2% 18.8% 1.42e-11 +

b) Amplitude

Options Stable Unstable P-value Signif.

240x160 19.3% 80.7% 4.89e-31 –
120x80 06.6% 93.5% 2.57e-67 –

Table 3: Perceived quality stability for Blur flicker
(+ Stable, - Unstable, (*) not significant).

the video quality as unstable at both amplitude 240x160
and amplitude 120x80, see table 3(b). This is also consistent
with expectations, suggesting again that flicker is detectable
and perceived to be unstable.
Friedman’s chi-square tests reveal main effects for period

(χ2(6) = 41.79, p < .001), amplitude (χ2(1) = 14.00, p <
.001) and content (χ2(3) = 33.80, p < .001). As seen in
figure 5(a), the mean acceptance scores are generally low
across periods, only at 60 frames and above do they ap-
proach the acceptance of constant low quality. Moreover,
there are little variations in acceptance according to am-
plitude and content, see figures 5(b) and 5(c). However,
figure 6 illustrates how the differences in acceptance scores
become greater when considering interactions. Similar to
noise flicker, acceptance tends be higher for longer periods,
but more markedly for the amplitude 240x160. Also accep-
tance scores for the Desert and Elephants clips appear to be
higher than the RushFieldCuts and SnowMnt clips.

4.5 Motion Flicker Effects
Low perceived stability ratios are evident across all peri-

ods for motion flicker stimuli, presented in table 4(a). As
expected, the vast majority of participants think that the
video quality is stable for constant high quality control stim-
uli but not for constant low quality; there are more responses
that correspond to perceived instability for low quality con-
trol stimuli. This is potentially explained by the lack of
fluency of movement that occurs at lower frame rates. The
stability scores for amplitude may also reflect a bias towards
reporting jerkiness as instability, as listed in table 4. How-
ever, stability is reported more frequently for larger periods
and better frame rates; this indicates influences from both
period and amplitude on perceived quality stability.
Friedman’s chi-square tests uncover main effects for all

factors, including period (χ2(3) = 7.82, p < .05), amplitude
(χ2(3) = 41.62, p < .001), and content (χ2(3) = 27.51, p <
.001). However, the main effect for period is very close to
the significance threshold (p=0.0499), which is likely the
reason for the relatively flat distribution of acceptance scores
observed in figure 7(a). Amplitude and content type, on the
other hand, have larger effects on quality acceptance, as seen
in figures 7(b), 7(c) and 8.

a) Period

Options Stable Unstable P-value Signif.

HQ 90.8% 09.2% 4.43e-47 +
30f 14.3% 85.7% 7.85e-35 –
60f 16.2% 83.8% 4.08e-31 –
90f 18.0% 82.0% 1.08e-27 –
180f 20.6% 79.4% 2.44e-23 –
LQ 40.8% 59.2% 0.0029 –

b) Amplitude

Options Stable Unstable P-value Signif.

15fps 43.8% 56.2% 0.045 (*)
10fps 15.1% 84.9% 2.62e-33 –
5fps 07.4% 92.6% 2.82e-52 –
3fps 02.9% 97.1% 1.82e-67 –

Table 4: Perceived quality stability for Motion
flicker (+ Stable, - Unstable, (*) not significant).
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Figure 3: Effects of period, amplitude and content on Noise flicker stimuli. Error bars represent 95%
confidence intervals.
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Figure 4: Explored interactions for Noise flicker. (HQ = constant high quality, LQ = constant low quality)

5. DISCUSSION

5.1 Period Effect
The period of flicker is a major influential factor for flicker

in the spatial dimension. Significant differences between ac-
ceptance scores given to different periods in noise flicker can
be found in figure 3(a), and for blur flicker in figure 5(a). In
figures 6(a) and 6(b), we can highlight three period ranges
that influence the overall quality acceptance: low acceptance
for short periods, acceptance higher than the low-quality
control stimuli for moderate periods, and stagnating for long
periods. Stagnation is less pronounced in figures 4(a) and
4(b).
In figure 4(b), the average across all amplitudes is shown

for individual contents, reinforcing that the effect is indepen-
dent of the content. At high frequencies (< 30f or < 1sec
respectively), the flicker is perceived as more annoying than
constant low quality for all different content types. Starting
at moderate frequencies (30 ∼ 60f or 1 ∼ 2s), the qual-
ity is considered as better than a constant low quality for
some content types. At low frequencies (> 60f or > 2s), the
quality is in most cases regarded as better than a constant
low quality. For both flicker types in the spatial dimension,
this is significant across amplitudes (figures 4(a) and 6(a)),
content (figures 4(b) and 6(b)), but counter-examples exist
(see the top line in figure 6(a)).

In the temporal dimension, the period does not seem to
have a significant influence on the motion flicker. There are
only small differences between acceptance scores for differ-

ent periods, ranging from 30f to 180f (see figures 7(a), 8(a)
and 8(b)). When the amplitude of temporal downscaling
is small, scores are higher than for the low-quality control
stimuli (figures 8(a), 10(a)). No period ranges can be high-
lighted.
A general observation for all three flicker types is that

adaptive video streaming can outperform constant low qual-
ity streams, but the switching period must be considered in
relation to the flicker amplitudes.

5.2 Amplitude Effect
The amplitude is the most dominant factor for the per-

ception of flicker. This seems reasonable since the visual
artifacts become more apparent with increasing amplitude
when alternating between two quality versions. Our statis-
tical results, presented in section 4, show this and evaluate
the strength of the influence. The noise flicker effect is not
detectable for the majority of our participants (see Q28 in
table 2(b)) at low flicker amplitudes, where visual artifacts
are less obvious. In the case of motion flicker, close to 50%
of the responses show that changes between frame rates of
15fps and 30fps are not detectable. When the amplitude
grows, meaning that the lower frame rate is reduced fur-
ther, the detectability of quality fluctuation grows as well
(see table 4(b)). The detectability shows the same changing
trend for noise and blur flicker. The effect of flicker at dif-
ferent period lengths becomes significant only if the flicker
artifacts are clearly detectable from the increase of flicker
amplitude.



HQ 6f 10f 30f 60f 90f 180f LQ

−2

−1

0

1

2

Period

M
ea

n 
A

cc
ep

ta
nc

e 
S

co
re

(a)

240x160 120x80

−2

−1

0

1

2

Amplitude

M
ea

n 
A

cc
ep

ta
nc

e 
S

co
re

(b)

RushFieldCuts SnowMnt Desert Elephants

−2

−1

0

1

2

Content

M
ea

n 
A

cc
ep

ta
nc

e 
S

co
re

(c)

Figure 5: Effects of period, amplitude and content on Blur flicker. Error bars represent 95% confidence
intervals.
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Figure 6: Explored interactions for Blur flicker. (HQ = constant high quality, LQ = constant low quality)

In noise and motion flicker, we find an amplitude thresh-
old below which the flicker is considered better than the
low-quality control stimuli for all content types. Figures 9
and 10 show amplitudes above and below the threshold. In
our experiments, an increase of the amplitude above 8 QPs
for noise flicker or 10 fps (one third of the original frame
rate) for motion flicker brings significant flicker effect that
may make frequent adaptation worthless to perform (see fig-
ures 9(b) and 10(b)). While it is possible to obtain a benefit
by choosing a suitable period for SNR variation, only the
amplitude is critical for frame rate variation.
For blur flicker, we have tested only two amplitude levels

(see figure 6(a)). Although the difference between them sig-
nificant, the range we have selected does not cover enough
amplitudes to draw further conclusions. The user experi-
ence of watching up-scaled video that was originally half or
a quarter of the native display resolution of a handheld de-
vice turned out to yield low acceptance. Given the fact that
our content is chosen from a wide range of spatial and tem-
poral complexities (figure 2), this indicates that the change
of spatial resolution should not exceed half the original size
in order to deliver a generally acceptable quality. Further
investigations are necessary to find acceptability thresholds
for amplitude levels of blur.

5.3 Content Effect
Content seems to play a minor role for flicker, but its ef-

fect varies across different flicker types. For noise flicker,
the effect of content is not significant (figure 3(c)). We ob-

serve weak interaction effects between period and content
(figure 4(b)), but no interaction between amplitude and con-
tent. In figure 4(c), we see that the acceptance scores vary
only slightly between content for the noise flicker although
the chosen amplitudes cover a large part of the scale. How-
ever, a significant effect of content can be found in both
blur and motion flicker (figures 5(c) and 7(c)). Content
interacts slightly with amplitude as well. For blur flicker,
the Desert and Elephant sequences get significantly different
scores than RushFieldCuts and SnowMnt, see figure 6(c).
For motion flicker, the SnowMnt sequence is least influenced
by the loss of frame rate and always has significantly higher
scores, see figures 8(b), 8(c) and 10. The observation means
different content characteristics can influence the perception
of flicker.
The SnowMnt and RushFieldCuts sequences have more

complex texture details then the other two content types
and are therefore more strongly affected by the loss of spa-
tial resolution. Additionally, SnowMnt contains significantly
less motion; half of the sequence moves slowly around the
snow mountain at fairly constant distance. The lack of rel-
ative movement between objects in the scene may limit the
visible effect of frame dropping. However, video classifica-
tion based only on two simple metrics of spatial and tem-
poral information does not cover enough content features
that are related to human perception. Region of interest,
the scope and direction of motion etc. may also have influ-
ences on visual experience. In our experiments, 15fps has
the effect that the scores for two test sequences are on the
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Figure 7: Effects of period, amplitude and content on Motion flicker stimuli. Error bars represent 95%
confidence intervals.
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Figure 8: Explored interactions for Motion flicker. (HQ = constant high quality, LQ = constant low quality)

negative part of the scale (see figure 10(a)), while the two se-
quences have quite different temporal complexity according
to the TI metric, introduced in section 3. More advanced
feature analysis is needed for further explanation of these
phenomena.

5.4 Applicability of the Results
The results of our study can help improve the adaptation

strategy in streaming systems or bit-rate controller for pro-
cessing scalable video. Among three dimensions, SNR scal-
ability is the most recommended adaptation option. When
switching SNR layer, quality differences should be limited
to less than 4 QPs to avoid additional visual artifacts. How-
ever, if larger quality shift is necessary, a quality level should
be kept stable for at least 2 seconds.
The knowledge is applicable for both SVC-type and AVC-

type systems – We have used SVC, but the results should be
equally important/relevant for AVC-type systems like those
used in modern HTTP streaming systems. For SVC, this
knowledge helps to schedule the different enhancement lay-
ers and decide which to drop in case of congestion. For AVC,
it helps determining how to code the different layers in or-
der to increase quality if congestion forces the application to
choose another quality layer.

6. CONCLUSION
To understand the human perception of video quality adap-

tation in fluctuating bandwidth scenarios, like streaming to

handheld devices over wireless networks, we have performed
a series of subjective assessment experiments using iPhones
and iPods. We have identified three types of visual arti-
facts caused by adaptive bit-rate variations, the noise, blur
and motion flicker effects. Furthermore, for these flicker ef-
fects we investigated how users experience quality changes
at different amplitudes and frequencies, using several con-
tent types. Our results show that multiple factors influence
the quality with respect to flicker effects in different scenar-
ios. Among the influential factors, low frequency can relieve
the annoyance of flicker effect in spatial dimension, but be-
low a threshold (on the scale of a few seconds), decreasing
frequency further does not have any significant effect. On
the other hand, the amplitude has a dominant effect across
spatial and temporal dimensions and should be kept as low
as possible for satisfactory visual quality. Finally, blur and
motion flicker effect on different content types varies even
for the same amplitude. Videos with complex spatial de-
tails are particularly affected by blur flicker, while videos
with complex and global motion require higher frame rate
for smooth playback effect.
There are still numerous questions to answer and experi-

ments to perform which is ongoing work. We are currently
expanding our experiments to HD displays to see if there
are differences in the findings as compared to the performed
iPhone experiments. We are also interested in other content
features and their influences on user perceived quality. We
will consider in particular whether content with a unique fo-
cus point (e.g. speaking person) in a scene leads to different
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Figure 9: Mean acceptance scores for two top am-
plitude levels in Noise flicker. (HQ = constant high
quality, LQ = constant low quality)

results, whether connecting temporal and spatial complex-
ity to regions of interest makes a difference, and how camera
motion vs. content motion affects results.
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