
Koch et al.

RESEARCH

Estimates for the astrocyte endfoot sheath
permeability of the extra-cellular pathway
Timo Koch1,2*, Vegard Vinje2 and Kent-André Mardal1,2
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Abstract

Background: Astrocyte endfoot processes are believed to cover all micro-vessels

in the brain cortex and may play a significant role in fluid and substance

transport into and out of the brain parenchyma. Detailed fluid mechanical models

of diffusive and advective transport in the brain are promising tools to investigate

theories of transport.

Methods: We derive theoretical estimates of astrocyte endfoot sheath

permeability for advective and diffusive transport and its variation in

microvascular networks from mouse brain cortex. The networks are based on

recently published experimental data and generated endfoot patterns are based

on Voronoi tessellations of the perivascular surface. We estimate corrections for

projection errors in previously published data.

Results: We provide structural-functional relationships between vessel radius

and resistance that can be directly used in flow and transport simulations. We

estimate endfoot sheath filtration coefficients in the range

Lp = 0.2× 10−10 mPa−1 s−1 to 2.7× 10−10 mPa−1 s−1, diffusion membrane

coefficients in the range CM = 0.5× 103 m−1 to 6× 103 m−1, and gap area

fractions in the range 0.2% to 0.6%.

Conclusions: The astrocyte endfoot sheath surrounding microvessels forms a

secondary barrier to extra-cellular transport, separating the extra-cellular space of

the parenchyma and the perivascular space outside the endothelial layer. The

filtration and membrane diffusion coefficients of the endfoot sheath are estimated

to be an order of magnitude lower than the extra-cellular matrix while being two

orders of magnitude higher than the vessel wall.

Keywords: brain perfusion; astrocyte processes; endfoot sheath; glial cells;

perivascular space; glymphatic theory; waste clearance

Background
Astrocyte endfoot processes have been reported to cover virtually all of the mi-

crovasculature in brain gray matter [1, 2, 3, 4, 5, 6]. The endfoot processes overlap [3]

and form a sheath that constitutes the outer boundary of the perivascular space

(PVS). Exchange of fluid across the endfoot sheath is vital to maintain homeostasis

of the central nervous system [7], and a key component of the proposed glymphatic

theory [8]. The extra-cellular transport pathway, between individual endfoot pro-

cesses, and the associated permeabilities of the endfoot sheath are relevant for the
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interpretation of transport phenomena observed for cerebrospinal fluid (CSF), and

passively transported substances that are believed to not enter astrocytes in large

quantities (such as many MRI contrast agents) and are used in the analysis of flow

and transport processes into, out of and within the brain parenchyma. We omit

here the discussion of intra-cellular pathways (see [8, 9, 10, 11] for proposed roles

and scientific debate) and perivascular pathways (see e.g. [6]).

The astrocyte endfoot sheath enclosing the microvessels in brain tissue can be

viewed as the surface of a tube tiled by individual endfoot processes, cf. [6, Fig.2].

Voronoi tessellations have been successfully used to describe the geometric config-

uration of cell populations and cell dynamics for decades [12]. Voronoi tessellations

appear if cells are grown radially from a center point at constant speed until colli-

sion with a neighbor cell growing at the same speed, a simulation process used by

[13] to construct virtual astrocyte endfoot processes. However, Voronoi tessellations

of a point set can also be more directly constructed as the dual graph of a Delaunay

triangulation of the point set. Motivated by the recent work of Wang et al. [6],

in which the authors visualized endfoot process gaps in mouse brain resembling

Voronoi tessellations, we herein propose their use to generate artificial endfoot pat-

terns. An exemplary realization of such a pattern is shown in Fig. 1 (cf. [6, Fig.2]).

To estimate the permeability of the generated cell patterns, the parameterized sur-

face model representation has to be combined with a corresponding cross-sectional

model representation. A schematic cross-sectional cut through a capillary in Fig. 2

introduces the considered perivascular structures and parameterization of the inter-

endfoot gaps.

Few quantitive experimental studies have been published on the geometrical con-

figuration of astrocyte endfeet. Mathiisen et al. [3] conducted an ultra-structural

analysis of astrocyte endfeet in capillary vessels in rats, reporting on gap sizes, thick-

ness, and coverage. Individual endfoot processes are separated from neighboring

endfeet by gaps of 20 nm on average [3]. Moreover, neighboring endfeet are overlap-

ping [3] and are regularly connected at gap junctions as narrow as 5 nm as described

in an early ultrastructural analysis by Brightman and Reese [14]. McCaslin and

coworkers [5] report average endfoot densities and average endfoot sheath thickness

for capillaries and larger arterial and venous vessels using two-photon microscopy

acquired in-vivo in mice. Recently, Wang et al. [6] analyzed variations in astrocytic

endfoot sizes along the vascular tree in mouse brain cortex and hippocampus ex-

vivo using confocal microscopy and their data demonstrates significant differences

in endfoot sizes between venous and arterial vessels.

Permeability estimates of the endfoot sheath and its variance in microvascular

networks are crucial parameters for computational models of diffusive and ad-

vective transport in brain tissue [15, 16]. Previous estimates of the permeability

of perivascular and interstitial compartments have been obtained in a number of

works [9, 17, 16, 18]. Asgari et al. [9] estimated the resistance of astrocyte inter-

endfoot gaps based on an idealized geometrical configuration. In [18], this estimate

was extended to obtain a brain-wide resistance between the periarterial/perivenous

compartments and the extra-cellular space.

There are two shortcomings of the previous analyses. Firstly, the available data

has only been partially combined into permeability estimates. As permeability is a
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crucial material property, we here aim to provide a derivation and resulting esti-

mates. Secondly, the variation of permeability values within cortical microvascular

networks has not been estimated. For example, Mathiisen et al. [3] estimated the

(inter-endfoot) gap area fraction based on cross-sectional data. Wang et al. [6] re-

ported variations of the average endfoot vessel coverage area with vessel type, and

estimated resulting water flux variations, but no resulting gap area fractions. That

means the data cannot be directly compared and mapping variation onto a mi-

crovascular network requires additional data or model assumptions.

In this work, we will focus on the estimation of the extra-cellular endfoot

sheath permeability and its variability incorporating data on endfoot sheath ultra-

structure, endfoot surface area, and variations with vessel diameters. To this end,

we estimate parameter distribution in microvascular networks extracted from mouse

brain [19]. Based on and parameterized by values from published experimental

data [3, 6], we propose a theoretical model based on random tessellations of the

endfoot sheath. The model provides estimates for the permeability of the astro-

cyte endfoot sheath around microvessels to transmembrane transport of fluids and

transported substances. By use of this model, we can connect and compare the

data obtained by Mathiisen et al. [3] (gap area fraction) and Wang et al. [6] (area

variation) and discuss both permeability variations within a microvascular network

and network-averaged quantities.

Figure 1 Voronoi tessellation model of endfoot sheath. Top: a sample Voronoi tessellation with
a mean endfoot area of A = 25 µm

2 and a vessel radius of ro = 10 µm
2 (including endfoot

sheath). Cell center positions are generated from a uniform random distribution. The tessellation
is periodic which is important to ensure that wrapping around a vessel will provide a consistent
tiling of the vessel surface. Bottom: same tessellation as above, but mapped onto a cylinder
surface (vessel surface).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516727doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516727
http://creativecommons.org/licenses/by-nd/4.0/


Koch et al. Page 4 of 24

vessel lumen

endothelial cell

pericyte

basement membrane

perivascular space (PVS)

(inter-)endfoot gap

endothelial

tight junction

astrocyte endfoot

ECS

PVS

Figure 2 Schematic cross-section through a cortical capillary. Elements are not drawn to scale.
Left: schematic of an inter-endfoot gap showing overlap between neighboring cells and identifies
symbols for some geometrical measures used in this work. Right: schematic cross-sectional cut
through a capillary. The ’gaps/ring’ count for the shown cross-section is 3. The gap area fraction
is measured on the outer endfoot surface (side of the extra-cellular space, ECS). For larger
parenchymal microvessels (arterioles, venules), the perivascular space contains other pericytes
such as smooth muscle cells and is thicker. This work is concerned with estimating the
permeability of the blue astrocytic endfoot process layer relevant for fluid and substance exchange
between PVS and ECS.

Methods
Theoretical model of endfoot sheath cell areas and gaps

To generate artificial endfoot sheath coverage patterns, we drew uniformly dis-

tributed random points on the endfoot sheath surface[1]. Next, we computed a

Voronoi tessellation of the point set[2]. The tessellations consist of polygonal faces.

Each polygon represents the visible surface[3] covered by an endfoot process and

the polygon edges (also called bisector edges) mark the location of endfoot-endfoot

gaps. The surface is represented by a rectangle of width 2πro (where ro is the end-

foot sheath radius) and height L such that the total area divided by the number of

polygons equals the desired mean endfoot area, A[4]. Based on the reported image

data by Wang et al. [6], we assumed that the reported vessel diameters include the

endfoot sheath.

Assuming a constant gap width dg, we computed φg, the area fraction of the

surface occupied by inter-cellular gaps (i.e. the surface available for transmembrane

exchange via the extra-cellular pathway). For this, we multiplied the total edge

[1]This is to match the distribution of endfoot areas on single vessels measured by [6].

For example, a regular uniform cell center pattern would lead to uniform endfoot

areas instead.
[2]using the open-source software CGAL [20]
[3]The endfoot processes forming the endfoot sheath overlap. The tessellation models

the “visible” endfoot sheath surface configuration as seen from outside the vessel,

cf. [6, Fig.2].
[4]L is chosen large (here L = 20ro) such that a possible bias on cell size due to

boundary effects is minimized. The center points are duplicated along the sides so

that the generated pattern is periodic and can be mapped onto (wrapped around)

a cylinder surface (as shown in Fig. 1).
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length lΣ in the Voronoi tessellation with the gap width and divide by the total

surface area, φg := dlΣ/(L2πro). Since the estimated gap area fractions are below

1%, we neglect the influence of considering finite-sized gaps on the endfoot area.

For comparison with previously published data, we also computed the average

number of gaps counted in cross-sectional cuts through the vessel as ’gaps/ring’:=

l⊥Σ/L, where l⊥Σ is the total length of the edges after projecting each edge in ax-

ial vessel direction. A related number is φ⊥
g := dl⊥Σ/(L2πro) corresponding to the

(reduced) gap area fraction obtained when using ’gaps/ring’ as the basis for its

estimation (as for example used in [18]).

Combination with experimental data
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Figure 3 Functional relation between vessel diameter and endfoot area. Left: the proposed
functional relations are based on quadratic (arteries, A) and linear (veins, V) functions such that
the linear regression (LR) results from [6] are well-matched over the whole range of vessel
diameters differentiating between arterial and venous vessels. The data from [6, Fig.2d, green
solid line] corresponds to the data from 15-month-old mice; the data from [6, Fig.4c] (red and
blue) to data from 12-month-old mice. No significant age-dependence of the endfoot area is
observed by Wang et al. [6]. Dots show vessel-averaged data reported by Wang et al. [6, Fig.4c].
Average endfoot sizes, AA and AV , for the endfoot sheath around arterial and venous vessels,
respectively, are given in µm

2 for vessel radius (including endfoot sheath) ro in µm. Right: average
endfoot sizes, AA and AV estimated from the data [6] and corrected relation (computed with the
presented theoretical model) accounting for the error inherent to the 2D image analysis.

Wang et al. [6] describe how the area covered by single endfoot process varies

along the vascular tree for vessels of different diameters. They report endfoot areas

for all analyzed vessels [6, Fig.2] and endfoot areas separate for arterial vessel and

venous vessel for vessels with radius ro > 7.5 µm [6, Fig.4]. To extract the data

shown by Wang et al. [6], we used the open-source image analysis tool WebPlotDig-

itizer [21]. We extracted the linear regression curve (vessel average) of endfoot area

as a function of vessel diameter, and all individual data points and regression trends

of the data were classified into arteries and veins. To obtain an estimate over the

whole range of vessels, separated into arterial and venous vessels, we constructed

functions to fit well the entire range of diameters reported by Wang et al. [6]. The

linear regression trends of [6] and our approximation overlaid are shown in Fig. 3.

The areas measured by [6] correspond to plane projections of the endfoot area

resulting from the analysis of 2D images rather than 3D reconstructions of the
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endfoot sheath, cf. [6, Fig.2]. The projection into the image plane underestimates the

actual endfoot area by introducing two sources of error: (1) orthogonal projection

distorts the vessel surface, and (2) half of the vessel surface is not visible in the

projection. Both effects are stronger for smaller vessels where endfeet typically wrap

around the vessel. We first quantified these errors based on the generated Voronoi

tessellations and virtual projection as described in more detail in Appendix A. We

then found a unique mapping between measured and corrected areas, which allows

us to correct the projection error, see Appendix A. The second graph in Fig. 3

shows the diameter-area relationship after correction predicted by the model. This

corrected diameter-area relationship is used as the basis for all parameter estimates

in this work.

Permeability for diffusive transport of passive tracers

As proposed previously, e.g. [9, 18], we conceptually model the endfoot sheath as a

porous medium. Since we here only consider the extra-cellular pathway, a tracer will

only diffuse through the inter-endfoot gaps (pore space) and cannot enter the end-

foot processes themselves (solid skeleton). Therefore, the diffusive transport across

the endfoot sheath will be diminished by its gap area fraction, φg. The endfoot

processes are known to partially overlap [3], cf. Fig. 2 and the diffusive flux over the

endfoot sheath is inversely proportional to the gap length (not endfoot sheath thick-

ness), lg, estimated for capillaries at lg = 0.45 µm [3]. The corresponding endfoot

sheath thickness, hES, is reported to be between 0.02 and 0.3 µm [3] in capillaries for

chemically fixated tissue, while McCaslin et al. [5] report hES ≈ 1.0 µm for mouse

cortex capillaries in-vivo and even larger hES for arterial and venous vessels. Since

for geometrical reasons lg f hES (see Fig. 2), we propose lg ≈ 1.5hES in the absence

of quantitative in-vivo data. Due to obstructions in the endfoot gap channel (larger

proteins, fibers, or gap junctions [14]) the effective diffusivity may be reduced by a

factor α. Nicholson and Hrabětová [22] demonstrate that in the extra-cellular space

of the parenchyma where the inter-cellular space width is between 20-100 nm, the

measured ratio of effective to free diffusivity is usually smaller than can be explained

by the tortuosity of the pore space alone. For molecules with a hydrodynamic di-

ameter that is one-tenth or more of the gap width, α needs to model size-dependent

steric exclusion and restricted diffusion effects [23], for instance, with the Renkin

equation [24, 25]. In particular, α and therefore diffusive permeability is zero for

molecules much larger than the gap width.

The diffusive flux FD [MT−1L−2] through the surface of a vessel segment can be

computed as

FD = αφgDl−1
g ∆c := CMD∆c (1)

where ∆c is the concentration drop across the endfoot sheath, the gap area fraction

φg is given by Eq. (5), D is the binary diffusion coefficient in aqueous solution, and

CM = αφgl
−1
g , (2)
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is the diffusion membrane coefficient (in units of m−1). Given a surface area S (for

example for a tubular segment of length lv and radius rv, S = 2πrvlv) with constant

CM , we can compute the amount of a tracer crossing the endfoot sheath per unit

time as FDS. The product SCMD is sometimes called permeability-surface product

or diffusion capacity [26, Ch. 10], in particular when referring to the surface integral

of CMD in a larger tissue portion. In this work, we normalize the diffusion capacity

by the (free) binary diffusion coefficient D.

Permeability for fluid flow

Although inter-endfoot gap slits are as narrow as dg ≈ 20 nm, continuum theory of

viscous flow can be applied for describing liquid water flow [27]. Furthermore, due to

hydrophilic surface properties, we assume no-slip conditions at the cell membrane.

We remark that the complex interface region (≈ 1 nm) between the endfoot’s lipid

bilayer membrane and the bulk fluid adds some uncertainty to the effective width in

addition to the uncertainty of width measurements and spatial variations. Therefore,

we argue it is sufficient to approximate the hydraulic transmissibility by a simple

parallel plate flow model as tg = d3g(12µlg)
−1, cf. [18], where dg is the inter-cellular

distance (i.e. gap width of the slit) and µ denotes the fluid viscosity. Using this

expression, the flow rate Q [L3T−1] through the surface of a tubular segment of

length lv and radius rv (and thus lateral surface area S = 2πrvlv) can be computed

as

Q = d−1
g Sφgtg∆p := SLp∆p, (3)

where ∆p is the effective pressure drop across the endfoot sheath (between extra-

cellular space (ECS) and PVS) and the gap area fraction φg is given by Eq. (5) in

terms of the vessel radius, rv, and

Lp = φgtgd
−1
g , (4)

is the filtration coefficient (in units of mPa−1 s−1). The product SLp is also called

filtration capacity [26, Ch. 11], in particular when referring to the surface integral

of Lp in a larger tissue portion.

Microvascular networks

We analyzed two microvascular networks (MVN) extracted from the mouse brain

cortex in [19] as published in [28]. The raw vessel polylines extracted from segmented

voxel images by [19] is smoothed by a Douglas-Peucker algorithm [29] using the local

vessel radius as tolerance. For vessel classification (arteries and veins), blood pres-

sure values (p) in every vessel segment are simulated with a finite volume method

as described in [15] (but neglecting filtration across the blood-brain-barrier). The

boundary conditions are based on estimations computed by Schmid et al. [30, 28].

We solve a modified Poiseuille-type flow using the in-vivo apparent viscosity rela-

tion proposed in [31] scaled to mouse red blood cells (using an average volume of

55 fL). The open-source software DuMux [32] was used as a finite volume solver

with dune-foamgrid [33] for the network representation.
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Using the computed pressure maps, vessel segments were classified as arterial ves-

sels if its pressure exceeds the average pressure of all segments with rv f 4.5 µm

(vessel radius excluding endfoot sheath), and as venous vessels otherwise. The net-

works and the obtained pressure distribution are shown in Appendix B (Fig. 9).

Since the network data is associated with vessel lumen radius data, rv, exclud-

ing the endfoot sheath and other perivascular structures but the tiling model is

formulated in terms of the total outer radius (ro) of the astrocyte endfoot sheath,

we require a model of how these radii are related. Based on data reported in [5],

we assumed a thickness of the endfoot sheath, hES, of 1 to 2.5 µm. Additionally,

we chose the relation hES = 1 + 0.15(rv − 3) modeling a linear increase with in-

creasing vessel lumen radius. Moreover, larger vessels with rv f 3 µm are assumed

to be sheathed by smooth muscle cells or ensheathing pericytes [34] located in

between the endothelial layer and the endfoot sheath. Based on [34, Fig.3], we es-

timated the smooth muscle cell layer thickness to be approximately equal to hES.

This means ca. 1µm for a pre-capillary arteriole with rv = 3µm and ca. 2µm for a

penetrating vessel with rv = 10µm. Finally, we added the thickness of the endothe-

lial cell layer and basement membrane with 0.4 µm [35] for all vessels. In summary,

ro = 2hES(rv)+0.4 = 1.3rv+1.5 for rv g 3 µm and ro = hES(rv)+0.4 = 1.15rv+0.95

otherwise. For the network analysis, the networks are split into 6 vertically stacked

analysis layers (layer 0 being closest to the pial surface and layer 5 being closest to

the white matter) of 200µm thickness (100 µm for layer 5). Average values (rv, ro,

Lp, CM ) have been computed as surface-area-weighted arithmetic averages of all

vessels contained in the respective analysis layer.

Results
Astrocyte endfoot area distribution

Endfoot area distribution and resulting gap area fraction predicted by the model

for 200 realizations with ro = 2.9 µm2 (capillary) and ro = 15.0 µm2 (venule and

arteriole), with (corrected) mean endfoot area A shown in Fig. 3, are reported in

Fig. 4. The resulting endfoot area distribution is well-modeled by a Gamma distri-

bution[5] (with mean 50µm2 (capillary), 110µm2 (venule) and 490µm2 (arteriole),

respectively). The resulting gap area fraction distribution is well-approximated by

a normal distribution with mean gap area fractions of 0.0056 (capillary), 0.0038

(venule), and 0.0018 (arteriole). For comparison with [3, 18], we also report the

resulting number of gaps counted per vessel cross-section (’gaps/ring’) on average,

which is lowest in the capillary (3.2), highest in venules (11.5), and intermediate in

arterioles (5.4).

Additionally, the model was run for 50 different diameters with model-corrected

A (shown in Fig. 3). For each diameter, we generated 20 samples (a total of n =

1000 samples). The resulting data including mean, and 5th, 25th, 75th, and 95th

percentile are reported in Fig. 5 for both venous and arterial vessels.

[5]Well-modeled based on a two-sample Kolmogorov-Smirnov test for goodness of

fit. We remark that it has previously been observed that the cell area in Voronoi

tessellations (with uniformly-distributed center point coordinates) may be approx-

imated by a Gamma distribution, e.g. [36, 37, 38]; Weaire et al. [37] provide an

intuitive explanation.
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Figure 4 Endfoot area and gap area fraction from Voronoi tessellations. (First row) endfoot
area distribution (left) and resulting gap area fraction (right) for 200 realizations with
ro = 2.9 µm

2 (capillary), (second row) ro = 15.0 µm
2 (venule), (third row) ro = 15.0 µm

2

(arteriole). The dashed vertical line marks the mean (capillary: A = 50 µm
2, φ̄A

g = 0.0056; venule:

A = 110 µm
2, φ̄V

g = 0.0038; arteriole: A = 490 µm
2, φ̄A

g = 0.0018). The quantity ’gaps/ring’
states the number of inter-cellular endfoot gaps, on average, on cross-sectional vessel cuts. The
resulting gap area fraction—if this value were to be extrapolated to the total surface—is denoted
by φ⊥

g . ’Gaps/ring’ and φ⊥
g are reported for comparison with experimental data. The solid lines

represent fitted continuous distributions using a Gamma distribution for the endfoot area and a
normal distribution for the gap area fraction.

For comparison with previously published data, we computed based on the

diameter-area relations that on average, small vessels (rv < 4.5 µm, average not

weighted by radius prevalence in a network) have endfoot density of ca. 1.9 × 104

endfeet per mm2 surface area. Larger venous vessels (rv > 4.5 µm) show ca. 1.0×104

endfeet/mm2 and larger arterial vessels (rv > 4.5 µm) show the lowest density of

ca. 0.4× 104 endfeet/mm2.

Gap area fraction for different vessels

Using the same n = 1000 samples as for the data in Fig. 5, in combination with

the gap width and length reported by Mathiisen et al. [3], we computed the resulting

gap area fraction φg for each realization. The results are shown in Fig. 6. For small

diameters (capillaries), the gap area fraction for venous vessels, φV
g , and arterial

vessels, φA
g , are similar, while for increasing vessel diameters φV

g < φA
g .
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Figure 5 Endfoot areas of generated Voronoi-diagram-based endfoot patterns. Given the mean
endfoot areas estimated in Fig. 3 (solid lines), n = 1000 realizations were generated for varying
vessel diameters. Individual dots correspond to a single astrocyte endfoot of a realization. The
shown mean corresponds to AA and AV . Individual endfoot coverage areas show large variability
(in agreement with what is reported in [6, Fig.2d]) and follow a Gamma distribution for a given
vessel diameter (and mean endfoot area), cf. Fig. 4.
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Figure 6 Functional relation between vessel diameter and gap area fraction. Gap size fraction
from generated endfoot sheath patterns for uniform gap width of d = 20nm. Dots show individual
realizations (n = 800 for each arterial and venous vessel). Solid lines are exponential curve fits
(ro = 0.5do is the vessel radius including the endfoot sheath). Estimates for L⋆

p and C⋆
M (right

axes) are computed with lg = 1 µm, a fluid viscosity of µ = 0.69× 10
−3

Pa s and α = 1. Both L⋆
p

and C⋆
M are proportional to φg/lg .

In summary, the model predicts φA
g and φV

g given mean endfoot area, A, vessel

radius including endfoot sheath, ro, and gap with, dg. Using a gap width of dg =
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20 nm [14, 3], we obtain the empirical relations,

φA
g (ro) = 0.00704e−0.1668ro + 0.00124 ro ∈ [2.5, 15] µm, (5a)

φV
g (ro) = 0.00468e−0.0716ro + 0.00226, ro ∈ [2.5, 20] µm, (5b)

where the radius ro is inserted in µm, cf. Fig. 6.

Based on a constant gap length, lg, the gap area fraction for the smallest capillary

vessels is about 3 times higher than that of 15µm radius arterial vessel, and about

2 times higher than that of venous vessel of the same caliber. The smaller increase

in endfoot size reported by [6] for venous vessels in comparison with arterial vessels

leads to effectively higher gap area fractions in venous vessels with increasing vessel

radius.

Permeability for diffusive transport of passive tracers

The resulting estimates for CM using an obstruction of α = 1 (i.e. no obstruc-

tions; smaller α values would decrease the CM estimates) and constant lg = 1 µm

are shown in Fig. 6. Also taking into consideration the variation of hES in the mi-

crovascular networks (see Methods), estimates range between CM ≈ 500m−1 for

the largest arterioles and CM ≈ 6000m−1 for the smallest capillaries.

Permeability for fluid flow

The resulting estimates for Lp using a viscosity of µ = 0.7 × 10−3 Pa s (water at

37 °C, larger assumed viscosity values would increase the Lp estimates) and constant

lg = 1µm are given in Fig. 6. Also taking into consideration the variation of hES

in the microvascular networks (see Methods), estimates range between Lp ≈ 0.2×
10−10 mPa−1 s−1 for the largest arterioles and Lp ≈ 3 × 10−10 mPa−1 s−1 for the

smallest capillaries, cf. Fig. 7.

Microvascular networks

Table 1 Average parameters computed for two microvascular networks. MVN1 and MVN2 are
networks extracted from the mouse cortex [19]. Capillaries (C) are defined as vessels with
rv < 3.0 µm. Venous (V) and arterial (A) vessel segments (rv ≥ 3.0 µm) are distinguished by local
blood pressure (see Methods). Pial vessels are excluded from the analysis. Outer surface refers to the
endfoot sheath surface. The surface area is computed on the basis of circular cross-secitons and
estimated ro (outer radius including endfoot sheath, see Methods). Surfaces and volumes are based
on the assumption of cylindrical segments with radius rv (lumen, L) or ro.

Symbol MVN1 MVN2 unit description

SC 8.5× 10
−6

1.2× 10
−5

m
2 endfoot sheath surface area (C)

SA 3.2× 10
−7

7.5× 10
−7

m
2 endfoot sheath surface area (A)

SV 2.6× 10
−7

4.6× 10
−7

m
2 endfoot sheath surface area (V)

S 9.1× 10
−6

1.3× 10
−5

m
2 endfoot sheath surface area (all)

V 5.5× 10
−10

6.9× 10
−10

m
3 total sample volume (bounding box)

ζ 2.8× 10
−2

3.4× 10
−2 - volume fraction vessel (outer)

ζL 1.0× 10
−2

1.2× 10
−2 - volume fraction vessel (lumen)

S/V 1.7× 10
4

1.9× 10
4

m
2
m

−3 surface to volume ratio (outer surface)

SL/V 1.0× 10
4

1.2× 10
4

m
2
m

−3 surface to volume ratio (lumen surface)
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Figure 7 Microvascular networks (MVN). MVN1 and MVN2 are networks extracted from mouse
cortex data [19]. The vessel segment visualizations show MVN2. Pial vessels have been removed.
Classification into arterial and venous vessels is based on pressure maps computed with a vascular
graph model (see Methods and Fig. 9). (A) Vessels with rv ≥ 3 µm are shown in red (arterial) and
blue (venous); smaller vessels are translucent gray. Segments are rendered as cylinders with radius
rv. (B) The color map is scaled by the estimated filtration coefficients Lp shown for each vessel
segment. Segments are rendered as cylinders with radius ro. (C) For each of the 6 analysis layers
(layer 0 is closest to the pial surface) of 200 µm vertical thickness (100 µm for layer 5) and both
networks, the filtration capacity, the average Lp, the diffusion capacity, and the average CM for
each vessel category (A: arterial, V: venous, C: capillary vessels) is shown. The surface area of
each vessel segment has been computed by assuming a cylinder with radius ro. The averaged
segment lumen radius (rv from [28]) and the averaged estimated outer endfoot sheath radius (ro)
over depth are shown in the rightmost figure. Missing data points correspond to

f
S = 0.

We analyzed two microvascular networks from the mouse brain cortex [19], labeled

MVN1 and MVN2. Volumes and surfaces computed by assuming cylindrical seg-

ments with estimated outer radius ro (including endfoot sheath) and vessel lumen

radius rv (from [28]) are given in Table 1. MVN2 has a 18% larger vessel volume

fraction (2.8% and 3.4% including endfoot sheath) and an 10% larger surface-to-

volume ratio than MVN1 (1.7×104 m2 m−3 and 1.9×104 m2 m−3). In both networks,

the surface area of small vessels (rv < 3 µm) exceeds the area of the larger vessels

by a factor 10 or more.

For each vertical depth analysis layer (see Methods), the filtration and diffusion

capacity as well as averaged filtration and diffusion membrane coefficients are shown

in Fig. 7. While the filtration coefficient Lp (and similarly the diffusion membrane

coefficient, CM ) in individual segments differs by a factor 10 between the largest

arteriole segments and the smallest capillaries, the layer-averaged coefficient only
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varies by a factor 2. The surface-weighted averages over the entire network are found

to be Lp = 2.1×10−10 mPa−1 s−1 and CM = 4.4×103 m−1, with only 1% difference

between MVN1 and MVN2. The total filtration capacity per tissue volume is found

to be 3.4×10−6 mPa−1 s−1 m−1 (MVN1), 4.1×10−6 mPa−1 s−1 m−1 (MVN2). The

total diffusion capacity per tissue volume is found to be 7.2 × 107 m−2 (MVN1),

8.5×107 m−2 (MVN2). The filtration and diffusion capacity peaks in layer 2, where

it is between (10 to 14% larger than in layer 1, 3, and 4 (0 and 5 are excluded

from this comparison due to differences in layer size and occupied volume). This

coincides with the lowest average vessel radius, cf. Fig. 7.

Discussion
Endfoot gap area fraction

In [3], the average number of endfoot gaps per capillary cross-section is reported as

2.5 (2.3 to 2.9 in 3 different animals). For the modeled capillary with ro = 2.9 µm,

the predicted number (’gaps/ring’ in Fig. 4) of 3.2 is only slightly larger (20%). How-

ever, without correction of the projection error (Appendix A), capillary endfoot size

is estimated in [6] at only 25 µm2 corresponding to about 4.0 ’gaps/ring’ (simulated

with our model). Hence, the correction by the model allows us to partially resolve

an apparent mismatch between the data reported by [3] and [6]. The comparison

may be further affected by the different measurement methods employed by [3] and

[6], measurement errors, and the quality of the area correction computed by our

model. Finally, there might be inter-species variations between rats and mice.

By extrapolating ’gaps/ring’ and the gap width of d = 20nm to all of the surface,

the authors of [3] conclude that about 0.3% of the endfoot sheath surface is com-

prised of gaps—a number also used by [18] to estimate endfoot sheath permeability.

We note that this computation effectively assumes that gaps run parallel to the lon-

gitudinal vessel axis. Under this assumption, we compute for capillaries, a reduced

gap area fraction φ⊥
g = 0.35% matching well the value obtained in [3]. However, the

corresponding actual gap area fraction estimated by our surface tessellation model

is φg = 0.56%, cf. Fig. 4, and therefore significantly larger. The latter value can be

considered an improved estimate correcting for yet another projection error.

For a simple estimate of gap area fraction, we may assume a regular hexagonal

tiling for A = 50µm2 and d = 20nm corresponds to a value φg = 0.0052[6] (to be

compared with 0.0056) for the capillary and φg = 0.0035 (compared with 0.0038)

for the vein of the same caliber analyzed in Fig. 4. However, regular tiling falls short

of providing a model for individual endfoot size variability.

With respect to the variation with vessel type, we remark that assuming constant

gap width for all vessels results in a linear correlation between filtration and diffusion

membrane coefficient (both quantities depend linearly on the gap area fraction).

Therefore, differences in permeability result from variations in the gap area fraction

rather than individual gap anatomy. Such a correlation is, for example, also observed

for the endothelium of different capillary types [26, Ch. 10.6].

However, there is significant uncertainty regarding both gap width in-vivo and

general astrocyte coverage. The estimates in this work consider a continuous cover-

age with astrocyte endfeet of all microvessels [5]. Firstly, the actual coverage may

[6]computed as φg = A−1d 4√3
√
2A based on a single regular hexagon with area A
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be reduced with, for example, astrocyte bodies or microglia substituting endfoot

processes on the vessel surface. If the inter-cellular gap size is not significantly al-

tered, the provided estimates by our model still hold. Secondly, both Mathiisen et

al. [3] and Wang et al. [6] worked with chemically fixated tissue. Korogod et al. [39]

compared cryogenic and chemical fixation techniques, and report significant differ-

ences in the resulting endfeet cavity fraction (37% vs. 4%). At cavity fractions

this large, the astrocyte endfoot sheath would be irrelevant in terms of a proposed

barrier function. This result is contrasted by in-vivo observation of continuous cov-

erage [2, 5, 40]. Additionally, Kubotera et al. [41] observed that after laser ablation

astrocytes restore the endfoot coverage of microvessels in-vivo. (Mills and coworkers

call this tendency to re-cover blood vessels after disruptions endfoot plasticity [42].)

On the other end, the effective gap area fraction is reduced, if inter-endfoot gap

junctions (2-3 nm [14]) are found to be present in-vivo with significant density (ne-

glected in this work). It is also reduced for molecules whose hydrodynamic radius

is a significant fraction of the gap width (modeled by the parameter α).

Apart from structural uncertainty, astrocytes are known to change their volume

under varying conditions [43]. Changes in cell sizes and changes in the radius of

the endfoot sheath could alter its hydrodynamic properties—a potential regulatory

mechanism of fluid flow and substance transport [44, 6]. We are not aware of quan-

titative data describing how the endfoot gap width dg or endfoot sheath thickness

hES changes with such alterations. If such data became available, Eqs. (2) and (4)

allow estimating the effect of alterations on the gap area fraction (and CM , Lp).

Moreover, vessel diameters are highly dynamic and can dilate up to 30 to 40%

of the vessel diameter [45] which leads to mechanical deformation of the astrocyte

endfoot sheath observed in-vivo [46].

To the best of our knowledge, direct evidence for full coverage (or its absence),

a precise inter-endfoot gap width quantification in-vivo and its variation, as well

as quantitative data on temporal dynamics are still lacking. The fluid flow rate

Q ∝ d3g and the diffusive flux FD ∝ dg strongly depend on the assumed gap width

dg resulting in a large (maybe the largest) source of uncertainty for the estimation

of extra-cellular transport across the endfoot sheath.

Permeability for diffusive transport of passive tracers

The estimated permeability of the endfoot sheath can be compared to adjacent bar-

riers and tissues. The vessel wall is assumed to be virtually impermeable to many

molecules. In diseased tissue, for example, neurodegenerative diseases such as mul-

tiple sclerosis (MS) or glioma higher permeability has been observed in lesion tissue.

For example, MRI contrast agents such as gadobutrol (D ≈ 3.5×10−10 m2 s−1 [15])

can leak out of blood vessels in MS lesions or glioma tissue. In [15], CMD ≈
1 × 10−7 ms−1 has been estimated for Gadobutrol leakage across the vessel wall

in MS lesions, corresponding to CM = 300m−1 which is an order of magnitude

smaller than average values obtained in this work for the endfoot sheath, cf. Fig. 7.

For skeletal muscle microvascular walls and small hydrophilic molecules, CM has

been estimated at CM ≈ 100 to 200m−1 [23, Fig.2]. The brain cortex microvascular

vessel walls are commonly assumed to be orders of magnitude less permeable than

in skeletal muscle. This signifies that the endothelial layer is a much less permeable
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barrier than the astrocyte endfoot sheath, where we estimated the lowest CM for

large penetrating arterioles with CM f 1000m−1 and values up to CM f 6000m−1

for capillaries.

The estimated permeability can also be compared to that of the extra-cellular

space (ECS). To this end, we consider a 1µm thick slab of ECS. With a porosity of

0.2 and tortuosity factor of 0.35 [47, 1/λ2], we obtain CM = 7×104 m−1. Hence, the

endfoot sheath is more than an order of magnitude less permeable than the ECS

given a slab of comparable thickness. Therefore, the endfoot sheath could locally

act as a barrier. It could also promote the compartmentalization of substances,

depending on whether low-permeability perivascular pathways parallel to the vessel

exist in the vicinity.

We remark that lower permeability does not necessarily mean slower transport.

The magnitude of diffusive transport depends on the concentration drop ∆c as well,

cf. Eq. (1). As vessel structures constitute thin tubular sources (in an infiltration

scenario) or sinks (in a clearance scenario), the magnitude of the concentration

gradient is much larger in the vicinity of the vessels and quickly decays with distance.

Therefore, the question as to whether the effect of a lower local permeability is

significant for a given scenario goes beyond the scope of the present work.

Permeability for fluid flow

In the brain cortex microvasculature, the filtration coefficient of the vessel wall is

thought to be very low. Kimura and coworker [48, Tab.3] measured Lp = 2.8 to 4.1×
10−12 mPa−1 s−1 in single rat brain arterioles. Fraser and Dallas [49] report Lp =

2× 10−13 mPa−1 s−1 in frog brain microvessels. A 1µm slab of ECS corresponds to

a Lp value of approximately 0.5 to 3×10−8 mPa−1 s−1 [50, 51, 52][7] or larger[8]. We

estimated the lowest Lp values for large arterioles with Lp ≈ 2.0×10−11 mPa−1 s−1,

and the largest values for capillaries, Lp ≈ 2.0× 10−10 mPa−1 s−1.

Hence, similar to the results for diffusion, the endfoot sheath filtration coefficient

is one order of magnitude larger than that of the vessel wall. On the other hand, it

is two orders of magnitude smaller than a slab of ECS of similar thickness, making

the astrocyte endfoot sheath a limiting component for the extra-cellular PVS-ECS

exchange of fluids.

Using the same parallel plate model as for Lp, Eq. (4), we can estimate Péclet

numbers for transport through the gaps as Peg =
∆pd2

g

12µαD (using lg as characteristic

length). The Péclet number estimates the importance of advective transport over

[7]For this estimate, the reported tissue permeabilities (3.5-14× 10−18m2 [50], 0.4-110×

10−18m2 (mean: 16 × 10−18 ± 24 × 10−18m2) [51], 10-20 × 10−18m2 [52]) are divided by

the slab thickness of 1 µm and fluid viscosity of 0.69 × 10−3 Pa s. We used a density of

1×103 kgm−3 and gravitational acceleration of 9.81 m s−1 for conversion from hydraulic

conductivity.
[8]In [53], the authors estimate tissue permeability based on data from (whole brain)

convection-enhanced delivery studies, that are almost three orders of magnitude

larger than what is reported from perfusion studies [50] and flow simulations [52].

However, the estimates might be altered in comparison with values for only ECS

by effects of tissue deformation during injection [54] or by the inclusion or opening

of highly permeable perivascular pathways.
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diffusive transport across the end foot sheath. Given the difference in permeability

to that of the vessel wall, across which pressure drops on the order of 1000Pa

may occur due to filtration across the capillary endothelium (estimated for example

with the models presented in [55, 15]), we assume a pressure drop (∆p) across

the endfoot sheath of 10Pa to 100Pa. Since typical binary diffusion coefficients in

aqueous solution are in the order of 1× 10−9 m2 s−1, transport of solutes across the

endfoot sheath is dominated by diffusion (Peg ≈ 0.003 j 1).

In [9], Asgari and coworkers estimate an inter-endfoot-gap permeability of Lp =

1.35×10−10 mPa−1 s−1 (based on a capillary circumference 15.7 µm, endfoot thick-

ness h = 1µm and a parallel plate model, and conversion based an endfoot area of

78 µm2). This matches well with the average value estimated in arterioles in this

work but is lower by about half what we estimate for capillaries. The difference can

be explained by the assumption of Asgari that the assumed representative endfoot

fully wraps around the vessel (‘gaps/ring‘ is 1) which results in a lower gap area

fraction.

In [18], Vinje and colleagues estimate comparable parameters for human brain

tissue. In particular, the authors estimated the endfoot sheath resistance (in-

verse permeability) around arterial and venous vessels (excluding capillaries). The

reported resistances correspond to Lp = 2 × 10−10 mPa−1 s−1 for arterial and

Lp = 3 × 10−10 mPa−1 s−1 for venous vessels. The numbers are, in part, based

on the gap area fraction estimate provided in [3] for capillaries in rats. As explained

above, this number (based on the quantity ’gaps/ring’) results in an underestima-

tion of φg and therefore Lp of ca. 35% and the suggested higher values would be

Lp ≈ 3× 10−10 mPa−1 s−1 for arterial and Lp = 4.5× 10−10 mPa−1 s−1 for venous

vessels. However, we used the endfoot thickness distribution estimated by [5] based

on in-vivo mouse brain data, whereas a constant size straight channel model with

lg = hES = 1µm is used by [18]. Thus, our resulting permeability for arterioles and

venules are approximately half the values of [18], respectively, cf. Fig. 7.

Microvascular networks

For the two considered microvascular networks, we find that the filtration and the

diffusion capacity are largest at about 40% of cortical depth. This layer also shows

the smallest average vessel diameters, cf. Fig. 7, and a significant peak in neuron

density [56]. A high endfoot density per surface area as in the capillaries, cf. [5],

corresponds to a higher permeability of the endfoot sheath due to an increase in

the gap area fraction. The average filtration and membrane diffusion coefficients

are dominated by the average values for capillaries and appear to be independent

of depth. Hence, the increased filtration capacity at 40% seems to be a result of an

increased surface area rather than an increased vessel permeability. This matches

with the observation that vessel density is largest in this cortical layer [19, 45, 57].

To the best of our knowledge, the variability of endfoot sizes in the endfoot

sheath has not been analyzed using microvascular networks comprising all ves-

sels in a given tissue portion before. Based on the distribution of penetrating ar-

terioles and venous from the macaque cortex [58], Vinje et al. [18] estimate the

surface permeability product of the human brain (using an approximate human

brain volume of V ≈ 1L). If normalized by the sample volume to eliminate the
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effect of spatial scale, their estimate corresponds to the volume-specific quantities

2.2 × 10−7 Pa−1 s−1 for arterioles and 2.0 × 10−7 Pa−1 s−1[9] for venules, while we

obtain 6.6 × 10−8 Pa−1 s−1 (MVN1), 6.6 × 10−8 Pa−1 s−1 (MVN2) for arterioles,

and 9.5 × 10−8 Pa−1 s−1 (MVN1), 9.1 × 10−8 Pa−1 s−1 (MVN2) for venules. The

difference is expected since we estimated lower endfoot sheath permeability.

Although not directly significant for the permeability of the endfoot sheath (but

relevant for propositions about its main function), we additionally provide cell den-

sity estimates resulting from the analysis of the microvascular networks in com-

bination with astrocyte endfoot areas. The assumed diameter-area relations mean

that on average, small vessels (rv < 3.0 µm) show an average endfoot density of

2×104 endfeet/mm2 surface area. Larger venous vessels (rv > 3.0 µm) show 1×104

endfeet/mm2 and larger arterial vessels (rv > 3.0 µm) show the lowest density of

0.4 × 104 endfeet/mm2. McCaslin and coworkers [5] find 1 × 104 endfeet/mm2 for

capillaries, 0.4× 104 endfeet/mm2 for venules, 0.3× 104 endfeet/mm2 for arterioles

in-vivo in mouse cortex.

Using the endfoot sheath surface areas in Table 1 and our density estimates, we

compute about 170 000 (MVN1), 245 000 (MVN2) endfeet around small vessels, 2600

(MVN1), 4600 (MVN2) endfeet around larger venous vessels, and 1300 (MVN1),

3000 (MVN2) endfeet around larger arterial vessels. 97% of endfoot processes are

therefore expected to be around capillaries. Using an estimate of astrocyte densities

in the mouse cortex (20000 ± 13000 cells/mm3 [56]) this means the domain of the

analyzed networks contains about 11 000±7000 (MVN1) and 14 000±9000 (MVN2)

astrocytes with 16 (MVN1) and 19 (MVN2) endfoot processes per astrocyte on

average.

Finally, we want to stress that with regard to the prediction of transport across

or in parallel to the endfoot sheath, in addition to the presented permeability pa-

rameters, a dynamic model for pressure and concentration around vessel networks

on the µm to mm scale (meso-scale) is needed. Concerning implication for macro-

scale transport models (organ-scale), we remark that the integral values reported

here for the microvascular networks may be used as a starting point to estimate

parameters for tissue transport models based on homogenization or mixture theory.

However, one should be aware that effective filtration and diffusion capacity on the

macro-scale generally depend on the local meso-scale pressure and concentration

distributions which is an unresolved issue of such models [55] in the context of

tissue perfusion simulations.

Relevance in the light of the glymphatic theory

Cerebrospinal fluid (CSF) flow through perivascular spaces is a crucial component of

the recently proposed glymphatic theory [59]. Pial perivascular CSF flow has been

observed and quantified in [60]. Furthermore, intake of various tracers (Dextran,

Gadobutrol) into the parenchyma has been reported to be modified by sleep and

disease in both mice and humans [61, 62, 63]. Crucial to determining the mechanisms

involved in the intake is to determine the type and magnitude of fluid flow and

molecular transport along the different pathways: perivascular, intra-cellular, and

extra-cellular; and the resistance of barriers between these compartments and the

[9]with ΣSLA
∼= 1/RIEG of [18] and V = 1L.
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resistance of efflux pathways. Therefore, the herein presented permeability estimates

for the astrocyte endfoot sheath being a component of all conceived pathways,

provide a starting point for estimating diffusive and advective fluxes outside of the

microvasculature.

In [6], the authors estimate the effect of varying astrocyte endfoot gap density

on transmembrane CSF flux based on (at least) three assumptions[10]: (1) there

is a fluid-filled connected perivascular space (PVS) from descending arterioles all

the way down to capillaries; (2) there is a net CSF flow within the PVS from the

cortical surface into the capillary bed driven by axial pressure gradients in the PVS;

(3) water transport across the endfoot sheath (or transport through intra-cellular

pathways) does not affect the pressure distribution in the PVS, i.e. the exchange is

small in comparison to the perivascular flow rates. In a theoretical analysis based

on these assumptions, the authors conclude that varying endfoot gap fractions help

“maintaining perivascular-interstitial flux through the cortical depth” [6]. This con-

clusion is based on the comparison of a single arteriole with a single capillary within

a hierarchical network: the arteriole has a lower surface-specific permeability (Lp)

but experiences a larger pressure drop (∆p) across the endfoot sheath than the cap-

illary (given the authors’ assumptions). These competing effects cancel each other

out, so that the resulting local fluxes across the endfoot sheath are approximately

equal in both vessels. However, we want to additionally point out that for a given

portion of tissue (as in Fig. 7), since there is many more capillaries than arterioles

with a much higher total surface area (Table 1), perivascular-interstitial exchange

(even with the authors’ assumptions) would happen predominantly around capil-

laries[11]. Moreover, the latter statement remains true, even if the arteriole endfoot

sheath would have the same (higher) Lp as the capillaries. However, regardless of

this remark, the low permeability (high resistance) of the endfoot sheath in com-

parison with the ECS may lead to slightly enhanced fluid flow parallel to vessels

within the PVS (under the premise that a sufficient driving force and a connected

pathway exist).

Conclusion
This work shows how a data-informed theoretical model of astrocyte endfoot size

distributions (based on Voronoi tessellations) can be used to relate data from various

experimental and theoretical works and arrive at estimates for the endfoot sheath

permeability and its variation in microvascular networks from mouse brain cortex.

We estimated filtration coefficients in the range Lp = 0.2×10−10 mPa−1 s−1 to 2.7×
10−10 mPa−1 s−1 (average 2.1 × 10−10 mPa−1 s−1) and diffusion membrane coeffi-

cients in the range CM = 0.5×103 m−1 to 6×103 m−1 (average 4.4×103 m−1). This

means that the astrocyte endfoot sheath is more than one order of magnitude more

permeable than the vessel wall but about two orders of magnitude less permeable

than a similarly thick layer of extra-cellular space. The numbers are complemented

by formulas such that they can be adapted in the case that other data becomes

[10]We mention that all three assumptions have been challenged and the current

evidence does not suffice for a resolution of the debate, see e.g. [64] for a review.
[11]Large penetrating arterioles only account for about 1 % of the total microvascular

surface area
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available. In particular, we estimated a relation between the inter-endfoot gap area

fraction and the vessel radius given a constant gap width and find values in the

range of 0.2% to 0.6%. The data is presented with the intent to be useful for

detailed modeling studies of transport of substances in the brain cortex including

microvascular network architecture. The estimates are based on the assumption of

continuous endfoot coverage of cortical micro-vessels in mice with an approximately

constant inter-endfoot gap width of 20 nm and largest uncertainty for the perme-

ability of the extra-cellular pathway stems from the absence of direct evidence of

continuous endfoot coverage and the precise geometry of inter-endfoot gaps in-vivo.

A Underestimation of endfoot area by 2D image analysis
The analysis of varying endfoot area on the surface of vessels of different caliber by

[6] is based on two-dimensional image analysis. A (2D) image of a vessel is taken.

This image looks like Fig. 1 (bottom), cf. [6, Fig.2]. Based on the image inter-endfoot

gaps are segmented and the area surrounded by inter-endfoot gaps is identified as

endfoot area. There is two main error inherent to the methodology:

(1) (Projection error) The image shows the (originally curved) vessel surface (or-

thogonally) projected onto the image plane. This effect underestimates the actual

area. The effect is stronger for endfeet close to the vessel “boundary” (vessel outline

in the 2D image; in 3D there is no such boundary).

(2) (Visibility error) The image only shows the part of the endfoot on the visible

half of the vessel. An endfoot wrapping around the vessel will therefore once more

be underestimated in area. Importantly, both discussed effects depend on the ratio√
A/rv, i.e. the endfoot size over the vessel radius. The effects are more pronounced

for capillaries.

Consider the following two limit cases.

(a)
√
A j rv: A small endfoot on a large vessel surface centered in the middle

between the vessel boundaries is fully visible. There is only error (1). Since for an

infinitely larger radius (limit case), this error tends to 0 for large vessels.

(b)
√
A k rv: Imagine a rectangular endfoot (one side with arbitrary length) fully

wrapped around the vessel (other side equal to 2πrv). Due to the projection error,

the area is underestimated by a factor 2rv
πrv

= 2
π ≈ 0.64. Additionally, only half of

the endfoot is visible (factor 0.5). In combination, the area is underestimated by a

factor 0.32, or the endfoot appears (on the image) approximately 3 times smaller

than it actually is.

The presented theoretical model based on Voronoi tessellations of the vessel sur-

face, allows us to investigate the combined error more systematically. To this end,

we make one additional assumption. During the image analysis, seeing an image like

Fig. 1 (bottom), the scientist is likely aware that counting small polygons close to the

vessel boundary (corresponding to incompletely seen endfoot processes) decreases

the accuracy of the results. Here, we cannot be sure how many such polygons have

been counted. We therefore consider, in the theoretical analysis, several thresholds

based on the centroid of the endfoot. Specifically, we assume that an endfoot is only

counted if its centroid (w.r.t. to its visible projected portion) is in the middle P %

between the vessel boundary. All polygons centered too close to the boundary on

any side (somewhere in the (100− P ) % percent boundary region) will be omitted
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from the analysis. Since the value of P has a large influence on the results, we tested

different numbers, (100− P ) ∈ {0, 10, 30, 50, 70}.
Next, we evaluated for different ratios

√
A/rv and different values of (100−P ), the

factor of endfoot area underestimation. To this end we generated patterns like in

Fig. 1 (top), wrap them around the vessel, cf. Fig. 1 (bottom), and projected them

onto the image plane. We did so from different angles and averages. The standard

deviation of the computed factors was approximately 0.02 for all cases and is omitted

in the following figure only showing the mean value. We averaged each parameter

combination over 5 random realizations and report the mean value. The results

are presented in Fig. 8. The results show that there is significant underestimation

inherent to the projection, in particular for small vessels. For a capillary, with

rv = 3 µm and A = 50µm, projection results in an area estimate between 15µm

and 35 µm. The upper value is obtained, if only polygons are counted that are

centered in the middle 30% of the seen vessel section. That means, even if the best

is tried to exclude polygons that area clearly cut at the boundary, the error cannot

be avoided.
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Figure 8 Evaluation of 2D image analysis error for endfoot area estimates. An example of the
region of interest for one particular realization is shown in the top image. P = 100 means all
polygons in the image have been counted. P = 30 means only the polygons centered in the stripe
of thickness 0.3dv in the middle of the vessel between the vessel outlines have been considered in
the analysis. The top image shows P = 50 applied to the sample of Fig. 1 and the counted
polygons are marked with a dot in their centroid. Counting all polygons leads to the most severe
underestimation. The practice of discarding polygons close to the border reduces the error of the
image analysis (underestimation fraction closer to 1). Solid lines are least squares curve fits with
cubic polynomials.

Our analysis suggests a way to correct the error. To simplify the inverse problem of

estimating the corrected area from the measured area, we choose P = 50 and observe

that the least square fit with a cubic polynomial shown in Fig. 8 multiplied with

the real area, Aimg = Af(
√
A/rv), is monotone in the relevant parameter ranges
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(rv ∈ [2.5, 40] µm, A ∈ [10, 500] µm2) and can therefore uniquely be inverted.

Inverting the relationship rv and Aimg obtained by [6] at discrete sampling point

with Brent’s root finding algorithm leads to the corrected diameter-area function

shown in Fig. 3.

B Pressure distribution in microvascular networks
The computed pressure distribution in microvascular networks used to classify ves-

sels into arterial and venous vessels based on the network geometries extracted from

measurement data [19] and boundary conditions estimated in [30, 28] are shown in

Fig. 9.

Figure 9 Two microvascular networks (MVN1/left, MVN2/right) of rodent cortex. Visualized
in color is the computed blood pressure distribution. The vessels are shown as tubes scaled with
the vessel lumen radius. Geometry based on data from [19].
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