Code-based Testing with Constraints

Arnaud Gotlieb SIMULA RESEARCH LAB.

HUAWEI, Paris, 31 Mar. 2021

The VIAS Dept. at Simula Research Laboratory

Gotlieb

Marijan

Mohit K. Ahuja

Bernabé

M. Bachir Belaid

2 Permanent scientists, 3 PhD Students, 2 Postdoc [+ 2 Postdoc, 1 PhD in 2021]

VIAS: Validation Intelligence of Autonomous Software Systems

Organized as a Research-Based Innovation Center until Dec. 2019

Strongly involved into the **AI4EU Project** (H2020, 2019-2021) European AI-on-demand platform and the **TRANSACT Project** (ECSEL, 2021-2024)

Created RESIST, the first Inria-Simula associate team in 2021

Software Testing and Code-based Testing

Path-oriented exploration

Constraint-based exploration

Summary and further work

Code-based Testing

Code-based testing aims at generating test inputs such that selected code locations are executed

Test inputs generation is a **cognitively complex task**:

- Requires to "understand" the code in order to find test inputs
- Program's input space is usually very large (sometimes unbounded)
- Complex software code (e.g., solving ODEs or PDEs) are difficult to test
- Code optimizations can often only be tested with code-based testing

Not easily amenable to automation:

- Automatic test inputs generation is undecideable in the general case!
- Exploring the input space yields to combinatorial explosion
- Control and data structures requires dedicated treatments

The automatic test input generation problem

Given a location k in a program under test, generate a test input that reaches k

Undecidable in general, but ad-hoc methods exist

$$(int x_1, int x_2, int x_3)$$
 {
 $if(x_1 == x_2 \&\& x_2 == x_3)$
 $if(x_3 == x_1^* x_2) \dots$

Here, with random testing, Prob{ reack k} = 2 over $2^{32} \times 2^{32} \times 2^{32} = 2^{-95} = 0.00000...1$

So, constraint solving is crucial to address this problem in an efficient way

- ✓ Loops and non-feasible paths
- ✓ Modular integer and floating-point computations
- ✓ Pointers, dynamic structures, function calls, ...
- ✓ Inheritance, polymorphism

Constraint-Based Testing (CBT)

Constraint-Based Testing (CBT) is the process of **generating test cases** against a **testing objective** by using **constraint solving techniques**

Introduced 30 years ago by Offut and DeMillo in Constraint-based automatic test data generation IEEE TSE 1991

An overview is available in **Constraint-Based Testing: An Emerging Trend in Software Testing** by Gotlieb In Advances in Computers, 67-101 Academic Press ed. Vol. 99. Elsevier, 2015

Success stories in the context of code-based testing with code coverage objectives (Microsoft, CEA, Smartesting, Conformiq, Thales, ...)

Lots of Research works and tools !

Outline

→ Software Testing and Code-based Testing

Path-oriented exploration

Constraint-based exploration

Summary and further work

Path-oriented test data generation

Select one or several paths

 \rightarrow 1. Path selection

Generate the path conditions

 \rightarrow 2. Symbolic evaluation

Solve the path conditions to generate test data that activate the selected paths \rightarrow 3. Constraint solving

Test objectives:

generating a test suite that covers a given testing criterion

```
(all-statements, all-decisions, all-paths...)
```

or a test data that raise a safety or security problem

(assertion violation, buffer overflow, ...)

Main CBT tools: ATGen (Meudec 2001), EXE (Cadar 2006) ECLAIR (Bagnara 2013), BINSEC (Bardin 2015, 2020)

Path selection on an example

```
double P(short x, short y) {
    short w = abs(y);
    double z = 1.0;
    while ( w != 0 )
      z = z^* x;
      w = w - 1;
     }
    if (y<0)
     z = 1.0 / z;
   return(z);
```


Path selection on an example

all-statement coverage: a-b-c-b-d-e-f

<u>All-decisions coverage:</u> a-b-c-b-d-e-f a-b-d-f

all-2-paths (at most 2 times in loops): a-b-d-f a-b-d-e-f ... a-b-(c-b)²-d-e-f

all-paths:

Impossible

Path condition generation

Symbolic state: <Path, State, Path Conditions>

Path = n_i -..- n_j State = $\langle v_i, \phi_i \rangle_{v \in Var(P)}$ Path Cond. = $c_1, ..., c_n$ is a path expression of the CFG where ϕ_i is an algebraic expression over \bm{X} where c_i is a condition over \bm{X}

X denotes symbolic variables associated to the program inputs and Var(P) denotes internal variables

Symbolic execution

Computing symbolic states

- > <Path, State, PC> is computed by induction over each statement of Path
- When the Path conditions are unsatisfiable then Path is non-feasible and reciprocally (i.e., symbolic execution captures the concrete semantics)

Forward vs backward analysis:

Forward \rightarrow interesting when states are needed Backward \rightarrow saves memory space (states are not memoized)

Backward analysis

Ex: a-b-(c-b)²-d-f with X,Y f,d: **Y** ≥**0** b: **Y** ≥**0**, w = 0 c: **Y** ≥**0**, w-1 = 0 b: $Y \ge 0$, w-1 = 0, w != 0 c: $\mathbf{Y} \ge \mathbf{0}$, w-2 = 0, w-1 != 0 b: **Y** ≥**0**, w-2 =0, w-1 != 0,w != 0 a: $Y \ge 0$, abs(Y) - 2 = 0, abs(Y)-1 != 0, abs(Y) != 0

Y = 2

Problems for symbolic evaluation techniques

- \rightarrow Combinatorial explosion of paths
- \rightarrow Symbolic execution constrains the shape of dynamically allocated objects

Modelling dynamic memory management in constraint-based testing (Charreteur, Botella, Gotlieb JSS 09) Constraint-based test input generation for java bytecode (Charreteur, Gotlieb ISSRE'10)

 \rightarrow Floating-point computations $\stackrel{_{\sim}}{\rightarrow}$

Is the path 1-2-3-4 feasible ?

 $X + 10^{12} = 10^{12}$

Symbolic execution of floating-point computations (Botella, Gotlieb, Michel STVR 06) Symbolic test data generation for floating-point programs (Bagnara, Carlier, Gori, Gotlieb ICST'13, JoC 15, TOSEM 21)

On the floats: $X \in [0, 32767.99...[$

Dynamic Symbolic Evaluation

- Symbolic execution of a <u>concrete execution</u> (a.k.a. <u>concolic</u> execution)
- By using input values, feasible paths only are (automatically) selected
- Randomized algorithm, implemented by instrumenting each statement of P

Main CBT tools:

PathCrawler (Williams et al. 2005), PEX (Tillman et al. Microsoft 2008) SAGE (Godefroid et al.2008), KLEE (Cadar, Dunbar et al. 2009)

Comes in two ingredients... ₽

1st ingredient: path exploration

- 1. Draw an input at random, execute it and record path conditions
- a) 2. Flip a non-covered decision and solve the constraints to find a new input x

2nd ingredient: use concrete values

Use actual values to simplify the constraint set

Flip If
$$(x_3 = x_1 * x_2) \dots$$
 $(x_1 = 6, x_2 = 7, x_3 = 42)$

(1) Exact solving -- add $x_3 \models x_1 * x_2$ to the constraint solver (2) Approximate solving -- add $x_3 \models 6 * x_2$ && $x_1=6$ (linear expr.) or -- add $x_3 \models x_1 * 7$ && $x_2=7$ (linear expr.) or -- add $42 \models x_1 * x_2$ && $x_3=42$ (nonlinear expr.) (3) Approximate solving -- add $x_3 \models 6 * 7$ && $x_1=6$ && $x_2=7$ (4) Useless solving -- add $42 \models 6 * 7$ && $x_1=6$ && $x_2=7$ && $x_3=42$

Constraint solving in symbolic evaluation

Mixed Integer Linear Programming approaches (i.e., simplex + Fourier's elimination + branch-and-bound)

> CLP(R,Q) in ATGen **Ipsolve** in DART/CUTE

(Meudec 2001) (Godefroid/Sen et al. 2005)

SMT-solving (= SAT + Theories)

STP in EXE and KLEE

STP in EXE and KLEE (Cadar et al. 2006, 2009) **Z3** in PEX and SAGE (Tillmann and de Halleux 2008)

Constraint Programming techniques (constraint propagation and labelling)

Colibri in PathCrawler **Disolver** in SAGE **ECLAIR**

(Williams et al. 2005) (Godefroid et al. 2008) (Bagnara et al. 2013)

Software Testing and Code-based Testing

→ Path-oriented exploration

Constraint-based exploration

Summary and further work

Constraint-based program exploration

- Based on a constraint model of the whole program (i.e., each statement is seen as a relation between two memory states)
- Constraint reasoning over control structures
- Requires to build **dedicated constraint solvers**:
 - * propagation queue management with priorities
 - * specific propagators and global constraints
 - * structure-aware labelling heuristics

Main CBT tools:InKa
GATEL
Euclide(Gotlieb Botella Rueher 1998),
(Marre 2004),
(Gotlieb 2009)

A reacheability problem

Path-oriented exploration

f(int i) d j = 100;a. while (i > 1){ j++ ; i-- ; } b. d. if (j > 500)е. 1. Path selection e.g., (a-b)¹⁴-...-d-e 2. Path conditions generation (via symbolic exec.) e $j_1=100, i_1>1, j_2=101, i_2=i_1-1, \dots j_{15}=114, j_{15}>500$ 3. Path conditions solving unsatisfiable \rightarrow FAIL Backtrack!

Constraint-based exploration

f(int i)
{
a. j = 100;
while(i > 1)
b. { j++; i--;}

е.

- 1. Constraint model generation (through SSA)
- 2. Control dependencies generation; $j_1=100, i_3 \le 1, j_3 > 500$
- 3. Constraint model solving

 $j_1 \neq j_3$ entailed \rightarrow unroll the loop 400 times $\rightarrow i_1$ in 401 .. 2³¹-1

No backtrack !

Assignment as Constraint

Viewing an assignment as a relation requires to normalize expressions and rename variables (through single assignment languages, e.g., SSA)

Statements as (global) constraints

- ✓ Type declaration: signed long x; → x in $-2^{31}...2^{31}-1$
- ✓ Assignments: i^{+++i} ; → $i_2 = (i_1+1)^2$
- ✓ Control structures: dedicated global constraints Conditionnals (SSA) if D then C₁; else C₂; $v_3 = \phi(v_1, v_2) \rightarrow ite/6$ Loops (SSA) $v_3 = \phi(v_1, v_2)$ while D do C $\rightarrow w/5$

Conditional as global constraint: ite/6

ite(x > 0, j_1 , j_2 , j_3 , $j_1 = 5$, $j_2 = 18$) iff

 $\bullet \ Join(\ x > 0 \ \land \ j_1 = 5 \ \land \ \ j_3 = j_1 \ , \quad \neg (x > 0) \ \land \quad j_1 = 18 \ \land \ \ j_3 = j_2 \)$

Loop as global constraint: w/5

w(Dec, V_1 , V_2 , V_3 , body) iff

- $\text{Dec}_{V3 \leftarrow V1} \rightarrow \text{body}_{V3 \leftarrow V1} \land \mathbf{w}(\text{Dec}, v_2, v_{\text{new}}, v_3, \text{body}_{V2 \leftarrow Vnew})$
- $\neg \text{Dec}_{\vee 3 \leftarrow \vee 1} \rightarrow \vee_3 = \vee_1$
- $\neg(\text{Dec}_{V3 \leftarrow V1} \land \text{body}_{V3 \leftarrow V1}) \rightarrow \neg\text{Dec}_{V3 \leftarrow V1} \land v_3 = v_1$
- $\bullet \neg (\neg \text{Dec}_{\vee 3 \leftarrow \vee 1} \land v_3 = v_1) \rightarrow \text{Dec}_{\vee 3 \leftarrow \vee 1} \land \text{body}_{\vee 3 \leftarrow \vee 1} \land \textbf{w}(\text{Dec}, v_2, v_{\text{new}}, v_3, \text{body}_{\vee 2 \leftarrow \vee \text{new}})$
- $join(Dec_{V3 \leftarrow V1} \land body_{V3 \leftarrow V1} \land w(Dec, v_2, v_{new}, v_3, body_{V2 \leftarrow Vnew}), \neg Dec_{V3 \leftarrow V1} \land v_3 = v_1)$

Features of the w relation

- ✓ It can be nested into other relations ite/6 or w/5 (e.g., nested loops w(cond₁, v₁,v₂,v₃, w(cond₂, ...))
- Managed by the solver as any other constraint (its consistency is iteratively checked, awakening conditions, success/failure/suspension)
- By construction, w is unfolded only when necessary but w may NOT terminate !
- ✓ Join is implemented using Abstract Interpretation operators (interval union, weak-join, widening)

(Gotlieb et al. CL'2000) (Denmat Gotlieb Ducassé ISSRE'07) (Denmat Gotlieb Ducassé CP'2007)

Software Testing and Code-based Testing

Path-oriented exploration

Constraint-based exploration

Summary and further work

CBT (summary)

Proved concept in code-based automatic test data generation

Two main approaches:

Path-oriented exploration (using symbolic evaluation techniques) Constraint-based exploration (using global constraints)

Constraint solving:

- Linear programming
- SMT-solvers
- Constraint Programming techniques with *abstraction-based relaxations*

Mature tools (academic and industrial) exist, but problems remain for handling efficiently complex code (pointer arithmetic, transtyping, etc.), non-feasible code leading to unsatisfiable constraint systems, large data structures...

Further work

- Constraint acquisition for learning preconditions and generating satisfying test inputs (PhD G. Menguy, joint work with CEA, France)
- Initial states generation for testing optimal AI planners
- Test case execution scheduling with constraint acquisition

We are a team of researchers interested by real-world applications that lead to applied research problems. Long-term experience in technology transfer and technology adoption.