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Abstract. In this paper we analyze an optimization problem with limited observation governed
by a convection–diffusion–reaction equation. Motivated by a Schur complement approach, we arrive
at continuous norms that enable analysis of well-posedness and subsequent derivation of error analysis
and a preconditioner that is robust with respect to the parameters of the problem. We provide
conditions for inf-sup stable discretizations and present one such discretization for box domains
with constant convection. We also provide a priori error estimates for this discretization. The
preconditioner requires a fourth order problem to be solved. For this reason, we use Isogeometric
Analysis as a method of discretization. To efficiently realize the preconditioner, we consider geometric
multigrid with a standard Gauss-Seidel smoother as well as a new macro Gauss-Seidel smoother. The
latter smoother provides good results with respect to both the geometry mapping and the polynomial
degree.
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1. Introduction. In this paper, we consider an optimal control problem involv-
ing a linear Convection–Diffusion–Reaction (CDR) problem, which reads as follows:

(1.1) Minimize J(u, q) :=
1

2
‖u− ud‖2L2(O) +

α

2
‖q‖2L2(Ω) for u ∈ U, q ∈ L2(Ω)

subject to

−ε∆u+ β · ∇u+ σu = f − q in Ω,

u = 0 on ∂Ω.
(1.2)

Here and in what follows, Ω is a bounded open subset of Rd (d = 1, 2, 3) with Lipschitz
boundary, f ∈ L2(Ω), ε, σ ∈ R with ε > 0, σ ≥ 0, β ∈ L∞(Ω)d with ∇ · β = 0 and
O ⊆ Ω is measurable in Rd. For certain choices of the parameters, like ε � β, σ,
convection–diffusion–reaction problems are singular perturbation problems exhibiting
sharp gradients and a potential for loss of regularity. To overcome the problems
associated to the loss of regularity, significant effort has been put in the development
of methods with low regularity, such as discontinuous Galerkin methods [2, 9]. We
take the opposite approach and investigate to what extent higher regularity may be
used in the setting of optimal control problems.
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There are two main problems with (1.1)–(1.2), namely: 1) potential sharp gradi-
ents leading to non-physical oscillations in the numerical solution and 2) ill-posedness
due to limited observations, this is, whenO is a subset of Ω. Motivated by the fact that
higher regularity has been exploited in the cases with limited observations [17, 25, 4],
we derive order optimal preconditioners via stability analysis in non-standard Sobolev
spaces.

When solving the CDR problem, it is common to consider some stabilization
method (e.g. the streamline upwind Petrov Galerkin (SUPG) method) or adaptive
grids (e.g. Shishkin grids) to reduce the oscillatory behavior, cf. [10]. This is also
the case in optimal control settings, see, e.g., [21, 3, 13, 8]. We do not use any such
stabilization techniques, but we remark that the trial and test functions involved in
the state equation differ. That means, the state equation, if considered isolated, is
discretized by a Petrov-Galerkin method, although the complete optimality system is
discretized by a standard Galerkin method, this is, trial and test functions agree. In
particular, in the continuous setting, the trial space and test spaces are H2(Ω)∩H1

0 (Ω)
and L2(Ω), respectively, with properly weighted norms.

By considering a Schur complement of the optimal control problem, we derive non-
standard norms in which well-posedness is obtained, assuming extra regularity. From
the well-posedness of the continuous system we subsequently analyse corresponding
discrete systems to arrive at both error estimates and preconditioners that are robust
with respect to the problem parameters α, ε, β and σ. In detail, we provide a con-
dition for the discretization which ensures that the preconditioner is sparse and that
the preconditioned system is stable. Further, we give an example of such a discretiza-
tion based on Isogeometric Analysis (IgA) [14, 5]. For our approach, IgA provides
useful discretization methods since the extra regularity leads H2(Ω)–conforming ap-
proximation spaces. Using these discretization methods, a priori error estimates are
derived, where we detail the dependencies of the problem parameters. We remark
that the error estimates required extending some approximation error estimates for
tensor-product B-splines, which is done in Appendix B.

Similar Schur complement preconditioners were used, on the linear algebra level,
in [19, 20] for optimal control problems of the CDR equation. [20] also considers mixed
constraints. The preconditioners perform well for different values of the problem pa-
rameters. The Schur complement preconditioners were replaced with approximations
based on the factorization approach by [19]. However, this approach does not work
well for problems with limited observation, i.e., when O ( Ω.

To solve the resulting linear system we use preconditioned Krylov subspace meth-
ods. We consider two approaches to realize our preconditioner: sparse direct meth-
ods and multigrid methods. For mid-sized problems, sparse direct solvers work well
since each component of the preconditioner is symmetric and positive definite. For
large-sized problems, we use a multigrid method to realize the fourth-order operator.
Combining the results from this paper and from [23, 24], it follows that the multi-
grid method we consider is robust in the grid-size, however, not necessarily in any of
the other problem parameters. Finding a multigrid method which is robust in the
grid-size, the chosen spline degrees, α, ε, β, σ and O, remains an open problem.

The outline of the paper is as follows: in the next section we perform the analysis
of the continuous problem. In Section 3, we analyse the discrete problem and provide
a condition for a stable discretization. IgA is then introduced in Section 4 along
with the proposed discretization. In Section 5, a priori error estimates are derived.
Section 6 contains a discussion of the solution of an one-dimensional problem and in
Section 7 we perform numerical experiments on two-dimensional problems and see
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how the preconditioner behaves.

2. Analysis of the continuous problem. To obtain a standard (weak) vari-
ational formulation of the state equation (1.2), one would choose the state variable
u and test function w̃ to be in H1

0 (Ω). Instead, we consider the strong variational
formulation, this is, find u ∈ H2(Ω) ∩H1

0 (Ω) such that

(q, w̃)L2(Ω) + (−ε∆u+ β · ∇u+ σu, w̃)L2(Ω) = (f, w̃)L2(Ω) ∀ w̃ ∈ L2(Ω).

The Lagrangian functional associated to (1.1)–(1.2) is

L(q, w, u) :=
1

2
‖u− ud‖2L2(O) +

α

2
‖q‖2L2(Ω)

+ (q, w)L2(Ω) + (−ε∆u+ β · ∇u+ σu,w)L2(Ω) − (f, w)L2(Ω),

where u ∈ H2(Ω) ∩ H1
0 (Ω), q ∈ L2(Ω) and the Lagrangian multiplier w ∈ L2(Ω).

From the first order necessary optimality conditions

∂L
∂q

(q, w, u) = 0,
∂L
∂w

(q, w, u) = 0,
∂L
∂u

(q, w, u) = 0,

which are also sufficient here, we obtain the optimality system:

Problem 2.1. Find (q, w, u) ∈ L2(Ω)× L2(Ω)×H2(Ω) ∩H1
0 (Ω) such that

α(q, q̃)L2(Ω) + (w, q̃)L2(Ω) = 0 ∀ q̃ ∈ L2(Ω),

(q, w̃)L2(Ω) + (−ε∆u+ β · ∇u+ σu, w̃)L2(Ω) = (f, w̃)L2(Ω) ∀ w̃ ∈ L2(Ω),

(w,−ε∆ũ+ β · ∇ũ+ σũ)L2(Ω) + (u, ũ)L2(O) = (ud, ũ)L2(O) ∀ ũ ∈ H2(Ω) ∩H1
0 (Ω).

Problem 2.1 can be written as

(2.1) A

qw
u

 =

 0
Mf

M̃Oud

 with A :=

αM M 0
M 0 K
0 K ′ MO

 .

Here, M : L2(Ω)→ (L2(Ω))′ represents the L2(Ω)-inner product, that is, we have

〈Mq,w〉 = (q, w)L2(Ω),

where 〈·, ·〉 denotes the duality product. The notation ” ′” is used to denote both dual
spaces and dual operators. K : H2(Ω) ∩H1

0 (Ω)→ (L2(Ω))′ is the state operator:

〈Ku,w〉 = (−ε∆u+ β · ∇u+ σu,w)L2(Ω).

Finally, MO : H2(Ω) ∩ H1
0 (Ω) → (H2(Ω) ∩ H1

0 (Ω))′ and M̃O : L2(O) → (H2(Ω) ∩
H1

0 (Ω))′, and both represent the L2(O)-inner product on the subdomain O.
We observe that the block operator A has a block tridiagonal form. Such tridi-

agonal operators are studied in [25, 4]. We use the Schur complement preconditioner
proposed in [25]:

(2.2) S(A) :=

Sq 0 0
0 Sw 0
0 0 Su

 ,
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where the components are

(2.3) Sq := αM, Sw :=
1

α
M, Su := MO + αK ′M−1K.

These Schur complements define weighted norms as follows:

‖q‖2Sq
:= 〈Sqq, q〉 = α‖q‖2L2(Ω),

‖w‖2Sw
:= 〈Sww,w〉 =

1

α
‖w‖2L2(Ω),

‖u‖2Su
:= 〈Suu, u〉 = ‖u‖2L2(O) + α‖ − ε∆u+ β · ∇u+ σu‖2L2(Ω).

(2.4)

The last norm follows from

〈
K ′M−1Ku, u

〉
= sup

06=w∈L2(Ω)

〈Ku,w〉2

〈Mw,w〉
= sup

06=w∈L2(Ω)

(−ε∆u+ β · ∇u+ σu,w)2
L2(Ω)

‖w‖2L2(Ω)

=
‖ − ε∆u+ β · ∇u+ σu‖4L2(Ω)

‖ − ε∆u+ β · ∇u+ σu‖2L2(Ω)

= ‖ − ε∆u+ β · ∇u+ σu‖2L2(Ω).

We show well-posedness with respect to the norms (2.4) by showing that the operator

(2.5) A : L2(Ω)× L2(Ω)×H2(Ω) ∩H1
0 (Ω)→ L2(Ω)′ × L2(Ω)′ × (H2(Ω) ∩H1

0 (Ω))′

is an isomorphism with respect to the norms (2.4). This is done by using the main
result in [25], which for our problem reads as follows.

Theorem 2.2. Assume the Schur complements in (2.3) are well defined and pos-
itive definite, that is,

(2.6) 〈Sqq, q〉 ≥ σq‖q‖2L2(Ω), 〈Sww,w〉 ≥ σw‖w‖2L2(Ω), 〈Suu, u〉 ≥ σu‖u‖2H2(Ω)

for some positive constants σq, σw and σu, which can depend on the given param-
eters. Then, A in (2.5) is an isomorphism, moreover, the condition number of the
preconditioned operator S−1A is bounded:

(2.7) κ
(
S−1A

)
≤ cos(π/7)

sin(π/14)
≈ 4.05.

The conditions in (2.6) ensure that the spaces L2(Ω), L2(Ω) and H2(Ω) ∩ H1
0 (Ω),

equipped with norms ‖·‖Sq
, ‖·‖Sw

and ‖·‖Su
, are complete. Before proving Condition

(2.6), we provide a useful lemma which bounds the H2-norm. The proof of this lemma
is presented in Appendix A.

Lemma 2.3. If the domain Ω has a Lipschitz boundary and
• the boundary is a polygon (polyhedron) or

• the domain is the image of a geometric mapping G : Ω̂ := (0, 1)d → Ω, where
both ‖∇rG‖L∞(Ω̂) and ‖(∇rG)−1‖L∞(Ω̂) are bounded for r ∈ {1, 2, 3},

then the H2-norm is bounded by the L2-norm of the Laplacian, i.e.,

(2.8) ‖u‖H2(Ω) ≤ CΩ‖∆u‖L2(Ω) ∀u ∈ H2(Ω) ∩H1
0 (Ω),

for a constant CΩ depending only on Ω.
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Theorem 2.4. If Ω is a domain such that the conditions of Lemma 2.3 hold, then
the assumptions of Theorem 2.2 are satisfied for Problem 2.1.

Proof. For simplicity, we prove this lemma only for σ = 0. An extension to the
case σ > 0 is straight-forward.

The first two conditions are trivial since 〈Sqq, q〉 = α‖q‖2L2(Ω) and

〈Sww,w〉 = 1
α‖w‖

2
L2(Ω). For the third condition, let

δ :=
‖β‖

ε
cP

+ ‖β‖
,

where ‖β‖ = ‖β‖L∞(Ω) and cP is constant from the Poincaré inequality, that is, we
have

‖u‖L2(Ω) ≤ cp‖∇u‖L2(Ω).

Note that δ ∈ [0, 1). Let u ∈ H2(Ω) ∩H1
0 (Ω) be arbitrary but fixed. We consider the

two cases:

(2.9) ‖β‖‖∇u‖L2(Ω) < δε‖∆u‖L2(Ω) and ‖β‖‖∇u‖L2(Ω) ≥ δε‖∆u‖L2(Ω).

First case. From the definition, we have

〈
K ′M−1Ku, u

〉
= sup

06=w∈L2(Ω)

(β · ∇u− ε∆u,w)
2
L2(Ω)

‖w‖2L2(Ω)

.

By setting w = −ε∆u, we get using the Cauchy–Schwarz inequality that〈
K ′M−1Ku, u

〉
≥

((β · ∇u,−ε∆u)L2(Ω) + ε2‖∆u‖2L2(Ω))
2

ε2‖∆u‖2L2(Ω)

≥
(−‖β‖‖∇u‖L2(Ω)ε‖∆u‖L2(Ω) + ε2‖∆u‖2L2(Ω))

2

ε2‖∆u‖2L2(Ω)

= (−‖β‖‖∇u‖L2(Ω) + ε‖∆u‖L2(Ω))
2.

Using the first inequality in (2.9), we obtain〈
K ′M−1Ku, u

〉
≥ (−‖β‖‖∇u‖L2(Ω) + ε‖∆u‖L2(Ω))

2 ≥ ((1− δ)ε‖∆u‖L2(Ω))
2

=
ε4

(ε+ cP ‖β‖)2
‖∆u‖2L2(Ω).

Second case. By setting w = u, we get〈
K ′M−1Ku, u

〉
≥

((β · ∇u, u)L2(Ω) + ε‖∇u‖2L2(Ω))
2

‖u‖2L2(Ω)

=
ε2‖∇u‖4L2(Ω)

‖u‖2L2(Ω)

using integration by parts. Due to the homogeneous Dirichlet boundary conditions
and ∇ · β = 0, the term (β · ∇u,w)L2(Ω) is skew symmetric and vanishes for w = u.

Finally, we use ‖u‖L2(Ω) ≤ cp‖∇u‖L2(Ω) and the second inequality in (2.9), which
gives 〈

K ′M−1Ku, u
〉
≥
ε2‖∇u‖4L2(Ω)

‖u‖2L2(Ω)

≥ ε2

c2P
‖∇u‖2L2(Ω)

≥ δ2ε4

‖β‖2c2P
‖∆u‖2L2(Ω) =

ε4

(ε+ cP ‖β‖)2
‖∆u‖2L2(Ω).
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To summarize, in both cases we get

〈Suu, u〉 = ‖u‖2L2(O) + α
〈
K ′M−1Ku, u

〉
≥ α

〈
K ′M−1Ku, u

〉
≥ α ε4

(ε+ cP ‖β‖)2
‖∆u‖2L2(Ω) ≥ α

CΩε
4

(ε+ cP ‖β‖)2
‖u‖2H2(Ω).

The last inequality follows from Lemma 2.3.

Theorem 2.2 and Theorem 2.4 show that Problem 2.1 is well-posed with respect to
the norms in (2.4). The boundedness and coercivity constants are bounded indepen-
dent from the regularization parameter α as well as the problem parameters ε, β and
σ. Consequently, the operator preconditioner (2.2) is a robust preconditioner for the
optimality system, that is, the condition number is uniformly bounded independently
of the above mentioned parameters. So far, we have only analyzed the problem on
the continuous level. In the next section, we carry this analysis over to the discrete
case and provide a computationally feasible preconditioner.

3. Analysis of the discrete problem. We consider conforming discretizations,
that is, we choose the finite-dimensional spaces Qh and Uh such that they satisfy

Qh ⊂ L2(Ω) and Uh ⊂ H2(Ω) ∩H1
0 (Ω).

Applying Galerkin’s principle to (2.1) leads to the discrete variational problem for
the functions (qh, wh, uh) ∈ Qh × Qh × Uh, which we immediately write in matrix-
vector notation. We denote the vector representation of functions in these spaces by
underlined versions of the corresponding symbols, i.e., for qh ∈ Qh the corresponding
coefficient vector is q

h
∈ RdimQh . With a slight abuse of notation, we use the same

notation also for the right-hand-side vectors f
h

and ud,h, which are obtained by
testing the corresponding linear functionals with the basis functions in Qh and Uh,
respectively, see, e.g., [18, Section 6] for further details. Furthermore, operators with
subscript h denote matrix representations of the operators.

Using this notation, the discrete problem reads as follows.

Problem 3.1. Find (q
h
, wh, uh) ∈ RdimQh × RdimQh × RdimUh such that

(3.1) Ah

qhwh
uh

 =

 0
f
h

ud,h

 with Ah :=

αMh Mh 0
Mh 0 Kh

0 KT
h MO,h

 .

The exact Schur complement preconditioner (2.2) of the discretized system is

(3.2) S(Ah) =

αMh 0 0
0 1

αMh 0
0 0 MO,h + αKT

hM
−1
h Kh

 .

Under the mild condition Uh ⊆ Qh this preconditioner is symmetric positive definite.
This is a straight forward extension of [25, Lemma 4.4] by using the fact that (β ·
∇uh, uh)L2(Ω) = 0. In this case, Theorem 2.2 yields the following condition number
bound:

κ
(
(S(Ah))−1Ah

)
≤ cos(π/7)

sin(π/14)
≈ 4.05 .
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This preconditioner cannot be efficiently realized since the matrix M−1
h is dense. So,

we use the following preconditioner motivated by the norms (2.4) on the discretization
spaces instead:

(3.3) Sh :=

αMh 0 0
0 1

αMh 0
0 0 MO,h + αBh

 ,

where Bh is the matrix representation of the linear operator B : H2(Ω) ∩H1
0 (Ω) →

(H2(Ω) ∩H1
0 (Ω))′,

(3.4) 〈Bu, ũ〉 = (−ε∆u+ β · ∇u+ σu,−ε∆ũ+ β · ∇ũ+ σũ)L2(Ω)

on Uh. On the continuous level, the operators B and K ′M−1K coincide. In general,
this does not carry over to the discrete case. The following lemma gives sufficient
conditions that guarantee that Bh and KT

hM
−1
h Kh coincide.

Lemma 3.2. If

(3.5) (−ε∆ + β · ∇+ σ)Uh ⊂ Qh,

then KT
hM

−1
h Kh = Bh and thus S(Ah) = Sh.

Proof. Let uh ∈ Uh be arbitrary but fixed with coefficient vector uh. The defini-
tions yield

〈
KT
hM

−1
h Khuh, uh

〉
= sup
wh∈RdimQh

〈Khuh, wh〉
2

〈Mhwh, wh〉

= sup
wh∈Qh

(−ε∆uh + β · ∇uh + σuh, wh)
2
L2(Ω)

‖wh‖2L2(Ω)

.

Since (−ε∆ + β · ∇ + σ)Uh ⊂ Qh, the supremum is attained for wh = −ε∆uh + β ·
∇uh + σuh, and we have

〈
KT
hM

−1
h Khuh, uh

〉
= sup
wh∈Qh

(−ε∆uh + β · ∇uh + σuh, wh)
2
L2(Ω)

‖wh‖2L2(Ω)

= ‖ − ε∆uh + β · ∇uh + σuh‖2L2(Ω) = 〈Bhuh, uh〉 .

Therefore, KT
hM

−1
h Kh = Bh and thus S(Ah) = Sh.

4. Isogeometric analysis. Due to requirement Uh ⊂ H2(Ω) ∩H1
0 (Ω), we need

a smooth discretization space. We achieve this by using IgA. We give a brief intro-
duction to the approximation spaces in use. Let Sp,k,`(0, 1) be the space of B-spline
functions on the unit interval (0, 1) which are k-times continuously differentiable and
piecewise polynomials of degree p on a uniform grid with grid size 2−`. For the space
of B-splines with maximum continuity, that is, with k = p− 1, we only write Sp,`.

On the parameter domain Ω̂ := (0, 1)d, we use a tensor-product B-spline space,
denoted by

Sdp,k,` :=

d⊗
i=1

Sp,k,`(0, 1).
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For ease of notation, we assume to have the same spline degree p, the same continuity
k and the same number of uniform refinement steps `, for each spatial dimension. We
assume that the domain Ω can be parametrized by a geometry mapping G : Ω̂→ Ω =
G(Ω̂) with the property

(4.1) ‖∇rG‖L∞(Ω̂) ≤ c1 and ‖ (∇rG)
−1 ‖L∞(Ω̂) ≤ c2, for r = 1, 2, 3,

for some constants c1 and c2. The discretization space Sp,k,` on the domain Ω is
defined using the pull-back principle as

Sp,k,`(Ω) :=
{
f ◦G−1 : f ∈ Sdp,k,`

}
.

For more information on IgA, see the survey article [5] and the references therein. We
use spline spaces with maximum smoothness as the discrete state space and reduce
the smoothness for Qh accordingly. More precisely, we use

(4.2) Qh := Sp,p−3,`(Ω) and Uh := Sp,`(Ω) ∩H1
0 (Ω) with p ≥ 2.

The following lemma shows that, if we consider the special case of box domains (if
trivially parametrized) and constant convection, the condition of Lemma 3.2 holds.

Theorem 4.1. If Ω = (0, 1)d, Qh = Sdp,p−3,` and Uh = Sdp,` ∩ H1
0 (Ω) and if the

convection β is constant, then

S(Ah) = Sh and κ
(
S−1
h Ah

)
≤ cos(π/7)

sin(π/14)
≈ 4.05.

Proof. For sake of simplicity, we restrict the proof to the two-dimensional case.
Clearly,

f ′ ∈ Sp−1,k−1,`(0, 1) ∀ f ∈ Sp,k,`(0, 1)

together with

Sp−1,k−1,`(0, 1) ⊂ Sp,k−1,`(0, 1) and Sp,k,`(0, 1) ⊂ Sp,k−2,`(0, 1),

see [5]. Let u ∈ S2
p,k,` = Sp,k,`(0, 1)⊗ Sp,k,`(0, 1). Then,

∂2u

∂x2
1

∈ Sp−2,k−2,`(0, 1)⊗ Sp,k,`(0, 1) ⊂ S2
p,k−2,`,

∂2u

∂x2
2

∈ Sp,k,`(0, 1)⊗ Sp−2,k−2,`(0, 1) ⊂ S2
p,k−2,`,

and, by combining these results, also

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

∈ S2
p,k−2,`.

Since β = (β1, β2) is constant we also have

β · ∇u = β1
∂u

∂x1
+ β2

∂u

∂x2
∈ S2

p,k−2,`.

To summarize, for every u ∈ S2
p,k,`, we have

−ε∆u+ β · ∇u+ σu ∈ S2
p,k−2,`,

hence Condition (3.5) in Lemma 3.2 holds and we have S(Ah) = Sh. The condition
number bound follows from Theorem 2.2.
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If the domain is not a box domain or if the convection is not constant, then
Theorem 4.1 cannot be applied. Nevertheless, the numerical results presented in
Section 7 indicate that the spaces proposed in (4.2) work well even for more complex
domains and variable convection.

5. Error estimates. In this section, we derive discretization error estimates for
Problem 3.1. Let A(x, x̃) denote the bilinear form in Problem 2.1, where x, x̃ ∈ X
denotes the triplet (q, w, u) ∈ L2(Ω)× L2(Ω)×H2(Ω) ∩H1

0 (Ω), with the norm

‖x‖2S = ‖q‖2Sq
+ ‖w‖2Sw

+ ‖u‖2Su
.

The discrete triplet (qh, wh, uh) ∈ Qh × Qh × Uh is denoted by xh ∈ Xh. Galerkin
orthogonality reads as follows:

(5.1) A(x− xh,yh) = 0 ∀yh ∈ Xh.

Since Problem 2.1 is well-posed (Theorem 2.2), we have boundedness

(5.2) A(x,y) ≤ c‖x‖S‖y‖S ∀x,y ∈ X

and inf-sup stability

(5.3) sup
0 6=y∈X

A(x,y)

‖y‖S
≥ c‖x‖S ∀x ∈ X,

where c/c = κ(S−1A). The boundedness also holds for a conforming discretization
space Xh ⊂ X with the same constant c. If the condition (3.5) in Lemma 3.2 holds,
then also the inf-sup holds with the same constant c. Using this and the ideas of [1],
we derive the following discretization error estimate.

Lemma 5.1. If xh ∈ Xh is the solution to (3.1) for a discretization space satisfy-
ing condition (3.5) and if x ∈ X is the solution of (2.1), then we have the estimate

(5.4) ‖x− xh‖S ≤ (1 + κ(S−1A)) inf
yh∈Xh

‖x− yh‖S .

Proof. Let yh and zh be arbitrary functions in Xh. Due to Galerkin orthogonality
(5.1), we have

A(xh − yh, zh) = A(xh − x + x− yh, zh) = A(x− yh, zh).

Combining this with the boundedness condition (5.2) gives

A(xh − yh, zh) ≤ c‖x− yh‖S‖zh‖S ∀yh, zh ∈ Xh.

Using the discrete inf-sup gives

c‖xh − yh‖S ≤ sup
06=zh∈Xh

A(xh − yh, zh)

‖zh‖S
≤ c‖x− yh‖S ∀yh ∈ Xh.

Finally, we use the triangle inequality and c/c = κ(S−1A) to obtain the desired result

‖x− xh‖S ≤ ‖x− yh‖S + ‖xh − yh‖S ≤ (1 + κ(S−1A))‖x− yh‖S ∀yh ∈ Xh.
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Let Ω = Ω̂ := (0, 1)d and let the convection β be constant. Since we assume a
trivial parametrization, we have the discretization spaces Qh = Sdp,p−3,` and Uh =

Sdp,` ∩H1
0 (Ω̂).

To derive the error estimates, we assume that the solution of (2.1) satisfies the

regularity assumption (q, w, u) ∈ H1(Ω̂)×H1(Ω̂)×H3(Ω̂) ∩H1
0 (Ω̂).

Now, we estimate the approximation error term in (5.4) from above. First, we
observe that

inf
yh∈Xh

‖x− yh‖S ≤

inf
qh∈Sd

p,p−3,`

α‖q − qh‖2L2(Ω̂)
+ inf
wh∈Sd

p,p−3,`

1

α
‖w − wh‖2L2(Ω̂)

+ inf
uh∈Sd

p,`∩H
1
0 (Ω̂)
‖u− uh‖2Su

.

The two first terms can be bounded by using the following approximation error esti-
mate

(5.5) inf
qh∈Sd

p,p−3,`

‖q − qh‖L2(Ω̂) ≤
h

4
√

3
‖∇q‖L2(Ω̂),

see [22, Corollary 1]. The estimate for the last term

inf
uh∈Sd

p,`∩H
1
0 (Ω̂)
‖u− uh‖2Su

is more involved. Before handling this term, we need a convenient notation and some
auxiliary approximation error estimates.

Notation 5.2. In what follows, c is a generic positive constant independent of α,
σ, β, ε, h and p, but may depend on the spatial dimension d and the observation
domain O.

In Appendix B, we extend some of the results of [22, 23, 24]. The main result is
summarized in the following theorem.

Theorem 5.3. Let Πp : H3(Ω̂) ∩ H1
0 (Ω̂) → Sdp,` ∩ H1

0 (Ω̂) be the H2-orthogonal
projector, where p ≥ 3 and ` ≥ 1. Then,

‖∇2(I −Πp)u‖L2(Ω̂) ≤ ch ‖∇
3u‖L2(Ω̂),(5.6)

‖∇(I −Πp)u‖L2(Ω̂) ≤ ch
2‖∇3u‖L2(Ω̂),(5.7)

‖(I −Πp)u‖L2(Ω̂) ≤ ch
3‖∇3u‖L2(Ω̂) ∀u ∈ H3(Ω̂) ∩H1

0 (Ω̂).(5.8)

Remark 5.4. In the statement of Theorem 5.3, the parameter domain Ω̂ is consid-
ered. This result can be extended to physical domains if the corresponding geometry
function G is sufficiently smooth, cf. [24].

With Theorem 5.3, we can derive an error estimate for our problem.

Theorem 5.5. Let Ω := Ω̂ := (0, 1)d with d ∈ N, let β ∈ Rd be constant and let

(qh, wh, uh) ∈ Sdp,p−3,` × Sdp,p−3,` × Sdp,` ∩H1
0 (Ω̂) with p ≥ 3 and ` ≥ 1, be the solution

to (3.1). If (q, w, u) ∈ H1(Ω̂)×H1(Ω̂)×H3(Ω̂)∩H1
0 (Ω̂) is the solution of (2.1), then

we have the following estimates:

‖q − qh‖Sq
+ ‖w − wh‖Sw

+ ‖u− uh‖Su
≤

ch

(√
α‖∇q‖L2(Ω̂) +

1√
α
‖∇w‖L2(Ω̂) +

√
α max

{
ε, ‖β‖h,

(
σ+

1√
α

)
h2

}
‖∇3u‖L2(Ω̂)

)
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Proof. Let ũh := Πpu. Then, we have for all u ∈ H3(Ω̂) ∩H1
0 (Ω̂)

‖u− ũh‖2Su
= ‖u− ũh‖2L2(O) + α‖(−ε∆ + β · ∇+ σ)(u− ũh)‖2

L2(Ω̂)
.

For the first term, we simply extend the norm from O to Ω̂ and obtain

‖u− ũh‖2L2(O) ≤ ‖u− ũh‖
2
L2(Ω̂)

≤ c h6‖∇3u‖2
L2(Ω̂)

.

For the second term, we use the triangle inequality and Theorem 5.3, and we get

α‖(−ε∆ + β · ∇+ σ)(u− ũh)‖2
L2(Ω̂)

≤ 3α
(
ε2‖∆(u− ũh)‖2

L2(Ω̂)
+ ‖β‖2‖∇(u− ũh)‖2

L2(Ω̂)
+ σ2‖u− ũh‖2L2(Ω̂)

)
≤ c α

(
ε2h2 + ‖β‖2h4 + σ2h6

)
‖∇3u‖2

L2(Ω̂)
.

Combining these results gives

(5.9) inf
ũh∈Sd

p,`∩H
1
0 (Ω̂)
‖u− ũh‖Su

≤ c
√
αh max

{
ε, ‖β‖h, (σ + 1/

√
α)h2

}
‖∇3u‖L2(Ω̂).

The theorem follows from combining Lemma 5.1 with Equation (5.5) and Equa-
tion (5.9).

Remark 5.6. Theorem 5.5 is somewhat restrictive since it requires the domain to
be a box domain and the convection to be constant. These requirements are needed
for the proof of the discrete inf-sup stability. The numerical results presented in
Section 7 indicate that the restrictions are not needed.

6. Numerical experiments: Accuracy of the solution. In this section we
compare the solution of the forward problem to the (state) solution of the optimal
control problem to investigate the fact that the optimal control problem naturally in-
troduces a non-standard Petrov-Galerkin method for the state equation. We consider
a well-known one-dimensional problem [7]:

−∂xu(x)− ε ∂xxu(x) = 0 in (0, 1), u(0) = 0, u(1) = 1,

whose exact solution is

u(x) =
e−x/ε − 1

e−1/ε − 1
.

This problem is used as state equation in our optimal control problem (Problem 1.1),
where we choose β = −1, σ = 0, f = 0, ud to be the exact solution of the forward
problem, and the boundary conditions on u to be as for the forward problem. The
analytical solution of the optimal control problem is

q(x) = 0, w(x) = 0, u(x) =
e−x/ε − 1

e−1/ε − 1
.

We use the discretization spaces

Qh = Sp,p−3,`(0, 1) and Uh = {uh ∈ Sp,`(0, 1) : u(0) = 0, u(1) = 1}

for the optimal control problem, which satisfy the condition (3.5). We compare the
numerical solution for the state with the numerical solution of the forward problem,
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where we use Uh as trial and test space. No stabilization techniques are used. The
diffusion is set to ε = 0.01 and α = 0.001 for the optimal control problem. Three
observation domains are considered: Full observation, that is, O = Ω = (0, 1), and
partial observation on O = (0, 1

4 ) and on O = ( 3
4 , 1). The numerical solutions are

displayed in Figures 1 to 4. The plots indicate that the forward solution is unstable
for coarse discretizations. The non-physical oscillations start in the boundary layer
and propagate into the remainder of the computational domain. These kinds of insta-
bilities are often remedied by upwind and/or Petrov-Galerkin schemes [7]. We remark
though that our Petrov-Galerkin like approach for the state equation does not resem-
ble any of the common Petrov-Galerkin schemes for this equation, as far as we know.
The state solution (of the optimal control problem) does not have these instabilities.
In fact, the state operator Kh is discretized with a Petrov–Galerkin method as the
trial space is Uh and the test space is Qh.
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Fig. 1. Full observation on O = (0, 1) with p = 2 (both), ` = 4 (left), ` = 6 (right).
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Fig. 2. Partial observation on O = (0, 1
4

) with p = 2 (both), ` = 4 (left), ` = 6 (right).

In Figure 2, we consider the optimal control problem with observation on (0, 1
4 ).

This is only a quarter of the whole domain, but it is located at the boundary layer.
The solutions for the state variable are almost identical to those obtained for the case
of full observation.

Next we look at the solution where the observation domain is ( 3
4 , 1). Here the

solution is almost constant (u(x) ≈ 1). From Figures 3 and 4, we see that the approx-
imation is not good. In the left plot of Figure 3, we see that the boundary layer is not
captured. However, the error does not propagate into the observation domain. For h-
refinement, see Figure 3 (right) and Figure 4 (left), we observe that the approximation
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Fig. 3. Partial observation on O = ( 3
4
, 1) with p = 2 (both), ` = 4 (left), ` = 6 (right).
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Fig. 4. Partial observation on O = ( 3
4
, 1) with p = 2, ` = 8 (left) and p = 4, ` = 6 (right).

improves slowly. For p-refinement, see Figure 4 (right), the approximation improves
significantly. Since we use splines, increasing the spline degree by one means that the
number of degrees of freedom is only increased by one, while each h-refinement step
doubles the number of degrees of freedom.

Remark 6.1. The effect of increasing the spline degree compared to h-refinement
as shown in Figure 4 is somewhat surprising. We are not completely sure why larger
spline degrees are so effective. Unfortunately, the error estimate in Theorem 5.5 does
not provide any explanation for this behavior. Further analysis is needed to explain
this properly.

7. Numerical experiments for exact and inexact preconditioners. In
this section, we analyze the convergence of Krylov space solvers when the proposed
preconditioner is used. In the first subsection, we consider an exact realization of the
preconditioner. A multigrid approximation is then considered in the second subsec-
tion.

We have done the numerical experiments for two model domains, in both cases
for d = 2. The first domain is a box-domain, more precisely, Ω is the unit square, see
Figure 5 (left), which is parameterized with the identity function. For this domain,
the conditions of Theorem 4.1 are satisfied. In Model problem 7.1, we have full
observation and in Model problem 7.2, the observation is restricted to the subdomain
represented by the smaller area in Figure 5 (left). In all model problems, the desired
state ud is a step function with value ud = 1 inside a circle and with value ud = 0
outside the circle. The support of ud is shown as the dashed lines in Figure 5.
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Fig. 5. Computational domains Ω, partial observation domains O (dark blue), and support of
desired state (inside of dashed circles).

Model problem 7.1 (Unit square and constant convection with full observa-
tion). Let Ω := O := (0, 1)2 be the computational domain, which is also the observa-
tion domain. The convection is β = (−2, 1) and there is no reaction σ = 0 or source
term f = 0. The desired state is

ud(x, y) =

{
1 if (x− 3

8 )2 + (y − 5
8 )2 ≤ 1

16

0 otherwise.

The diffusion ε and regularization parameter α will vary.

Model problem 7.2 (Unit square and constant convection with limited obser-
vation). Let Ω = (0, 1)2 be the computational domain and O = ( 1

4 ,
3
4 )2 be the obser-

vation domain. The remainder of this problem is the same as for Model problem 7.1.

Furthermore, we consider a non-trivial geometry Ω, which is a approximation of a
quarter annulus by means of a B-spline parameterization, see Figure 5 (right). Again,
Model problem 7.3 is a problem with full observation and the observation domain in
Model problem 7.4 is the smaller area in Figure 5 (right). We observe that for this
domain, the conditions of Theorem 4.1 are not satisfied.

Model problem 7.3 (Quarter annulus and varying convection with full obser-
vation). Let Ω = O = G((0, 1)2) with G : (0, 1)2 → R2 and

(7.1) G(x̂) =

(
(1 + x̂1)(1− x̂2)(1 + 2(

√
2− 1)x̂2)

(1 + x̂1)x̂2(2
√

2− 1− 2(
√

2− 1)x̂2)

)
be the computational domain, which is also the observation domain. The convection
is β = (y, 1 + x2) and there is no reaction σ = 0 or source term f = 0. The desired
state is

ud(x, y) =

{
1, if (x− x0)2 + (y − y0)2 ≤ 1

16

0, otherwise,

where (x0, y0) = G( 3
8 ,

5
8 ). The diffusion ε and regularization parameter α will vary.

Model problem 7.4 (Quarter annulus and varying convection with limited ob-
servation). Let Ω = G((0, 1)2) be the computational domain and O = G(( 1

4 ,
3
4 )2) be

the observation domain, where G is as in (7.1). The remainder of this problem is the
same as for Model problem 7.3.
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For all model problems, we consider a discretization of the optimality system
using the spaces given in (4.2) as outlined in Section 4. The resulting linear system
of equations

Ahxh = bh

is solved using the MINRES method, preconditioned with the proposed Schur comple-
ment preconditioner (3.3). We use a random initial guess xh,0. The stopping criterion
is

‖rk‖ ≤ 10−8‖r0‖,
where rk := bh −Ahxh,k denotes the residual and ‖ · ‖ is the Euclidean norm.

7.1. Results with exact preconditioner. In this section, we present the re-
sults for the Schur complement preconditioner (3.3) when realized using a sparse
Cholesky decomposition.

Table 1 shows the iteration numbers needed to reach the stopping criteria for full
and partial observation (Model problems 7.1 and 7.2). In these tables, α and ε are
varied, while p = 2 and ` = 6 are fixed. In Table 2, we set ε = 10−3 and vary the
refinement level ` and α. From the tables, we observe that for the partial observation
problem, we need a few more iterations for small values of α. This is probably because
MO,h is singular in case of partial observation. The iteration numbers are relatively
small for all considered values of α, ε and `. This is predicted by the theory as Model
problems 7.1 and 7.2 satisfy the conditions of Theorem 4.1.

Table 1
Iteration numbers: Model problem 7.1 (left) and 7.2 (right), p = 2, ` = 6.

ε \ α 100 10−3 10−6 10−9

100 12 26 60 72
10−3 15 47 26 11
10−6 15 46 26 11
10−9 15 46 26 11

ε \ α 100 10−3 10−6 10−9

100 12 20 57 78
10−3 15 41 54 19
10−6 14 41 53 19
10−9 14 41 53 19

Table 2
Iteration numbers: Model problem 7.1 (left) and 7.2 (right), p = 2, ε = 10−3.

` \ α 100 10−3 10−6 10−9

4 15 46 14 7
5 15 47 19 8
6 15 47 26 11
7 15 46 38 11

` \ α 100 10−3 10−6 10−9

4 15 46 35 15
5 15 43 44 17
6 15 41 54 19
7 15 39 55 22

Next, we consider Model problems 7.3 and 7.4, which are the problems where the
computational domain is a quarter annulus. The iteration numbers are shown in Ta-
bles 3 and 4. Note that the conditions of Theorem 4.1 are not satisfied. Nevertheless,
the iteration numbers are comparable with those of Tables 1 and 2.

Remark 7.5. For ε = 1, the iteration numbers in Table 1 (and Table 3) are grow-
ing as α becomes smaller. This may appear strange since we have proven that the
condition number (for Table 1) is less then 4.05. Describing convergence estimates
for Krylov subspace methods in term of only the condition number can be misleading
and/or insufficient, cf. [16]. The different iteration numbers for various values of ε
and α can be explained by the distribution of the eigenvalues. For small iteration
numbers the eigenvalues are more clustered. For ε = 1, the iteration numbers starts
decreasing when α < 10−9.
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Table 3
Iteration numbers: Model problem 7.3 (left) and 7.4 (right), p = 2, ` = 6.

ε \ α 100 10−3 10−6 10−9

100 17 41 62 64
10−3 18 48 29 11
10−6 18 48 29 11
10−9 18 48 29 11

ε \ α 100 10−3 10−6 10−9

100 17 32 60 76
10−3 17 46 54 25
10−6 17 46 54 25
10−9 17 46 54 25

Table 4
Iteration numbers: Model problem 7.3 (left) and 7.4 (right), p = 2, ε = 0.001.

` \ α 100 10−3 10−6 10−9

4 18 47 16 10
5 18 48 21 11
6 18 48 29 11
7 16 48 42 12

` \ α 100 10−3 10−6 10−9

4 16 48 40 25
5 16 46 46 25
6 17 46 54 25
7 16 46 55 28

7.2. Results with inexact preconditioner. So far, we have realized the pro-
posed preconditioners using sparse direct solvers. This approach works well for mid-
sized problems. For large-sized problems, alternatives are of interest since they might
be faster or have a smaller memory footprint. We replace Sh by a spectrally equiv-
alent approximation S̃h, where the action of S̃−1

h can be calculated efficiently. The
spectral equivalence should be robust with respect to the parameters of interest.

For the approximation of the mass matrix Mh, which is found in the first and the
second block of the overall preconditioner, we exploit the fact that the mass matrix on
the parameter domain is the Kronecker product of two mass matrices that correspond
to the discretization of a univariate problem, i.e., we have

Mh = M (1) ⊗M (2),

where ⊗ denotes the Kronecker product and M (1) and M (2) denote the univariate
mass matrices. For the Model problems 7.3 and 7.4, we use a similar preconditioner
that incorporates a tensor-rank-1 approximation of the geometry, which is derived as
follows. As common in IgA, the bilinear forms are computed by transformation to
the parameter domain, i.e., we have

(u, v)L2(Ω) =

∫ 1

0

∫ 1

0

J(x1, x2)u(x1, x2) v(x1, x2) dx2 dx1,

where J(x) = |det∇G(x)|, which we approximate by

(u, v)
M̃

:=
1

J( 1
2 ,

1
2 )

∫ 1

0

∫ 1

0

J(x1,
1
2 ) J( 1

2 , x2)u(x1, x2) v(x1, x2) dx2 dx1.

The corresponding mass matrix M̃h has tensor-product structure:

M̃h = M̃ (1) ⊗ M̃ (2),

where M̃ (1) and M̃ (2) denote the univariate mass matrices, which are lumped with
J(x1,

1
2 ) and J( 1

2 , x2), respectively. Straight-forward computations show that the
relative condition number of the exact mass matrix and its approximation can be
bounded uniformly by a term that only depends on G. For realizing the inverse of M̃h
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efficiently, we make use of the fact that the application of the inverse of a Kronecker
product to some vector can be efficiently realized using sparse direct solvers that
realize the application of (M̃ (1))−1 and (M̃ (2))−1.

For the approximation of the inverse of the matrix MO,h + αBh, representing
a fourth-order PDE, we use a geometric multigrid solver. Following the standard
approach, we assume to have a hierarchy of quasi-uniform grids, where the grid sizes
of two consecutive grids differ by a factor of two. Since we have tensor-product grids in
Isogeometric Analysis, such a grid hierarchy can be easily constructed by coarsening.
The coarsest grid level is chosen such that there are no inner knots. On each of these
grid levels ` = 0, 1, . . . , L, we introduce a discretization space Uh`

= Sp,`(Ω)∩H1
0 (Ω).

One iterate of the multigrid solver consists of the following steps:
• Apply ν = 2 forward Gauss-Seidel sweeps as pre-smoother.
• Apply coarse-grid correction. Since we have nested grids (Uh`

⊂ Uh`+1
), the

coarse-grid correction is realized based on canonical embedding. For ` > 1,
the problem on the next coarser level ` − 1 is solved by applying 1 step of
the multigrid method recursively (V-cycle). Only on the coarsest grid level
` = 0, the problem is solved using a direct solver.

• Apply ν = 2 backward Gauss-Seidel sweeps as post-smoother.
The robustness of that multigrid method in the grid size is a straight-forward

extension of the known results for the biharmonic problem, cf. [23]. It is worth
mentioning that this argument does not cover the robustness in any of the other
parameters that affect the multigrid solver.

We again use a MINRES solver, now preconditioned with the presented tensor-
rank-one approximation of the mass matrices and with one step of the multigrid solver.
The corresponding numerical results are presented in Tables 5 and 6. In Table 5, we
observe that the iteration counts are uniformly bounded for all choices of ε and α,
however with much larger values than for the exact preconditioner. This is related to
the well-known fact that standard Gauss-Seidel smoothers do not perform well in the
framework of Isogeometric Analysis. The convergence deteriorates particularly if the
spline degree is increased, which can also be seen in Table 6. Furthermore, in Table 6,
we can also study the dependence of the convergence on the grid size. Although, the
convergence theory predicts a robust convergence behavior, this is not observed in
practice for the grid levels considered. Apparently, this is the case since the Gauss-
Seidel smoother does not work well for spline bases, even for moderate values of p,
cf., e.g., [24].

Table 5
Iteration numbers: Model problem 7.3 (left) and 7.4 (right), p = 2, ` = 6.

ε \ α 100 10−3 10−6 10−9

100 128 108 104 67
10−3 169 81 42 26
10−6 179 81 42 26
10−9 179 81 42 26

ε \ α 100 10−3 10−6 10−9

100 128 104 132 175
10−3 171 112 139 172
10−6 178 112 142 174
10−9 178 112 142 174

To obtain a better convergence behavior, we consider a second approach for the
smoother: a macro Gauss-Seidel approach. This approach makes use of the tensor-
product structure of the discretization. For two dimensions, the degrees of freedom
can be represented as a grid in the plane, see Figure 6 (left). Each dot represents
one degree of freedom or basis function. We start by introducing a macro grid that
groups a×a degrees of freedom. (If the number of rows or columns is not divisible by
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Table 6
Iteration numbers: Model problem 7.3 (left) and 7.4 (right), α = 0.001, ε = 0.001.

` \ p 2 3 5 7

4 49 64 191 730
5 55 61 150 510
6 81 86 137 440
7 118 134 179 380

` \ p 2 3 5 7

4 57 63 152 567
5 77 85 135 437
6 112 123 170 414
7 152 162 204 364

a, the last macro elements in each direction are correspondingly smaller.) The macro
grid is depicted in Figure 6 (left).

Each of the macro elements consists of the degrees of freedom that belong to the
element of the macro grid and of degrees of freedom of the neighboring elements of
the macro grid. Here, we use b additional rows and columns each on each of the sides,
see Figure 6 (right).

a

a

a

a

b

b

Fig. 6. The construction of the macro Gauss-Seidel approach.

Then, a macro Gauss-Seidel sweep is a standard multiplicative Schwarz method,
where the subspaces are the degrees of freedom that belong to each of the macro
elements. So, the choice a := 1 and b := 0 corresponds to a standard Gauss-Seidel
sweep.

In the following, we use the patch size a := p and the overlap size b := p − 1.
As for the standard Gauss-Seidel case, we apply a forward sweep for pre-smoothing
and a backward sweep, i.e., with the reverse ordering of the macro elements, for post-
smoothing. The problem within the (relatively small) subspaces is solved by means
of a direct solver. The number of smoothing steps ν is set to 1.

The corresponding iteration counts are presented in Tables 7 and 8. In all cases,
we obtain significantly better convergence rates than for a standard Gauss-Seidel
smoother. Table 8 shows that the resulting method is robust in the spline degree,
and that the method is quite robust in the grid size. Table 7 shows that the overall
method is also robust in the parameter ε and well-bounded for α.

Appendix A. Proof of Lemma 2.3. The inequality in Lemma 2.3 is some-
times referred to as the second fundamental inequality, cf. [15]. For domains with
polygonal (polyhedral) Lipschitz boundary the result is known, but for domains which
are images of geometry mappings we were unable to find any result. We therefore
provide a proof in this appendix. We start with providing a density result.

Lemma A.1. Let the domain Ω have a Lipschitz boundary and be the image of a
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Table 7
Iteration numbers: Model problem 7.3 (left) and 7.4 (right), p = 2, ` = 6.

ε \ α 100 10−3 10−6 10−9

100 50 51 62 64
10−3 91 49 29 13
10−6 96 49 29 13
10−9 96 49 29 13

ε \ α 100 10−3 10−6 10−9

100 50 46 72 98
10−3 94 77 99 103
10−6 96 77 99 103
10−9 96 77 99 103

Table 8
Iteration numbers: Model problem 7.3 (left) and 7.4 (right), α = 0.001, ε = 0.001.

` \ p 2 3 5 7

4 47 48 48 48
5 48 48 48 48
6 49 48 48 48
7 64 49 48 48

` \ p 2 3 5 7

4 49 48 46 48
5 57 52 46 46
6 77 64 53 49
7 96 80 58 52

geometric mapping G : Ω̂ := (0, 1)d → Ω, where both ‖∇rG‖L∞ and ‖(∇rG)−1‖L∞
are bounded for r ∈ {1, 2, 3}, then H3(Ω) ∩H1

0 (Ω) is dense in H2(Ω) ∩H1
0 (Ω).

Proof. Let V := H3(Ω)∩H1
0 (Ω) and U := H2(Ω)∩H1

0 (Ω), we want that for any
ε > 0 and u ∈ U , there exist a v ∈ V such that

(A.1) ‖u− v‖H2(Ω) ≤ ε.

From [11, Theorem 1.6.2] we know that V̂ := H3(Ω̂) ∩ H1
0 (Ω̂) is dense in Û :=

H2(Ω̂) ∩H1
0 (Ω̂), i.e., for any ε > 0 and u ∈ Û , there exist a v̂ ∈ V̂ such that

(A.2) ‖û− v̂‖H2(Ω̂) ≤ ε.

Now, we know using the standard IgA-results that

(A.3) ‖w‖H2(Ω) ≤ cg‖w ◦G‖H2(Ω̂)

holds for all w ∈ H2(Ω), where cg only depends on the geometry. Moreover, we have

v ∈ V ⇔ v ◦G ∈ V̂ and u ∈ U ⇔ u ◦G ∈ Û .

Now we prove (A.1). Let u ∈ U and ε > 0 be given. Let û := u ◦G. Using (A.2), we
know that there exist a v̂ ∈ Vg such that

‖û− v̂‖H2(Ω̂) ≤ ε/cg.

By choosing v := v̂ ◦G−1, we have

‖(u− v) ◦G‖H2(Ω̂) ≤ ε/cg.

and using (A.3) consequently

‖u− v‖H2(Ω) ≤ ε.

This means that we have found a proper v ∈ V such that (A.1) holds.

Next, we state a weighted trace theorem [12, Theorem 1.5.1.10].
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Theorem A.2. Let Ω be a bounded open subset of Rd with Lipschitz boundary
and let T be the trace operator. Then there a exist a constant c which only depend on
Ω such that

(A.4)

∫
∂Ω

|Tv(x)|2 ds ≤ c
[√

δ

∫
Ω

|∇v(x)|2 dx+
1√
δ

∫
Ω

|v(x)|2 dx
]
,

hold for all v(x) ∈ H1(Ω) and all δ ∈ (0, 1).

We can now prove Lemma 2.3.

Proof. When Ω has a polygonal (polyhedral) Lipschitz boundary the result follows
from [11, 12]. A detailed proof of this case can be found in [25, Lemma 3.3]. We
consider the case where Ω is the image of a geometric mapping and has Lipschitz
boundary. According to [12, Theorem 3.1.1.2] we have∫

Ω

|∇ · ψ(x)|2 dx =

∫
Ω

∇ψ(x) : (∇ψ(x))T dx−
∫
∂Ω

g(x)(ψn(x))2 ds,

for all ψ ∈ H2(Ω)d with ψn := ψ ·n and ψT := ψ−ψn n = 0. Here, g(x) is a function
which depends on the curvature of boundary ∂Ω. This can be bounded from above
by a constant cg depending only on Ω:

(A.5)

∫
Ω

|∇ · ψ(x)|2 dx ≥
∫

Ω

∇ψ(x) : (∇ψ(x))T dx− cg
∫
∂Ω

(ψn(x))2 ds.

Applying this inequality to ψ = ∇u with u ∈ H3(Ω)∩H1
0 (Ω), we now bound the last

term by using Theorem A.2

−cg
∫
∂Ω

(ψn(x))2 ds = −cg
∫
∂Ω

(∇u(x) · n)2 ds ≥ −cgd
∫
∂Ω

|∇u(x)|2 ds

≥ −c
[√

δ

∫
Ω

|∇2u(x)|2 dx+
1√
δ

∫
Ω

|∇u(x)|2 dx
]
.

By using integration by parts, the Cauchy–Schwarz inequality and the Poincaré in-
equality, we can bound the last term by∫

Ω

|∇u(x)|2 dx ≤ c2P ‖∆u‖2L2(Ω),

where cP is the Poincaré constant. Combining the last two inequalities gives

−cg
∫
∂Ω

(ψn(x))2 ds ≥ −c
[√

δ‖∇2u‖2L2(Ω) +
c2P√
δ
‖∆u‖2L2(Ω)

]
.

Inserting the inequality above and ψ = ∇u into (A.5) gives

‖∆u‖2L2(Ω) ≥ ‖∇
2u‖2L2(Ω) − c

[√
δ‖∇2u‖2L2(Ω) +

c2P√
δ
‖∆u‖2L2(Ω)

]
.

Note that this holds for any δ ∈ (0, 1). We now choose δ such that 1− c
√
δ is positive

and we get
‖∇2u‖L2(Ω) ≤ c ‖∆u‖2L2(Ω) ∀u ∈ H3(Ω) ∩H1

0 (Ω).

We that note due to the boundary condition and the Poincaré inequality it follows that
‖∇2u‖L2(Ω) is equivalent to the H2-norm. So, we have now shown inequality (2.8) for
u ∈ H3(Ω) ∩H1

0 (Ω). Since H3(Ω) ∩H1
0 (Ω) is dense in H2(Ω) ∩H1

0 (Ω) (Lemma A.1)
the result also holds for all u ∈ H2(Ω) ∩H1

0 (Ω).
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Appendix B. Approximation error estimates for B-splines. In this
Appendix, we prove Theorem 5.5 and some auxiliary results required for that proof.
We consider B-splines with maximum smoothness on the parameter domain Ω̂ :=
(0, 1)d, that is, we consider the space Sdp,`. We point out that for functions in

H2((0, 1)d) ∩ H1((0, 1)d) the H2-semi-norm and L2-norm of the Laplacian coincide,
that is,

‖∆u‖L2(0,1)d = ‖∇2u‖L2(0,1)d ∀H2((0, 1)d) ∩H1((0, 1)d).

For any d ∈ N and p ∈ N with p ≥ 3, let Πp : H2((0, 1)d) ∩ H1
0 ((0, 1)d) → Sdp,` ∩

H1
0 ((0, 1)d) be the H2-orthogonal projector, defined by

(∆Πpu,∆ũ)L2((0,1)d) = (∆u,∆ũ)L2((0,1)d) ∀ ũ ∈ Sdp,` ∩H1
0 .

To better distinguish the univariate case (d = 1), we write Πp := Πp for that case.

Theorem B.1. Let d ∈ N and p ∈ N with p ≥ 3. Then there exits a constant
c > 0 such that

‖u−Πpu‖L2((0,1)d) ≤ c h2‖∆u‖L2((0,1)d) ∀u ∈ H2((0, 1)d) ∩H1
0 ((0, 1)d).

Proof. Let u ∈ H2((0, 1)d)∩H1
0 ((0, 1)d) be arbitrary but fixed. [23, Theorem 9.3]

states that
‖u− Π̃pu‖L2((0,1)d) ≤ c h2‖∆u‖L2((0,1)d),

where Π̃p : H2((0, 1)d) ∩ H1
0 ((0, 1)d) → S̃ is the H2-orthogonal projector into some

space S̃ ⊂ Sdp,`. Using Π̃pΠp = Π̃p, the triangle inequality and the stability statement
‖∆Πpu‖L2((0,1)d) ≤ ‖∆u‖L2((0,1)d), we immediately obtain the desired result.

Next, we provide an H2–H4 error estimate for the univariate case.

Theorem B.2. Let p ∈ N with p ≥ 3. Then,

‖∂2(u−Πpu)‖L2(0,1) ≤ 2h2‖∂4u‖L2(0,1) ∀H4(0, 1) ∩H1
0 (0, 1).

Proof. See [24, Theorem 3].

We define projectors Πxk
p on C∞((0, 1)d) as follows:

(Πxk
p )u(x1, . . . , xk−1, ·, xk+1, . . . , xd) := Πpu(x1, . . . , xk−1, ·, xk+1, . . . , xd)

∀ (x1, . . . , xk−1, xk+1, . . . , xd) ∈ (0, 1)d−1 for k = 1, . . . , d.

These projectors act on one variable. We also introduce projectors Πxk
p that act on

every variable except one, which are given by

(Πxk
p )u(·, . . . , ·, xk, ·, . . . , ·) := Πpu(·, . . . , ·, xk, ·, . . . , ·)

∀xk ∈ (0, 1) for k = 1, . . . , d.

Similarly we define a Laplace operator on the form

∆xk =
∑

i∈{1,...,d}\{k}

∂xixi , where ∂xixi :=
∂2

∂2
xi

.

We note that all projectors are commutative, cf. [26]. Using this notation, we can
extend Theorem B.2 to an arbitrary number of dimensions.
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Theorem B.3. Let d ∈ N and p ∈ N with p ≥ 3. Then, there exits a constant
c > 0 such that

|u−Πpu|H2((0,1)d) ≤ c h2|u|H4((0,1)d) ∀u ∈ H4((0, 1)d) ∩H1
0 ((0, 1)d).

Proof. Assume first that u ∈ C∞((0, 1)d) ∩H1
0 ((0, 1)d). We prove the statement

of the theorem using induction with respect to d. Assume that it holds for d− 1, that
is,

(B.1) ‖∆xk(u−Πxk
p u)‖ ≤ c h2‖∆xk∆xku‖ for k = 1, . . . , d.

Here and in what follows, all norms are L2((0, 1)d)-norms unless stated otherwise.
Now, we show that the statement holds also for d. By using the fact that Πp minimizes

the H2-semi-norm (Laplace norm) and ‖∆u‖2 ≤ d
∑d
j=1 ‖∂xjxj

u‖2, we get

‖∆(u−Πpu)‖2 ≤ 1

d

d∑
k=1

‖∆(u−Πxk
p Πxk

p u)‖2 ≤
d∑
k=1

d∑
j=1

‖∂xjxj
(u−Πxk

p Πxk
p u)‖2.

We separate this into two groups: j = k and j 6= k. We start with j = k. Using
the triangle inequality, the commutativity of the two projectors, Theorem B.2, the
H2-stability of Πxk

p , and the fact that that ∂xkxk
and Πxk

p are commutative, we obtain

d∑
k=1

‖∂xkxk
(u−Πxk

p Πxk
p u)‖2 ≤ 2

d∑
k=1

(
‖∂xkxk

(u−Πxk
p u)‖2 + ‖∂xkxk

Πxk
p (u−Πxk

p u)‖2
)

≤ 2

d∑
k=1

(
4h4‖∂xkxkxkxk

u‖2 + ‖(I −Πxk
p )∂xkxk

u‖2
)
.

Now, we use Theorem B.1 to obtain

d∑
k=1

‖∂xkxk
(u−Πxk

p Πxk
p u)‖2 ≤ c h4

d∑
k=1

(
‖∂xkxkxkxk

u‖2 + ‖∆xk∂xkxk
u‖2
)
.(B.2)

For the second group (j 6= k), we use the triangle inequality, the induction hypothesis
(B.1) and the H2-stability of Πxk to obtain∑
j 6=k

‖∂xjxj (u−Πxk
p Πxk

p u)‖2 ≤ 2
∑
j 6=k

(
‖∂xjxj (u−Πxk

p u)‖2 + ‖∂xjxjΠ
xk
p (u−Πxk

p u)‖2
)

≤ 2
(
‖∆xk(u−Πxk

p u)‖2 + ‖∆xkΠxk
p (u−Πxk

p u)‖2
)

≤ c
(
h4‖∆xk∆xku)‖2 + ‖(I −Πxk

p )∆xku‖2
)
.

Again, we use Theorem B.2 and obtain

d∑
k=1

∑
j 6=k

‖∂xjxj
(u−Πxk

p Πxk
p u)‖2 ≤ c h4

d∑
k=1

(
‖∆xk∆xku)‖2 + ‖∂xkxk

∆xku‖2
)
.

Combining this with (B.2), we finally get

‖∆(u−Πpu)‖2 ≤ c h4
d∑
k=1

(
‖∆xk∆xku)‖2 + 2‖∂xkxk

∆xku‖2 + ‖∂xkxkxkxk
u‖2
)

≤ c h4‖∆∆u‖2 ∀u ∈ C∞((0, 1)d) ∩H1
0 ((0, 1)d).
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Note that ‖∆∆u‖ ≤
√
d |u|H4((0,1)d). Using a standard density argument, we obtain

the result also for u ∈ H4((0, 1)d) ∩H1
0 ((0, 1)d).

Using interpolation theory (cf. [6]) and the H2−H4 result above, we obtain a H2−H3

result, cf. [24, Theorem 6].

Theorem B.4. Let d ∈ N and p ∈ N with p ≥ 3. Then there exits a constant c
such that

|u−Πpu|H2((0,1)d) ≤ c h|u|H3((0,1)d) ∀u ∈ H3((0, 1)d) ∩H1
0 ((0, 1)d).

We also use interpolation theory and the L2 −H2 result (Theorem B.1) to obtain a
H1 −H2 result.

Theorem B.5. Let d ∈ N and p ∈ N with p ≥ 3. Then, there exits a constant c
such that

|u−Πpu|H1((0,1)d) ≤ c h|u|H2((0,1)d) ∀u ∈ H2((0, 1)d) ∩H1
0 ((0, 1)d).

By combining these auxiliary results, we can prove Theorem 5.5:

Proof. Inequality (5.6) is proven in Theorem B.4. For the inequality (5.7), we
combine Theorem B.5 and Theorem B.4 as follows:

‖∇(I −Πp)u‖ = ‖∇(I −Πp)(I −Πp)u‖ ≤ c h‖∇2(I −Πp)u‖ ≤ c h2‖∇3u‖,

where ‖ · ‖ again denotes the L2-norm. Finally, the inequality (5.8) is proven by
combining Theorem B.1 and Theorem B.4 as follows:

‖(I −Πp)u‖ = ‖(I −Πp)(I −Πp)u‖ ≤ c h2‖∇2(I −Πp)u‖ ≤ c h3‖∇3u‖.

This concludes the proof.
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