
Code-based Testing with Constraints

Arnaud Gotlieb

SIMULA RESEARCH LAB.

HUAWEI, Paris, 31 Mar. 2021

The VIAS Dept. at Simula Research

Laboratory

2 Permanent scientists, 3 PhD Students, 2 Postdoc [+ 2 Postdoc, 1 PhD in 2021]

VIAS: Validation Intelligence of Autonomous Software Systems

Organized as a Research-Based Innovation Center until Dec. 2019

Strongly involved into the AI4EU Project (H2020, 2019-2021)

European AI-on-demand platform

and the TRANSACT Project (ECSEL, 2021-2024)

Created RESIST, the first Inria-Simula associate team in 2021

Arnaud

Gotlieb
Dusica

Marijan

Mohit K. AhujaHelge Spieker Pierre

Bernabé
M. Bachir

Belaid

Aizaz Sharif

Outline

Software Testing and Code-based Testing

Path-oriented exploration

Constraint-based exploration

Summary and further work

Software Testing

Informal

World

Mathematical

World

Physical

World

Executable

Under Test
Test results

Constraint

Model

Verdict: Pass or Fail

Oracle

Test inputs

ExigencesUser Requirements

Spec / Model

Conformity ?

Source Code

Logical

World

Conformity ?

Conformity ?

Model-based

Testing

Code-based

Testing

Code-based Testing

Code-based testing aims at generating test inputs such that selected

code locations are executed

Test inputs generation is a cognitively complex task:

- Requires to “understand” the code in order to find test inputs

- Program’s input space is usually very large (sometimes unbounded)

- Complex software code (e.g., solving ODEs or PDEs) are difficult to test

- Code optimizations can often only be tested with code-based testing

Not easily amenable to automation:

- Automatic test inputs generation is undecideable in the general case!

- Exploring the input space yields to combinatorial explosion

- Control and data structures requires dedicated treatments

The automatic test input generation problem

Given a location k in a program under test, generate a test input that reaches k

Here, with random testing, Prob{ reack k} = 2 over 232232232 = 2-95=0.00000…1

Undecidable in general, but ad-hoc methods exist

✓ Loops and non-feasible paths

✓ Modular integer and floating-point computations

✓ Pointers, dynamic structures, function calls, …

✓ Inheritance, polymorphism

f (int x1, int x2, int x3) {

if(x1 == x2 && x2 ==x3)

if(x3==x1*x2) ...

location k

So, constraint solving is crucial to address this problem in an efficient way

Constraint-Based Testing (CBT)

Constraint-Based Testing (CBT) is the process of generating test cases

against a testing objective by using constraint solving techniques

Introduced 30 years ago by Offut and DeMillo in

Constraint-based automatic test data generation IEEE TSE 1991

An overview is available in

Constraint-Based Testing: An Emerging Trend in Software Testing by Gotlieb

In Advances in Computers, 67-101 Academic Press ed. Vol. 99. Elsevier, 2015

Success stories in the context of code-based testing with code coverage objectives

(Microsoft, CEA, Smartesting, Conformiq, Thales, …)

Lots of Research works and tools !

Outline

Software Testing and Code-based Testing

Path-oriented exploration

Constraint-based exploration

Summary and further work

Path-oriented test data generation

Select one or several paths → 1. Path selection

Generate the path conditions → 2. Symbolic evaluation

Solve the path conditions to generate test data that activate the selected paths
→ 3. Constraint solving

Test objectives:

generating a test suite that covers a given testing criterion

(all-statements, all-decisions, all-paths…)

or a test data that raise a safety or security problem

(assertion violation, buffer overflow, …)

Main CBT tools: ATGen (Meudec 2001), EXE (Cadar 2006)
ECLAIR (Bagnara 2013), BINSEC (Bardin 2015, 2020)

Path selection on an example

double P(short x, short y) {

short w = abs(y) ;
double z = 1.0 ;
while (w != 0)
{

z = z * x ;
w = w - 1 ;

}
if (y<0)

z = 1.0 / z ;
return(z) ;
}

w != 0

z = z * x
w = w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

no
yes

yes no

Path selection on an example

all-statement coverage:

a-b-c-b-d-e-f

All-decisions coverage:

a-b-c-b-d-e-f

a-b-d-f

all-2-paths (at most 2 times in loops):

a-b-d-f

a-b-d-e-f

…

a-b-(c-b)2-d-e-f

all-paths:

Impossible

w != 0

z = z * x
w = w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

yes

no

yes no

Symbolic state: <Path, State, Path Conditions>

Path = ni-..-nj is a path expression of the CFG

State = <vi,i> vVar(P) where i is an algebraic expression over X

Path Cond. = c1,..,cn where ci is a condition over X

X denotes symbolic variables associated to the program inputs and

Var(P) denotes internal variables

Path condition generation

Symbolic execution

<a, <z,1.>, <w,abs(Y)>, true >

<a-b, <z,1.>, <w,abs(Y)>, abs(Y) != 0 >

<a-b-c, <z,X>, <w,abs(Y)-1>, abs(Y) != 0 >

<a-b-c-b, <z,X.>, <w,abs(Y)-1>,

abs(Y) != 0, abs(Y)-1 != 0 >

< a-b-c-b-c, <z,X2>, <w,abs(Y)-2>,
abs(Y) != 0, abs(Y)-1 != 0 >

<a-b-(c-b)2, <z,X2>, <w,abs(Y)-2>,
abs(Y) != 0, abs(Y) != 1, abs(Y)–2 = 0 >

<a-b-(c-b)2-d, <z,X2>, <w,abs(Y)-2>,
abs(Y) != 0, abs(Y) != 1, abs(Y) = 2, Y  0 >

<a-b-(c-b)2-d-f, <z,X2>, <w,0>, Y=2 >

Ex : a-b-(c-b)2-d-f with X,Y

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

X 2

Computing symbolic states

➢ <Path, State, PC> is computed by induction over each statement of Path

➢ When the Path conditions are unsatisfiable then Path is non-feasible and

reciprocally (i.e., symbolic execution captures the concrete semantics)

ex : <a-b-d-e-f,{…}, abs(Y)=0  Y<0 >

➢ Forward vs backward analysis:

Forward → interesting when states are needed

Backward → saves memory space (states are not memoized)

Backward analysis
Ex : a-b-(c-b)2-d-f with X,Y

f,d: Y 0

b: Y 0, w = 0

c: Y 0, w-1 = 0

b: Y 0, w-1 = 0, w != 0

c: Y 0, w-2 = 0, w-1 != 0

b: Y 0, w-2 =0, w-1 != 0,w != 0

a: Y 0, abs(Y)-2 = 0,
abs(Y)-1 != 0, abs(Y) != 0

Y = 2

w != 0

z= z * x
w= w-1

y<0

z=1.0 / z

a

b

c

d

e

f

P(short x,y)
short w= abs(y)
double z= 1.0

return(z)

X 2

Problems for symbolic evaluation techniques

→ Combinatorial explosion of paths

→ Symbolic execution constrains the shape of dynamically allocated objects

int P(struct cell * t) {

if(t == t->next) { …

constrains t to:

Modelling dynamic memory management in constraint-based testing

(Charreteur, Botella, Gotlieb JSS 09)

Constraint-based test input generation for java bytecode

(Charreteur, Gotlieb ISSRE’10)

→ Floating-point computations 

t

next

float foo(float x) {

float y = 1.0e12, z ;

1. if(x < 10000.0)

2. z = x + y;

3. if(z > y)

4. …

Is the path 1-2-3-4 feasible ?

Path conditions:

x < 10000

x + 1012 > 1012

On the reals : x ]0, 10000[

On the floats : no solution !

float foo(float x) {

float y = 1.0e12, z ;

1. if(x > 0.0)

2. z = x + y;

3. if(z == y)

4. …

Is the path 1-2-3-4 feasible ?

Path conditions:

X > 0

X + 1012 = 1012

On the reals : no solution

On the floats: X ]0, 32767.99…[

Conversely,

Symbolic execution of floating-point computations

(Botella, Gotlieb, Michel STVR 06)

Symbolic test data generation for floating-point programs

(Bagnara, Carlier, Gori, Gotlieb ICST’13, JoC 15, TOSEM 21)

Dynamic Symbolic Evaluation

➢ Symbolic execution of a concrete execution (a.k.a. concolic execution)

➢ By using input values, feasible paths only are (automatically) selected

➢ Randomized algorithm, implemented by instrumenting each statement of P

Main CBT tools:

PathCrawler (Williams et al. 2005), PEX (Tillman et al. Microsoft 2008)

SAGE (Godefroid et al.2008), KLEE (Cadar, Dunbar et al. 2009)

Comes in two ingredients…

1st ingredient: path exploration

1. Draw an input at random, execute it and record path conditions

b

a

t

c

t

d

t

2. Flip a non-covered decision and solve the constraints to find a new input x

b

a

t

c

t

d

f

3. Execute with x

4. Repeat 2

b

a

t

c

t

f

de

f

t

b

a

t

c

t

f

de

f

f

….
b

a

t

c

t

f

de

fg

h

i

jk

Up to a given bound

2nd ingredient: use concrete values

➢ Use actual values to simplify the constraint set

Flip If(x3 == x1 * x2) … (x1 = 6, x2=7, x3=42)

(1) Exact solving -- add x3 != x1 * x2 to the constraint solver

(2) Approximate solving -- add x3 != 6 * x2 && x1=6 (linear expr.)

or -- add x3 != x1 * 7 && x2=7 (linear expr.)

(3) Approximate solving -- add x3 != 6 * 7 && x1=6 && x2=7

or -- add 42 != x1 * x2 && x3=42 (nonlinear expr.)

(4) Useless solving -- add 42 != 6 * 7 && x1=6 && x2=7 && x3=42

Constraint solving in symbolic evaluation

Mixed Integer Linear Programming approaches
(i.e., simplex + Fourier’s elimination + branch-and-bound)

CLP(R,Q) in ATGen (Meudec 2001)
lpsolve in DART/CUTE (Godefroid/Sen et al. 2005)

SMT-solving (= SAT + Theories)

STP in EXE and KLEE (Cadar et al. 2006, 2009)
Z3 in PEX and SAGE (Tillmann and de Halleux 2008)

Constraint Programming techniques (constraint propagation and labelling)

Colibri in PathCrawler (Williams et al. 2005)
Disolver in SAGE (Godefroid et al. 2008)
ECLAIR (Bagnara et al. 2013)

Outline

Software Testing and Code-based Testing

Path-oriented exploration

Constraint-based exploration

Summary and further work

Main CBT tools: InKa (Gotlieb Botella Rueher 1998),

GATEL (Marre 2004),

Euclide (Gotlieb 2009)

Constraint-based program exploration

- Based on a constraint model of the whole program

(i.e., each statement is seen as a relation between two memory states)

- Constraint reasoning over control structures

- Requires to build dedicated constraint solvers:

* propagation queue management with priorities

* specific propagators and global constraints

* structure-aware labelling heuristics

f(int i)

{

a. j = 100;

while(i > 1)

b. { j++ ; i-- ;}

…

d. if(j > 500)

e. …
d

b

a

f

t

t

f

A reacheability problem

…

value of i to reach … ?

e

f(int i)

{

a. j = 100;

while(i > 1)

b. { j++ ; i-- ;}

…

d. if(j > 500)

e. …

d

b

a

f

t

t

f

Path-oriented exploration

…

1. Path selection

e.g., (a-b)14-…-d-e

2. Path conditions generation (via symbolic exec.)

j1=100, i1>1, j2=101, i2=i1-1,…j15=114, j15>500

3. Path conditions solving

unsatisfiable → FAIL

Backtrack!

e

f(int i)

{

a. j = 100;

while(i > 1)

b. { j++ ; i-- ;}

…

d. if(j > 500)

e. …

d

b

a

f

t

t

f

Constraint-based exploration

…

1. Constraint model generation (through SSA)

2. Control dependencies generation;

j1=100, i3 ≤ 1, j3 > 500

3. Constraint model solving

j1  j3 entailed ➔ unroll the loop 400 times ➔ i1 in 401 .. 231-1

No backtrack !

e

Viewing an assignment as a relation requires to normalize expressions

and rename variables (through single assignment languages, e.g., SSA)

i*=++i ; i2 = (i1+1)2

Assignment as Constraint

i*=++i; /* i2 = (i1+1) 2 */

i1 = 3 ?

i2 = 16

i1 in -4..2

i2 = 9 ?

i1 in -5..3

i2 in 5..16 ?i2 = 7 ?

no

Statements as (global) constraints

✓ Type declaration: signed long x; → x in -231..231-1

✓ Assignments: i*=++i ; → i2 = (i1+1)2

✓ Control structures: dedicated global constraints

Conditionnals (SSA) if D then C1; else C2; v3=(v1,v2) → ite/6

Loops (SSA) v3=(v1,v2) while D do C → w/5

Conditional as global constraint: ite/6

ite(x > 0, j1, j2, j3, j1 = 5, j2 = 18) iff

if(x > 0)

3

2

0

j2 = 18;

j3 = (j1 , j2);

 (x > 0  j1 = 5  j3 = j1) → (x > 0)  j2 = 18  j3 = j2
 ((x > 0)  j3 = j2) → x > 0  j1 = 5  j3 = j1

 Join(x > 0  j1 = 5  j3 = j1 , (x > 0)  j1 = 18  j3 = j2)

 x > 0 → j1 = 5  j3 = j1

 (x > 0) → j2 = 18  j3 = j2

j1 = 5; 1

Loop as global constraint: w/5

v3 = (v1 , v2)

while(Dec)

1

2

body
3

w(Dec, V1, V2, V3, body) iff

 DecV3V1 → bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)

 DecV3V1 → v3=v1

 (DecV3V1  bodyV3V1) → DecV3V1  v3=v1

 (DecV3V1  v3=v1) → DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew) , DecV3V1  v3=v1)

f(int i) {

j = 100;

while(i > 1)

{ j++ ; i-- ;}

…

if(j > 500)

…

w(i3 > 1, (i,j1), (i2,j2), (i3,j3), j2 = j3 + 1  i2 = i3 - 1)

i = 23, j1=100 ?

i3 = 1, j3 = 122

no

i3 = 10 ?

i in 401..231-1

j1 = 100,

j3 > 500 ?

w(Dec, V1, V2, V3, body) :-

 DecV3V1 → bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)

 DecV3V1 → v3=v1

 (DecV3V1  bodyV3V1) → DecV3V1  v3=v1

 (DecV3V1  v3=v1) →

DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew ,

DecV3V1  v3=v1)

Features of the w relation

✓ It can be nested into other relations ite/6 or w/5

(e.g., nested loops w(cond1, v1,v2,v3, w(cond2, ...))

✓ Managed by the solver as any other constraint (its consistency is iteratively

checked, awakening conditions, success/failure/suspension)

✓ By construction, w is unfolded only when necessary but

w may NOT terminate !

✓ Join is implemented using Abstract Interpretation operators (interval union,

weak-join, widening)

(Gotlieb et al. CL’2000) (Denmat Gotlieb Ducassé ISSRE’07)

(Denmat Gotlieb Ducassé CP’2007)

Outline

Software Testing and Code-based Testing

Path-oriented exploration

Constraint-based exploration

Summary and further work

CBT (summary)

Proved concept in code-based automatic test data generation

Two main approaches:
Path-oriented exploration (using symbolic evaluation techniques)
Constraint-based exploration (using global constraints)

Constraint solving:
- Linear programming
- SMT-solvers
- Constraint Programming techniques with abstraction-based relaxations

Mature tools (academic and industrial) exist, but problems remain for handling
efficiently complex code (pointer arithmetic, transtyping, etc.), non-feasible code
leading to unsatisfiable constraint systems, large data structures…

Further work

- Constraint acquisition for learning preconditions and generating satisfying

test inputs (PhD G. Menguy, joint work with CEA, France)

- Initial states generation for testing optimal AI planners

- Test case execution scheduling with constraint acquisition

We are a team of researchers interested by real-world applications that

lead to applied research problems. Long-term experience in technology

transfer and technology adoption.

